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ABSTRACT

A model for the interaction between a multicomponent Maxwellian atmosphere and a spacecraft is described. Multidimensional,
time-dependent gasdynamical simulations of the gas coma around the recently reconstructed aspherical rotating nucleus of comet
67P/C-G is used to analyze the outgassing pressure forces on the ESA spacecraft Rosetta. The forces were in general found to be
directed significantly away from the cometocentric position vector of the spacecraft. It was also found that in a maximum outgassing
scenario at comet rendezvous, the outgassing pressure force exceeds the gravitational attraction from the nucleus in the cometocentric
direction of the Sun. Furthermore, the highly non-spherical pressure field was found to undergo very large changes as the nucleus
rotated. Still, it was possible to represent the mean pressure field experienced by Rosetta by a fairly simple model, which can be used
for the determination of the comet mass and the so-called oblateness coefficient c20 from the spacecraft Doppler signal. The oblateness
coefficient represents a type of asphericity of the gravity field. The determination of the so-called triaxiality coefficient of the gravity
field c22 may require using the true pressure field instead of the mean pressure field.

Key words. celestial mechanics – hydrodynamics – space vehicles – comets: individual: 67P/Churyumov-Gerasimenko

1. Introduction

In 2014, the ESA probe Rosetta will reach the short-period
comet 67P/Churyumov-Gerasimenko (hereafter called 67P).
The spacecraft will approach the comet in the comet’s own orbit,
and the corresponding low relative velocity will make it possible
to insert the probe into a bound orbit around its nucleus.

At the time of the approval of the mission, it was believed
that by placing the approach at a large heliocentric distance
(rh � 3 AU) one would deal with an inactive nucleus. Now it
is widely believed though that the formation of cometary comae
(the nucleus “activity”) is due partly to solar-driven sublimation
of water ice at the nucleus surface, and partly to the diffusion
of more volatile molecules (for instance carbon monoxide) from
subsurface regions. Observations and physical simulations show
that the former process is limited to rh ≤ 2.5 AU, whereas the
latter may extend far out into the solar system (see the review
of Prialnik et al. 2004). Instrumental limitations generally pre-
clude observations of the distant activity (exceptions are e.g.
comets Halley and Hale-Bopp, found active up to 10 AU and
30 AU, respectively), hence it can often happen that a nucleus
which has substantial distant activity is improperly designated
as “inactive”. Similar limitations also often forbid the detection
of molecules other than H2O even at small rh in small comets.
This is the case for 67P, of which only the water activity has
been observed – for rh ≤ 2.5 AU. If all comets are similar in ori-
gin, however, volatile molecule activity can also be expected at
all distances (see for instance Capria et al. 2004). Indeed, recent
observations have revealed large dust grain production at �3 AU
from 67P (Marco Fulle and Jessica Agarwal, private communi-
cation, 2009) thus, in view of the very large mass-to-area ratio
of about 15 kg/m2 which is reached in a worst-case scenario,

it is possible that the Rosetta orbiter will experience significant
outgassing pressure forces at rendezvous.

A stated goal of the Rosetta Radio Science Investigations
is the determination of the nucleus’ gravity field from Doppler
data (Pätzold et al. 2007). In other words, the gravity field of
67P can be determined by the study of how the comet’s grav-
ity alters the line-of-sight velocity of Rosetta in its orbit around
the comet. The cometocentric gravitational acceleration of an
orbiting spacecraft can be derived from the gravitational poten-
tial V , which for our purposes can be parameterized by the nu-
cleus mass mc (treated in Mysen & Aksnes 2008) and the grav-
ity coefficients c20 and c22, to be defined later. In order to obtain
these parameters, it is essential to have a physical model that
connects them to the observable data. In the case of the Rosetta
orbiter, this physical model must include the outgassing pressure
force from the rapidly expanding coma or atmosphere around the
comet’s nucleus. Cometary dust poses a hazard to the spacecraft,
but does not contribute significantly to the dynamics due to the
low relative velocity between the dust particles and the space-
craft (see Mysen & Aksnes 2006, and references therein).

Below (1) we base our analysis on state-of-the-art computa-
tions of the near-nucleus coma for the first time and (2) we use
parameters thoroughly compatible with the existing observations
of 67P. On the other hand, to make the use of the computed pres-
sure field easier (as far as possible) we investigate whether a
simple deterministic model of acceptable precision (of the kind
proposed by Scheeres et al. 2000) can exist for the pressure field.

1.1. Past celestial dynamics pressure force models

Several force models for the outgassing pressure effects on a
cometary orbiter have been proposed previously. Models of this
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kind necessarily include (a) a gas outflow model to compute the
gas parameters at any point from specific assumptions on the nu-
cleus size, shape, rotation and gas production, and (b) algorithms
to assess the force magnitude and direction from the local coma
gas parameters. An analysis of the existing publications shows
that in all cases these two components suffer from deficiencies.
It is the purpose of the present paper to propose improved ap-
proaches for the 67P case.

As a first example, in Scheeres et al. (2000) an expansion
in orthogonal spherical harmonic functions is fitted to the simu-
lated outgassing pressure field P(r, θ, φ) of a spherical nucleus,
probably derived from some kind of fluid dynamics computa-
tion (unfortunately, the details are only referenced in unpub-
lished work). As with the force F, it is taken equal (after misprint
correction) to P(r, θ, φ)AS/C r/r, where AS/C is the probe cross-
section and r/r the cometocentric unit radial vector. That is, the
pressure force is assumed to act mainly away from the nucleus,
and the force’s temporal variations as the nucleus rotates are not
accounted for.

In the second example (Byram et al. 2007) the gas coma is
modelled as a series of twenty discrete narrow conical jets at-
tached to a rotating ellipsoidal nucleus, all having the same ra-
dial flow velocity V , but differing openings and gas mass fluxes
Ṁi(zi�) (kg/s) assumed to vary with the (time-dependent) solar
zenith angle at their base zi�. In support of this assumption it
is stated that such a coma structure has been “identified” in the
2004 flyby images of the comet P/Wild 2. Let us observe here
that these are images of the dust (not gas) coma, and that no sup-
porting dusty gasdynamical computation is mentioned in support
of this “identification”. The aerodynamic force is taken to be

F(t) = AS/CV
∑

i

χi(t)Ṁi(z
i
�(t))

⎛⎜⎜⎜⎜⎝ rN
i

ri

⎞⎟⎟⎟⎟⎠
2

ei(t), (1)

where ri and rN
i are the distance to the apex of the jet i of the

spacecraft and of the nucleus surface respectively, ei(t) is the
(time-dependent) unit vector from this apex to the probe, and
χi = 1 if the probe lies within the jet i and otherwise χi = 0 (this
depends upon the orientation at time t and opening of the jet i).

1.2. Lessons from past gasdynamical model results

More than a decade of 2D, 3D and 3D+t gasdynamical simula-
tions of comae by various authors using various computational
techniques (see the review of Crifo 2004a) have clearly revealed
how gas outflowing in a vacuum from a geometrically irregular,
rotating solid builds up a huge atmosphere around it. There are
four essential characteristics.

In the first place, the surface topography of the object plays
a strong role (as common sense evidences) upon the outflow,
attaching specific flow structures to many topographic details
(such as concavities). This is due in part to shadowing effects
and in part to flow obstacle effects. The effect is that the ro-
tation of the central object renders the gas coma flow pattern
fully time-dependent (quasi-periodic). Furthermore, since grav-
itational asphericities are in general associated with such topo-
graphic details, the effect may introduce a correlation between
pressure force variations and gravity variations. Let us stress
that this topography control occurs if the gas is emitted from
the whole object or from several discrete areas. Thus, Crifo et al.
(2002) showed that comet Halley’s dust coma fine structures are
equally well reproduced whether one postulates a uniform or a
non-uniform gas production. In Crifo (2004) the Wild 2 syn-
thetic dust coma image is compared to a dusty gasdynamical

computation of the near-nucleus coma around a random shaped
nucleus, suggesting immediately that the Wild 2 claimed (with-
out any supporting modelling) “active areas” are nothing but the
signatures of Wild 2 non-smooth surface. This will be checked
in the future. By smoothing their model nuclei, both Sheeres
et al. (2000) and Byram et al. (2007) eliminate this essential
topography control.

Secondly, it is a fundamental property of inhomogeneous
vacuum outflows that they are structured by a pattern of shocks
– the effect is well documented e.g. in multiple-thrusters rocket
motors. This effect (also called jet-jet interaction) renders the
relation between source pattern and outflow structure non-
intuitive. Thus, if the discrete gas sources of Byram et al. (2007)
really existed, the jet-jet interactions would create a very disor-
dered gas coma instead of their physically impossible indepen-
dent rigid gas cones. In particular, even if all jets had initially the
same velocity, a considerable velocity dispersion would appear
(subsonic and supersonic areas). Furthermore, as the jet fluxes
vary with nucleus orientation, the resulting “very disordered”
structure and the velocity dispersion will change dramatically.
Thus, while the Byram et al. (2007) coma changes during the ro-
tation (as requested), the changes are over-simplified compared
to those of a real coma. At this point it is instructive to note that
these authors cite a paper by Crifo et al. (1994) in support of
their approach, which precisely evidences the jet-jet interaction,
whereby the impossibility of their model is demonstrated.

Third, because the illumination of the surface varies during
its rotation, so does its temperature field, hence, even if there ex-
isted a permanent corotating surface gas flux pattern linked to the
topography, still the initial gas temperature and velocity would
change considerably with the solar zenith angle: a constant ve-
locity in all jets during the rotation is a physical impossibility.

Finally, in view of the enormous difference in inertia be-
tween molecules and grains, coma dust patterns are non-trivial
tracers of the surface gas emission. Hence, claims to visually in-
fer gas sources from dust coma images without any supporting
dusty gasdynamic computations must be firmly discarded. This
is true for comet Wild 2 beyond any possible doubt, as stated
above. To be sure, an inhomogeneity of surface gas production
is possible in principle, but this can only be confirmed by cou-
pled dust/gas dynamical simulations that reproduce the images.

Below we do not assume a strong inhomogeneity of the nu-
cleus for two reasons. First, as discussed above, most advoca-
tions in the literature of strongly localized gas emission due to
a strong nucleus inhomogeneity are merely opinions, not con-
clusions from physical model fits of the observations. Let us ob-
serve here that the flyby images of comet Tempel 1 evidence dif-
ferent areas of production for different molecules (Feaga et al.
2007); still the total coma density does not exhibit dramatic
changes with position on the day side. Secondly, a significant in-
homogeneity of gas production does appear even when assuming
a homogeneous nucleus, due to the effect of solar illumination.
Thus our computed coma is representative of any possible gas
coma. However, it is true that an extreme instance where the to-
tal gas production would be localized in a few separated areas
might lead to locally stronger pressures than computed here.

1.3. The problem of the force model

It is well known that a solid placed in a gas flow undergoes a
force with components parallel (drag) and transverse (lift) to the
flow. As described above, earlier works took the latter to be neg-
ligible on an intuitive basis, but a quantitative proof of the valid-
ity of this assumption is still missing. Another problem, probably

Page 2 of 17



E. Mysen et al.: Pressure forces on the Rosetta orbiter

specific to the large size of the Rosetta orbiter, is that this size
is not necessarily smaller than the gas mean free path. For 67P
at perihelion, simple estimates show that this is certainly not the
case close to the nucleus. As the gas-spacecraft relative velocity
is supersonic, it follows that in such a case, the gas parameters at
the spacecraft differ from those of the unperturbed flow (an at-
tached or a detached shock wave may appear). Below we mostly
address the lift vs. drag problem for which we rederive the pres-
sure field equations from first principles. As with the question of
whether or not the gas mean free path is much larger than the
size of the spacecraft, we here only delineate that region of the
coma (at 3 AU) where this is expected to be the case.

2. Interaction between coma and spacecraft

Let us consider a pure gas (i.e. containing identical molecules),
and let us in addition assume that the gas density is large enough
for the molecule velocity distribution to be well represented by
a drifting Maxwellian, but small enough that the mean free path
of the molecules is significantly larger than the spacecraft, an
assumption which will be motivated and tested later. Adopting a
cometocentric gas outflow velocity V on the order of 0.65 km s−1

(see Fig. 9) and a mass of the target comet of mc = 1 × 1013 kg
(Davidsson & Gutierrez 2005), the cometocentric velocity of the
Rosetta orbiter at a close cometocentric distance r = 10 rc (rc ≡
2 km being the mean radius of the nucleus according to Lamy
et al. 2007) is 0.2 m s−1. Therefore the distribution of relative
velocity U between the orbiter and the gas is determined by V,
and the Maxwellian velocity distribution (Valorge 1995)

fM =
�

m
(2πR T )−3/2 exp

⎛⎜⎜⎜⎜⎜⎝−u⊥2 + u2
‖ + u2

z

2R T

⎞⎟⎟⎟⎟⎟⎠ (2)

by setting

u⊥ = U⊥ + V cosϑ, u‖ = U‖ + V sinϑ, uz = Uz, (3)

where the subscripts ‖,⊥, z refer to the mutually perpendicular
directions illustrated by Fig. 1 (U⊥ is normal to the surface, U‖
parallel to it and Uz completes the orthogonal right-handed sys-
tem), � is the mass density of the coma, ϑ ∈ (−π, π ) the angle of
attack (Fig. 1), T the coma temperature and R ≡ kB/m where kB
is the Boltzmann’s constant and m the mass of the gas molecule.
Here we must stress that the molecular flow along the unit vec-
tor u‖ changes as ϑ→ −ϑ, leading to two distinctively different
forces along the plate as the sign of the attack angle is altered.
That is, the attack angle can take on both negative and positive
values, corresponding to different physical situations. Note that
the attack angle is counted positive from n towards u‖. The vec-
tor u‖ is parallel to the plate, lies in the plane spanned by n and
V, and must be defined in a way that Eq. (3) is valid. If we re-
strict our attention to two dimensions as in Fig. 1, we are free
to define the direction u‖ as we like as long as it is parallel to
the plate. Still, it should be noted that the unit vector’s defini-
tion relative to the plate and the definition of attack angle remain
fixed once chosen if Eq. (3) is to be valid. This means that u‖
does not always point in the same direction, but sometimes in
the opposite direction as compared to the projection of V along
the plate.

To compute the pressure force on a spacecraft, it is conve-
nient to represent it by a polyhedron and to sum the pressure
forces exerted on each face of the polyhedron. Here we will fur-
ther assume that this polyhedron is convex. That is to say, the
whole half-space in front of each face is unobstructed by other

θ

(x−axis)

V=V u

n=u

u

u

D

L

(y−axis)

plate

Fig. 1. A flat plate is seen from its side. The plate moves with a veloc-
ity V relative to the atmosphere. The unit vector n ≡ u⊥ is normal to the
surface. The unit vectors uD and uL define the drag and lift directions
respectively. As for the attack angle, it is counted positive from n to-
wards u‖. The vector u‖ is parallel to the plate, lies in the plane spanned
by n and V, and must be defined in a way that Eq. (3) is valid.

faces of the spacecraft (thus also no face can receive molecules
scattered from other faces). Then the pressure force due to any
face is equal to the force exerted on one side of an isolated flat
plate, computed with an appropriate area and orientation. Below,
we will distinguish for convenience between “front side plates”
and “rear side plates”. That is, for a plate where both sides are
exposed to gas pressure (as is the case in a Maxwellian gas), one
is free to decide which side is “front”. The other side then au-
tomatically becomes the “rear” side. It is important to note that
once defined, this definition of “front” and “rear” remains fixed,
independent of how the spacecraft is oriented with respect to the
flow of the coma.

2.1. Pressure force on a front side flat plate

Let us consider the elementary area dA of the front side of a flat
plate moving with a velocity V relative to the atmosphere, with
n ≡ u⊥ as the unit vector normal to dA. Let u‖ be a unit vec-
tor parallel to the plate, lying in the plane spanned by V and n.
The force dF experienced by dA is due to the pressure of the
impacting molecules and to the recoil from the re-emitted parti-
cles. We do not consider here the case where part of or all the
impinging molecules would be condensed on the surface (for
such a case, see e.g. Crifo 1995). We will also assume that the
plate is perfectly smooth, in the sense that the flux of the reemit-
ted molecules is symmetrical with respect to the incidence plane
(u‖, n). Then, dF has the form

dF = dF⊥(ϑ, Tw) n+ dF‖(ϑ, Tw) u‖, n ≡ u⊥, (4)
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where Tw is the plate temperature, and

dF⊥ = dFi
⊥ + dFr

⊥, dF‖ = dFi
‖ − dFr

‖ , (5)

where the superscripts (i) and (r) denote the contributions from
the incident molecules and from the re-emitted molecules re-
spectively.

If we calculate the pressure exerted by the incoming gas
molecules following the Maxwellian velocity distribution, we
obtain for the force per unit area along n

dFi⊥
dA
= −

∫ ∞

−∞
dUz

∫ ∞

−∞
dU‖

∫ 0

−∞
dU⊥U⊥ fM m U⊥, (6)

yielding

dFi⊥
dA

= − �V2

2
√
π s2
{ s cosϑ exp (−s2 cos2 ϑ) +

√
π

(
1/2 + s2 cos2 ϑ

)
[ 1 + erf(s cosϑ) ]}. (7)

Here

erf(X) =
2√
π

∫ X

0
dx exp

(
−x2

)
, (8)

and the pressure force from the incoming gas molecules is de-
pendent on the flow Mach number M through the speed ratio s

s =
V√

2 R T
≡ M

√
γ/2, (9)

where γ is the gas specific heat ratio. Likewise, we obtain for the
component of the force per unit area parallel to the surface in the
u‖ direction (Fig. 1)

dFi
‖

dA
= −

∫ ∞

−∞
dUz

∫ ∞

−∞
dU‖

∫ 0

−∞
dU⊥U⊥ fM m U‖, (10)

resulting in

dFi
‖

dA
= −�V2 sinϑ

2
√
π s

{ exp (−s2 cos2 ϑ)

+
√
π s cosϑ [ 1 + erf(s cosϑ) ]}. (11)

There is some uncertainty (Harrison & Swinerd 1996) related to
what happens to the gas molecules after they strike a spacecraft
surface, but in any case, mass is conserved. Therefore, assuming
that there is no condensation of molecules at the surface, the
expression for the number of gas molecules striking the surface
per unit time will be useful:

dNi

dA
= −

∫ ∞

−∞
dUz

∫ ∞

−∞
dU‖

∫ 0

−∞
dU⊥U⊥ fM , (12)

which gives

dNi

dA
=
�

m
V
s

1

2
√
π
{ exp (−s2 cos2 ϑ)

+
√
π s cosϑ [ 1 + erf(s cosϑ) ] }. (13)

The contribution from the molecules leaving the surface, dFr, is
partly given by the momentum transfer coefficient normal to the
surface

σ⊥ ≡ dFi⊥ − dFr⊥
dFi⊥ − dFw⊥

, (14)

in which dFw⊥ is the force exerted by the molecules if they are
completely thermalized by the spacecraft plate

dFw⊥ = −dNi Pw⊥, (15)

where

Pw⊥ = m

√
π

2

√
R Tw = m

√
π

2
V
s

√
Tw
T

(16)

is the thermal momentum of a gas molecule leaving the plate
with temperature Tw. The definition

σ‖ ≡
dFi
‖ − dFr

‖
dFi
‖ − dFw‖

, dFw‖ = dNi Pw‖ = 0 (17)

completes the parametrization where the contribution from both
the incoming molecules as well as from those leaving the sur-
face have been accounted for. Note that Pw‖ = 0 since a molecule
thermalized by a perfectly smooth plate does not have a momen-
tum preference in this direction. For σ‖ = σ⊥ = 1, the diffuse
reflection approximation (Valorge 1995) is obtained.

Since the two directions of greatest interest here for the pres-
sure force really are n and uV ≡ V/V , we will use the force per
unit area representation

dF
dA
= �V2 ( CV uV +CN n ) , (18)

derivable from Eq. (4) with the use of the relation

uV = n cosϑ + u‖ sinϑ. (19)

As the pressure force coefficients will obey

CV,N = CV,N(cosϑ), (20)

the attack angle need only be defined in the range ϑ ≡ ( 0, π ),
and we can make the simple substitution cosϑ = uV · n in the
equations which follow. Accordingly,

CV = − σ‖
2
√
π s

{
exp

(
−s2 cos2 ϑ

)

+
√
π s cosϑ [ 1 + erf(s cosϑ)]

}
. (21)

For the force component normal to the flat plate we get

CN = CΔ +C‖ + C⊥, (22)

where

CΔ = − 1√
π s2
{ s cosϑ exp

(
−s2 cos2 ϑ

)

+
√
π (1/2 + s2 cos2 ϑ) [ 1 + erf(s cosϑ)] } (23)

with

C‖ = −CV cosϑ, (24)

and

C⊥ = −σ⊥2 CΔ +

√
π

2
σ⊥
σ‖

1
s

√
Tw
T

CV . (25)

These expressions correspond to those of Schaaf & Chambré
(1958) as given in Moore & Sowter (1991) if projected along
the n and u‖ directions.

Page 4 of 17



E. Mysen et al.: Pressure forces on the Rosetta orbiter

-3 -2 -1 0 1 2 3
� �rad.�

-1

-0.8

-0.6

-0.4

-0.2

0

C
V

�
Σ

�

Fig. 2. The pressure force coefficient CV of Eq. (21) is given for different
values of s, dashed lines. From bottom to top we have s = 1, s = 3, and
s→ ∞ (solid), Eq. (26).
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Fig. 3. From bottom to top, CΔ of Eq. (23) is given for s = 1, s = 3, and
s→ ∞ (solid), Eq. (27).

At this point we may note that the mass dependence of the
force due to the inflowing molecules is contained in � and s,
which means that if the incoming gas is a mixture of molecules,
it will be in general sensitive to changes of the molecular com-
position with position in the coma.

A significant simplification occurs in the so-called hyper-
sonic limit M → ∞. In this case, s → ∞, whereby it can be
shown that Eqs. (21) and (23) are reduced to

C∞V = −Θ(cosϑ) cosϑ (26)

and

C∞Δ = −2Θ(cosϑ) cos2 ϑ, (27)

where Θ(X) is the step function which is zero for negative and
one for positive arguments, X. Included as Fig. 2 is a plot of
CV of Eq. (21) for some values of s (dashed) as well as its hy-
personic representation Eq. (26) (solid). In Fig. 3, realizations
of the force coefficient CΔ, which together with CV determines
CN , are given in the same way. Note that the functions of Figs. 2
and 3 are symmetric with respect to ϑ = 0, and that we therefore
may operate with a positive ϑ only, notably if we use the formu-
lation Eq. (18). For the terms invoving exponentials and/or erf
functions, the so-called hypersonic approximation s → ∞ is ac-
ceptable for s >∼ 3, as shown by the preceding figures. However,
the case of the remaining C⊥ may be different since according to
Eq. (25) the condition for the hypersonic approximation to hold
is here s � √

Tw/T . It is well known that hypersonic motion

in a rarefied atmosphere can lead to very high surface tempera-
tures Tw. If we assume that the design of the Rosetta spacecraft
maintains its surface around 300 K, then the hypersonic condi-
tion becomes s � √

3 for an inner coma at 100–200 K. Note
that the coma temperature drops off very rapidly with increasing
distance to the nucleus and can be as low as 15 K already at a
cometocentric distance of 20 km. At larger distances, the coma
is heated again by solar radiation.

If the hypersonic approximation is met, four important im-
plications appear. First, the front side part of the total force, F f ,
is a function of the total mass density, whereby Eq. (18) can
be used with � as the total mass density; thus, F f is insensitive
to the molecular composition. If this is not the case, the contri-
butions of each kind of the molecules must be summed, using
its fractional mass density and speed ratio (not anymore related
to M – the mixture Mach number – by the Eq. (9)). Secondly,
F f is also independent from the coma temperature, which there-
fore does not need to be accurately assessed: it is only necessary
to make sure that it is low enough. Third, it is also independent
from the spacecraft surface temperature (which is anyway prob-
ably monitored in-flight). Fourth and most importantly, it is easy
to see that F f is in this case the same as the one obtained if the
molecules were all at rest with respect to one another. Thus, the
velocity dispersion playing no role, any velocity distribution –
not necessarily a Maxwellian – yields the same result: the gas
need not be in fluid regime. We return to this fundamental result
below.

2.2. Pressure force on a rear side flat plate

A rear side plate has its surface normal vector in the opposite di-
rection to that of a “front side” plate parallel to it, independently
from the orientation of the spacecraft with respect to the coma
flow.

As our previously derived formulas for dF(ϑ, Tw) are appli-
cable for all attack angles ϑ, the force dFb due to the rear side
is equal in magnitude and opposite in direction to that computed
above for an attack angle ϑb = ϑ f + π:

dFb = −dF⊥(ϑb, Tb) nf − dF‖(ϑb, Tb) (u‖) f , (28)

where n f and (u‖) f are the unit vectors orthogonal and parallel
to the front surface (Fig. 1), Tb is the back side temperature, ϑ f
is the attack angle of the arbitrarily chosen front side, and the
functions dF⊥ and dF‖ are the same as in Eq. (4).

It is clear that in the hypersonic limit the simplifications
found for the front side of the plate, dF f , also apply to dFb.

2.3. Total force from both sides of a flat plate

The “front side” and “rear side” elements of a spacecraft do not
necessarily have to be equivalent in temperature, nor does there
have to be a corresponding rear plate parallel or of the same
size to every front plate. For the present application however,
our spacecraft shape model is constructed so it can be subdi-
vided into pairs of front side and back side plates parallel to one
another and with the same area. In this case, it is convenient
to treat it as a collection of isolated plates (with both sides ex-
posed to the gas). The total force acting on an isolated flat plate,∑

dF, is the sum of dF f and dFb given by Eqs. (4) and (28)
respectively:∑

dF =
[

dF⊥(ϑ f , T f ) − dF⊥(ϑ f + π, Tb)
]

nf

+
[

dF‖(ϑ f , T f ) − dF‖(ϑ f + π, Tb)
]

(u‖) f . (29)
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Defining the pressure field coefficients
∑

CV,N through∑
dF

dA
= �V2

[ (∑
CV

)
uV +

(∑
CN

)
n f

]
, (30)

it can easily be reasoned from Eqs. (19) and (29) that∑
CN = CN(Tw = T f , ϑ = ϑ f )

−CN(Tw = Tb, ϑ = ϑ f + π), (31)

and∑
CV = CV (Tw = T f , ϑ = ϑ f )

+CV (Tw = Tb, ϑ = ϑ f + π). (32)

For s > 3 we have the “weak” hypersonic expressions∑
C∞V = −σ‖ cosϑ f [Θ(cosϑ f ) − Θ(− cosϑ f ) ]

= −σ‖ | cosϑ f |, (33)

which is π-periodic as one must require for physical reasons. In
the same way, one obtains with the use of Eqs. (27) and (31):∑

C∞Δ = −2 cosϑ f | cosϑ f |, (34)

∑
C∞‖ = σ‖ cosϑ f | cosϑ f | (35)

and∑
C⊥ = σ⊥ cosϑ f | cosϑ f |

−σ⊥
√
π

2

√
2R
V

[ √
T f cosϑ f

+ (
√

Tb −
√

T f )Θ(− cosϑ f ) cosϑ f

]
, (36)

where the last term in Eq. (36) has been retained because of the
uncertainty in the value of the ratio T f /T .

For the present application to Rosetta, we will assume that
the thermal design of the spacecraft ensures approximate surface
isothermicity, whereby

√
T f − √Tb ≈ 0, hence

∑
CN = (−2 + σ‖ + σ⊥) cosϑ f | cosϑ f | − σ⊥Λ f

V
cosϑ f , (37)

an expression that in accordance with the physical situation
changes sign if ϑ f is increased by π, and in which the term

Λ f =

√
πR T f

2
≡ 1

2s

√
π

T f

T
(38)

has been retained (“weak hypersonicity”) as T f /T ratio’s value
is uncertain.

Based on Eqs. (30), (33) and (37) we propose as a first at-
tempt to interpret the radiometric data from Rosetta that three
estimation parameters for the description of the interaction be-
tween spacecraft and coma can be

σ‖, σ⊥, σ⊥Λ f . (39)

Hopefully, applications will show that they are fairly constant.
Otherwise the parameters above can be allowed to change over
time to a certain extent. In Moore & Sowter (1991), where the
last term of Eq. (37) ∼ V−1 was defined to be negligible, it was
noted for instance that σ⊥ itself might be a function of the attack
angle (see also Moe & Moe 2005):

σ⊥ = σ(0)
⊥ − σ(1)

⊥ secϑ f . (40)

Interestingly, this dependency of the normal accommodation co-
efficient will reintroduce a

∑
CN with the same dependency on

the attack angle as in Eq. (37).
As with F f and Fb the total force is independent of the coma

temperature in the hypersonic limit, and hence from the flow
regime of the gas. However, for Rosetta it may be that this con-
dition is only partly met as discussed precedingly, leaving in
Eq. (37) the term dependent on R ≡ kB/m, i.e., on the mass of
the gas molecule. In this case we need to know �V2 for each dif-
ferent chemical species to calculate this component of the force.
In navigation and radio science, where scientific quantities are
found by inverting radiometric data from the spacecraft (Pätzold
et al. 2007), only the properties of the chemical species which
contributes the most can be found. That is, if we can find a proper
parametrization of �V2, we do not necessarily have to operate
with one such set of parameters for each chemical species. Of
course, this simplification does not hold if the probe enters a re-
gion during the tracking interval where the dominant contributor
to the pressure shifts from one species to another.

In this paper, where the molecules CO and H2O are consid-
ered and the CO pressure usually dominates, we will make the
approximation

Λ f (H2O) =
√

28/18Λ f (CO) ≈ Λ f (CO). (41)

As a result, we only need a proper description of the sum (�CO +
�H2O)V2, and not descriptions for each species (given that V is
common for all kinds of molecules).

Although our coefficients in Eq. (30) are to a great extent
determined by the defined parametrization, we will nevertheless
conclude that there is little a priori evidence for the hypothesis
of a pressure force on a cometary orbiter that acts mainly in the
direction away from the comet nucleus in general, as assumed
in Weeks (1995), Scheeres et al. (2000) and Byram et al. (2007).
That is,

∑
CN is zero for all attack angles ϑ f only if there is

full accommodation in all directions and the spacecraft tempera-
ture is zero (unless, of course, the possibilities σ‖,⊥ > 1 also are
considered). This represents the most important property of the
presented simple model: it does not exclude forms of interaction
between the gas molecules and the spacecraft.

2.4. Rosetta’s effective pressure force area

Let us define ϑ f as the angle between the relative velocity vector
uV and the unit vectors normal to the solar cell arrays with a total
area 64 m2. Also, let one surface of the bus with an area of 2.8×
2.0 m2 point in the same direction as the solar cell arrays. Finally,
assume that the bus area in the uV direction is 2.1× 2.0 m2 when
ϑ f = π/2, i.e., when the solar cell arrays are not exposed to
the pressure field. With the use of Eqs. (33) and (37) we are
now in a position to plot the effective outgassing pressure force
area of Rosetta in different directions. The directions used will
be the drag direction uD ≡ uV and the orthogonal lift direction
uL (Fig. 1), related to a vector n normal to a spacecraft surface
through

n = uV cosϑ + uL sinϑ, ϑ ∈ (−π, π). (42)

The contribution to the drag force from both the back side and
front side of a spacecraft area dA f ; with a front side surface nor-
mal nf this is then

∑
dFD

dA f
= �V2uD

[∑
C∞V (ϑ f ) + cosϑ f

∑
CN(ϑ f )

]
. (43)
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Fig. 4. The figure illustrates effective areas of Rosetta in the drag direc-
tion: total (solid), without bus (dotted), or with the spacecraft tempera-
ture set to T f = 0 K (densely dotted).
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Fig. 5. The lift to drag ratio is shown above as a function of the attack
angle ϑ.

Likewise, for the lift component
∑

dFL

dA f
= �V2uL

[
sinϑ f

∑
CN(ϑ f )

]
. (44)

Included as Fig. 4 is the effective area of Rosetta in the drag di-
rection, based on Eq. (43). A typical value of V = 500 m s−1 has
been used, together with a spacecraft temperature of T f = 200 K,
assuming full accommodation normal to the plates, σ⊥ = 1, and
no accommodation of the gas molecules along the plates,σ‖ = 0.
The low mass of water molecules is chosen for the calculations
to maximize the effect. Clearly, the effective area, amplified by
the thermalization of gas molecules by the spacecraft walls, can
be very large. The lift to drag ratio is plotted in Fig. 5. That is,
one cannot argue that the force is directed mainly away from the
comet nucleus in general based on the claim that the lift compo-
nent is negligible compared to the drag component.

3. Comet 67P model

The only reliable way to predict the behaviors of the important
functions �V2 and V of the previous section is to base the pre-
dictions on state-of-the art computations of the 3D+t gas coma,
making sure that all adopted parameters are fully compatible

X

Y

Z

Fig. 6. Present best-fit shape of the comet 67P nucleus. The largest
diameter is about 5 km. The uncertainty is probably on the order of
the magnitude of the topographic features. The corresponding best-fit
monoaxial rotation is about the z-axis. The model will be periodically
improved as new observational data are accumulated. After Lamy et al.
(2007).

with the present information available on the 67P nucleus, sum-
marized in Lamy et al. (2007). To be sure, considerable uncer-
tainty persists on the properties of this nucleus. In particular, the
CO production rate cannot be measured because its upper-limit
lies below the detection limit of existing ground-based instru-
ments, and the nucleus shape and perhaps rotation parameter are
provisory. One can see the evolution in the best-fit nucleus pa-
rameters by comparing the present shape and coma properties
(Figs. 7–9) with those given in Crifo et al. (2004b), which were
based on 2002 data (let us remind that 67P has a period of about
6.5 years, hence new data are acquired every six to seven years).
While there is an unavoidable uncertainty in the present parame-
ters we can warrant that our assumptions are compatible with all
existing observations by basing our parameter choice on Lamy
et al. (2007), as opposed to assumptions which are in direct con-
flict with the observations, as those of a spherical or ellipsoidal
nucleus shape. By using a 3D+ t gasdynamical approach, we can
guarantee the robustness of the physical model, as opposed to us-
ing algorithms which rely on untenable concepts, as a corotating
rigid gas coma pattern.

The main model parameters are summarized in Table 1. We
call them “maximum model” because they correspond to the up-
per limits of the total water and CO production rates. Evidently,
the real conditions could as well be those of minimum produc-
tion rates, which are an order of magnitude smaller – our sce-
nario is in this sense a worst-case scenario from the point of
view of pressure effect on the orbiter. However, as discussed be-
low, the surface distribution of these fluxes also influences the
pressure and at this point in time it is not known whether our
present assumptions are worst-case assumptions or not.

3.1. Nucleus model

Using HST images of the comet, Lamy et al. (2007) have been
able to extract an approximate size, shape, and rotation mode of
this nucleus. Figure 6 shows that, as all imaged cometary nuclei,
the nucleus of 67P appears to be small (km size) and very irreg-
ular in shape. We have adopted the shape of Lamy et al. (2007),
and – consistently – their rotation model. The nucleus radii are
distributed around rc ≡ 2 km. The rotation is uniaxial and pe-
riodic with a period P = 12.55 h. The constant angle between
the cometocentric direction of the Sun and the axis of rotation
is 70◦. Uniaxial rotation has been inferred from the presently
existing lightcurves by Lamy et al. (2007), but a more realistic
mode should not be entirely excluded.
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Table 1. Comet 67P model parameters.

Shape Lamy et al. 2007 Resolution: 30 (�30 m.)
Mean nucleus radius rc ≡ 2 km
Rotation mode uniform, retrograde, fixed-axis OZ
Rotation period 12.55 h
Subsolar point +200 from equatorial plane†

Visible albedo AV = 0.052
IR emissivity ε = 0.9
Heliocentric distance rh = 3 AU
Internal heat flux (shadow) Fs = 0.05c�/r2

h
H2O production solar-driven sublimation with uniform f = 0.07
Computed H2O production Q = (4.75−7.06) × 1026 molec/s
CO production surface diffusion (non-uniform, A0 = 0.2 )
Computed CO production Q = (1.05−1.08) × 1027 molec/s

Notes. The symbol c� denotes the solar constant, and f is the surface icy area fraction. † This angle is the 2006 value and may be different during
the 2014 rendez-vous.

The surface flux Z(CO) at any point with the solar zenith
angle z� is given by:

Z(CO) = QCO

(
A0

Aext
+

(1 − A0) max[cos z�, 0.]
A�

)
, (45)

whereAext is the computed nucleus external area,A� its cross-
section seen from the Sun, A0 a dimensionless parameter, and
QCO = 1027 mol.s−1 is the desired total CO production rate.
One sees that a fraction A0 of QCO is distributed uniformly over
the surface, and a fraction (1 − A0) is distributed over the sunlit
surface in proportion to its illumination. Thus, for the presently
adopted value A0 = 0.2, the CO production has a pronounced
day-to-night asymmetry. The water flux at any point is calculated
by solving a sublimation energy budget equation at each time.
In this equation, a heuristic term Fs represents the exchanges
of heat between the nucleus interior and the surface by conduc-
tion. The surface is assumed to have at all points the same small
amount of ice, representing an icy area fraction f = 0.07. The
resulting total production rate QH2O varies during the rotation
around ∼ 6×1026 mol.s−1 at the heliocentric distance rh = 3 AU.

As stated precedingly, other assumptions with respect to the
surface distribution of the ice and of the CO emission could have
been made, because at the present time there is no observational
constraint on it. For instance, both could have been assumed lo-
calized in small areas of the nucleus, leading to a much more
contrasted gas coma structure. It would certainly be interesting
to investigate in the future the implications for the pressure force
field.

3.2. Molecular outflow model

The vacuum outflow of the molecules emitted by the nucleus
is computed using the gasdynamical approach described in
Rodionov et al. (2002), except that the method of solutions here
is more powerful than the one described there, as one true time-
dependent solutions is acquired (in lieu of a succession of steady
state solutions). Thus, the time dependent tridimensional Euler
Equations governing the gas outflow are solved by the shock-
capturing Godunov method, using periodic boundary conditions
for the integration over time. The time mesh is 1/72 of a rotation
period, hence the solution consists of a set of 72 3D files. A brief
description of this new family of solutions is given in Rodionov
and Crifo (2006). The adequacy of Eulerian Equations for the
present parameter choice and the presently considered cometo-
centric distances will be discussed below.

4. Properties of the computed 3D+t gas coma

The time-dependent, periodic but non-co-rotating structure of
the coma can be seen on Fig. 7, which shows snapshots of the
total gas density in the rotation equatorial plane at nine equis-
paced times during one rotation period. One notes a clear day-
to-night asymmetry, due in part to our assumed (modest) solar
dependence of the CO flux, and in part to the solar-driven wa-
ter production. Also evident on the figure is the correlation be-
tween density structures and nucleus topography, and the result-
ing time-dependence of the gas density at any point.

To have a better feeling about the 3D structure of the coma
and about its compositional variability, Fig. 8 shows the H2O
and CO density distributions in the equatorial plane and in one
meridional plane at rotation phase 0. It is clear that there is a very
strong day-to-night change in the chemical composition due to
the different physical origin of the molecules. Notice that the
two patterns depend on one another, since under the conditions
of interest here, the two species are closely coupled together by
collisions and form a single fluid. As a consequence, if only wa-
ter or only CO was produced, their coma patterns would differ
from the present ones, because the distribution of surface gas
flux would be different.

Figure 9 shows the distribution of the flow velocity and the
flow Mach number in the same planes. There is not much day-
to-night asymmetry in the Mach number, a general property of
inviscid flows, but there is a very large difference in the flow ve-
locity, due to the strong day-to-night surface temperature asym-
metry. This temperature asymmetry is controlled in our model by
the parameter Fs. Our present value for this parameter is proba-
bly a minimum, yielding a probable maximum day-to-night tem-
perature asymmetry.

Finally, the direction of the gas flow is also of interest. For
instance, in Crifo et al. (1995) it was shown that the gas flow
can be almost along the nucleus surface close to the nucleus i.e.,
highly non-radial. For the present coma simulations, we find that
the angle between the direction of flow and the cometocentric
radius vector is on average less than 7.5◦ at r = 5 rc. At distances
r = 10 and 25 rc the angle is on average less than 4.5◦ and 2.5◦,
respectively.

In conclusion, we hope that these results (in all respects sim-
ilar to those of previous simulations, see Crifo et al. 2004a) will
convince the reader that there is no co-rotating feature of any
kind in a realistic gas coma, nor any rotationally invariant pa-
rameter, in particular not the velocity or the temperature.
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Fig. 7. Variation of the total mass density in the equatorial plane during the rotation. From left to right and from top to bottom: isocontours of Log10

(mass density, kg/m3) in the equatorial plane are shown every 1/9 of the rotation period (i.e., every 1.4 h.) The projected Sun direction is to the
right. Notice the clockwise rotation of the nucleus cross section. On this and the two next figures, references and dates appear at the bottom left of
each panel for safety of identification: the reader must overlook them. The dust contribution has not been included.

4.1. Validity of the present 3D+T Eulerian solution

A gas is said to be in fluid regime, transition regime, or free-
molecular regime, according to whether its velocity distribution
is a Maxwellian, a first-order-distorted Maxwellian, or a non-
Maxwellian function (see e.g., Rodionov et al. 2002). If the
hypersonic approximation holds, this distinction is immaterial
to compute the pressure force from coma gas parameters. But
this approximation does not hold in the immediate vicinity of
the nucleus surface (see below), in which case the presently
derived force formulas are valid only in fluid regime. On the
other hand, the gas flow is governed by Euler equations only in
fluid regime, hence the presently computed gas parameters are,
strictly speaking, valid only in this case. It can be shown that
the gas fluid regime can be inferred from the comparison be-
tween the characteristic flow scaleL in the solution and the com-
puted gas collisional mean free path (m.f.p.)Λg. Still, the precise
boundaries between the different regimes vary with the problem
considered, and can only be found from specific Direct Monte-
Carlo Simulations of the flow (DSMC). A program of system-
atic investigations of this kind for cometary comae is in progress
(see Zakharov et al. 2008, and references therein). The re-
sults obtained hitherto show that Euler equations provide correct

density and velocity in the present conditions at least forΛg/L ≤
0.1.

The definition and computation of Λg in a gas mixture are
complicated and will not be dealt with here. Instead, we com-
pute a pseudo water free path, as if all the gas were pure wa-
ter, and a pseudo CO free path, as if it were pure CO. For the
calculation of the m.f.p. of the molecules, we use the so-called
“variable hard sphere” (“VHS”) model (Rodionov et al. 2002).
Here another difficulty appears: the evaluation of the m.f.p. at
very low temperatures. In this case, the binary collisions should
be treated using quantum mechanics instead of the VHS approx-
imation. Since these conditions are never met at the laboratory,
such computations are not available. Thus, to avoid the (unphys-
ical) divergence of the VHS approximation at very low temper-
atures, we introduce an ad hoc lower-limit temperature Tmin. To
estimate the inaccuracy of this, we have played with this lower-
limit. Figure 10 shows the computed m.f.p. on the subsolar axis
at rotation phase 0◦ for two values of Tmin. We see that the max-
imum uncertainty is of a factor of 5. This being said, the worst
case is found picking the largest value of the m.f.p. in Fig. 10
and comparing it to the characteristic gradient scale L in the
flow. Taking the latter to be r/2 as in a spherical outflow, one
computes easily that the (maximum) m.f.p. is smaller thanL/10
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Fig. 8. Log10 of the H2O (upper panels) and CO (lower panels) density in two orthogonal planes at rotation phase 0. The projected Sun direction
is to the right on the X-axis (right panels) or at 200 to the X-axis (left panels). The total density shown on Fig. 7 (upper left panel) is the sum of
the two present right panel densities.

in the range of Fig. 10, which ensures the validity of the Euler
solution at least to 50 rc.

5. Properties of the computed pressure field

5.1. Validity of the free-molecular spacecraft-gas interaction
model

An essential assumption made in the preceding evaluation of the
pressure force is that the spacecraft is submitted to a molecular
flux given by the unperturbed coma gas flow velocity distribu-
tion. It can be shown that this requires that Λg be larger than all
dimensions of the spacecraft (the so-called free-molecular con-
dition). If this is not the case, it acts as an obstacle to the flow,
resulting in changes in the flow parameters close to it.

Here, the worst case occurs with the smallest values of Λg.
This would lead to a restriction of our treatment to cometocentric

distances larger than about 10 rc. That is, below this altitude
and given the supersonic relative spacecraft-gas motion, the gas-
spacecraft interaction occurs via the formation of a shock wave
(attached or detached) in front of the spacecraft. The latter is sub-
mitted to the pressure force of the shocked gas, hence its com-
putation first requires that of the shock structure.

5.2. Range of validity of the hypersonic approximation

For the present conditions where CO is dominant, γ is close to
the vibrationally relaxed CO value 1.4, hence s = 0.84M from
Eq. (9), and the condition s >∼ 3 is equivalent to M >∼ 3.6.
Figure 9 indicates that this condition is always met beyond
10 km (r ≥ 5rc) and never met at r < 5 km (r ≤ 2rc). Let us
note that these distances do not depend much upon the gas den-
sity, but depend strongly upon the nucleus shape and size.
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Fig. 9. Velocity (upper panels) and Mach number (lower panels) in two orthogonal planes at rotation phase 0. The projected Sun direction is to
the right on the X-axis (right panels) or at 200 to the X-axis (left panels).

5.3. Spatial structure of the pressure field

Now we return to the important prefactor �V2 of Eq. (30). First
one should note that for the unphysical case of a spherical nu-
cleus with homogeneous sublimation properties across its sur-
face, the prefactor is not dependent on the probe’s longitude ϕ in
the cometocentric solar plane-of-sky (plane through the comet
center, normal to the direction of the Sun). If this property
also holds for the adopted nucleus of irregular shape, then the
contours on which the prefactor is constant should be nearly hor-
izontal in ϕ-θ space, where θ is the angle between the cometo-
centric direction of the spacecraft and the cometocentric direc-
tion of the Sun. We also want to test if the pressure field drops
as the inverse square of the distance r from some center of the
comet. If so, the function

χ = ξ �V2 (r/rc)2, ξ ≡ 120 m2/1800 kg (46)

should be fairly independent of r. The prefactor ξ is chosen to
display the maximum drag acceleration according to Fig. 4, with

almost all of Rosetta’s fuel spent. Note that the physical maxi-
mum exposed area of Rosetta is around 70 m2, but that the ef-
fective area with respect to outgassing pressure forces has been
nearly doubled to 120 m2 due to the non-zero spacecraft temper-
ature.

In Fig. 11 the isocontours of χ are plotted in ϕ-θ space for the
initial rotational phase of the nucleus, where ϕ is measured in the
solar plane-of-sky, relative to the plane which contains both the
rotation axis and the cometocentric direction vector of the Sun.
The different types of curves represent different cometocentric
distances of the spacecraft: r = 10 (dashed), 25 (solid) and 50 rc
(densely dotted).

From the figure we can infer three important properties of the
pressure field. First of all, near θ ∼ 0 the strength of the accelera-
tion is ∼1 (rc/r)2 rc h−2, which is comparable to the gravitational
acceleration generated by the comet

r̈gravity = 1.1 (rc/r)2 rc h−2, spherical nucleus (47)
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Fig. 10. “Pseudo” mean free paths for water (solid lines) and CO
(dashed lines) are shown, expressed in multiples of the characteristic
orbiter size DS/C = 32 m as a function of cometocentric distance ex-
pressed in multiples of rc = 2 km along the subsolar axis. The time is the
one we defined as the initial rotational phase of the nucleus. Two curves
are plotted for each molecule, corresponding to the two minimum ad
hoc temperatures Tmin = 15 K (lower) and Tmin = 50 K (upper).
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Fig. 11. The contours in ϕ-θ space on which the pressure field prefactor
χ ≡ ξ �V2 (r/rc)2 is constant are shown for a nucleus rotation phase
of 0◦. Above, χ takes on the values 0.1 (in the anti-solar direction),
0.25, 0.5, 0.75, and with the peak 1 rc h−2 in the general direction of
the Sun, θ ∼ 0 − π/4. The different types of curves represent different
cometocentric distances: r = 10 (dashed), 25 (solid) and 50 rc (densely
dotted).

with a nominal nucleus mass of mc = 1 × 1013 kg (see for in-
stance Mysen & Aksnes (2008) and references therein). That is,
precautions need to be taken (with respect to array orientation,
orbit) if the orbit is not to be continuously stabilized by thrusters.
Secondly, the irregularity of the nucleus’ shape distorts the iso-
contours considerably, i.e., the contours are not horizontal as one
would expect from an unrealistic nucleus shape.

Third, the contour types (solid, dashed, densely dotted) rep-
resenting different cometocentric distances overlap fairly well.
In other words, the outgassing pressure field drops roughly as the
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Fig. 12. The isocontours of the amplitude Δχ over a rotation period are
shown. Above, Δχ takes on the values 0.05 (dashed, θ ∼ 3π/4) 0.1, 0.25,
0.5, 0.75 and 1 rc h−2 (dashed, θ ∼ π/4). The probe’s cometocentric
distance is set to r = 10 rc for convenience.

inverse square distance from some center of the nucleus. From
the figure one can see that this property begins to degrade as r
decreases, but studies show that important structures are still pre-
served as close to the nucleus as r ∼ 5 rc. This means that we can
approximate the pressure field, or more precisely χ = χ(ϕ, ϑ), by
Fourier expansions in θ and ϕ, if not too close to the comet’s nu-
cleus (r ∼ 5−10 rc). However, Fig. 11 demonstrates that such
Fourier expansions will be of a relatively high order due to the
large degree of variability of χ. Also, the coefficients of the ex-
pansions will clearly exhibit large temporal variations as the nu-
cleus rotates.

5.4. Variability

This is shown explicitly in Fig. 12 where isocontours of Δχ ≡
χmax − χmin are mapped over a rotation period. These temporal
variations with rotation are particularly important when the sec-
ond degree and order gravity field of the nucleus are to be extrap-
olated from Doppler data (Pätzold et al. 2007), since both effects
induce variations in the Doppler data with roughly the same fre-
quencies. Notice the small amplitudes in the night-side of the
coma in Fig. 12. This means that the anti-solar direction is to be
preferred if outgassing effects on the extrapolation of the higher
order gravity momenta are to be minimized. Figure 13 shows the
χ variations in two regions where they are largest, demonstrating
that this type of variation is in general non-trivial.

However, if the outgassing pressure perturbation of the
spacecraft’s Keplerian motion is sufficiently weakened by a min-
imized exposure of the probe’s arrays, it follows from first-
order perturbation theory that the mean motion of the orbit, and
therefore also the Doppler observable, can be characterized by
a time-averaged pressure field. This way, a systematic drift of
the Doppler observable related to the non-periodic evolution of
the spacecraft’s cometocentric orbit can be accounted for over a
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Fig. 13. The variation of χ with nucleus rotation for (ϕ, θ) = (π, π/4)
(dashed), and for (ϕ, θ) = (0, π/4) (solid). The probe’s cometocentric
distance has for convenience been set to r = 10 rc.

limited time-scale. It should be stressed though that the Doppler
signal related to the short-periodic (similar to rotation period of
nucleus) variations of the orbit, induced by the outgassing pres-
sure, are not accounted for in a mean field approximation. So
the variations which are not accounted for can mask the Doppler
signal related to the second degree and order gravity field of the
nucleus. Still, to determine the nucleus oblateness (second de-
gree, zero order gravity field), nucleus mass and position of the
spacecraft relative to the nucleus, it is a proper description of
the mean pressure field which is important, but only if it can be
viewed as a weak perturbation.

5.5. Mean field

We will return to these topics later on in this paper, but before
doing so, some properties of the mean outgassing pressure field
χ (strictly speaking not the pressure field, but the spacecraft’s re-
sponse to the pressure field) based on Eq. (46) will be quantified.
The isocontours of the time-averaged field with equal weight on
the 72 available rotational phases of the comet nucleus are shown
in Fig. 14. The different types of curves represent the cometo-
centric distances r = 10 (dashed), 25 (solid), and 50 rc (densely
dotted). From plots like Fig. 11 we already know that χ will be
fairly independent of distance r, but Fig. 14 shows that this prop-
erty is slightly improved.

As one would perhaps expect, this mean field is more well-
behaved than the instantaneous ones of Fig. 11. In order to quan-
tify this property, we have fitted χ to expansions in spherical har-
monic functions (Kaula 2000) of the order N

χ(N)(r) =
N∑

n=0

n∑
m=0

γnm Pnm(cos θ)

×
(

anm cos mϕ + bnm sin mϕ
)

(48)

by the least-squares method. Above, Pnm(cos θ) are the associ-
ated Legendre functions, and

γnm =
√

(n − m)!(2n + 1)(2 − δ0,m)/(n + m)! (49)

is a normalization factor so that the values of anm and bnm reflect
the convergence of the series. The quantity

Δ(r1, r2) ≡ 1
1002

100∑
i, j=1

∣∣∣∣∣∣∣
χ(N)

i j (r1) − χi j(r2)

χi j(r2)

∣∣∣∣∣∣∣ , (50)
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Fig. 14. The curves on which the time averaged pressure field χ is con-
stant are shown for the values 0.075 (θ ∼ π), 0.1, 0.25, 0.5, 0.75, 1, and
1.2 rc h−2 (θ ∼ 0). Again, the different types of curves represent different
cometocentric distances: r = 10 (dashed), 25 (solid) and 50 rc (densely
dotted).

Table 2. Fit adequacy parameter Δ(r1, r2) (and Δ(r1, r2)) for an N = 3
expansion Eq. (48) fitted to χ(r1 = 25 rc).

r2 = 5 rc r2 = 10 rc r2 = 25 rc r2 = 50 rc

0.17 (0.53) 0.069 (0.27) 0.026 (0.17) 0.040 (0.16)

Table 3. Coefficients anm of an expansion in spherical harmonics fitted
to χ(r = 25 rc) of Eq. (46).

n = 0 n = 1 n = 2 n = 3
m = 0 0.410 0.311 0.115 0.0183
m = 1 − 0.0370 0.0446 0.0162
m = 2 − − −0.0385 −0.0150
m = 3 − − − −0.00411

Notes. The unit of the coefficients is rch−2 (mean nucleus radius per
hour squared).

defined on a 100 × 100 grid in ϕ-θ space where χi j(r) ≡
χ(r, ϕi, θ j), measures the overall adequacy of the fit when r =
r1 = r2. For r1 � r2, the quantity is a measure of how well the
expansion Eq. (48) fitted to χ(r1) also works as an approximation
for χ(r2). The maximum deviation on the grid

Δ(r1, r2) ≡ MAXi, j

∣∣∣∣∣∣∣
χ(N)

i j (r1) − χi j(r2)

χi j(r2)

∣∣∣∣∣∣∣ (51)

will also be of interest.
Accordingly, we see that if we define bnm ≡ 0 due to the ap-

proximate symmetry of Fig. 14, a truncation at N = 3 of Eq. (48)
represents a good balance between keeping N low on one side
and Δ and Δ small on the other, Table 2. The ten estimated pa-
rameters of χ(3) ≈ χ(r1 = 25 rc) are given in Table 3. The fit also
works well for other distances, see Table 2.
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Fig. 15. The isocontours of the velocity amplitude over a rotation period
are plotted above. Here the curves with the values ΔV = 150 (dashed,
solar plane-of-sky), 100, 50, and 10 m s−1 (dashed, anti-solar direction)
are shown.

Of course, whether or not the approximation bnm ≡ 0 is
valid for a real nucleus is highly uncertain. For instance, the out-
gassing across the nucleus surface may be highly dependent on
the different types of nucleus ices and the location of the nucleus
sublimation fronts, and the mean field may therefore have other
directions of preference than that of the Sun and the nucleus ro-
tation axis.

In order to obtain the same quality of the fit for the instanta-
neous field of Fig. 11 as of Table 2, the order of the expansion in
spherical harmonics must be carried out up to and including or-
der N = 10. This means that by adopting the mean field approach
and thereby neglecting the outgassing induced short-period vari-
ations of the Doppler signal the number of parameters is reduced
from more than 121 (N = 10) to 10 (N = 3, bnm ≡ 0).

5.6. The expansion velocity

From Eq. (37) we see that the drift velocity V of the outgassing
pressure field is important if the incident gas molecules are ther-
malized by the spacecraft walls. From plots of the V in ϕ-θ space
for different rotational phases one can see that the structures of
the field are non-trivial, but this time the field’s variability in
the angles is significantly reduced. This is clearly illustrated in
Fig. 15 where ΔV = Vmax − Vmin over the 72 rotational phases
(one rotation period) are plotted at the distance r = 10 rc and
should be compared to a global mean of V ∼ 650 m s−1.

Also, the simulations show that V is fairly independent of r
beyond some distance. To quantify this property, we have again
fitted simplified expansions like the one of Eq. (48) to the mean
velocity field V , calculated from the 72 available phases. Using
the criteria Eqs. (50) and (51), and the simple expression

V ≈ [ 635 + 142 cos θ ] m s−1, (52)

Table 4. Fit parameter Δ(r1, r2) (and Δ(r1, r2)) for the expression
Eq. (52), calculated as a least-squares approximation to V(r1 = 25 rc).

r2 = 5 rc r2 = 10 rc r2 = 25 rc r2 = 50 rc

0.096 (0.24) 0.043 (0.17) 0.032 (0.12) 0.032 (0.10)

we obtain the acceptable results of Table 4. Evidently, the
approximation Eq. (52) is a fair representation of the mean
velocity field at other distances, but is degraded as the nucleus is
approached.

6. Applications

6.1. Mean field model

The purpose of a mean field model like Table 2 is that it can be
used to reduce the difference between observed and computed
data during a comet rendezvous mission. If the differences, also
called residuals, are similar to the observation noise, we can say
that we have an adequate description of reality.

As for Rosetta, one essential data type for the radio science
objectives, like the determination of the comet nucleus’ gravity
field, are Doppler data with an observation noise of 0.01 mm s−1

for long integration times (Pätzold et al. 2007). Below we shall
use the cometocentric velocity component Ż of the spacecraft in
the direction of the Sun as the Doppler observable, an acceptable
approximation since the cometocentric direction of the Earth ap-
proximately coincides with that of the Sun at the early stages of
the Rosetta mission (Mysen & Aksnes 2008). The unit vector uV ,
which describes the velocity direction of the spacecraft relative
to the atmosphere is set to −r/r.

In Fig. 16 the difference ΔŻ between “real” Doppler data,
generated using the full coma simulations, and the mean field
model Table 2, is shown as the solid line. Three important initial
orbit elements are the cometocentric semi-major axis a0 = 20 rc
(initial orbit period of 560 h), the eccentricity e0 = 0.2 and the
orbit’s inclination with respect to the cometocentric solar plane-
of-sky I0 = 0.5. The choice of a small inclination value is mo-
tivated by stability reasons. So if the orbit is to remain bound
for the duration of the studied time interval of 400 hr, then the
surface of Rosetta exposed to outgassing has to be minimized,
see Figs. 4 and 5. Still, the spacecraft’s cometocentric orbit ele-
ments are seen to undergo significant changes over the time span
shown in the plot. Radiation pressure from the Sun is very im-
portant, but is nevertheless not included since we choose to focus
solely on the properties of the pressure forces due to outgassing
from the comet nucleus.

Although the mean field model reduces the residuals in com-
parison to a model which only includes Kepler motion as repre-
sented by the dashed line in Fig. 16, the resulting residuals are
far from similar to one, as should be required for a proper de-
scription of reality of this maximum CO production scenario.
When the anm coefficients of the mean field model are fitted to
real Rosetta data in 2014, the residuals will become smaller than
those of Fig. 16, provided that the prerequisites for the coma
simulations and reality are the same. However, the solve for co-
efficients anm will then not represent the global field as those of
Table 2, but the local pressure forces in parts of the coma which
the probe has traversed.

The mean field approach is improved as the probe’s distance
to the comet increases.
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Fig. 16. The differences between “real” Doppler data from a cometary
orbiter, generated using the full coma simulations, and model calcula-
tions are shown. For the dashed curve, the applied model is pure Kepler
motion. The solid line is produced using the mean field of Table 2 as
model. The dips in the lines are due to crossings between the “real”
Doppler data and those simulated by the different models (Kepler, mean
field).

6.2. Determination of gravity field

As previously mentioned, a stated goal of the Rosetta Radio
Science Investigations is the determination of the nucleus’ grav-
ity field from Doppler data (Pätzold et al. 2007). The cometo-
centric gravitational acceleration r̈ of an orbiting spacecraft can
be obtained by taking the gradient of the gravitational potential

r̈ = −∇(V0 + V1), V0 = −μc

r
, (53)

where μc is the product of the constant of gravitation and the
nucleus mass. The most important contributions from the part of
the field which corotates with the nucleus are given by (Kaula
2000)

V1 =
μc

r

( rc

r

)2 [
c20P20(sin β) + c22P22(sin β) cos 2λ

]
. (54)

Here, P2m are Legendre functions, and λ and β are the equato-
rial east longitude and north latitude, respectively, of the probe
relative to the corotating nucleus. See for instance Mysen &
Aksnes (2005) for more details. The parameters to be found from
Doppler data are then μc (treated in Mysen & Aksnes 2008), and
the gravity coefficients c20 and c22.

6.2.1. Nucleus oblateness

The Doppler signals related to the two latter parameters are
mainly experienced through variations in the probe’s cometocen-
tric velocity component in the direction of the observer (Mysen
& Aksnes 2008), Ż. To investigate whether or not these gravity
induced variations are drowned in the corresponding variations
induced by outgassing pressure, we have mapped the difference

ΔŻ = ŻKepler+out./obl. − ŻKepler, (55)

where the first component is generated using Kepler acceleration
and the full outgassing pressure model (solid curve of Fig. 17),
or Kepler acceleration and the oblateness parameter c20 = 0.088
(arbitrary choice) of Eq. (54) (dashed curve of Fig. 17). From the
simulations we found that the the outgassing pressure prefactor
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Fig. 17. Doppler signals related to the outgassing pressure (solid) and
the nucleus’ c20 gravity field (dashed) are shown for an initial orbit
semi-major axis of a0 = 5 rc and a pressure field that is scaled down one
order of magnitude in comparison to the previously presented worst-
case scenario.
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Fig. 18. The oscillations of the Doppler signals related to the short-
periodic variations of the outgassing pressure field (solid) and the c22

gravity field (dashed) are shown as the spacecraft travels through the
night side of the coma, with an initial orbit semi-major axis a0 = 10 rc.
Again, the pressure fields used were scaled down one order of magni-
tude in comparison to the worst-case scenario presented earlier in this
paper. Notice the short time scale in comparison to Fig. 17.

�V2 had to be down-scaled one order of magnitude for a mean-
ingful comparison to be made at realistic orbit sizes. In addition,
the initial orbit inclination with respect to the solar plane-of-sky
had to be set to the small value I0 = 0.2 to minimize the out-
gassing exposed surface of Rosetta over an orbit period.

If we make the conservative assumption that we have no a
priori knowledge of the properties of the coma, i.e., that realistic
coma simulations are not available, we can see that the signal
related to c20 begins to become discernible at the cometocentric
distance r = 5 rc of Fig. 17. Above this height, the component
is drowned in the outgassing signal since the acceleration due
to this gravity term drops as ∼r−4, while the outgassing induced
acceleration diminishes as ∼r−2. That is, the amplitude of the
periodic variations induced by a perturbing acceleration r̈, with
a frequency equal to the orbit frequency n = μ1/2 a−3/2, can be
approximated by the expression

ΔŻ ∼
∫

dt |r̈| ∼ 1
n

∫
d f |r̈| ∼ 1

n
Δ|r̈|, (56)
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where f is the true anomaly of the spacecraft in its orbit, and
Δ|r̈| is the amplitude of the acceleration during an orbit period.
Hence, one obtains

ΔŻout. ∼ Δχ r−1/2, ΔŻobl. ∼ c20 r−5/2, (57)

where Δχ is the amplitude of the function Eq. (46) over an
orbit revolution, corrected for probe surface exposure to out-
gassing. The increasing oscillation amplitudes of Fig. 17 are
mainly caused by model differences and not by an increase in
the spacecraft’s distance to the comet.

6.2.2. Nucleus triaxiality

As for the c22 ≡ − 0.044 (arbitrary choice) gravity coefficient
related to the nucleus’ triaxiality, we have studied the velocity
differences

ΔŻ = ŻKepler+out.(+triax.) − ŻKepler+mean. (58)

to see if one can discern the c22 induced variations. We compared
the difference in the Doppler signal between a full outgassing
model and the mean outgassing model (solid curve of Fig. 18)
to the result when the full model is extended to include the c22
component (dashed curve of Fig. 18). Again, the pressure field
prefactor �V2 is down-scaled one order of magnitude in compar-
ison to the coma simulations. The initial orbit semi-major axis
is a0 = 10 rc, with an orbit geometry in a way that the space-
craft travels through the night side of the comet nucleus, where
the short-periodic variations of the pressure field are small, see
Fig. 13. The arrays are still defined to point towards the Sun
though. Thus with a proper array orientation, the outgassing per-
turbation can be reduced one order of magnitude. Accordingly,
we see that the c22 oscillations are clearly discernible.

From a similar approach as that of Eq. (56), we derive the
amplitude of the oscillations of Fig. 18 as

ΔŻ ∼
∫

dt |r̈| ∼ 1
ω
Δ|r̈|, (59)

where ω = 2π/P is the nucleus rotation frequency and Δ|r̈| is the
amplitude of the acceleration in question over the period P. As a
result

ΔŻout. ∼ Δχ
ω

r−2, ΔŻtri. ∼ c22

ω
r−4, (60)

where Δχ this time is the amplitude of the function Eq. (46) over
a nucleus rotation period, again corrected for the surface expo-
sure of the probe to outgassing.

It is important to note that the outgassing induced variations
of the Doppler signal, with a period similar to the rotation period
of the nucleus, and the estimated amplitude given by Eq. (60)
cannot be removed from the data by the mean field approach
of Eq. (48). According to Eq. (60), the amplitude of these out-
gassing induced Doppler signal variations are several orders of
magnitude larger than the Doppler observation noise in the day
side of the coma at cometocentric distance 10 rc. Consequently
the mean field model alone is not an adequate description of real-
ity in general during the Rosetta mission for the presented max-
imum CO production scenario. However, as already shown in
Fig. 18, at the same distance and in the night side of the coma,
the outgassing induced variations of the Doppler signal are com-
parable to the Doppler noise, if the CO pressure field is down-
scaled one order of magnitude in comparison to the maximum
production scenario.

7. Discussion

In support of navigation and radio science during ESA’s Rosetta
mission, we have reviewed a simple model for the interaction
between a spacecraft and a Maxwellian atmosphere and applied
it to the Rosetta spacecraft with some simplifying assumptions
with respect to its outer shape, molecular scattering properties,
and temperature.

A state-of-the-art 3D+t gasdynamical simulation of the coma
around the irregularly shaped nucleus of 67P was used to an-
alyze the interaction. The simulation parameters are selected to
yield upper-limit 3 AU total production rates of water – by solar-
driven sublimation – and of CO (which dominates at this he-
liocentric distance). The production of CO was assumed to be
moderately uneven over the surface, giving birth to a moderately
contrasted pressure field, in comparison with what would have
been obtained if the production had been assumed concentrated
in a localized area of the nucleus. The spatial resolution of the
model was three degrees in longitude and latitude, and the time
resolution was 1/72 of the rotation period.

The present results have only been established for probe dis-
tances between 5 and 50 mean comet radii.

First of all, it was found that the probe distance to the nu-
cleus must be larger than 5−10 mean comet radii if the mean
free path of the molecules in the cometocentric direction of the
Sun is to be much larger than the size of the spacecraft. Below
this distance, one may need to include the spacecraft as part of
the coma simulation to obtain reliable results.

It was also found that the pressure force may be dependent
on the coma temperature in the night-side of the coma, and that
beyond about 5−10 mean comet radii outwards, the gas flow di-
rection was mainly directed away from the nucleus.

We found that the pressure force on Rosetta is amplified by
a non-zero spacecraft temperature and that the force does not act
mainly away from the comet nucleus in general. Three param-
eters were suggested to describe the interaction, assuming that
one type of molecule is the main contributor to the pressure.

For probe orbit sizes above 5−10 mean comet radii, the pres-
sure field was seen to drop as the inverse square of the distance to
the comet nucleus. This separability of the pressure field depen-
dency in probe direction and probe distance simplifies the search
for representative pressure field models. However, the force field
is significantly distorted due to the non-spherical shape of the
comet nucleus. As a result, deterministic models which aim to
represent the properties of the instantaneous coma will contain
too many parameters and will therefore not be practical.

The average pressure field over a nucleus rotation period,
on the other hand, was seen to be well represented by a rel-
atively small number of parameters. However, for the “nearly
maximum” gas production scenario studied, it was established
that this mean field model alone was not able to describe reality
to sufficient precision during the Rosetta mission.

In the general direction of the Sun, the maximum drag force
on Rosetta was seen to be larger than the gravitational attraction
from the nucleus at all probe distances.

As for the determination of the gravity field coefficients re-
lated to the nucleus oblateness and triaxiality through Doppler
data, it was seen that it was easier to discern the latter from
the “noise” induced by outgassing pressure forces on Rosetta.
The reason for this is that the Doppler signature of the nucleus
triaxiality is resolved over a shorter time interval compared to
that of the nucleus oblateness. As a result, the nucleus triaxial-
ity can be determined in a limited region of the coma where the
variability of the outgassing pressure field, or “noise”, is small.
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The Doppler signal related to the nucleus oblateness is, on the
other hand, only resolved on a time scale similar to that of the
spacecraft’s orbit period. During this time scale, the probe will
have experienced the global, and not only local, properties of the
coma. If the nucleus rotation is not uniaxial as assumed above,
the gravity field related to the nucleus oblateness could also be
discernible on a time scale similar to the nucleus rotation period
(Mysen et al. 2006).

As similar state-of-the-art coma simulations based on
Rosetta observations will be available in 2014–2015, it should
to a large extent be possible to remove the signal related to
outgassing pressure forces from Doppler data. As a result, it
should be easier to determine the gravity field coefficients of the
nucleus.

It should be noted that in case the rotation of the target nu-
cleus is not found to be uniaxial, the nucleus rotation will nev-
ertheless be approximately periodic (also called quasi-periodic)
on a limited time scale. Coma simulations can then be executed
covering nucleus rotation phases over this approximate rotation
period.
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