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Jean-Louis Pichard
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IRAMIS/SPEC, CEA Saclay, 91191 Gif-sur-Yvette, France

We consider quantum transport of spinless fermions in a ftleéeembedding an interacting region (two sites
with inter-site repulsioi/ and inter-site hopping, coupled to leads by hopping termg. Using the numerical
renormalization group for the particle-hole symmetrice;ase study the quantum conductancas a function
of the inter-site hopping,. The interacting region, which is perfectly reflecting whgn— 0 or ¢4 — oo,
becomes perfectly transmittingtif takes an intermediate valugU, ¢.) which defines the characteristic energy
of this interacting model. Whety < t.v/U, g is given by a universal function of the dimensionless ratio
X = tq/7. This universality characterizes the non-interactingmegwherer = t2, the perturbative regime
(U < t2) wherer can be obtained using Hartree-Fock theory, and the nomspettive regimely > ¢2) where
T is twice the characteristic temperatufg of an orbital Kondo effect induced by the inversion symmetry
Whent, < 7, the expressiop(X) = 4(X + X ')~ valid without interaction describes also the conductance
in the presence of the interaction. To obtain those resuianap this spinless model onto an Anderson model
with spins, where the quantum impurity is at the end pointg#mi-infinite 1D lead and whetg plays the role
of a magnetic fieldh. This allows us to describg(t4) using exact results obtained for the magnetizaticih)
of the Anderson model at zero temperature. We expect thiergal scaling to be valid also in models with 2D
leads, and observable using 2D semi-conductor hetertistescand an interacting region made of two identical
guantum dots with strong capacitive inter-dot coupling eonected via a tunable quantum point contact.

PACS numbers: 71.10.-w,72.10.-d,73.23.-b

Introduction hopping ternt,, coupling termg,. and an inter-site repulsion
U). Our study is restricted to the symmetric case (i.e. the cas

In quantum transport theory, a nanosystem inside which thwhere ISIM is invariant under particle-hole symmetry).
electrons do not interact has a zero temperature conductanc Firstly, we prove that ISIM, which is perfectly reflecting
which is given (in units of the conductance quantfyh for ~ When the inter-site hopping termy — 0 ort; — oo, ex-

spin polarized electrong¢2/h with spin degeneracy) by hibits a peak of pgrfect transmission. foran intermgdiahee/a
7(U,t.) of t4. This scaler(U,t.) defines very precisely the
g = |tns(Er)|?, (1) fundamental energy scale of ISIM. HF theory gives correctly

) N this peak of perfect transmission wheh< t2, but does not
where |[i,;(Er)|” is the probability for an electron at the give it whenU exceeds?, showing the existence of a non-

Fermi energyFr to be transmitted through the nanosystem.pertyrbative regime where the use of the NRG algorithm is
This Landauer-Buttiker formula can be extentleth an inter-  yequired. In this non-perturbative regime,

acting nanosystem, if it behaves as a non-interacting ryanos

tem with renormalized parameters as the temper&ture 0. (U, t.) = 2Tk , )
However, this effective non-interacting nanosystem da#s n

describe only the interacting region, but depends also en thwhereT is the characteristic temperature of an orbital Kondo
presence of scatterers which can be outside, in the attachedfect induced by the inversion symmetry.

leads. This non-local aspect of the effective transmission Secondly, we show that the zero-temperature conductance
|tns(Er)|* is characteristic of nanosystems ingide which elec is given by a universal functiop(X) of the dimensionless

trons interact and has been studied in 1D m ing coordinateX = ¢4/7. This functiong(X) is independent of
density matri>ErenormaIization group (DMRG), and in the choice of, andU as far agy < t.v/U. Whenty < T,
and 2D modeksusing the Hartree-Fock (HF) approximation.

In this work, we study how the effective transmission of g(X)=4X+X1H2. (3
a nanosystem with perfect leads is renormalized by local in-
teractions acting inside the nanosystem, using the nualericwWhenr < t; < t./U, the conductancg(X) can be de-

renormalization group (NRG) algorit and an inversion-  scribed by another function

symmetric interacting model (ISIM). This model descrilies t

scattering of spin-polarized electrons (spinless fersijidyy 2 0.74

an interacting region (two sites characterized by an igiter- 9(X) = sin” 7 {2.02 - In(2.8X) RN Q)
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which is r@ed to an exact result obtained by Tsvelick andccurrence of a magnetic moment. Whgn> t.\/U, the in-
Wiegman 1} with Bethe-Ansatz for the magnetization of teractionU becomes irrelevant ang(X) = 4(X + X ~1)72
the Anderson model at zero temperature. Wheexceeds —with X = t,/t> (subsectio). In secti I, we show that
t.v/U, the interaction becomes irrelevant,is given by its  HF theory gives the values gfobtained from the NRG spec-
non-interacting value?, X = t,/t? andg(X) = 4(X +  traandthe scale(U, t.), if U does not exceed. In contrast,
X172 again. The conductanggis one example of the HF theory fails to give perfect transmissiorlif > ¢2, show-
physical properties of ISIM which are given by universaldun ing the existence of a non-perturbative regime for ISIM. To
tions oft,/7 at zero temperature. The low-energy effectiveobtain in the non-perturbative regime, we first revisit in sec-
one-body excitations provide another example for which wetion [Xll|la method givingg from the difference of occupation
show the corresponding universal curves. numbers between the even and odd orbitals of the nanosystem.
In order to obtain these universal functions, it is useful toThis method based on Friedel sum rule (FSR) contains an as-

notice that the inversion symmetry of ISIM gives rise to asumption. If ISIM is near the SC fixed pointy( < 7, non-
pseudo-spin, allowing to exactly map this 1D spinless modePerturbative regime), this assumption turns out to befjasti
onto an Anderson model with spins where the inter-site hopln that caseg(t4) can be obtained from the impurity magne-
ping ¢4 plays the role of a magnetic field, the quantum im-tizationm(h) of the equivalent Anderson model with a mag-
purity being at the end point of a single semi-infinite chain.netic fieldh at zero t_erature. Exact results givimgh)
Therefore, the behavior of ISIM as a functiontgfis related ~ are reviewed in sectiop X|il for the Anderson model. Using
to the behavior of the Anderson model as a function of an apthose results, we show in sectipn XIV thaUU, t.) = 2T in
plied magnetic field:. the non-perturbative regim&y being the characteristic tem-

The paper is organized as follows: Sectfon I introduces uniperatu2re of the orbital Kondo effect exhibited by ISrl]M yvher;
versal aspects which characterize the Anderson model and aV > - Moreover, a fit '”Sp'“?d frpm the exact be lavior o
(h) in the local moment regime is used for describing the

relevant for quantum dots where spin or orbital Kondo effect mi ’ ST
occur. The studied spinless model with inversion symmetryniversal functiory(X) whenr < ¢4 < {.vU. Eventually,

(ISIM) is defined in sectiof]ll and mapped onto an AndersonV© SUmmarize in sectidn }V the universal aspects obtained
model with magnetic field in sectign]ill. A second transforma USiNg a simple 1D model, and we conjecture that they can be
tion is performed in sectign]V, based on the usual logarithm extended to 2D models and observed in 2D seml—cpnductor
discretization of the energy band of the leads, to get thé fing'€terostructures, where the nanosystem would consistaf tw
model used for the NRG study. The study is restricted to thddeéntical quantum dots coupled by a quantum point contact.
case with particle-hole symmetry in sect@n V. The low egerg

excitations are first considered as a function of the tempera

in section(V]. Wher > =T, T' = ¢2 being the level width 1. ANDERSON MODEL, KONDO PHYSICS, QUANTUM

of the scattering region, the 3 fixed points [free orbital JFO DOTSAND UNIVERSALITY

local moment (LM) and strong coupling (SC)] characterizing

the Anderson model without field are recovered whgris The Anderson model describes a single site with Hubbard

small enough. As, increases, the LM fixed point characteriz- interactionU coupled to a 3D bath of cqnduction electrons.
ing the model above the Kondo temperatiifedisappears. In  This is one of the quantum impurity mod&lsvhich were in-
sectio, we study the low energy excitations of ISIM as atroduced to study the resistance minimum observed in met-
function oft, in the limit7 — 0. We find that they can always als with magnetic impurities. The Kondo problem refers to
be described by a set of effective one-body excitationsysho the failure of perturbative techniques to describe thisimin
ing that a continuous line of free fermion fixed points goesmum. The solution of the odels by the NRG algorithm,
from the SC limit of the Anderson model,( = 0) towards  a non-perturbative technicnf@?ntroduced by Wilson, is at

a new simple limit: the polarized orbital (PO) fixed point the origin of the discovery of universal behaviors which can
(ta — o0). Between the SC and PO fixed points, we show inemerge from many-body effects. Without magnetic fizld
sectior] VII] that there is always an intermediate vat(¥, ¢,.) and with particle-hole symmets; the Anderson model maps
of t4 for which ISIMis perfectly transmittingr (U, t.) defines  onto the Kondo Hamiltonian it/ > #T', I' « t2 being the
the fundamental energy scale of ISIM. In secf{ioh IX, a simpleimpurity-level width. In that case, there is a non-perttistea
method for calculating(t,) from the effective one body exci- regime where the temperature dependence of physical cbserv
tations characterizing ISIM wheéh — 0 is introduced. Using  ables such as the impurity susceptibility is given by univer
this method, we give in sectign]IX the main result of this work sal functions ofl'/Tk, Tk being the Kondo temperature. If
i.e., if one uses the dimensionless ralio= t,/7, the physi- U < =T, the impurity susceptibility can be obtained by per-
cal properties (conductance or effective one-body speatea  turbation theory. Universality characterizes not only tige
universal and independent tf andU as far astq < t.v/U.  havior of the Anderson model as a function of the tempera-
This universal regime is divided in a first regime where theture T', but also its behavior & = 0 as a function of an
system is not very far from the SC fixed poinj (< 7, sub-  applied magnetic field. Using the Bethe-Ansatz, Tsvelick
section[XA) and wherg(X) = 4(X + X~1)~2, followed  and Wiegma have obtained for the magnetizatior{h)

by a second regime wheyg.X) is given by another universal a universal function of the dimensionless variabld’x when
function ¢ < t4 < t./U, subsectiof XB). In the equivalent 7" — 0.

Anderson model, this second regime is characterized by the The possibility to design artificial magnetic impurities in



nanoscale conductors has opﬁaﬂa second era for quan-
tum impurity models. Measuring the conductagagf quan-
dots created by electrostatic gates, in a 2D electron
! 14 or in carbon nanotut?@ one obtains values which
can be on universal curves as functiongoflx if there is a

Kondo effect. Moreover, quantum dots open the pOSS'bmtyt FIG. 1: (Color online) Studied setup (ISIM) where spin pied
study the Kondo effect as a function of the coupling betweenjecirons (spinless fermions) can be scattered by a narasysade
the impurity and the continuum of conduction electrons, ancht the 2 red sites (energyi, inter-site repulsiori/ and an internal
not only as functions of the temperature and of the magnetiioppingt,). The nanosystem is embedded by coupling ternisto
field. As pointed out in Reﬂo, this gives the opportunity a 1D lattice (hopping terny,).

to do the spectroscopy of the Kondo problem. Notably, the

weak to strong coupling crossover can be studied by vary-

ing gate voltages, when metallic gates are used for creating!!. INVERSION-SYMMETRIC INTERACTING MODEL
guantum dots. Kondo physics was first related to the anti-

ferromagnetic coupling between a magnetic impurity and the The ISIM model is sketched in Fiﬂ 1 and consists of a 1D
spin of the host’s conduction el ns. This is why Kondotight binding lattice (hopping terry,) where a finite density
physics was first expected and in quantum dots with  of spin polarized electrons (spinless fermions) can be- scat
odd numbers of electrons, weakly coupled to leads. Howevetered by a central region made of 2 sites of potenifial with

it was realized that a localized electronic state coupled to an internal hopping terry, and 2 coupling terms.. The dif-
continuum can give rise to a large class of different Kondoficulty comes from the presence of a repulsion of strefgth
effects, including the original spih/2 Kondo effect, various  which acts if the two sites of the central region are occupied
orbital Kondo effects and the SU(4) Kondo effect occurringi  The ISIM Hamiltonian reads:

a spin Kondo effect co-exists with an orbital Kondo effect.

H=H,s+H.+ H, (5)

In this framework, ISIM is a model which can be used for yhere the Hamiltonian of the central region (the interagtin
describing the quantum conductance of spin polarized ele%anosystem) is given by

trons in an inversion-symmetric double-dot setup withrsgro

capacitive inter-dot coupling, as a function of the intet-d 7 _ _4, (C(T)Cl + CICO) + V& (no + n1) + Ungny . (6)
hoppingt,. For such a setugy could be varied by electro-

static gates if the two dots are coupled by a quantum poinf;
contact, and our study describes the effect of this couplin%%”C . The coupling Hamiltonian between the nanosystem and
upon the orbital Kondo effect induced by the inversion Sym'tﬁexleads reads

metry. Eventually, universal aspects of many-body phenom-

andc, are spinless fermion operators at sitendn, =

ena characterize not only equilibrium quantum transpait, b H.= 7156((;1100 + 5102 + H.c), @)
also non-equilibrium quantum transport which occurs in the . o
presence ((JEa large source-drain bjds. Measures of the While the leads are described by an Hamiltonian
conductancg and of the current noig2of Kondo dots have oo
recently confirmed the expected universality if one measure H T

) : : . =—t H.ce.), 8
T or Vi, in units of Tx. We describe here another uni- ! h Z (cz¢q1 + Hoe.) (8)

T=—00

versal aspect of linear quantum transport, i.e., the quantu
conductance of a spin polarized inversion symmetric doubleWhere Z’ means that:
dot setup should be a universal function of the dimensianles -

inter-dot hopping/Tx whenT — 0. summation.

= —1,0,1 are omitted from the

Kondo physics is also at thegrigin of spinless models, as the 1. EQUIVALENT ANDERSON MODEL WITH
interacting resonant level mode(IRLM) which describes a MAGNETIC FIELD
resonant level\(;d'd) coupled to two baths of spinless elec-
trons via tunneling junctions and an interactibhbetween Because of inversion symmetry, one can map ISIM onto
the level and the baths. IRLM, Wh'CEBn_OW used for study-, single semi-infinite 1D lattice where the fermions have a
ing non-equilibrium quantum transpbr&, is related to the  geydo-spin and where the double-site nanosystem becomes
Kondo model, the charge states = 0, 1 playing the role of 5 gingle site with Hubbard repulsidii at the end point of
spin states. Both ISIM and IRLM are inversion symmetric. 5 semi-infinite lattice. This equivalent Anderson model is

However, the Zeeman field acting on the impurity is playedsketched in Fig[]2. To show this mapping, we define the
by the hopping term, for ISIM, and by the site enerdy,; for  tarmion operators

IRLM. Therefore, ISIM does not transmit the electrons with-

out “field”, while IRLM does. Though we study in this work a al = (CT—I+1 4 cl)/\/i, 9)
finite density of particles, let us mention that the two-jet ; t i

scattering problem has been solk&fbr ISIM. ab, = (o —cl)/V2, (10)



_______________

! where thek-dependent hybridization

. Ungny
| —tc — — V(k) = —tc\/2/msink (15)
; R LN thO
| i ~ ~ yields an impurity level width ab'r which is given by
i 5 2
! Vo £tg I'= i sinkp, (16)
. ) . Nko = d,i Udk o andek = —2t; cos k.
FIG. 2: (Color online) Equivalent Anderson model: Elecsavith a One can see that ISIM is identical to an Anderson model

pseudo spinf= even,l= odd) are free to move on a semi-infinite
chain (hopping terna;) with a quantum impurity (red site) attached
(hopping termt.) to its end point. The inter-site ISIM interaction ; - _ ;
becomes a Hubbard interactibin,n, between impurity orbitals of fore, n the “mltt_d — 0, ISIM must exhibit an orbital Kondo
different pseudo-spins. The impurity potential has now a Zeeman effect if the equivalent Anderson_ mod_el can be reduced to a
term+t,. Kondo model. The fact that the impurity is not coupled to a
3D bath of conduction electrons, but only to a single semi-

e Rl infinite 1D bath changes only the proportionality factor o t

with a local magnetic field; which acts on the impurity only
and gives rise to the Zeeman terms, in Eq. (11). There-

of 1D leads to the same nanosystem.

5 Unin| hybridization function. We underline that the dimensidtyal

] / . .

: c Zo 1 To of the considered baths of conduction electrons does ngt pla
! J\u O O O a significant role in Kondo physics, such that the resulthisf t

| study should hold if one attaches 2D bars or 3D strips instead

FIG. 3: (Color online) Corresponding NRG chain: The quantom IV.~ CORRESPONDING NRG CHAIN

purity (red site) is now coupled via an hopping tetin(Eq. ))

to a 1D lattice, where the sites are labelledrbpnd describe con- ISIM can be studied using the NRG procec@@devel-

duction electron excitations of length scal&/?k ' centered onthe  oped by Wilson for the Anderson model after minor changes.

impurity. The successive sites are now coupled via hopengs  First, we assumé’ (k) ~ V(kr = m/2) and, using stan-

(Eq. (1)) which fall off asA~"/2. Used discretization parameter gard NRG procedure, we divide the conduction band of the

A=2. electron bath into logarithmic sub-bands characterizedrby
indexn and an energy width

which create a spinless fermion in an even/ag@) combina-
tion of the orbitals located at the sitesnd—z+ 1 of the orig-
inal infinite lattice, (or a fermion with pseudo-spin= e/o
in the transformed semi-infinite latticey,, ., are the corre-
sponding annihilation operators. Expressiig; in terms of
these new operators, one gets

dp = A""(1 =AY, (17)

Throughout this paper, we use the discretization parameter
A = 2. Within each sub-band, we introduce a complete set
of orthonormal functions),,,,(¢), and expand the lead oper-
ators in this basis. Dropping the terms wjih# 0 and us-
Hpy = (Vo — ta)ne + (Vg + ta)no + Uneno , (11) ing a Gram—Schmit_ﬂt_ p_rqcedure_, thg original 1D.Ieads give
rise to another semi-infinite chain with nearest-neighlugr-h
wheren, = a! ,a,, and where the pseudo-spia™(“0”) is  ping terms, each site representing now a conduction elec-
parallel (anti-parallel) to the “Zeeman field. In terms of tron excitation at a length scale*/2k.' centered at the im-

the operators purity. In this transformed 1D model shown in Fﬁ. 3 and
- hereafter called the NRG chain, the impurity and ffie- 1
P~ . B " first sites form a finite chain of length, which is described
oo = Q/Wgsm(k(m )ac. (12) by the HamiltonianH v, the successive sitesandn + 1 be-

ing coupled by hopping terms, which decay exponentially
creating a spinless fermion of pseudo-spiand momentum asn — oo and are given by:
k in the transformed semi-infinite 1D-lead, the lead and the
coupling Hamiltonians can be written as

Hl = Z €ExNk.o (13)
ko The impurity is coupled to the first site of the NRG chain by
an hopping term

H. =S V() ,d, . +H.e), (14) .t AA+1D)))°
SV ehdy,y + Hc) =i (e (M) g

1+AH(1 - AT

= A2 .
2\/(1 — A—2N-1)(1 — A—2N-3)

(18)

and




Since the lengthV is relatetE to the temperatur&’ by the t:
relation
) PO
1+A-
kT ~ +TA—<N—1>/2 : (20)
N can be interpreted as a logarithmic temperature sééle ( -
—logT), the large values oV corresponding to temperatures FO ~ tc

T small compared to the bandwidtf. A R Yo
The NRG chain coupled to the impurity is iteratively di- T

agonalized and rescaled, the spectrum being truncateeto th

N, first states at each iteration (We udg = 1024 in this

study). The behavior of ISIM aE decreases can be ot_)talned FIG. 4: Line of free fermion fixed points [thick solid line ihe plane

from the spectrum of/y as N increases, the bandwidth of (i iy characterizing ISIM whei” — 0 ast, increases from

Hy being suitably rescaled at each step. A fixed point of the,, = 0 (SC fixed point) toward$, — oo (PO fixed point). The

renormalization group (RG) flow correspondsto an interfal 0 FO, LM and SC free fermion fixed points and the RG trajectéties

successive iteration¥ of the same parity, where the rescaled followed by ISIM asT decreases fot; = 0 are indicated in the

many-body excitation&; (N) do not vary. The fixed point plane(U, t.), for #T' > U (dashed) andT" < U (solid).

is therefore characterized inside this interval by two s@ec

one characterizing the even values\fthe other the odd val- T " T T

ues. Ifitis a free fermion fixed poin; = )  €a, thee, tq =10 (a)

being effective one-body excitations, and the interactiysr § §

tem behaves as a non-interacting system with renormalized, L : f /]

parameters, andt, near the fixed point. Moreover, if one

has free fermions whef’ — 0, the conductance can be 0.5 Fo LM : sc |
directly extracted from the NRG spectrum. 0 i , , L
V. RESTRICTION TO THE SYMMETRIC CASE
1 } i
EI j

Using the NRG procedure, ISIM can be studied as a func-
tion of T' for arbitrary values of its 6 bare parametéfsEr, 05 r T
Va, ta, t. andt;,. Hereafter, we takédZr = 0 andVg = . .

—U/2. This choice makes ISIM invariant under particle-hole

[

LM

symmetry, with a uniform densityn,.) = 1/2. Very often, the tg=5%10"3 (c)
infinite bandwidth limit ¢;, — oo) is assumed in the theory

of quantum impurities. This corresponds to magnetic aIonsEI T r // 1
where the bandwidth of the conduction electrons is large-com

pared to the other energy scales of the model. In this stuely, w 05 T
taket;, = 1, which defines the energy scale and allows us to .

consider also mesoscopic regimes where the s¢ales, t.

or V¢ can exceedy,. In that case, EquG) gives for the levels 0 20 40 60
+t4 of the isolated non-interacting nanosystem a width N
I =t (21)  FIG. 5: (Color online) Many body excitatiors; as a function ofV

. L (even values) fot/ = 0.005 and¢. = 0.01. Forty = 0 (Fig.ﬁa),
when the nanosystem is coupled to leads. Our motivation t@ne can see the 3 successive plateaus (FO, LM and SC fixeg)point
restrict the study to the symmetric case is not justified bgsph  of the Anderson model. As; increases (Fid] 5b and Fifj. 5¢), the
ical considerations, but mainly for the sake of simplicigs LM plateau shrinks and disappears whgns t; = t.v/U.
stricting the RG flow into a space of 3 effective parameters
(U,t.,tq) only. Doing so, we proceed as Krishna-murthy,

Wilkins and Wilsqqg for the Anderson model, studying first case. At low values ol (high values ofl), ISIM is located
the symmetric casg before considering later the asymmetric in the vicinity of the unstable free-orbital (FO) fixed paint
cases and its characteristic valence-fluctuation regime. As N increases] decreases), ISIM flows towards the stable
strong-coupling (SC) fixed point.
If the interaction is weakl{ < #T"), its effects can be de-
VI. ROLE OF THE TEMPERATURE T scribed by perturbation theory, the flow goes directly fréwe t
FO fixed point towards the SC fixed point, and there appears
Whent; = 0, ISIM is an Anderson model which has the no orbital Kondo effect fot; — 0.
RG flow sketched in Fig[|4 for the particle-hole symmetric If the interaction is largel{ > =T’), the flow can visit



ta =0 Strong coupling . T 1
® O O OOO0O
Singlet state Free fermions 3 0.75
............................................................................................. 0 2 05 g
ty = 0 Polarized orbital 1 0.25
Free fermions 10-5 10 10~* 10~* 10-2 10-! 10°

t
FIG. 6: (Color online) NRG chain in the SC limit (upper figueed ¢

in the PO limit (lower figure). When; — 0, the impurity (red
dot) and the first site of the NRG chain form a system in itsleing
ground state decoupled from the other sites which carryféneion
excitations. When, — oo, the even (odd) orbital of the impurity is
occupied (empty) and the other sites carry free fermiontations.
Therefore, there is a permutation of the parity of the lergtthe
free part ag, increases. When the excitations of the free part ar
independent of this parity; = 7 andg = 1.

FIG. 7: (Color online) One body excitationrs (¢q) [extracted from
the Er(N — oo,tq)] for U = 0.1 andt. = 0.1 (left scale). The
solid (dashed) lines correspond to NRG chains of even (adjth
N. Conductancg(tq) extracted fromAe(tq) using Eqg. ) (thick
red curve, right scale). Fay = 7, thee, are independent of the
eparity of N andg = 1.

model, the site directly coupled to the impurity describies t
an intermediate unstable fixed point—the local-moment (LM)cloud of conduction electrons which fully screens the mag-
fixed point—before reaching the SC fixed point. In that casenetic moment of the impurity.

ISIM s identical to a Kondo model characterized by a temper-  \Whent, — oo, the impurity occupation numbegs.) — 1

atureT and by universal functions of the ratio/Tx. For  and(n,) — 0, and theV — 1 other sites of the NRG chain are
tq = 0, ISIM is on the FO fixed point wheth.vU' < T, ex-  independent of the impurity. This limit is sketched in Hi. 6
hibits a local moment whefix < 7' < t.v/U and reaches the  (lower part). We call this limit “Polarized Orbital (PO) iree
SC fixed point whel < T’x. While the Hartree-Fock theory it coincides with the FO fixed point of the Anderson model,
qualitatively describég the local moment at high tempera- except that the spin of the free orbital is not free, but fully
turesTx < T < t.v/U, it breaks down at low temperatures polarized in our case.

(T' < Tk), where the effect of the interaction becomes non- The E;(t4) correspond to many-body excitations of effec-
perturbative and gives an orbital Kondo effect. tive non-interacting spectra whep — 0 andt, — oo. When

In Fig. [, the first many-body excitatiors; of ISIM are 4, varies between those 2 limits, the NRG algorithm contin-
given for increasing even values of for t; = 0. Sinceé esto give many-body excitatio (t,) compatible with the
U > mfi., one gets 3 plateaus corresponding to the 3 expecteglee fermion ruleE;(tq) = 3., €a(ta), allowing us to ex-
fixed points. Inside the plateaus, the spectra are free é&mi (ract one-body excitations, () for intermediate values of
spectra which are described in Ref| 10. However, between the e conclude that there is a continuum of effective non-

plateaus, there are no free fermion spectraBpg# >, ca-  interacting spectra which describe the ast, varies in the
As t, increases (Fid]5), the LM plateau decreases and vanymit N s o, i.e. theT — 0 limit of ISIM is given by
ishes whert,; reaches a value ¢.v/U. a continuum line of free fermion fixed points. This line is

sketched in Fig[|4. Having always free fermionstavaries
means that th& = 0 scattering properties of an interacting
VIl. ROLE OF THE INTERNAL HOPPING AT T' = 0 region embedded inside an infinite non-interacting lattice
those of an effective non-interacting system with renormal
Let us study how the many-body levels given by the ized parameters, in agreement with the DMRG study of the
NRG algorithm depend on the internal hopping tegnin the  persistent current given in Ré{. 2. We underline that thése e
limit where N — oo, i.e. in the limit where the temperature fective non-interacting spectra describehe- 0 limit, while
T —0. a description of the low-temperature dependence of the con-
Whent,; = 0, one has the SC Iinﬁ of the Anderson model ductance requires effective Hamiltonians of Landau quasip
where the impurity is strongly coupled to its first neighlbior i ticles with residual quasiparticle interactions. Such anfte
the NRG chain (the conduction-electron state at the imypurit liquid theory has been proposed by Noziéeres. In the case of
site). The impurity and this site form a system which can bethe Anderson model, it has been developed in E«l&f. 25 without
reduced to its ground state (a singlet), the— 2 other sites magnetic field {; = 0) and in Ref.le with magnetic field
carrying free fermion excitations, which are independentof (t; # 0). However, the quasiparticle interaction comes into
that interacting system. This SC limit of the Anderson modelplay at finite temperatures only and a residual interactson i
without field is sketched in Figﬂ 6 (upper part). In the Kondonot necessary for describing tfi& as a function ot, in the



limit N — oo. 4
Fig. [ shows these first one-body excitatiepsas a func-

tion of ¢4 extracted from theé”;(¢4), calculated witlV = 0.1

andt, = 0.1. The pseudo-spin degeneracy being broken by 3

the “magnetic fieldt; # 0, the first (second) one-body ex-

citatione; (e2) carries respectively an even (odd) pseudo-spin,

if Vis even. This is the inverse i¥ is odd,e; (e2) carrying

respectively an odd (even) pseudo-spin.

0.75

Do

VIII. PERFECT TRANSMISSION AND 0 oREORGORMES
CHARACTERISTIC ENERGY SCALE 0001 001 01 1 10 100 1000
ta/t?
Since the free part of the NRG chain h&s— 2 sites for
N — oo andtg — 0 (SC fixed point), while it hasV — 1 pi5 g (Color online)e,, andg as a function oft; /¢ without in-
sites fortq — oo (PO fixed point), there is a permutation of (eraction {7 = 0). The values of; extracted from the NRG spectra
thee,(ta) ast, increases: the, (ts — 0) for N even become  (red cross) coincide with the exact values (Bg] (28) - ree)lin
thee, (tq4 — oo) for N odd and vice-versa. This permutation
is shown in Fig[]7. Since foN — oo there is a permuta-
tion between the even and odd spectra ascreases, there scattering region

is a value oft, for which thee, (t;) are independent of the B B
parity of N. This value defines very precisely the character- We(k, p) o C?S(k(p 1/2) = 0c(k)), (23)
istic energy scale (U, t.) of ISIM. Because of particle-hole Wo(k, p) ocsin(k(p — 1/2) — 0o (K)) - (24)

symmetry, the nanosystem (the impurity of the NRG chainjrye ghiftss, , (k) of the scattering phases adi. (k) of the
is always occupied by one electron. Binding one electron ofergy levels are proportional for each pseudo-spin. Taris ¢
the leads with this electron reduces the energy whed 7, e shown by taking a finite size for ISIM, quantizing the

yvhi_le it increas_es the energy whén > 7. Forty =T, it is momentak o(n) = mn/L + de.o(k)/L and using the disper-
indifferent to bind or not an electron of the lead with the oneg;,, relatione(k) = 2 cos(k). This yields

of the nanosystem, making ISIM perfectly transparent. This
gives the proof that, for all values d@f andt., there is al- Ae = (bec — deo) x (0ke — 0ko) o (e — b)) - (25)
ways a valuer of ¢, for which the interacting region becomes

perfectly transmitting and In the limit L — oo, the quantum conductangét,) of ISIM

can be expressed as a function of the scattering phase shifts
glta=7(Utc)) =1. (22) g(ta) = sin?(8c(ta) — bo(ta)).- (26)

The argument is reminiscent to that giving the condition forFrom Eq. [25) and Eq[ (26), one eventually obtains the ati

having a perfectly transparent quantum dot in the Coulomiyhich allows us to extragt from the NRG spectra:
blockade regimet, in our case, the gate voltage in the other

case, have to be adjusted to values for which it costs the same g(ta) = sin? <7T Ae(ta) ) 27)
energy to put an extra electron outside or inside the dot. The Ae(tyg — 00) ) -

quantum conductangecan be extracted from the NRG spec- : : B
tra. Using a method explained in the following section, weThe proportmnahtyfactor betweeme(td)_ ".ind(se(td) 0o(ta)
have calculated(t,). The result shownin Fi@ 7 confirms that has been determined irom the condition t.ba'H 0 (for

' e — 0o — m) whent, — oo. Eq. (2f) describes a quantum

g = 1 precisely for the value of ¢, for which theV — o conductance which vanishes whign— 0 and whernt; — oo
o . ! d ,
low energy excitations are independent of the paritvof and reaches the unitary limit for an intermediate val(ié, t..)

of td.
IX. FREE-FERMION SPECTRA AND QUANTUM Let us check that the NRG algorithm and Ef.](27) give
CONDUCTANCE us the correct behavior for the conductancén the non-

interacting limit where it is straightforward to solve theat

As pointed out in previous Wor, the quantum con- tering problem. One obtains

ductancey can be directly extracted from the NRG spectra. ty 12\ ?
Let us consider an NRG chain of even length— co. When g(U =0)= <t_2 + t—c>

tq = 0, the one body spectrum is identical for the two pseudo- ¢ d
spins. A hopping, # 0 breaks the pseudo-spin degeneracyThee,(t;) given by the NRG algorithm fo/ = 0 are shown
and opens a gafe(t,) (indicated in Fig[|7) between excita- in Fig. |3 with the corresponding values gfobtained from
tions of opposite pseudo-spins. For free fermions in thé lim Eq. ). One can see that the behaviorgafiven by the

T — 0, the asymptotic electron states of ISIM are station-NRG algorithm and Eqmﬁ) reproduces the correct behavior
ary waves with even (odd) phase shiftg, (k) induced by the  given by Eq. @8) in the non-interacting limit.

(28)
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is not restricted to the non-perturbative “Kondo” regimat b
characterizes also the perturbative regime.
0.75 J
05 A. Universality near the SC limit (tq < 7)
q D+ i
The universal regime can be divided into two parts. The
0.25 - . first one begins at; = 0 in the vicinity of the SC fixed point
and ends at; = 7. Inthis SC regimey behaves as without in-
teraction, but with a renormalized level wid# (— 7(U, t..)).
0 : As shown in Fig[ 10, all the curvegt,/7) are on a single uni-
10°® 1076 10 1072 10° 10° versal curve when; < 7, independent of the values &fand

tq t.. Since one of those curves (the red one) corresponds to the
non-interacting limityU' = 0, the universal curve fat; < 7 is
FIG. 9: (Color online)g(tq) extracted from the NRG spectra for given by Eq. @8) where, is measured in units af, instead
t. = 1 and many values df’. Increasing’ shifts the transmission of ¢2:
peaks to smaller values 6f. The curves correspond respectively to
U = 0 (red curve), 10, 15, 20, 25, 30, 35.

—2
g(ta, U, t,) = 4 (T(édﬁc) + T(g;tc)) . (29)

X. UNIVERSAL PROPERTIESOF ISIM

In Fig.[9, the conductanggextracted from the NRG spec- B. Universality around aL M limit (r < ta < tev'U)
tra using Eq.@?) is given as a function @ffor a coupling
termt. = 1 and many values of/. The larger isU, the The universal regime persists whepexceedsr. While

smaller is the characteristic scaté¢l/). Fig.[d seems to in- g(ta/7) decays immediately after the transmission peak if
dicate that the left sides of the transmission peaks arelgimpU = 0, g(t4/7) begins to follow a new part of the univer-
translated to lower values of asU increases. This is con- sal curve ifU # 0. This new part is not given by Ed: (29),
firmed in Fig.[Ipa) wherg is given as a function of the di- and ceases when a faster decay occurs. The lardér ke
mensionless scalg; /7, T being obtained from the criterion larger is the interval of values of; /= whereg(t,/7) follows
g(ta = 7) = 1._The curveg(t;/7) obtained fort, = 1 are  the slow decay of the universal curve (see lé 10). To de-
shown in Fig[1pa), while the curves obtained for= 0.1  scribe this slow decay, one can use exact results which give
andt. = 0.01 have been added in Fi§.]J10(b). These fig-the magnetizatiom: (k) of the Anderson model & = 0 as
ures show the main result of this study, i.e., Whgris not  a function of the magnetic fieldl. This will be done after a
too large,g is given by a universal function af;/7(U,t.).  study of the relation betweeyit,) andm/(h).
This function is independent of the values takendoor ¢.. Let us just note now that the singlet state of the SC limit
Sinceg(tq) has been directly extracted from the free fermioncould be broken either if the temperatifeor the “Zeeman
NRG spectra, the NRG spectra must be also given by univeenergy”t, exceeds the Kondo temperatufg. This makes
sal functions oft;/7(U, t.), independent of the values 6f |ikely that the effects of” andt, would be somewhat similar.
andt.. This is shown in Figl 30(ck = 1) and in Fig.[IP(d)  If this is the case, the intermediate values pivould be re-
(tc = 1,0.1,0.01), where the first excitations, obtained for  |ated to the formation of a local moment in the equivalent An-
NRG chains of large even lengfii are plotted as a function derson model of ISIM, and an intermediate LM regime would
of ty/. take place between the SC regime for low valueg;@nd the
The values of-(U, t.) used in FigElIO are givenin Fiﬂll. PO regime for large values of. This classification is used
If one decreases the temperatdren the Anderson model in Ref. [14 for describing the effect of a magnetic field in the
without magnetic field, it has been shown in Ha 10 that thezero-temperature limit of the Anderson model. However, we
interaction effects remain perturbative whEn< #«I" while  can only refer to the SC, LM and PO regimes, and not to the
they become non-perturbative when> #T". Since the level SC, LM and PO fixed points. The RG flows of ISIM yielded
width ' = ¢2 for the nanosystem used in ISIM at half-filling, by increasingt, at7 = 0 and by increasing” att, = 0
we give the dimensionless scalgU as a function ot/ /¢2 in are very different. Increasirif in ISIM at¢; = 0 yields the 3
Fig. E One can see thafU has a slow decay followed by plateaus shown in Fi@ 5, characteristic of 3 well-defineeldix
a faster decay, with a crossover around an interactiontthres points. There are no free fermions between the plateaws sin
old consistent with the interaction threshotfl characteriz- there are na, (7) such thattl;(T') = > €,(T) outside the
ing the perturbative-non-perturbative crossover in thelésn  plateaus. In contrast, Fiﬂlo does not exhibit plateaus and
son model. For ISIM, this suggests that the interactiorcédfe the E;(¢4) can be described by a continuum of effective non-
upong are perturbative wheti < #I", and non-perturbative interacting spectra ag varies atl’ = 0, and not only by the
whenU > #I". However, the universal behavior g9ft;/7)  three spectra of the SC, LM and FO fixed points.
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FIG. 10: (Color online) FiguraO(a)g as a function ot,/7 for t. = 1 and many values df. = has been determined from the criterion
g(ta = 7) = 1. The larger i/, the larger are the values af/T whereg decays. The curves correspond respectively te: 0 (red curves)
andU = 5,10, 15, 20, 25, 30, 35 (black curves). FigurBO(b)g as a function of,/7. To the data (black curves) calculated taking= 1
and shown in Fig[jO(a), we have added the data calculatétjtak= 0.1 andU = 0 (red curve),0.05,0.1,0.15,0.2,0.25, 0.3, 0.35, 0.4
(green dashed curves) and takiag= 0.01 andU = 0 (red curve)0.0005, 0.001, 0.0015, 0.002, 0.0025, 0.003, 0.0035 (blue dotted curves).
Figure(c): First one body excitatioas for NV even as a function af;/7. Same values of. andU as in Fig.Eb(a). FigurEIlO(d}*a for

N even as a function af; /7. Same values af. andU as in Fig.(b).

C. Interaction-independent conductancein the PO limit haves as without interaction whépexceeds a threshold value
(ta > teVU) t; ~ 10vUT.

Xl. CHARACTERISTIC ENERGY SCALEIN THE

As one increases; /T, g(tq/7) eventually exhibits a fast
Si/ g( d/ ) y PERTURBATIVE REGIME

decay which is not given by a universal functionigfr. As
canbeseenin Fiﬂo, this fast decay corresponds to thg deca
of g(t4/t2) obtained without interaction, but shifted to val- _ Without interaction, Eq.[(28) implies thgt = 1 if ¢4 =
ues ofty/7 which increase whe#V increases. Accordingto t2. This yields for the characteristic energy scalef ISIM
Ref.[1}, the Anderson model&t= 0isinaLMregimeifthe & non-interacting valug¢Z. For weak values ot/, there is
magnetic fieldn lies in the intervallx < h < h* o VUT. a perturbative regime whergandr can be obtained using
The upper threshald/ UT appears in the Hartree-Fock study self-consistent Hartree-Fock theory. In the symmetriecas
made by Andersd of the transition from the non-magnetic the Hartree corrections and the site potentiglscancel each
to the LM regime of the Anderson model, as one decreasegthers sincé/c = —U/2. The value of the igter-site hopping
T without magnetic field. For ISIM, this suggests that theta is modified because of exchange and t&kesalue given
slow universal decay o§(t4/7) corresponding to the LM by the self-consistent solution of the HF equation

regime persists as far ag < t* « t./U. Abovet*, ISIM . i

should enter in the PO regimé. This is confirmeai in FFig. 12, v =ta+Ulege, (v, 1)) - (30)
where one can see thatbecomes independent bf and be-  Using Eq. ) withv instead oft; gives the HF value of.
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FIG. 11: (Color online) Characteristic scat¢U, ¢.) as a function
of U andt.. The values of-(U.t.)/U obtained from the condition
g(ta/7) = 1 and used in Fid:{o are plotted as a functionzof=
U/t2 (+). The solid blue lingy(z) = 0.728+/2/(7x) exp — (i /8)
fits the data in the non-perturbative regime and corresptmdse
relationT = 2T with Ty, = 0.3641/2t2U /7 exp — (U /8t2).

FIG. 13: (Color online) Conductanggas a function of; for tc = 1
andU = 0,0.5,1,1.5,2,2.5,3. g extracted from the NRG spec-
tra (solid red curves) coincides with the HF estimates (ddgreen
curves) wherU < t2 or fortq > t./U if U > t2.

t. = 0.1, one can see in Fifj. 14 a more dramatic breakdown of
HF theory which fails to give the peak of perfect transmissio
(see the curves withh = 0.04 and more notably/ = 0.05 of
Fig.[14).

The origin of this failure can be simply explained. In the
perturbative regime wherg is given by Eq. [(28) withv in-
stead oft4, g = 1if v = 2. This yields for the scale a HF
value

tnr = t; — A(te)U, (31)

0.001  0.01 0.1 1 10 100 1000

where the function
td/(tc\/ﬁ)
Alte) = (cher (v =2,t0)) (32)

FIG. 12: (Color online) Ratig(U, tc,tq)/g(U = 0,tc,tq) as a
function oft./(t.\/U). g(U) is extracted from the NRG spectrum Which is shown in Fig[ 15, depends weakly (A = 1/
andg(U = 0) is given by Eq.[(38). One can see thabehaves as if t. = 1 while A — 1/4if t. — 0). WhenU reaches
without interaction wheny > ¢ ~ 10t./U. Same values of. and ~ a valuet?/A, HF theory predicts that the interaction should
U as in Fig[1p. renormalizet; to a valuergr = 0 for havingg = 1! This

is absurd and confirms that HF theory breaks down for ISIM

above an interaction threshold which is essentially theesam

For the Anderson model, it is well known that HF theory as for the Anderson mod&l(> =T).
fails to describe the Kondo regime. This Kondo regime oc- In the non-perturbative regime of the Anderson model, the
curs when the interaction exceeds a threshold vallgei-  physical quantities such as the magnetizatiomust be uni-
ther for low temperature¥ < Tk without magnetic field versal functions of’ /T or h/Tk. This means that should
h, or for weak fieldsh < Tx atT = 0. In the frame of Dbe related to the characteristic temperatlireof the orbital
the HF approximation, a magnetic moment should be formed<ondo effect yielded by the inversion symmetry of ISIM. The
while it actually vanishes because of strong correlatiogs b relation between andTx can be obtained using Friedel sum
tween the conduction electrons and the impurity spin (Kondaule and analytical results for the magnetizatiof:) of the
effect). Therefore, one does not expect that HF theory shoulAnderson model at zero temperature.
be valid in the orbital Kondo regime of ISIM for large values
of U (U > «TI") and small values of; if 7' = 0.
For a large coupling. = 1, the results shown in Fig. 13 XII. IMPURITY OCCUPATION NUMBERSAND

confirm this prediction: HF theory gives the correct value of SCATTERING PHASE SHIFTS
g for all values oft, as far asl/ remains smaller thant?.
ForU > rt2, the HF curves and the NRG curves coincide For havingg, another method consists in using NRG for
only whent, is large ¢; > ), but become very different calculating the average impurity occupation numbers.,)
at the left side of the transmission peak. For a small cogplin of the even and odd orbitals of the nanosystem. The differenc



— NRG
HF

0.75F i

g 0.5 -

0.25F i

0 ._r.l_l.“.-'.-.’, ar” 0 el 0l wl i
107° 107* 100® 1072 107! 10° 101

ta

FIG. 14: (Color online) Conductanggeas a function ot for tc =
0.1 andU = 0,0.01,0.02,0.03,0.04 andU = 0.05. The NRG
results (solid red curves) and the HF results (dashed greees)
coincide forU < t2. ForU = 0.05, the HF curve gives only a small
peak whergy =~ 0.25, and notg = 1.
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FIG. 15: FunctionA(t.) defined in Eq.@Z) as a function of.
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FIG. 16: (Color online) Values of obtained from the NRG spec-
trum (black solid lines, Eq.7)) and approximate valgeged
dashed lines, Eq{ (B3)), as a function#f IncreasinglU moves
the conductance peak towards the left side. Figuret{ay: 0.1 and
U =0,0.01,0.02,...,1. Figure (b):t. = 1 andU = 0, 1, 2, 5, 10.
Figure (¢):t. = 0.1 andU = 0,0.05,0.1,0.15,0.2,0.25. Figure
(d): tc = 1andU = 0, 5,10, 15, . .., 55.
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between the scattering phase shifts can be given in terms of
(ne/o), if oNe assumes an approximate form of the Friedel
sum rule (FSR):

0e = 0o =T (<ne> - <n0>) )

and one gets an approximate vafuor g from this estimate
of 8, — &, using Eq.[(26):

§ = sin®(r ((ne) —

(33)

(no)) -

This approximate FSR is often used (see for instance
Ref. ) and allows us to obtainfrom the zero temperature
impurity magnetizationn(h) of the Anderson model with
magnetic fieldh. This is particularly interesting sinee(h) is
a physical quantity for which exact results have been obthin
with the Bethe-Ansatz by Tsvelick and Wiegmann. Unfortu-
nately, Eq ) is only an approximation, and.not the true FSR
as pointed out by Simon and Affleck in a stiiglpf persistent
currents through a quantum dpt at Kondo resonance. The gen-
eralization of FSR by Langr shows that the phase shifts
are proportional to the number of electrons displaced by the
impurity, “among which are included not only the d electrons
but also some of the conduction electrons”. For ISIM, this
means that the displaced electrons are not only those inside
the interacting region, but displaced electrons in themsig-
ing parts of the leads have to be included too for obtainieg th
phase shifts from the occupation numbers via FSR. At first
sight, one can expect that Eﬂ(33) could be used only if the
scattering region is weakly coupled to the attached leads. O
results show that this is less simple.

The difference between the values @obbtained directly
from the NRG spectra [Eq7)] and the approximated values
g are given as a function of; for weak ¢. = 0.1, Fig.a and
d) and large valueg{ = 1, Fig.b and c) of the coupling,
and for weak (Fig[ 16a and c) or large values (Fig. 16b and d)
of U. Even for a weak coupling. = 0.1, where one could
expect a negligible displaced charge outside the nanamyste
g = g only when ISIM is near the SC fixed pointy(< 7).
Whenty > 7, § # g. For a larger couplingtf = 1), one
can notice also differences betwegandg even whert; <
in the perturbative regimd{ < 7t2). One concludes that
can be obtained frofi with a good accuracy only in the non-
perturbative regime where ISIM exhibits an orbital Konde ef
fect U > t2/A andt, < 7). Otherwise, the differencg —,
is not given by the differencé:..) — (n,) evaluated inside the
nanosystem, but depends also on the occupation numbers out-
side the nanosystem.

The validity of the approximate FSR in the non-perturbative
regime whent,; < 7 can be explained by the following argu-
ment: the conduction electrons which are displaced to acree
the impurity pseudo-spin (forming a singlet state with tie i
purity) are only a negligible fractior: Tk /Er of the con-
duction electrons. To neglect this fraction induces anrerro
o 7/ty, which cannot be seen in the curves shown in Eb 16
whenr is very small (see Fid:j.l). When the system is not in
the orbital Kondo regimel( < 7t2 ort, > 7), the number of
displaced electrons becomes much larger, and the differenc
betweery andg can be seen in Fi@lG.

(34)
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X111, ZERO TEMPERATURE MAGNETIZATION OF THE X1V. CHARACTERISTIC ENERGY SCALE AND
SYMMETRIC ANDERSON MODEL UNIVERSAL SCALING FUNCTIONS

The exact solution of the Anderson model can be obtained In the perturbative regime{ < =t2), the conductance is
using Bethe-Ansatz. Tsvelick and Wiegmann have solved thwell described by HF theory, which yields = 4/(v/t2 +
Bethe-Ansatz equations for the Anderson modéﬂ an arbit?/v)? with v given by Eq. (30). The scale takes a value
trary magnetic field. Let us summarize their re & for  7ur given by Eq. | )
the symmetric case, which were obtained assuming the con- In the non- perturbatlve regimé/( > nt2), let us revisit
tinuum limit and an infinite bandwidtht{ — oo) for an An-  our numerical results fog using the exact expressions giving
derson impurity coupled to a 3D bath of non-interacting elec the magnetizatiom:(h) for an Anderson model (3D bath of
trons. Since the bath for ISIM is provided by non-interagtin conduction electrons, wide band limit wheg— oo) which
electrons free to move on a semi-infinite 1D tight-bindirtg la is not exactly the Anderson model corresponding to ISIM.

tice, and since we give results for valuesgft; andU which The conductancg(t,) reads
are not always small comparedti one cannot rule out cer- ~ .y
tain quantitative differences between the results of Refflb g(ta) = sin” (2mm(tq)) (39)

and our numerical results. This may concern the numerical
prefactors in the expression ©f; or the constants in the uni-
versal functions describing the magnetizatioith). How-

wherem(t,) is the pseudo-magnetization of the nanosystem
with pseudo-spir /2 and reads

ever, a qualitative agreement should be expected. The Kondo (ne(tq)) — (noltq))
temperature of the Anderson model reads m(ta) = 5 (40)
T = Fy/TZ exp— (78rtU2> 7 (35) In the SC limit ¢4 < Tx) whereg andg coincide, this gives

2
§(ta) = sin®(ta/ Ti) ~ (;—j() ~olt). (4D)

where[" is a prefactor which depends on the definitio
(which varieg? from one author to another) and is modited
if the bandwidth of the bath of conduction electrons is finiteWhile the conductancgextracted from the NRG spectra reads

or infi i F = +/2/r for the infinite bandwidth Anderson 9 9
mod§ while F' = 0.364,/2/ if the bandwidth is taken g(tq) = _ 2 ~ 4 2] ) (42)
finitef?. ta/T +7/ta T

WhenU > T' (non-perturbative regime), the Bethe-Ansatz
results for the impurity magnetization(/) can be divided in
three characteristic regimes as the magnetic ficildcreases

This yields a relation between the characteristic seafef
ISIM and the Kondo temperatufié; of the Anderson model:

atT = 0. (U, 12) = 2Tk (U, t2) . (43)
A SC regime for low fields/ < Tx) where the magnetiza-
tion is given by a universal function éf/T'x: Using for Tk Eq. (35) with the finite bandwidth prefactor
F = 0.364,/2/m given in Ref[3B, one gets forthe analyti-
h cal expression
(h) = 5 (36) 2
2t2U U
followed by a LM regime for intermediate field§{ < h < (U, tc) = 0.728 \ # eXp— (8t2) : (44)
VUT) wherem(h) is given by another universal function of ‘
h/Tk which can be expended as Eq. ) describes very well the numerical values @, ¢..)
obtained from the NRG spectra and the conditjiry = 7) =
1 1 1 in the non-perturbative regime, as shown in fig. 117for
m(h) ~ 3 < T T ) ) (37)  t2/A. Moreover, the behavior of calculated forl/ = 0.25
n(75c) andt. = 0.1 is given in Fig.[1]f as a funct|on af; when
tq < 7. One can see that the expres sin?(2t4/7) with
before having a PO regime for strong fields +UT) (de-  the value ofr calculated from Eq.[(34){ = 1.582510~°)
noted FO regime in Ref. 14) where describes the behavior @f or § calculated using the NRG
algorithm whent; < 7.
m(h) ~ 1 (1 o L ) (38) Fig. [L§ gives the NRG values gfandg as a function of
2 7h tq for U = 0.25 andt. = 0.1 in the LM regime. One can

see thaty =~ § around the transmission peak, but becomes
becomes independent of the interaction slightly different whenty > 7. Using Eq (3 form(t,),
WhenU = T', there is direct transition from a non-magnetic the NRG values ofj(t4) shown in Flg B are not reproduced
regime wheren(h) ~ h/T towards the free orbital regime by sin? (27m(t4)). We explain this failure by the fact that
where the behavior af.(h) is given by Eq.@S). the Anderson model corresponding to E@ (37) is not exactly
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FIG. 17: (Color online) SC regime:

Values gf(red plus),g (green

cross) obtained from the NRG algorithm and Bethe-Ansatzesxp
sionsin?(2t4/7) (solid line) as a function of, for U = 0.25 and

te = 0.1.

The value ofr used in the Bethe-Ansatz expression

have been obtained from the relation= 27'%, with Tx given by

Eq. @1).
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FIG. 18: (Color online) LM regime:
g (green cross) as a function of for

1074 1073 1072

NRG values ¢f(red plus) and
U = 0.25 andt. = 0.1. The

of 7 = 2Tk given by Eqg. (4#4) and used in Fi

solid line (fit Bethe-Ansatz) corresponds toélm (45) with thalue
17.
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XV. SUMMARY AND PERSPECTIVE

Whent; < 7, we have shown that the quantum conduc-
tance is given by a universal function of the rakio= ¢,/ of
two energies. This universal functigX ) = 4(X + X ~1)~2
characterizes the non-interacting limit, where the isulat
nanosystem has two levels of energy + t; with a level
spacingA = 2t,. Those levels have a width = ¢2 when the
nanosystem is coupled to leadgat = 0. Therefore the ratio
X is also the ratidA /2T". We have found thag(X) remains
unchanged when the electrons interact inside the nanasyste
if one adds a termx U to the broadening in the perturbative
regime. WherlJ becomes larger, there is a non-perturbative
regime where a more complicated many-body resonance ap-
pears atE'r. In that case, the relation = 27 which we
have obtained is consistent with the fact that the widtbf
the nanosystem levels becomes the Kondo temperdtyre
We have thus shown that the interactitnleaves the func-
tion g(X) unchanged in the SC regime, renormalizing only
the level broadening.

To have a conductance which is given by the ratio of
two characteristic energies and which stays at zero temper-
ature on a universal curve when this ratig varies is rem-
iniscent of the scaling theory of localizat Recently,
it has been fountd using numerical Quantum Monte Carlo
simulations that the( g)-function characterizes not only the
non-interacting limi4, but also 2D disordered systems with
Coulomb interactions. We have given another example of a
universal function which remains unchanged when the elec-
trons interact, the interaction renormalizing only therelca
teristic scaleX for the dimensionless rati /T in this study,
the localization lepgtl for the dimensionless ratib/¢ in 2D
disordered syster%

Whenrt < tg < t.v/U, a local moment is formed in the
equivalent Anderson model and the universal funcgéox )
is not given by the non-interacting limit. Adapting an analy
ical expression describing the magnetization of the Anmters
model, we have proposed an analytical form which reproduces
the universal functiog(X ) in the LM regime.

We have shown that the interacting region becomes per-
fectly transparent whem; = 7. In the non-perturbative
regime, this corresponds to a nanosystem level spaking

the Anderson model corresponding to ISIM. This might give 7, Thjs result shown using ISIM is a particular illustratidhn o

different constants in the functio

ngiven in EQ](37). Hoeev

we have been able to find a function®f= ¢,/ inspired by

the form ofm(h/Tk) given in E

a. [3]7) and which fits very

well the values of; in the LM regime:

g(X) = sin® (w(2.0175 -

As shown in Fig[ 18, such a fit
used in Fig[ 77 allows us to des

1n(2.8573X))) '

0.7388 (45)

with the value of= 2T

cripéq). Eq. (4b) gives an

excellent approximation of the universal curveggf,/7) in

the LM regime.

Whent,; > t./U (PO regime),g can be described by
the non-interacting expressiot(t,/t> + t2/ty)~2, which

achieves the complete descripti

ongdt,, U, te) in the sym-

metric case by analytical expressions.

the minimal realization of the orbital Kondo effect in a quan
tum dot wjth two leads, which has been studied by Silvestrov
and Imngs for more general setups. The role of the conduc-
tion electron spin is played by the lead index in F@ 36, @hil
it is played by the even and odd orbitals for ISIM. In the two
cases, the Kondo effect takes place if there are two closéslev
in a dot populated by a single electron, and the conductéance a
T = 0is zero at the SU(2) symmetric poirt;(= 0 for ISIM),
while it reaches the unitary limi& = e2?/h for some finite
value~ T of the level splittingA. However, the prediction
made in Ref@& that for temperatufe > Tk the conduc-
tance becomes maximal if the levels are exactly degenerate,
cannot be valid for ISIM where level degeneracy means no
coupling between the left and right leads & 0).

We have shown that the quantum conductance of an inter-
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acting nanosystem coupled to non-interacting 1D leads caeasily varied if the two dots are coupled by a quantum point
be described with a universal functigi.X'). This concept, contact, it will be interesting to check whether the quantum
with a similar functiong(X '), must remain valid if one cou- conductance of such setup is given by a universal function of
ples the nanosystem to non-interacting 2D or 3D leads idsteahe dimensionless inter-dot couplitg/Tx whenT — 0. For

of strictly 1D leads. This can be understood if one consid-observing the orbital Kondo regime using such a setup, &larg
ers the Anderson models of pseudo-spjt2 particles cor- capacitive inter-dot coupling will be necessary. It will &iso
responding to ISIM with leads of dimension D. The Kondo interesting to introduce the spin 1/2 of electrons in ISIM fo
physics of such models, where the quantum impurity is coustudying the role ot,; upon the SU(4)-Kondo effect, as we
pled to a bath of dimension D, is qualitatively independenthave studied its role upon the SU(2)-Kondo effect using-spin
of the used bath. A change of the dimension of the lead$ess fermions. The possibility of observing SU(4)-symiicetr
modifies only the dependence of the nanosystem level widtkrermi liquid state in a symmetric double quantum dot system
I" upont, (I « ¢2 in all dimensions D, but with factors which with strong capacitive inter-dot coupling has been disedss
depend on D), and hence the dependence of the Kondo termn Ref..

perature upon.. This makes likely that the universal aspects Eventually, this study was restricted to the symmetric case

of ¢ obtained in a pure 1D limit using ISIM do characterizeI . ; .
: eaving to a following work the study of the asymmetric case
also more general spinless models, where the nanosystem apﬁ

the leads would be created in gated 2D semiconductor het:_ % 7 0. Vo 7£ fU/2)’ \(vhere the role Oftd upon the

i S ._valence-fluctuation fixed point remains to be investigated.
erostructures. In that case, ISIM is a simplified model which
could describe quantum transport of spin polarized elestro ~ We thank Denis Ullmo for very useful discussions and the
through an inversion-symmetric double-dot setup, as a-fundRTRA “Triangle de la Physique” of Palaiseau-Orsay-Saclay

tion of the inter-dot coupling. Since such a coupling can beor financial support.
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