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Abstract

This paper outlines the non-linear transient and statipdgnamics due to friction induced vibrations in a disc brake
model. Using a finite element model and the Continuous WaVesasform, the contributions of fundamental frequencies
and harmonic components in non-linear transient and statyodynamics are investigated for disc brake system stdgjec
to single and multi instabilities. Results from these nime#dr analyses demonstrate the complexity of the contabst
of different harmonic components in transient frictiorthirted vibrations with the coexistence of multi-unstableles
One of the most important contributions of this study is kosirate the limitation of stability analysis related tarisient
and stationary non-linear behaviors. Stability analystiad an equilibrium point can only be used as the first step in
providing information on the onset and increase of selfitexiadisc brake vibrations. Consequently, a complete iroeat
analysis is necessary to fully predict non-linear vibratamd the contribution of unstable modes. This study shoafs th
an under-estimation of the unstable modes observed in thinear time simulation can be calculated by the stability
analysis. During transient vibrations, an additional abf& mode can appear. This instability is not predicted ley th
complex eigenvalues analysis due to the fact that lineaditions (i.e. the linearised stability around an initiabddprium
point) are not valid during transient and stationary oatitihs. So new fundamental frequencies (linked to the appea
of the new unstable mode) can emerge in the signals due toothigaar contact and loss of contact interactions at the
frictional interface. Therefore non-linear transient astdtionary self-excited vibrations can become very compled
include more unstable modes than those predicted by a imeebstability analysis around a non-linear equilibriunirpo

1 Introduction

The detection of disc brake squeal instabilities and thdiptien of amplitudes during squeal events are com-
plex tasks that have been studied for many years and conttinbe a major concern in the automotive in-
dustry [1, 2]. Nowadays, finite element models are cladgiecaled to perform two kinds of analysis for disc
brake squeal: eigenvalue analysis to detect squeal fregggeand time analysis to determine self-excited vi-
brations during the squeal event. One of the greatest aalyasitof a brake finite element model is that the
different parts of the brake system are modeled realiggicdlherefore complex parametric studies based on
an eigenvalue analysis can be extensively investigate@tectbrake squeal in relation to different physical
parameters [3,4]. For example, Massi et al. [5] proposetbpaing both stability analysis to detect system in-
stabilities and non-linear analysis during brake simaladito reproduce squeal phenomena in the time domain.
They demonstrated that the numerical and experimentaltsesbtained are in good agreement. Chen and
Zhou [6] provided time—frequency analysis of experimemgaiults and concluded that friction vibration sys-
tem is generally a linear system in the phase of vibratiotiaitnon and then becomes a nonlinear system in the
phases of vibration being bounded and disappearance. Témyndicated that generation of friction-induced
vibration nonlinearity is attributed to the friction contachange at the interface. Lorang et al. [7] provided
a theoretical discussion on the prediction of the brake a@gpkenomenon based on a finite element analy-
sis. They performed comparisons between numerical relsatsd on the prediction of squeal frequencies (i.e.



eigenvalue analysis), and experimental tests on squepldreies (based on the frequency response functions
of the brake disc). The authors concluded that the numeaindlexperimental analyses are in good agreement
regarding frequency instabilities. However, they exptgirthat the squeal phenomenon is not yet completely
understood and that it is necessary to obtain the completdimear dynamic responses of the squeal event.
However, only few studies based on finite element modelsidenthe transient non-linear behaviors of brake
systems subjected to multi-instabilities or propose thieed®n of different harmonic contributions during
the squeal event. As a consequence, it is difficult to traeketbolutions of the fundamental frequencies and
harmonic components during transient and stationaryeselited vibrations in order to better understand the
mode coupling phenomenon and the coexistence of multibiisi@s in non-linear transient signals.

Therefore this paper focuses on non-linear transient trdma in brake systems by considering the Continu-
ous Wavelet Transform. The main contribution of the prestundly is to explore not only the evolutions of
transient non-linear quasi-periodic vibrations with nriristabilities but also to illustrate the limitations of a
local stability analysis around a given equilibrium poihhe possible emergence of a additional unstable mode
under transient and stationary quasi-periodic vibratilsbe demonstrated even in the case where this insta-
bility and its associated unstable mode have not been prglvipredicted by the stability analysis of the initial
equilibrium point.

Firstly, the brake system under study and the brief basiorthef the wavelet analysis with the Continuous
Wavelet Transform are presented. Secondly, the stabitiiyais of an equilibrium point for the brake system
is given. Then, parametric studies are used to investigpatdifferent contributions of the multi-harmonic com-
ponents during transient vibrations (versus the evolubiaihe friction coefficient). Three cases are highlighted
and studied in-depth: firstly, the classical single indiighgphenomenon, followed by the coupling patterns that
involve multi instabilities and, lastly, the emergence ofesv instability not previously detected by the stability
analysis around a non-linear equilibrium point. The latese will illustrate the limitations of stability analy-
sis (i.e. an under-prediction of the unstable modes) rejaid transient and stationary non-linear self-excited
vibrations.

2 Finite element model of the brake system

The brake system considered in this paper represents aifsgtigirake consisting of a disc and a pad, as
illustrated in Figures 1(a-b). Hydraulic pressure is dise@pplied to the backplate of the pad. The friction
interface is modeled by introducing contact elements betwtbe disc and pad. Firstly, contact and loss of
contact configurations at the friction interface are tak&o account so that the pad and disc can separate at
several local nodes during vibration. Moreover, a formolatof cubic contact force at the friction interface
between the disc and the pad has been chosen to approxiredtestiand the third order of pad compression
curves obtained from experimental tests, as shown in Fig(ae The friction coefficieny is assumed to be
constant for the sake of simplicity and the classical Colldaw is applied. Therefore the non-linear contact
force vectors at the friction interface along the normaédiion are defined by

chomactx = ki (xq — xp) + ki (g — xp)3 if (), —xq) >0 (0 otherwise) (1)

P _ d
contact,X — _Fcontact,X (2)

whered andp define the disc and the pad, respectively.andk,,; correspond to the linear and non-linear
stiffnesses at the friction interface between the disc aedolad.z, andz), are the displacements of the disc
and pad, respectively, in the direction normal to the cdrdgadace. Then the non-linear contact force vectors
at the friction interface along the tangential directioe defined byF?” = pFY, et x sign (vr) and

contact,Y

chonmcty = chdonmct’ ystgn (v,) wherew, is the relative velocity between the pad and disc. As preshiou
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Figure 1: Finite element of the brake system ((a) Disc anééa)) and experimental tests ((c) Pad compression)

explained by Kang et al. [8, 9], the radial component of fvictforce can change the formation of the limit cycle

if an equilibrium point of the brake system becomes unstablewever, this contribution has been neglected
in this study for the sake of simplicity. For more details abthe effect of additional radial components of

friction force, those interested can refer to [10].

Finally, the brake system (disc and pad) is reduced by usi@gaég and Bampton technique, keeping the
contact nodes at the disc/pad interface and retaining thiefifity eigenmodes of each component of the brake
system [11]. The equation of motion for the brake system is

whereM, C andK are mass, damping and stiffness matrices, respectivalyx asmthe generalized displace-
ment vector while the dot denotes derivative with respedine. Fyp, contains the linear and non-linear
contact forces at the frictional interface. It can be notet the nonlinearities at the friction interfaces are both
the cubic nonlinear terms and the possible loss of contaetdas nodes on the disc surface and nodes on the
pad surfaceF ¢ is the vector force due to brake pressure applied on the pad.

3 Continuous Wavelet Transform

It is well known that the conventional fast Fourier trangfiofFFT)-based spectral analysis method is suitable
for analyzing steady-state vibration signals, but prosigeor representation of signals well localized in time.
Consequently, time-scale signal processing tools have taskbd to provide a good description of non-linear
contributions during the non-stationary transient sigria brake system. In 1983, Morlet [12] proposed apply-
ing the wavelet approach to analyze the vibration of systéMesviand [13] proposed applying the Continuous
Wavelet Transform (CWT) to obtain the characteristics ahsient responses and changes in the properties of
non-stationary signals of mechanical structures. A the@iebackground can be found in [14—-16] for readers
interested in the subject.

The wavelet analysis transforms a signal into waveletsdtatvell localised both in frequency and time. The
Continuous Wavelet Transform (CWT) of a functigrit) is a wavelet transform defined by

+o00 . _L F—b
V[/(a,b):/_<>O f () Yo, (t)dt  where 1/11171)(t)_\/a ( - > 4

1q (t) are the daughter wavelets (i.e. the dilated and shiftedorssof the "mother” wavelety that is
continuous in both time and frequency)defines the scale parameter, @armbrresponds to the time parameter.



The asterisk); , indicates the complex conjugate ¢f,,. The following admissibility condition has to be
satisfied) < Cy, < +oo whereC,; defines the admissibility constadt, = [>° L&) g, and ) is the

|w]
Fourier transform ofy. It can be given by = ff;of(t) e™“tdt. For a time signalf (t) represented by
N sampled data points (with uniform time stef), the Continuous Wavelet Transform of equation (4) is a
convolution of the data sequengén’) (with n’ = 1,..., N) with a scaled and normalized wavelet. It can be

represented as follows:
N-1
ot . ((n—n)dt
C (a,n) =7;)f(n/) Vo <T> (5)

wheren defines the localized time index antlis the sampling interval. One of the most important points is
the specification of an appropriate type of the mother wawuelat serves as the source function from which
scaled and translated basis functions are constructedislpaper, the Morlet mother wavelet has been chosen
due to the fact that it is one of the most commonly used CWT le&wéquite well localized in both time and

2
frequency space). It is defined as the following in the timedm: v, () = 7= 1e™e="% wherem is the
wavenumber ang is a non-dimensional time parameter. The wavelet functamtans unit energy at every
scale due to the normalization of the mother wavelet. Thesteapower is then defined &6 (a, n) |2.
For this study, part of the Continuous Wavelet Transfornvgarfe includes code originally written by C. Tor-
rence and G. Compo [17].

4 Numerical study

4.1 Instability of the equilibrium point

The non-linear oscillations of the brake system are due edftiltional interface that generates self-excited
vibrations: the friction-induced vibrations lead to theve&lgence of an equilibrium point of the non-linear
brake system, called "system instability”. Thereforetfirst step is to estimate the stability of the equilibrium
points for a given set of parameters [18]. Considering tlewipus non-linear system (3), stability is calculated
by considering the linearized system at the equilibriummpey (i.e. Kxg = FnL + Fext). The linearized
system can be written in the following way

Mx + Cx + (K — K, (x0)) X =0 (6)

wherex defines the perturbation around the equilibrium point (ke= xg + X), and Ky, is the linearized

OFNL (>_{)

expression of the non-linear frictional contact (iewy, (X) ~ > =5 z; = Ki, (x0) X). The complex

7
eigenvalue analysis then provides the stability of theldgiiim points: if tﬁcé) real part of all the eigenvalues of
the system (6) remains negative, the equilibrium pgitinder study is stable. If at least one of the eigenvalues
has a positive real part, an instability of the system is geed for the equilibrium poinkg under study (i.e.
this equilibrium point is unstable, leading to oscillaoof the non-linear brake system). Figures 2 show the
complex eigenvalue analysis as a function of the frictioafficient .. It can be seen that increasing the friction
coefficient increases the number of instabilities. The ifirstability is detected for a friction value pf = 0.26.
The value of the associated unstable mod&i® H z, as indicated in Figure 2(a). The second instability occurs
for a friction value higher thap = 0.28. The associated unstable mode is detect@2@H -.

4.2 Transient dynamics of the brake system

As explained previously, if an equilibrium point becomestable, non-linear transient and/or stationary self-
excited vibrations can be generated. In this section, izabhson-linear vibrations are investigated in relation
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Figure 2: Stability analysis of the brake system (a) Fregigen(b) Real parts

Friction coefficient Frequency, (Hz) Frequencyfs (Hz)
0.26 (case 1) - 1512
0.29 898 1497
0.3 897 1495
0.35 904 1495
0.26 (case 2) 896 1499

Table 1: Fundamental frequencies of the nonlinear resgonse

with the contribution of the harmonic components of the faméntal unstable frequencies. This second step
is essential in a design process aimed at clearly undeistatioe evolutions of the non-linear behavior for a
brake system with an unstable equilibrium point. In thisgraghe time history responses of the nonlinear brake
system defined in equation (3) are solved by using the AdaasBrth-Moulton PECE solver.

In this section, it will be demonstrated that the transiaestt-finear friction-induced vibrations can be more or
less complex. It will be illustrated that only considerimg stability analysis around an equilibrium point is not
sufficient for predicting the possible number of unstabledes(i.e. the fundamental frequency components)
of the complete non-linear transient and stationary satfted vibrations. It will be shown that an under-
prediction of the unstable modes (that are present in thedimulation) can be estimated by the linear analysis.
In the following, the wavelet power spectrum and frequeneglysis of the nonlinear transient responses are
carried out to compare the dynamic behavior obtained by simellations with the complex eigenvalues calcu-
lated in the previous sectidtability analysis We remind that the linear stability analysis and the liigsdion
around an initial equilibrium point are not valid for the isaent analysis. However, the main purpose of this
"comparison™ is only to characterize all the resonancesls of the non-linear transient vibrations and to
check the dynamic similarities between the linear analfsisthe detection and prediction of instabilities) and
the time analysis (for the characterization of the nondmgynamic behavior in time domain).
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4.2.1 Case 1: the single instability

First of all, Figure 3(a) illustrates the transient respmr one of the most simple and classical non-linear be-
haviors observed during a single instability phenomendre displacement chosen corresponds to one degree-
of-freedom of the pad in the direction normal to the contactese. Moreover, the value of the constant friction
coefficient for this case ig = 0.26.

It can be seen that the displacement increases until thediemon-linear oscillations are obtained. The
associated wavelet power spectrum during the transieritatgmns is given in Figure 3(b). It clearly appears
that the resonance peaks can be compared with the corgnbeftthe fundamental frequengy corresponding

to the unstable frequency of the mode (as previously inditat sectiorStability analysiyand its2x harmonic
component. The values g¢f (for the stationary self-excited oscillations) are indéxhin Table 1.

Both thelx and2x harmonic components are present for all the time historgarses. However, it can be
reminded that, theoretically, the stability analysis of timearized system around an initial equilibrium point
cannot predict the fundamental frequencies of the trahsied stationary signals (i.e. the eigenvalues calcu-
lated in the previous sectiddtability analysishave been estimated for an equilibrium point that is notvr

the non-smooth system during transient and stationanatidns).

Therefore this first case illustrates the fact that the terison-linear oscillations due to an unstable equilib-
rium point can be very simple: this study gives an exampldefttansient non-linear self-excited oscillations
of the brake system with the participation of a "'single atsitity™ (i.e. with only one fundamental frequency
and its harmonics in the non-linear vibrations generate@ kingle unstable equilibrium point). In this first
case, the appearances of harmonic components are only thesrton-linear stiffness: loss of contact between
nodes on the disc surface and nodes on the pad surface issestved.

4.2.2 Case 2: the classical case of "multi-instabilities”

"y

As previously shown in sectioBtability analysisthe brake system under study can be affected by two ™insta-
bilities™ if the friction coefficient is greater thap = 0.28. In this part of the paper, the transient vibrations
generated for different friction coefficients (with> 0.28) will be investigated.

First, Figures 4(a) illustrates the non-linear transiestiations in the case gf = 0.29. The associated
wavelet power spectrum and the contributions of combimatmf harmonics for the pad in the direction normal
to the contact surfaces are given in Figure 4(b).

As indicated in Figure 4(a), the highest amplitudes are meskeduring the transient oscillations, just before



the quasi-periodic oscillations of the brake system. Tiés @ibservation is very important because it illustrates
the fact that a brake system cannot be thoroughly validateddesign process if all the transient self-excited
vibrations are not examined in detail. Even if the brake eaystan perform properly during the final quasi-
periodic vibrations (i.e. the stationary self-excited reitions are assumed to be small enough), the transient
behavior of the brake system can be a key issue in brake gewelat for predicting dangerous or favorable
conditions.

Figure 4(b) shows the resonance peaks during the transtaattions by using the Continuous Wavelet Trans-
form. Even if the stability analysis is not sufficient andiglab estimate the fundamental frequencies of the
non-linear system under study (i.e. a non-smooth systermppears that the modes involved in the mechanism
of friction induced vibrations have been previously "pieed™ under the stability analysis. The fundamental
frequency of the first instability (i.ef5) and the fundamental frequency of the second instabiligy (i;) are
both present in the wavelet power spectrum of the non-litrasient signal. The values ¢f and f5 (for the
stationary self-excited oscillations) are indicated ifbl€al. In addition of the two fundamental frequencies
(f1 and f>), the harmonicsi(f; for i = 1,2 andn positive integer) and combination harmonigs«(f; &+ m fs
with n andm positive integers) are indicated in Figure 4(b) by using@matinuous Wavelet Transform. This
fact clearly illustrates the interactions of the two inglitibs that generate sum and difference frequencies
+nf1 + mfo with n andm positive integers. The componentf; + f> is prominent. Moreover, the wavelet
power spectrum indicates the combination harmotfiics fo, 3f1 — fa, —6f1 + 4f2, 4f1 — 2fa, =3 f1 + 2fa,

2f1 — fo and7f; — 4 f5. However, all these combination harmonics are less sigmifithan fundamental com-
ponentsf; and f2, and the combination componentf; + f». It should be noted that the presence of these
combination harmonics is indicative of "'strong™ couptjrof the two unstable modes leading to quasi-periodic
self-excited vibrations of the non-linear brake systenmahy, the second harmonic component of the first and
second instabilities (i.€2f; and2fs) are also observed. As explained previously, the occuer@fithiarmonic
components and combination harmonics is due to the noaslistéfness and contact and loss of contact inter-
actions at the frictional interface between disc and pace fitmber of loss of contact between nodes on the
disc surface and nodes on the pad surface are indicatedtineFig

Showing Figure 4(b), the initial increase (for= [0; 1]s)of the oscillations (around the unstable equilibrium
point) is harmonic Oscillations are governed by the fundatalefrequencyf;: the main harmonic coincident
with the "most unstable frequency” predicted by the lineaodel (i.e. the unstable frequency associated with
the highest real part). The fundamental frequeficgan be clearly distinguished in the wavelet power spectrum
for ¢t = [0; 1]s. Figure 5 shows that all the nodes at the frictional intexfatthe disc and the pad are in contact.
When the amplitudes of the brake system become more sigmtifioacillations become more complex with
contact and loss of contact. One or two nodes at the frictiotarface separate (see Figure 5 - zoom 1 for
t = [1.04,1.08]s ). Occurrences of the second fundamental frequefacgnd of the combination component
—f1 + fo are detected. Finally, the stationary oscillations ar aimplex with contact and loss of contact
between nodes on the disc surface and nodes on the pad sigéacEigure 5 - zoom 2). All the combination
harmonics described previously appear. What is more, iteaseen that the transient non-linear oscillations
and stationary quasi-periodic signals are always mainegeed byf, fo and—f1 + f5.

In conclusion, the transient non-linear vibrations areardy composed of fundamental frequencjgsand/or

f2 but also the harmonic combinations that correspond to tkegisnce of the two instabilities in the brake
system. Moreover, it can be noted that the frequency compsrabserved in the wavelet power spectrum do
not indicate the presence of a new "instability” but illugte the harmonics of fundamental frequendieand

f2 that can contribute to the overall vibration during the si@nt and stationary periods.

Secondly, Figures 6(a) and (b) illustrate the transient stationary quasi-periodic vibrations for the case of
u = 0.3. Although the variation of the friction coefficient is notryesignificant (less thad%), the wavelet
power spectrum appears to be very complex with the presdmamy new harmonic combinations. The initial
increases of oscillations (far= [0;0.5]s) are composed by the first fundamental frequeficynd its second
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Figure 5: Number of loss of contact during the transientafilon for;, = 0.29

and third harmonic components (i.2f; and3f;). This can be explained by the fact that the initial increase
of the friction-induced vibrations is governed by the “maosstable™” mode at the unstable equilibrium point
(i.e. the mode that corresponds to the eigenvalue with tkatgr positive real part, as indicated in Figure
2). Then, the second fundamental frequerfigyand interactions of the two instabilities that produce hamit
combinationstn f; +=m f5 (with n andm positive integers) appear when the non-linear transidirations are
maximal (att = 0.8s). Then, all these contributions are present for the statipiguasi-periodic oscillations
(that are observed far> 2s). Even if certain harmonic combinations appear to be vargelsee for example
frequency rangef00 — 400]H z or [500 — 800]H z), they are clearly distinguishable. Figure 6(b) shows that
fundamental frequencieg, and f, and harmonic component&f;, 3f1 and2fs5), as wel as the harmonic
combinations (see for examplef| + fo, =6 f1 +4f2, —4f1 +3f2,4f1 — 2fo,—4f1 + 3f2,2f1 — fo, =3f1 +

2fs and7f; — 4f5) correspond to the most significant contributions in the plax non-linear transient and
stationary quasi-periodic vibrations. Therefore thesenst participations of the harmonic combinations of the
two instabilities (i.e.+nf1 + mfo with n andm positive integers) are indicative of strong “coupling” biet
two unstable modes that lead to complex transient and staiaquasi-periodic oscillations. Moreover, other
combinations of less significance are also observed, asatedl in Figure 6(b). These harmonic combinations
correspond to the upper orders of the sum and differenceidémcies (see for exampl@ f1 — 7f, —8f1 + 5 f,
—13f1 + 8f5, 14f1 — 8f2 and9 f; + 5f2). The values off; and f5 (for the stationary self-excited oscillations)
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are indicated in Table 1.

Finally, Figures 7(a), (b), (c) and (d) illustrate the trieam$ and stationary quasi-periodic vibrations for the case
of 1 = 0.35. As explained previously, the transient and stationaryllaions are composed of fundamental
frequenciesf; and f,, harmonic componentsf; and3f;, and harmonic combinatiorsf; — fo, —f1 + fo.
Other combinationsfy + fo, —3f1 + 2f2, 4f1 — 2f2, —2f1 + 2f2 and3 f; — f>) of less significance can also
be detected. Thus all the harmonic combinations corresportde lower orders of the sum and difference
frequencies.

Two behaviors can be observed when examining the time kistidihe non-linear responses (see Figures 7(a)
and (c)): firstly, a very fast increase of the transient ¢etodns fort = [0;0.1]s followed by a decrease for

t = [0.1; 1]s. During this first part of the system’s non-linear behavitbe fundamental frequencf; and the
associated harmonic componegt§ and3f; are predominant. These observations can be explained by the
fact that the non-linear transient vibrations are first goee by the most unstable mode (i.e. the mode with
the greater real part at the unstable equilibrium point). dakt contribution of the combination frequencies
4f1 — 3fo and4f; — 2f5 is observable. Then, during the second part of the transieaitlations (fort =
[1;5]s), an increase of the transient amplitudes is seen whileasas of the resonances satisfy relationships
+nf1 = mfy (with n and m positive integers). These interactions betwibe two unstable mode combination
frequencies are clearly identified by considering harmepimbinations- f; + f> and2 f; — f>. As indicated in
Figure 7(d), harmonic combinationf; + f> is prominent, being equal tf. Then, fort > 2s, the fundamental
frequencyf, and other combinations of less significance appear (seedongle3 f1— fo, —2f1+2f2,4/1—2f2

and f1 + f2). Moreover, the stationary quasi-periodic amplitudeshef brake system is composed of the two
fundamental frequencief; and f,, the harmonic componenisf; (for i = 1,2 andn positive integer) and
combinationstn f; + m fy (with n andm positive integers). Finally, harmonic combinatiohf — 3/, and

4f1 — 2f9, which are present in the first part of the transient vibragig¢for¢ = [0 : 1]s), disappear in the
second part of the transient oscillations fas 1s. Therefore it can be concluded that the non-linear tramsien
vibrations are complex, with increasing or decreasing letimcombinations that illustrate the coexistence and
strong interaction of the two unstable modes of fundamenggjuenciesf; and f,, respectively. The values
of f1 and f5 (for the stationary self-excited oscillations) are indézhin Table 1. In comparison with the two
previous cases (fgr = 0.29 andu = 0.3), the maximum transient non-linear amplitudes are obthmere
rapidly fort = 0.05s, as illustrated in Figure 7(a). Thus in this sectiBase 2: the classical case of "multi-
instabilities™, it is shown that transient and stationary non-linear bihaxcan be composed by not only the
fundamental frequencies of the unstable modes but alsosswci@ated harmonic components and associated
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combination of frequency components. It is also shown thathtarmonic components and combinations of
frequencies (that correspond to ™'strong coupling™ or ftinéeraction of the two unstable modes) cannot be
neglected when attempting to avoid defective brake systesigd.

For the last two caseg:(= 0.3 andu = 0.35), the number of loss of contact is indicated in Figures 8(a) a
(b). Foru = 0.3, the phenomenon of contact and loss of contact is observ@tpdhe transient and stationary
vibrations. Due to the "complex™ non-linear behavior ggated by this hon-smooth nonlinearity, strong
participations of the harmonic combinations of the twoalhdities (i.e. +n f; + m fy with n andm positive
integers) are present, as previously explained (see théopeeparagraph and Figure Figures 6(d)). koe
0.35, loss of contact between nodes on the disc surface and nodbe @ad surface is only observed during
the first part of the system’s non-linear behavior (previpuefined in Figure 7(a) and (b)). So, the stationary
vibrations appear to be "less complex™ (i.e. the numbehafmonics combinations is less important).

In conclusion, the nonlinear transient and stationaryatibns for the last two caseg & 0.3 andy = 0.35)

can be complex due to the presence of not only the fundam@&atedtable™ frequencies, but also their har-
monic components and the combination of frequency comgendime main resonances for the initial growth
are coincident with the two unstable modes predicted byitigatized stability analysis around the initial equi-
librium point. However, we remind that the stability anasysan not be used to predict the resonance peaks
during the transient and stationary non-linear vibrations

”
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4.2.3 Case 3: limitation of the local stability analysis oflie equilibrium point

This aim of this section is to illustrate that the stabilityadysis (presented in sectidnstability of the equilib-
rium poinf cannot be used as a robust indicator of brake system dedigie particularly, it will be shown that
an eigenvalue analysis around an equilibrium point canrexgmt all the unstable frequencies in the non-linear
transient and stationary responses for a given frictiorffimdent and so cannot be used for detecting all the
fundamental frequencies and multi-harmonic components.

To illustrate this fact, the non-linear transient vibratoof the system are investigated for= 0.26, as previ-
ously done in sectio®ase 1: single instability However, in this part of the section, the initial perturbas
introduced in the non-linear system are bigger than thoskeofirst case. This new initial condition is chosen
as being "far” or very different from the initial non-lirer equilibrium point, by keeping "local instability™
(defined by the fundamental frequeng).

To aid the reader’s understanding, it should be noted thigt@me unstable mode (with the fundamental fre-
guencyfsy) has been detected previously by eigenvalue analysis dtbemon-linear equilibrium point (defined
in sectioninstability of the equilibrium point

Therefore Figures 9(a) and (b) give the transient and statjoquasi-periodic vibrations for the case of=
0.26, by considering this new disturbance of the equilibriumnpoBYy taking into account the time history of
the non-linear responses (see Figure 9(a)), two dynamiavieis for the brake system are observed: firstly,
a "simple” increase of the transient oscillations for= [0; 7]s. Secondly, a "complex™ non-linear transient
behavior fort = [7;11]s until the stationary amplitudes are reachedtfet 11s. As indicated in Figure 9(b),
only the fundamental frequencfs and its harmonic componengys, are present during the first part of the
non-linear behavior of the system (for= [0; 7]s).

As explained previously, the stability analysis perfornmredectioninstability of the equilibrium poinis inves-
tigated by determining the eigenvalues of the linearizaeagaégns (6) around the equilibrium points obtained
by solving the static non-linear equations. Thus thisahitate of increase of non-linear amplitudes is in agree-
ment with the eigenvalue analysis performed previouslyeictisn Instability of the equilibrium point The
increasing non-linear transient amplitudes are govermdy loy the fundamental frequencf (corresponding

to the unstable mode) and its second harmonic compajgnfTherefore it should be recalled that even if the
initial disturbances were chosen as being "far” or diffat from those chosen for the first caSase 1: the
single instability these initial disturbances do not affect the eigenvaluayais (i.e. we are at the same local
non-linear equilibrium point with a stability analysis thadicates the occurrence of an instability governed by
unstable mod¢. This is why the onset of the non-linear transient vibraimim agreement with the first case
Case 1: single instabilitythe initial oscillation starts under linear conditionstivihe main resonance coinci-



dent with the unstable frequengy, and then the emergence of its second harmonic compa@rfenHowever,

for the second part of the transient and stationary norafitehavior (fort = [7; 12]s), the non-linear signal
appear to be more complex is composed by the fundamentaleney f> and its harmonics, as well as the
fundamental frequency; with its harmonics and harmonic combinatigm 1 + m fo (with n andm positive
integers). The values gf, and f, (for the stationary self-excited oscillations) are indezhin Table 1.

It clearly appears that all the transient and stationary-livear oscillations can become more complex and
be governed by both the initial unstable mode and by the ibonitons of the nonlinearities that may lead to
new instabilities in the brake system. Therefore the previocal stability of the equilibrium point cannot be
considered during the transient vibrations of the nondimgystem. Moreover, it is shown that the new funda-
mental frequency corresponds to the unstable mode previously obtained for0.28. Now, the fundamental
frequencyf; and the combination harmoniesf; + f» are predominant in the transient and stationary signal.
The contribution of the fundamental frequengyappears to be less significant. Moreover, other contribstio
such ag2f1, 3f1, 2f1 — fo, =3f1 + 2f2, —=2f1 + 2f2, —f1 + 2f2 and f; + f are now detectable. It may be
concluded that the non-linear transient behavior of thi&dsystem has changed drastically. Thus in the case
under study, the transient and stationary amplitudes argposed by both the two fundamental frequendigs
and f>, harmonic componentsf; (for : = 1,2 andn positive integer) and harmonic combinatiofs f1 £ m f
(with n andm positive integers), despite the fact that the unstable nagdeciated with the frequengy was

not predicted previously by the stability analysis for tixeg friction coefficient, = 0.26.

Finally, Figures 11 show the evolution of the average of tbéexcited vibrations during the transient non-
linear behavior ofCase 1 Case 2andCase 3 As illustrated, the emergence of the new fundamental &aqu

/1 (with its harmonic components and harmonic combinatitng’ &+ m f-) and the global modification of the
non-linear vibration behavior is the consequence of theatian of the average non-linear vibration, which is
no longer comparable to the equilibrium point of the noredinsystem (previously defined in sectlostability

of the equilibrium point This fact clearly demonstrates that transient non-linenavior and modification of
the "non-linear equilibrium point” during self-excitedibration are keys for predicting and identifying the
fundamental frequencies that govern both the increaseaifai®ns and transient and stationary vibrations.
It can be observed that the global modification of the emeamgai non-linear components with the evolution
of the average of the self-excited vibrations can be obskeivell cases (i.eu = 0.26-case 1 = 0.3 and

1 = 0.35) even if emergence of new instability does not appear intireetcases.

Thus it clearly appears that different non-linear behavican be obtained for the same friction coefficient
(» = 0.26) by only introducing a different initial disturbance ara@uthe non-linear equilibrium point. As
explained previously, in both caseGgse land Case 3, the onset of the non-linear transient vibrations is
similar to the emergence of only the fundamental frequefiand its second harmonic componerft. Hence
the emergence of the new instability of fundamental freqyefi is due only to the "history™ of the increase

in the self-excited vibrations and the evolutions of conht@aud loss of contact interactions at the frictional
interface. The number of loss of contact is indicated in Fegl0. The phenomenon of contact and loss of
contact is only observed during the transient responses=of7; 8]s with the appearance of the new unstable
mode and the "high™” evolution of the average transientraiimn. We remind that the stability analysis is not
able to predict all the instabilities for this last case the tb the evolution of the average responses (even if no
local detachment between the pad and the disc is observéiefgtationary responses).

It can be concluded that considering only a stability analis not sufficient to predict the full contribution
of fundamental frequencies: an under-estimation of thebmrmof unstable modes observed in the nonlinear
time simulation can be predicted by the stability analy$ise determination of a non-linear equilibrium point
and its stability can only be used as the first step in a globatlimear analysis (i.e. squeal starts under linear
conditions around an initial equilibrium point). It is therecessary to calculate the non-linear self-excited
vibrations in order to define all the fundamental frequesdiee. unstable modes governing the non-linear
behavior of the brake system) and the associated harmoni@monic combinations.
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5 Conclusion

A non-linear model of a disc brake system was developed tystansient and stationary non-linear self-
excited vibrations. The Continuous Wavelet Transform edu® determine the different fundamental frequen-
cies and harmonic combinations of the non-stationary dogas of the system. It is demonstrated that when
two instabilities occur, the resonance peaks during thestest and stationary vibrations are composed of not
only fundamental frequencief and f, but also of harmonic componentsf; (for i = 1,2 andn positive
integer) and combinations of frequency componehtsf; + m fo (with n andm positive integers). It is ob-
served that the contributions of the harmonic componentistia® combination of frequency components are
essential and cannot be neglected when attemting to avaiddesign. It is also shown that the fundamen-
tal frequencies and the lower orders of the harmonic compisnand harmonic combinations of frequency
are generally predominant during transient and stationé@sations. When only one instability occurs, it is
shown that the fundamental frequency and its harmonics camr @uring transient and stationary self-excited
vibrations. However, it is also illustrated that new funaartal frequencies can appear in the signals, and so
non-linear transient amplitudes can become more compléx méw contributions due to the coexistence of
two instabilities of fundamental frequencies. These tsslilistrate that the stability analysis of an equilibrium
point (classically used as the first step for friction-inddwibration problem) only gives information about the
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initial rate of increase of disc brake amplitudes. It was destrated that an under-estimation of the unstable
modes observed in the nonlinear time simulation can be getliby the stability analysis. During transient
vibrations, new fundamental frequencies can be added isiimals due to the contributions of nonlinearities
(i.e the nonlinear contact characteristics in the prestmtyd and so the non-linear transient and/or station-
ary amplitudes can become more complex. Finally it is shdva the transient non-linear amplitudes can be
greater than those of the stationary oscillations. Theeetioe study of the transient-state behavior has to be
taken into account to predict the dynamical response farsbbrake system design.

Finally, it is well-known that automobile brakes do not sajugersistently. Generally, self-excited vibrations
can occur briefly or intermittently. Thus these facts chedtustrate that the present study cannot reproduce
"real-world situations™ exactly. Although extensiveusties have been performed in the past decade, many
guestions in the field of friction-induced vibration remaimanswered and future research is required to increase
the reliability and safety of complex automotive brakesisIhot possible to give an exhaustive list of topics
of interest for future developments though one of the mastiaf steps for future studies is to propose more
practical non-linear models capable of considering moatigtc physical contributions at friction interfaces.
That s to say that variations of friction coefficients andletions of nonlinear contact stiffnesses, roughnesses,
and contact and loss of contact configurations at the fridtiterface are essential for studying non-linear self-
excited vibrations (even if all these aspects have beenidenesl in the present study). These variations are
capable of modifying the stability of limit cycles and newripelic and non-periodic behaviors can appear.
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