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ANALYTIC REGULARITY FOR LINEAR ELLIPTIC SYSTEMS IN
POLYGONS AND POLYHEDRA

MARTIN COSTABEL, MONIQUE DAUGE AND SERGE NICAISE

ABSTRACT. We prove weighted anisotropic analytic estimates fortsmhg of model el-
liptic boundary value problems in polyhedra. The weightedlygtic classes which we use
are the same as those introduced by B. Guo in 1993 in view abkshing exponential
convergence fohp methods in polyhedra. We first give a simple proof of the wiidh
analytic regularity in a polygon, relying on new elliptic aigri estimates with analytic
control of derivatives in smooth domains. The techniqueisell on dyadic partitions near
the corners. This technique can be successfully extendedlybedra, but only isotropic
analytic regularity can be proved in this way. We therefambine it with a nested open
set technique to obtain the three-dimensional anisotrapaytic result. Our proofs are
global and do not rely on the analysis of singularities.
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INTRODUCTION

Solutions of elliptic boundary value problems with analytata are analytic. This classi-
cal result has played an important role in the analysis ahloaiic functions since Cauchy’s
time and in the analysis of more general elliptic problemseiHilbert formulated it as his
19th problem. Hilbert’s problem for second order nonlingablems in variational form
in two variables was solved by S. Bernstein in 196§ After this, many techniques were
developed for proving analyticity, culminating in the 198&per B6] by C. Morrey and
L. Nirenberg on linear problems, where Agmon’s elliptic ukgity estimates in nested
open sets were refined to get Cauchy-type analytic estimadés in the interior of a do-
main and near analytic parts of its boundary.

Analyticity means exponentially fast approximation by ywmials, and therefore it
plays an important role in numerical analysis, too. Analg@stimates have gained a re-
newed interest through the development of thand hp versions of the finite element
method by I. BabuSka and others. In this context, appbeoatioften involve boundaries
that are not globally analytic, but only piecewise analghie to the presence of corners
and edges, and therefore global elliptic regularity resscdinnot be used directly.

Elliptic boundary value problems in domains with cornerd adges have been investi-
gated by many authors. Let us quote the pioneering papersAf Kondrat'ev R5 and
of V. Maz'ya and B. PlamenevskilB, 29, 30, 31]. In these works, the regularity of the
solution and its singular behavior near edges and cornéesizribed in terms of weighted
Sobolev spaces. Besides their own theoretical interes$ethesults are the basis for the
convergence analysis of finite element approximationsebtiundary value problems.

But whereas these results on elliptic regularity of finitdesrallow to prove optimal
convergence estimates for theversion or thep version of the finite element method,
they are not sufficient for proving the (numerically obseivexponential convergence
rate of thehp-version of the finite element method. Indeed, as has beemrsfar two-
dimensional problems by I. BabuSka and B. Guo3dn4], the convergence analysis of
the hp-FEM requires the introduction of weighted spaces with yiatype control of all
derivatives, so-called “countably normed spaces”. Behasd Guo proved corresponding
weighted analytic regularity results for several modebpems 3, 4, 18, 21].

In three-dimensional domains, as sooredgesare present, there is higher regularity in
the direction along the edge, and in thversion one introduces anisotropic refinement,
performed only in the direction transverse to the edge. Bineesponding weighted spaces
have to take this anisotropy into account. 19,[20] BabuSka and Guo have started proving
estimates in such spaces in a model situation.

For three-dimensional polyhedra (containing edges anaeesy Guo has introduced the
corresponding relevant spaces in 1993]] The anisotropy along edges has to combine
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with the distance to corners. Since that time, the proof thatregularity of solutions
of elliptic boundary value problems with analytic right luasides is described by these
spaces has been an open problem, even for the simplest datbes laaplace equation
with Dirichlet or Neumann boundary conditions. In the eramalysis ofhp-FEM, such
regularity estimates have been taken as an assumpfip@?, 37).

In this paper, we first give a simple proof of the 2D weightedlgiic regularity result on
polygons, for Dirichlet and Neumann conditions, using adiyartition technique. Then,
relying on a nested open set technique, we prove anisotregidarity along edges in the
framework of the anisotropic weighted spaces introduceldused in §, 10], but now with
analytic-type estimates for all derivatives. Combining firevious two steps with a 3D
dyadic partition technique at polyhedral corners, we obtiaé desired analytic weighted
regularity in a 3D polyhedron.

We use two types of weighted spaces of analytic functionse fiilst type is con-
structed from weighted Sobolev spaces of Kondrat'ev tygees€ spaces with “homoge-
neous norms” are suitable for the description of the regylar the presence of Dirichlet
boundary conditions. For Neumann conditions, a new clasgeajhted analytic function
spaces, constructed from Maz'ya-Plamenevskii-type weisobolev spaces with “non-
homogeneous norms”, has to be used.

It is important to notice that the above spaces naturalljtaiorthe singular parts of
solutions, and give an accurate account of their generiglaeity. Thus, in contrast with
investigations such a&§], we do not need to address separately vertex, edge and edge-
vertex singularities. Our estimates cover regular andusargarts at the same time.

Analytic regularity estimates consist of regularity esttes of arbitrary finite order,
where the dependency of the constants on the order is cleatinla Cauchy-type manner.
The results of this paper contain therefore, in particdiaite regularity estimates of any
order in anisotropic weighted Sobolev spaces. For polyhedese finite regularity results
are also new in this generality. In particular, our proof@®the statements formulated in
[9], and our results generalize those dff).

Our proof of analytic regularity estimates is modular in se@se that it starts from low-
regularity a-priori estimates on smooth domains and pragée singular points, edges,
and finally polyhedral corners by employing the two techegof dyadic partitions and
nested open sets. In order to avoid drowning this clear tstreign too many technical
difficulties, we mainly restrict ourselves to the situatafthomogeneous elliptic equations
with constant coefficients. Generalizations to operatdtk lewer order terms and vari-
able coefficients will be briefly indicated. They will be dissed in more detail in our
forthcoming book 1.3].

PLAN OF THE PAPER

In section1l we quote from {4] an elliptic a priori estimate with analytic control of
derivatives. This estimate improves the readability arittiehcy of classical proofs of
analytic regularity in smooth domains as can be found3igy B5, 27]. We refine this
estimate in view of tackling problems of Neumann type. Intisec2, we make use of a
dyadic partition technique to construct weighted analgitimates in plane sectors. This
technique is a powerful tool to prove what we ca#itural regularity shiftresults near
corners. This expression means that from two ingredieatsiety basicregularity, i.e. a
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certain weighted Sobolev regularity of low order, of 8wution andimprovedregularity,
i.e. high order weighted Sobolev regularity or weightedwiaregularity of theright hand
side one deduces improved regularity of the solution. The teglnof dyadic partitions
has been used in a similar framework if} for weighted Gevrey regularity. It has been
employed earlier for domains with edgeXJ)[ and for the Laplace operator on a polygon
with non-linear boundary condition&4]. In section3, we combine the local estimates to
obtain the analytical regularity shift in polygons.

In section4 we start the three-dimensional investigation with estesationg an edge.
The fact that there is additional regularity along the edge been known and studied for
a long time (seell6, Theorem 16.13],32, Satz 3.1], L1, Theorem 4.4]). We therefore
introduce anisotropic weighted spaces in which derivataleng the direction of the edge
are less singular than transversal derivatives. Under shenaption of a certain local a
priori estimate of low order in the neighborhood of an edgefyeve prove local analytic
anisotropic regularity shift along this edge, by combingygdic partition technique and
the classical (and delicate) tool of nested open sets. ItoseB, we treat polyhedral
corners. Relying on suitable definitions of various fansili¢ weighted spaces (as i8],
but with anisotropy along edges), we are able to prove thé/maegularity shift for
polyhedra by dyadic partitions around each corner of a pdybn.

In section6, we combine our analytic regularity shift results with knmoestimates giv-
ing basic regularity of the solution for the case of problemeariational form. On poly-
gons, we use for this purpose Kondrat’ev’s classical regyleesults in weighted Sobolev
spaces, and on polyhedra, we use recent regularity resultab’ya and Rossmanr{l].

In this way, we finally obtain the weighted analytic regulaaf variational solutions in the
right functional classes ofi[/]. For polygons, we thus prove again in a different and sim-
pler way results which were first established by BabuSkaGmal [3, 18]. For polyhedra,
the results are new.

We conclude our paper in sectioisand8 by discussing various generalizations. For
our proofs, we choose in this paper the simplest possibieeveork of second order ho-
mogeneous systems with constant coefficients and zero hopddta on domains with
piecewise straight or plane boundaries. In dimension 2 & mere technicality to gen-
eralize these proofs to the case of second order elliptiesyswith analytic coefficients
and non-zero boundary data. In dimension 3, the possiblatiar of coefficients along
edges introduces more serious complications and wouldreetpuestimate commutators
in a systematic way as iifl, Lemmas 1.6.2 & 2.6.2]. In comparison, the generalization t
homogeneous transmission problems with constant coeffcien a polyhedral partition
would be much less difficult. Whereas the Stokes system doeildonsidered similarly,
things are different for regularized harmonic Maxwell etiuas, for which it is necessary
to detach the first singularity if one wants to obtain a valeabsult, seel5] in dimension
two.

We denote byH™(£2) the usual Hilbert Sobolev space of exponentby || - ||,..o and
| - |;n. 2 its norm and semi-norm. THe()-norm is denoted by - ||o., or simply by|| - || .
Boldface letters likeH™(£2) indicate spaces of vector functions.



1. LOCAL ANALYTIC ESTIMATES IN SMOOTH DOMAINS

The starting and key point is a local analytic estimate in@tinalomains that is proved
by using nested open sets on model problems and a Faa di Rmumola for local coordi-
nate transformations, se&4 Theorem 2.7.1] for details.

Theorem 1.1.Let 2 be a bounded domain iR",n > 2. LetI" be an analytic part of
the boundary of2. Let L be a N x N elliptic system of second order operators with
analytic coefficients ovee UT". Let{T', D} be a set of boundary operators drof order1
and0, respectively, with analytic coefficients, satisfying 8feapiro-Lopatinskii covering
condition with respect té onI'. Let two bounded subdomaifis= /N andQY = /N

be given witti/ andi/’ open inR™ andi/ C U'. We assume that := 00’'NdQ is contained

in I'. Then there exists a constatisuch that any € H?(Q) satisfies for alk € N, k > 2,
the improved a priori estimates (“finite analytic estimades

k21

- Ak+1{ = (|L”|z ot ||Tu||é+ ot ||DU||Z+%;f/> + ol 5 }

LDl o<
=0

~

For boundary value problems of Neumann type, it will be comset to replace in the
right-hand side of1.1) the H'-norm by theH'-semi-norm. Wherl, 7" and D are ho-
mogeneous with constant coefficients, this version is aemumsnce of the previous result,
obtained by a simple argument based on the Bramble-Hileentia. In the following
statement, we present a general version of such estimatessemi-norms in the right-
hand side.

Corollary 1.2. We assume that the operatdis7 and D are homogeneous with constant
coefficients. Letn > 1. There exists a constant independent of such that there hold
the following estimates for alt > m and all u satisfying the zero boundary conditions
Tu=0andDu=0onl:

1 k+1
(12) g|u|k,§ S A { Z £!|Lu|€;§’ + |u|m;§’ }

Proof. We start with anyu € H’“(Q’) and use estimaté (1). We split the right hand side
of the inequality into two pieces according to:

??‘
l\’)

1

Yl
0

(1Ll 1Tl 1l g )+l g = B () + Bu(u

Z—i—%;f’

o~
Il



with

N

) 1 041
1
EQLng+meﬁ_F~%§j\Tm o 1Dul, o+ > Dul )

-1 j=m—1 j=m

1
Z E<|Lu|£;ﬁ’ + |Tu|f+%;f’ + |Du|f+%;f’)

B*(u)

N

MSM

=
k—2 1 min{¢,m—2} min{/+1,m—1}
_'_ E( Z ‘Tu‘%f/_'_ Z ‘Du|]7f‘/) +||u||1;§/

Since the orders ok, 7"and D are2, 1 and0 respectively, we obtain
B.(u) < Clull, o,

Since, moreover, the operatats 7" and D are homogeneous, we have the invariance of
B*(u) by subtraction of polynomials of degree less than- 1
B*(u— ) = B*(u), VeecP ().
Altogether, using1.1) for u — ¢ we obtain for allk > m
1 e/ A
Slul g < AMHB W) + Cullu =l 5}, Ve € PP,
With the Bramble-Hilbert lemmag], this gives

1 *
Tl < ATHB W+ Clul 6}
Applying this to functionas satisfying zero boundary conditions, we obtair?y. O

2. LOCAL ANALYTIC ESTIMATES IN PLANE SECTORS

The model singular domains in two dimensions are the infpli@e sectors. Let be
an infinite sector with vertex at the coordinate origia- (0,0). In polar coordinate§r, #)
such a sector can be described as

(21) K:{XGRZ : (.U1<9<C<J2},
wherew, = wy + w withw, € (=7, 7) andw € (0, 27| is the opening of the sectds. For
1=1,2, letT’; be the sidé = w; of K.

We consider an elliptic system of ord&rhomogeneous with constant coefficients, cov-
ered on each sidg; by a set{7;, D;} of boundary conditions. For any subdomai# of
IC, we consider the system of local interior and boundary egust

Lu = f in KNnW/,
(2.2) Tou = 0 onl,NnW, i=1,2,

Diu = 0 onI,nW, i=12,
which is the localization tdV’ of the elliptic boundary value probledu = f in I, with
zero boundary conditions dry andl’,.
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2.1. Weighted spaces with homogeneous norms hese spaces coincide with those in-
troduced by KONDRAT EV in his pioneering study of corner problent%]. The weight
depends on the order of the derivatives. We adopt a diffe@mtention thang5] in our
notation in order to make the definition of correspondingitaclasses more natural (see
(3.6) below).

Definition 2.1. Let 5 be a real number called thveeight exponentand letrmn > 0 be an
integer called th&obolev exponentet W be a subdomain of.
Theweighted space with homogeneous n&rn()V) is defined, with the distance
r = |x| to the vertex0, by

(2.3) KFOW) = {u el (W) : rHelogu e L2(W), Va, |a] <m}

loc
and endowed with semi-norm and norm respectively defined as
m
2 2 2 2
mBW Z Hrmla‘agu”o;w and HUHK?(W) - Z |u|k,B;W'
k=0

|al=m

(2.4) |u|

Theorem 2.2.LetW andW’ be the intersections df with the balls centered dt of radii
1 and1+ 6, respectively. Let € R andn € N. Letu € H, (W' \ {0}) be a solution of
problem(2.2). Then the following implication holds

(2.5) ue KyW') and f e Kj,(W) = uecK;?W)

and there exists a constant > 1 independent ofi and n such that for any integet,
0 <k<n-+2, wehave

e

-2

(2.6) % (Z ||7=6+\alagu||§;w)E < C’““{ % (Z ||r/3+2+\cvlagf||§;W,)5

|a|=Ek 0 |oo|=¢
+ > Izl -

la<1

Il
o

Proof. Let us assume that € K;(W’) andLu = f € K}, ,(W’). Let us prove estimate
(2.6). By definition of the weighted spaces, the right-hand sidE®) is bounded. The
proof of the estimate is based on a locally finite dyadic ciogeof YV andW’. Let us
introduce the reference annuli, see Hig.

27) V={xek: : l<r(x)<1} and V' ={xeK :1-§<r(x)<1+4d}.
and forp € N the scaled annuli:
V, =2V and V,=2"V"
We check immediately that
W=JV. and W =]V
HEN neEN

STEP 1. We are going to apply Theoreinlin two regions which separate the two sides
I'1 andI'; of IC where the boundary conditions can be distinct. We recallttreasectoi



FIGURE 1. Reference and scaled annuli for a se&faf opening3r /2

is defined by the angular inequalities < 6 < wy. Letws := %(wl + wsy). We define the
sectorsiC; and/C;, by

={xeR”: w <f<w} and Ky={xeR?: w3 <l <ws}
Letd < 1(ws — wi). We define the larger sectok§ andK’, by
={xeR’*: wy<f<ws+0} and K,={xeR? : w3 —3 <0< w}.

Let: € {1,2}. Since the systenk is elliptic and covered by its boundary conditions

{T;, D;} on T}, the reference domaing N K; and V' N K} satisfy the assumptions of
Theoreml.1, and there exists a positive constahtsuch that for allk € N, &£ > 2, we
have:

k— 1

1 . k+1 1
(28) E |u|k;9ﬂ/€¢ S AZ { Z g_ Z V’OIC’ Z £; V/F]IC;. }7

/=0 (=0

for any functionu satisfying the boundary conditions ¢.p) andf := Lu. From these
estimates foi = 1,2 we deduce immediately, with = max{A;, A2}

1
@.9) %%smkﬂ{z@ Fle + Dl }

STEP 2. Sincer(x) ~ 1 on V', we can insert weights in the reference estimaté){
There exists a positive constaBitsuch that for alk € N, & > 2

k‘

-2

(2.10) — <Z I B+Ia\@om|| )é < Bk+1{ % (Z 7 B+2+|a\@af||0 W)l

la|=k 4 || =0

+ 3 P elegal g, -

|| <1

Il
o
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By the change of variablés— x = 2~#x that maps) onto), (resp.V’ ontoV),) coupled
with the change of functions

U(x):=u(x) and f(x):=Lu whichimplies f(x) =2 *f(x),
we deduce from estimat.(L0 that

_Quﬁ u( Z I ( B+|a\3auH )% < Bk+1{

|al=k

) 2 :
1 al Qo o
£ S (ZQ 2“” B+2—H |8 fHo v/> + 20 I B—H ‘a UHO V,Q}'

|ar|=¢ la<1

Mw

14

i
o

Multiplying this identity by2—+#+#, the above estimate is equivalent to

% <Z ||r(x)6+a|agu”(2);vu)% < Bk:-l—l(z X (Z I B+2+|a\@af||0 . )%

loo|=k lor|=¢

£ 30 60 “logull,, ).

|| <1

Summing up the square of this estimate ovepahd considering that only a finite number
of theV,, overlap, we get the desired estimaes]. O

2.2. Weighted spaces with non-homogeneous normsn these spaces the weight expo-
nent does not depend on the order of derivatives. Standaveighted Sobolev spaces
are a special case. The weighted Sobolev spaces with nogfem®@ous norms allow an
accurate description of the regularity of functions witmstavial Taylor expansion at the
corners. In particular, they are useful for studying vaoiaal problems of Neumann type,
because the variational spadédoes not fit properly into the scalK%.

Definition 2.3. Let 5 be a real number and > 0 an integer.

Let W be a subdomain of. Theweighted space with non-homogeneous norm
J5 (W) is defined by

(2.11) W) ={uelp W) : r7mou e LX(W), Va, |a] <m}
with its norm ,
||u||Jm(W Z ||T6+ma)((1u||0;w °
|| <m

Note that the semi-norm afy' (W) coincides with the semi-norm &' (V). They are
both denoted by- \mﬁ,w. With this notation, we have

2 = 2
k=0

We recall from [LZ] the “step-weighted” characterization ¢if in the case of two space
dimensions:
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Proposition 2.4. Let 5 € R andm € N such that3 + m > —1. Leto be any real number
in the interval(—1, 3 + m|. Then the norm in the spadé (W) is equivalent to

) 1
(2.13) (3 frmesterieb gz > )7,

|laj<m

Corollary 2.5. Let 5 € R. Letm be a natural number such that+ m > —1. Then
Jg”“(W) C Jyw).

Theorem 2.6.Let W and W’ be the intersections d@f with the balls centered dt of radii
1and1 + ¢, respectively. Let be a real number and letx > 1 be an integer. We assume
that3+m > —1. Letn > m — 1 be another integer. Lat € H?_(WW'\ {0}) be a solution
of problem(2.2). Then the following implication holds

(2149) ue i) and fe Ji,0) = ueJ5w)

and there exists a constant > 1 independent ol and n such that for all integert,
m <k <n+ 2, we have

1 k—2 1
(2.15) % (Z ||TB+|O“8SUI|§;W>2 < Ck+1{ _z: % (Z ||7’B+2+‘a|aff||§;w,)2

+ 30 Izl b

|al=m

Proof. Let us assume that € Ji'(W’) is such thaf € Ji;,,(W'). Letk,m <k <n + 2.
Let us prove estimate(15. Since + m > —1, we haves + 2 + |a| > —1 for all «
with length> m — 1. Therefore, as a consequence of Propositignthe right-hand side
of (2.15 is bounded.

Then, in a similar way as in the proof of Theor&n2, we start from estimatel(2) writ-
ten for the reference domainsand)’ and we apply the same dyadic covering technique.
We arrive directly at the estimat&.(5.

It remains to prove thai € Jg”(W). Since)V is bounded, estimat@ (15 implies that
rAtn+290u belongs tal*(W) for all o, m < |a| < n + 2. Sinceu € J7 (W), we deduce
thatr#+"+292u also belongs td.*(WW) when|a| < m, which ends the proof. O

3. ANALYTIC WEIGHTED REGULARITY SHIFT IN POLYGONS

Let 2 be a polygonal domain. This means that the boundafyisfthe union of a finite
number of line segments (the sidis for indicess € .). We do not assume th&tis a
Lipschitz domain, that is we include the presence of craclkair analysis. The verticas
are the ends of the edges. Let us denot&the set of vertices and

(3.1) re(x) = dist(x, c).
There existg > 0 such that, setting
(3.2a) Qe={xe€Q : rc.<e},



11

we have
(3.2b) QcNQe =@, Ve#C.
Choosing:" < € and settind)! = {x € Q : r. < "}, we define
(3.2¢) Qo =0\ .

ce?

We also define larger neighborhoods choosing e such that

(3.2d) A ={xeQ:r.<e}, AN =9, Ve#c,
and we finally set
(3.2€) =0\ .

ce?

For each corner there is a plane sedtpwith vertex0 such that the translation— x — ¢
sendg. onto K. N B(0, ¢).

Let 3 = (Bc).r € R*? be a weight multi-exponent and € N a Sobolev exponent.
By localization we define the weighted semi-norm on any doryac (:

2 o 12 ol aa. 112
(3.3) 0l = 2 (1080l g+ Do lrEelogul? ),
- |a|=m ce?
and the norms;f. (2.4) and .12
2 o 2 2 o 2
(3.4) HUHK;;L(V) - Z |u|k,@;v and [ @) Z ‘“‘k,@+m—k;v ’
. k=0 . k=0

defining the spacek;'(V) and J3'(V), respectively. If all weight exponenti coincide
with the same numbe?, these spaces are simply denoteddiy()) and J3*(V), respec-
tively. Boldface notation&j'(V) andJj' (V) indicate vector-valued functions.

Remark3.1 The semi-norrﬁu|mﬁ.Q is equivalent to the globally defined semi-norm

@9 {3 e e}

|a|=m ce¥
We define on any domaii C () the corresponding weighted analytic classes.
(i) With homogeneous norm:

3.6)  As(V) = { we (VKP(Y) : 3C>0,YmeN, |ul

m>0

m+1,
gV <C m.}.

(i) With non-homogeneous norm: For a multi-exponeet

(3.7) 7 = max —f(, — 1.
ce?
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As a consequence of Propositiar, for all m > n we have the continuous embedding of
Jp (V) into J3 (V). We introduce

(3.8)  By(V) = { we (JBW) : 3C>09m>n |l < (Jm+1m!}.
m>n
Remark3.2 (i) The classeds(2) andBs(£2) can be equivalently defined replacing semi-

norms|u|mﬁ.Q by the global semi-norms(5).
(if) The classed((2) can also be equivalently defined locally i.e.

As(2) = {u € Ligc(Q) = ufy, € A(Q) and ul, € Ag(Q) Ve € ¢}

HereA(€) is the unweighted class of analytic functions{n The space8;((2?) allow
analogous local descriptions.

Remark3.3. (i) Our space®;(£2) coincide with the family ofcountably normed spaces
Bj(€2), introduced by Babuska and Gug;[ The spaces3j((?) are defined fof € N and
0 < 8 < 1, and there holds

(3.9) B4(Q) = By_(9).

(i) The relation between the class&g(2) andBs((2) follows from the relation between
the weighted spaces with homogeneous and nonhomogenewns Kig(€2) and J3*(€2).
On the finite sectof. there holds31, 26] (more details are givenirlp] and [13, Ch. 11]):
If 3> —1, thenJ3 (Q) = KF'(€)) for all m € N.
If 3 < —1andm < —f — 1, then, again)7' (%) = K7 ().
If 5 < —1andm > —( — 1, then one has to distinguish two cases:
e the generic case§ ¢ N, in which one has

J7(Qe) = KJ (Qc) @ PEA

whereP[~#~1] is the space of polynomials of degree not exceedifg— 1;
o thecritical case—3 € N, in which J7(€).) containsK(€2.) & P~7~! as a strict
subspace.
As a consequence it follows that for> —1 there holdB;(2.) = Az(£2), whereas for
B < —1 one has in the non-critical casel ¢ N:

(3.10) Bs(Q) = Ag(Q) @ PP

and in thecritical case—3 € N: B5(Q) containsAs(€2.) & P~?~! as a strict subspace.
We consider a “mixed” boundary value problem on the polydgdioanain(2: We sup-

pose that we are given an homogeneous second order eliiptens. with constant coef-

ficients and for each sidea covering set of boundary operatdf&, Ds} of order1 ando,

homogeneous with constant coefficients. The boundary yahldem under consideration
is:

Lu = f in Q,
(3.11) Teu = 0 onls, se€.¥,
Dsu = 0 onls, se.7.
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Note that one ofl; or Ds may be the zero operator, in which case the corresponding
boundary condition is empty.

We can now prove the following statement of natural regtyathift in weighted analytic
spaces with homogeneous or non-homogeneous semi-norms:

Theorem 3.4.Let3 = (Bc)., b€ @ weight multi-exponent. Late H, (Q\ €) be a
solution of problen{3.11).

(i) The following implications hold

(3.12a) ueKy(Q) and feKj ,(Q) = ueKj™(Q) (neN).
and
(3.12b) ucKi(Q) and f € Ag5(Q) = ueAzQ).

(i) Let m > 1 be an integer such that. + m > —1 for all c € ¥. Then the following
implications hold

(3.13a) ueli(Q) and felj,(Q) = weli™(Q) (neN).
and
(3.13b) uecJi'(Q) and f € Bg»(2) = ueBy(Q).

Proof. The finite regularity shift results ir8(129 and 3.133 are obvious consequences of
Theorem=2.2and?2.6. Let us prove 8.120. The uniform estimate2(6) is valid between
Q. and(2, for all c € €. The uniform estimatel(1) of the smooth case is valid betwe@p
and(2,. Combining these estimates we obtain the global uniforimese for all integer
k>2

1 21

k+1
H|u|k,@;9§0 (Zﬁ|f|f,ﬁ+2,ﬂ+||u||Ké(Q)>

If f e Ago(Q), it sati:~:fies|f|w.Q < F*1¢! for some constant’ > 1. Thus the previous
estimate yields B

k—2

FF - F
Walan! 0+1 — 1) kL
ul, .0 S KIC <;F lullyy ) =k (G + Il )-
Henceu € A;(2). The proof of 8.130 is similar, based on estimat. (5. O

4. LOCAL ANISOTROPIC ANALYTIC ESTIMATES IN DIHEDRAL DOMAINS

Infinite dihedral domains (or wedges) are the model domainpdlyhedra which have
the lowest level of complexity. In this section, we considigredral domain® in a model
configuration, that is there exists a plane seftavith vertex0 so that

(41) D=KxR and X:(l’l,l’g,xg):(XJ_,l’g)E,D & xp €K, x3€eR.

The edgee of the dihedral domaif® is the linex; = x5, = 0.
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Let V be any subdomain dP. We consider the system of local interior and boundary
equations

(4.2) Tiu = 0 on([;xR)NY, i=1,2,

{ Lu = f in DNV,
Diu = 0 on (I;xR)NY, i=1,2,

where the operators, T; and D; are homogeneous with constant coefficients and form
an elliptic system. The system.p) is the localization td’ of the elliptic boundary value
problemZu = f in D, with zero boundary conditions dn x R andIl'; x R.

4.1. Isotropic estimates: natural regularity shift. The weighted spaces for the dihedron
are defined by the same formulas as in the case of a plane:sector

Definition 4.1. Let 5 be a real number and let > 0 be an integer. LexV C D.
Theisotropic weighted spacesy (VW) andJi' (W) are defined, with the distance

r:=|x.| = /2% + 23 to the edgee, by
KFOW) ={uelp (W) : Moty e LP(W), Va, |af <m}

loc

) = {uelp (W) : rPrmogu € L2(W), Ve, |al <m}

loc

endowed with their natural semi-norms and norms. Recatl #iadenotes the
derivative with respect to the three variabigszs, 3.

We call these spacésotropic in opposition with theanisotropicspacesMy (W) and
N7 (W) which will be introduced in the next subsection.
We gather in one statement the results concerningthed the) spaces. Here we set

W= (KNB0,1)) x (—1,1)

(4.3)
W.=(KNB(0,1+¢)) x (-1—¢,1+¢), &>0.

Theorem 4.2.Let3 € R andn € N. Letu € Hy _(W. \ e) be a solution of probler(#.2)
withy = W..

@) Ifue K}g(Wg) andf € Kj, ,(W.) thenu € Kg”(W) and there exists a constant
C > 1 independent ol andn such that for any integek, 0 < k < n + 2, we have

k—2

(4.4) % (;k "Tﬁ+‘a|a)?u||§;w>§ < Ck+1{ Z% (Z Hrﬁ+2+\°‘|3ffH(2);Ws)§

=0 la|=¢
DN [ }

lo|<1

(i) Let m > 1 be an integer. We assume thatt m > —1. Letn > m — 1 be another
integer. Ifu € JZ'(W.) andf € J;,,(W.), thenu € JZ”(W) and there exists a constant
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C > 1 independent afi andn such that for any intege, m < k < n + 2, we have

(4.5) % (;k ||7’B+‘a|0f‘u||§;w>§ < C«k+1{

k—2

_Z % (Z ||r6+2+\a|0ff||§;ws>§

-1 |ar|=¢

+ Z ||7“5+|0“8§“u||0;ws }

laf=m

14

Proof. Like in the case of Theoren¥&s2and?2.6, the proof relies on a locally finite dyadic
covering ofY¥ andW.. The reference domains are now

V={xi ek : L<lx|<1}x(-41)

Vi={x ek :t-ec<|x|<l+e}x(-t-el+e)

and fory € Nandv € Z:
Vo =277V +(0,0,%) and V,, =2V +(0,0,%)).
We check immediately that

w=J) U Vw and Ww.o ) |J V.

pneN |y|<2ptl pEN |v|<2p+1

and that these coverings are locally finite. An a priori eaterbetweer), , andV,,, is
deduced from a reference a priori estimate betweemd )’ by the change of variables

x — x=27"(x+ (0,0, %)) that maps) ontoV,, and)’ ontoﬁ’w. Here we use the fact
that the operatorg, 7' and D are homogeneous with constant coefficients. Then the rest
of the proof goes exactly as in the case of the plane sectors. O

4.2. Tangential regularity along the edge (homogeneous norms)r'he result in the pre-
vious sections only rely on the ellipticity of the boundamglue problem under consid-
eration. Now we will require a stronger condition, which isoaal Peetre-type a priori
estimate in an edge neighborhood. From this condition wedeilive analytic type esti-
mates for all derivatived’, in the direction of the edge.

Assumption 4.3.Let 5 € R. Let W andW’ = W. be the domains defined id.Q3) for
somes > 0. We assume that the following a priori estimate holds fotprm @.2) on
YV = W' There is a constart such that any

uc K%(W),
solution of problem4.2) with f € K% ,,(W’), satisfies:
(4.6) Iullzmy < C(I1Flo o + I8l o) ):

Remark4.4. (i) Assumptiord.3is independent of (although the constarit depends on
it), and more generally independent of the choice of the diesi& and)V’, if they satisfy

the following conditions: There exists a ball with centertbe edges contained in/V, and

W' contains)y N D.
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(i) The inequality 4.6) is a Peetre-type estimate, sirlé%(W) is compactly embedded in
Ki (W)
(iif) As a consequence of Theoreh?, it is equivalent to postulate the estimate

lull sy < C(IFlles_ oy + I0ls_ o )-
forallu € Ky(W') N HL (W' \ e)

The first step for higher order estimates is fhestimate for which we control the de-
pendence of the constafitin (4.6) on the “distance” between’ and)V'.

Lemma 4.5. Under Assumptior.3, let R € [0,¢) andp € (0,e — R]. Assume that
uc KB(WR) is a solution of probleni4.2) with f € K5+2(V) forV = Wk, . There exists
a constant' independent o, R and p such that

@) Nl < C (Il + 7

-1
K o(Wrp) tp HUHKB

1+1(WR+/J) K%Jrz(WRer) ) ’

Proof. We introduce a special family of cut-off functions. Let xy € €>°(R) be such that
X =1on(—oo,0]andy = 0on|l, +o0). Definex, onR by:

K% (Wr)

. (lt|l-1-R
(4.8) Xp(t) =X (Hf) .
Thusy, equalsl in [-1 — R, 1+ R] and0 outside(—1 — R — p,1 + R + p). Then we set
(4.9) Xp(X) = Xp(IxL]) Xp(23)-

Thus by constructiorgf. (4.3

X, =1onWg and x,=0 outside Wg,,,.
We note the following important bound on the derivatives pf
(4.10) 3D >0, Vp>0,Va,|a| <2, (0%, < Dp o

Then in order to prove4(7), it suffices to apply estimaté () to x,u and to check that the
commutator L, x,| applied tou satisfies

: < -1 2 )
@10 Lol o <O M0l v+ 010l v, s
The latter estimate is an obvious consequencé 4} and the fact that
||a U|| WR+ — ||u|| Z ‘a“(WR+p)
forall o, |a] < 1. O

Corollary 4.6. Under the assumptions of Lemm, if 0,.,f € KB+2(WR+p)’ thend,,u €
K2 5(Wr) and there exists a constafit> 1 independent of?, p andu such that

(4.12) (1054l s 4, <C<H5x3fll +pul + 07 lull,

K9 o Wrsp) KZ(Wr+,) +1(Wr+p) )
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Proof. For anyh < p/2, we apply ¢.7) in Wg.,/» tov,, defined by
v, i x — b (u(x + hes) — u(x)),
wherees = (0,0, 1). This yields

<40 (|| Evil

vl K%(Wr s+2Wrip/2)

(4.13)

—2
vl v, 0 ) ’

where(' is the positive constant from Lemrdab. By noticing that

—1
+p ||Vh||K;+1(WR+p/z>

h
VvV, = h_1/ axBU(X + t63) dt,
0

we check that for alb < p/2

<
||Lvh||K%+2(WR+p/2) = ||ax3Lu||K%+2(WR+p) )

< <
||vh||K}1‘+1(WR+p/2) = Ha:v:suHK}Hl(WRw) - HUHK%(WR“)’

< < ’
||vh||K%+2(WR+p/2) - ||ax3u||K%+2(WR+p) - ||u||K,}j‘+1(WR+”)

This shows that the right-hand side df13) is bounded uniformly irk. Therefore passing
to the limitin 4.13), we find thato,,u belongs td(%(WR) and that ¢.12 holds. O

Corollary 4.7. Under Assumptiod.3 letu € K%(Wg) be a solution of(4.2). LetR €
[0,e/2] and R’ > ¢/2 with R + R’ < . Then there exists a constafitindependent oR,
R’ andu such that for alll € N, we have

l
Lo I L
1) L <o ly Lo L
(4 14) ﬁl ||am3u||K%(WR) — C Z ]' ||am3Lu||K%+2(WR+R/) + ||U||Kk+1(WR+R’)

J=0

Proof. If / = 0, this is a consequence of estimaded]. For/ > 1 the proof is divided into
two steps. To keep notations simpler we tdke- 0.

(i) We first prove by induction oAthat if p < e/(2¢ — 1), then

)4
(4.15) ||8ﬁ3u||K%(W) < (2(;)4{ S p D), Lul,
j=1

Br2Wi2e—)p)

+plu] +p 7 lu

KZ(Wize-1)p) Kb 1 Wiae-1p) }’

whereC > 1 is the constant from Corolla®.6.

e If / =1, the estimate4.15 is nothing else thar(12). Hence it suffices to show that if
(4.19 holds for/, it holds for¢ + 1.

e For that purpose, we first applg.(L5 to v, defined as before by

v, x — b7 H(u(x + hes) — u(x)),



18

and passing to the limitih, we get

4
0+1 < é{ —(t—j) || i+l
||a:c; u”K%(W) — (20) Z;p ||ax3 Lu||K%+2(W(2(g+1,j)p)
j:

+ |0z, u] +p 7 H|0s,u]

K}iﬂ(wﬂp) } '

For the second term of this right-hand side, we apglyl? to u but between/V,,, and

K%(W2€p)

W 2e+1),, While for the third term we use the fact thwmunxgﬂ(w% ) K2 (Was,)
This leads to
J4
Haﬁ—i—luHK%(W) zzlp (¢—j ||@J’;r1Lu||K%+2(W(%+H)p)
=
+ (20)60'0_6(Ha”LuHK%H(W(%H) ) 1”“”"2 Wezet1)p) _2||u||Ké+1(W<2e+1>p)>
+(2C) vl

K2 (Wag,)
By the change of index = j + 1 in the sum ory, we finally get (sincé2C)* < 2¢/C*+1)

041
105 Ml o ) < 2°CH D7 pm D05, Lu|
B
j=1

+(2C)(C +1)p 7 |u]

KS 4o Wia(et1)—i)p)

K2 W) +(20) Cp™ v

SinceC' > 1, C' + 1 < 2C, and this proves thati(15 holds for¢ + 1.
(i) Now we choose such that

W(zz_l)p C Wel with & = 8/2.

K%fﬂ(w(%ﬂ)p) '

This holds if we take
p= % with v = min{%, 1}.
Hence applying4.15 with this choice ofp, we obtain for alll > 1
4
HaﬁSuHK%(W) g(zc)e{ Z(v‘l)(HW‘j||313L”||Kg.+2(w5,)
(4.16) j=1
—1N\E e —1\l41 pl+1
+ (Yl g,y + G o b
Sincey < 1, (v 1)) < (y~1)’. Moreover by Stirling’s formula, one has
0F < S
for someS > 1. We find
Pl gt St

:_<_,
/! 10— i

<S¢,
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sincej! < j7 < /7, Inserting this into4.16) gives, withC;, = 2C~~18,
l

j= 1
Using the trivial inequalltw < 2¢, we arrive at
195l o, < €5 Z 0L Py + 0l + Ol o
j= 1

which, combined with4.7) between/\.. andW. , yields the requested estimate. [

4.3. Anisotropic estimates in dihedral domains (homogeneous mms). We are now
ready to prove the main results of this section, namely thighted anisotropic regularity
of solutions of our local boundary value problefnd). For this we introduce the following
new class of weighted spaces:

Definition 4.8. Let 5 be a real number and let > 0 be an integer.

Let W be a subdomain of the dihedral domdm We recall that = |x, | denotes
the distance to the edge = {x;, = 0}. Theanisotropic weighted space with
homogeneous norMp (W) is defined by

(4.17) MZ(W) = {u e Lp W) : rHlggu e L2OW), Va, |a| < m}

where fora = (al, an, ), a = (o, a) is the component af in the direction
perpendicular to the edge The norm of this space is defined as

o = 2 S gl

k=0|a|=k

(4.18) ||u|

Theorem 4.9. Under Assumptiod.3, letu € Ké(Ws) be a solution of problen4.2). If
f € Mj,,(W.), thenu € M7;(WV), and there exists a positive constantndependent ofi
andn such that for all integek, 0 < k£ < n we have

1 k 1
(4.19) — ( 3 ||7~ﬂ+|aﬂaau||0 Wf < c’f“{ Z% ( 3 ||T6+z+\auagf||§;ws ) ’

|| =k =0 o=t

lullesom 3

Proof. (i) We first apply the isotropic estimaté.{) between)V and)V.,,, and combine
with (4.6) betweenV,,, andW. , (cf. Remark4.4(i)). This yields the estimate for a,
0 <k <n,and withe’ = ¢/2

k—2

1 ol aor 112 3 1 ol aaen 2 3
= <Z |8+ ‘8’(“"0;1/\/)2 < Ck+1{ . <Z |r5+2+ ‘8"fH0;w6,)2

|o|=F =0 " |a|=¢

2, + Ml o) b
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In order to absorb the term5+2f||0_w ~inthe sum on the right-hand side (including when
k = 0 or 1), we write the previous inéquality in the slightly weakerrfo

1 k 1
l! (IZ ||TB+|a\aauH0W>2 < CfH{Zﬂ (lz ||r5+2+|a\8af||ow )
al=k a
llullesou }-

We reduce the left-hand side to any= (a.,0) of lengthg > 0, and bound~5+2+|a‘
by r#+2+leil in the right-hand side (recall thatis bounded inW.) to obtain for allg,
0<g<n

2 1
. ( 2 HTBHW&%””&W) <c {

ot [=q
(4.20) . ) s
o o 2
> (3 resiotope?,, )+ lull o 3
=0 7 |a|=¢
(i) We now prove that for al, = 0,...,n and for all¢g = 0,...,n — p one has the

following estimates with: := ¢ + p and a constant’; independent ofi, ¢ and

1 o oo 2 3
= (O3 rreagar ) ) < b

o [=q
U
ZE(ZHW”*‘“”@”IIOW) +lully v }-
=

|al=¢

(4.21)

1. If u = 0, this estimate is a consequence 420 sinceWW., C W..
2. If u > 0 (or equivalently; < k), we apply ¢.20 to 9% u to obtain

SO gl ) < cp

le s |=q
> (S wsemony,, ) 1%l o, )

laf=¢

(4.22)

The last term of this right-hand side is now estimated withhiblp of Corollaryt.7. Using
that

107, ull < 110 ulles

KZ(W./)
and applying4.14) betweenA., andWW. with ¢/ = ;1 — 1, we obtain

KL (W)

pn—1

1 )
o < I _ |< —_ )
02l v, < CF =D (3 55102y oy + Mol o

J=0
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Using this estimate ir4(22 we obtain that

1 2 )2 ol 2 3
(20 Irlag ol ) < ot ST g (30 It elan ol )
(=0

oy |=q laf=¢
p—1 1
q+1 ~p _ ] ~nAai
+ O30 = 1) (5 108y + ey )
J:

Multiplying this estimate by)!(k!)~*, we find (sincey!(n — 1)!(k!)~' < 1)

1 2 2 ~ ¢! 2 3
B+ +1 B+2+
k! ( 2 I Iw@ff%”“mw) <" am <Z Ir |°‘L|8/x138§‘f||0;W6)
=0 |a|=¢

los |=¢

pn—1

1 ,
q+1 ~p ~ A7
+C2 C’4 <Zj!”8$3f||K%+2(Ws) + HUHKEH(WS)>'

j=0
For the first term of this right-hand side we finally noticetthg 0~ = 0°+(0.0n) and that
lao+ (0,0, )| = £ + pu. Hence we have to check that

q! 1
< )
Ok = (04 p)!

which is equivalent to
Ig!
(0 + p)lq! <1
ok =
and holds sincé + p < kandq < k.
Altogether we have proved that.@1) holds for allu € N such thaty + 1 = k.

(i) Summing the square of this estima#eZl) ong = 0,...,kandy =0, ...,k — q, we
arrive at

1 k 1
% (Z ||r/3+\cu\a°fu||§,w>2 < k:QC;f“(Z <Z ||7»ﬁ+2+|cula°¥f||§W )2

|| =k =0 " |al=¢

| =

+||u||KgH(WS)).

This proves the theorem. O

4.4. Anisotropic estimates in dihedral domains (non-homogenags norms). In this last
part of sectior! devoted to local estimates in dihedral domains, we invastithe situation
where the a priori estimate holds in theveighted scale instead tikescale. We set:

Assumption 4.10.Letm > 1 be aninteger. Let € R such that3 +m > —1. We assume
that the following a priori estimate holds for problet): There is a constardt such that
any

ueclJit'ow),



22

solution of problem4.2) in V = W' with f € Jj) (W’), satisfies:

o S C(”f TR )

Remark4.11 Using the analogue of Propositiéh4 for dihedral domains, i.e., that the
norm in the spacej}’ (W) is equivalent to( 3", ., ||rma"{5+‘a|v"}63uﬂi;w)% forall o €
(—1,8+m], we can taker = 0 for J7 "' (W) wheng+m > —1,i.e,8+m+1> 0: We

obtain that in the situation of AssumptidrnlOthe norm in the spacj%’“rl (W) is equivalent
to

(4.24) ( 3 Hrmax{m\alvo}@guujw) ?

o] <m+1

(4.23) |u

Jm 1(w/ + ||u||

The non-homogeneous anisotropic weighted spaces arediafrfellows on the model
of the homogeneous ones (Definitidr):

Definition 4.12. Letm > 1 be an integer. Lef € R such that5 + m > —1.

Let W be a subdomain of the dihedral domdmandn > m be an integer. The
anisotropic weighted space with non-homogeneous gj(#V) is defined by

(4.25)  NzOW) ={u e Lp (W) : pmxtftloalBgoy e 12(W), Va, |a] <n}
endowed W|th its natural norm.
Our aim is to prove the “non-homogeneous” analogue of Thedr®:

Theorem 4.13.Under Assumption.10 letu € J3'(WV.) be a solution of problert4.2). If
f € N, ,(W.) foranintegem > m, thenu € Nj()V), and there exists a positive constant
C' independent of andn such that for all integek, 0 < k£ < n we have

(4.26) — ( Z [|proax{Btladl, 0}@au|| )é < C«k+1{

|al=k

k 1
1 max « (03 2 2
3 i (Z [rmax{8+2+ l|70}8xf||o;ws> 4 u

=0 " |a|=¢

J54 1 (We) }

Proof. We review the sequence of steps leading to Theotehand adapt them to non-
homogeneous norms.

(i) Applying (4.23 to x,u with the functiony, introduced in 4.9), we obtain, — compare
with (4.7),

< c(||f

I 5 War) +Zp |y

(i) By the differential quotients technique we deduce, — compath (4.12),

J'gH»l(W J'nL+1A+>\ WR+p >

|0, u

P el (O — +Zp—1 el 5o )

=0
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smceH&vSuHJm 2 is bounded by'\u||ng+A1,A
+

\Wk4,) Wrip)'
(iii) Iterating thls on the model of}(15 we find for/ > 1

l
—(=3) || 59
1920l iy < O X 0™ PN Ll s

J=1

+ZP - >\||u||Jm+l AW(Q[ 1)p)}

A=0
leading to the analytic type estimate, — compare witii 4),
J4

L. 041 Lo
(4.27) G100l s < € {Z oz, o

J=0

+ ull

IS Wriwr) 3541 Wryrr) } '

(iv) To prove @.26), we start with the proof of, — compare with.20),

1 1
1 (3 ol ) < o

(4.28) o 1
max{8+2+|a] |,0} o 2
> (X I, ) il o,
=0 la|=¢
e Forqg = 0,...,m, we rely on the estimatet(23 combined with the use of the norm

(4.29 for JgL“(W): If we restrict the left-hand side to the derivatives of tioenti o5
and replace the weightax{8+2+lal,0} py pmax{f+2+laL], 0} jn the right-hand side, we obtain
(4.28.

e Forq > m + 1, we combine the estimatd.3 with the isotropic non-homogeneous
estimate 4.5 and making the same restriction®y:* in the left-hand side and the same
change of weights in the right-hand side.

(v) We continue with the proof that for all = 0,...,n and forallg = 0,...,n — . one
has the following estimates with:= ¢ + . and a constar(ﬁg independent of, ¢ and

% < Z H,rmax{ﬁ-l-\ozﬂ 0}8(“'85 uH ) < Ck-l—l{
© ail=q
k

1 max (07 (0% %
Z (D ettt Ohopg|f )T 4 u

laf=¢

(4.29)

) }

1. If u = 0, this estimate is a consequence L@ sincelV., C W..
2. If p > 0 (or equivalentlyy < k), we apply ¢.28 to 9/, u to obtain

1
max «a fo 2 2 1
( Z [t F+lasl 0} g LauuHO;W) <t {

X xrs3
los |=¢

(4.30)
Z i ( Z ||Tmax{5+2+|aﬂ 0}63653{»’”;]/\@) + || u|| V) }

laf=¢
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The last term of this right-hand side is now estimated withttblp of @.27) with ¢ = 1 —1

=

t < ||lgr—t < CH(p— !( )
HﬁxguHng+l(Ws,)— ||am3 u”ngH(Ws,)— C’4 (/J 1) Z || fHJg"J:;(Ws)—i_||u||ng+1(W5)

J= 0
Using this estimate ir4(30 we obtain that

1
( Z | max{f+|a |, 0}@a¢5u u|| )2 <

lot |=q
Cq+1 Z < Z I max{f+2+|a |, mﬁ?%ﬂ\i . )%
o] =¢ N
= (110, ol )
J
We note that the norm in the spa.t@r2 ) is equivalent to¢f. (4.24))
1
( Z ||rmax{ﬁ+2+|a\,0}a§zu”§;W)2.

|| <m—1

Thus dividing the latter estimate y and recalling that = ¢ + 1 we deduce

1

1 max (03 (0% 2
f (3 e vagon ) <

loy |=q
1
max (0% 1% 2 2
Ck+1§ : i <§ : [ +2+a .0} go 8§3f||0;ws>

|al=¢

+ C«k+1<z Z || max{S-+2+|al, O}aaaiafno.w + ||u
i=0 " |aj<m—1 .
From this we deduce}(29. The final way to 4.26) is very similar to the conclusion of the
proof of Theoremt.9. This ends the proof of Theorem13 O

Remark4.14 We note some similarities between our estimates and thdaeeld in 0|
for the Laplace operator. Our argument based on the dyadiitipa technique clearly
improves the structure of the whole proof.

IOV )

5. ANALYTIC ANISOTROPIC WEIGHTED REGULARITY SHIFT IN POLYHEDR

5.1. Edge and corner neighborhoods.Let Q2 be a polyhedron iR3, that is a domain
whose boundary is a finite union of plane domains (the fages € .’). The faces are
polygonal, the segments forming their boundaries are thesdof (2, and the ends of the
edges are the corneef (2. We denote the set of edges &yand the set of corners L.
Edge openings may be equal2e, allowing domains with crack surfaces.

In order to prove global regularity results in suitable weegl Sobolev spaces, we in-
troduce corner, edge and edge-vertex neighborhoods oFor a fixed cornee € %,



25

we denote by, the set of edges that haeeas extremities. Similarly for a fixed edge
e € &, we denote by, the set of corners that are extremitieseoNow we introduce the
following distances:

(5.1) re(x) = dist(x,€), 7e(x) = dist(x,€), pee(X) =

There existg > 0 small enough such that if we set
Qe = {xe€Q:71e(x) <e andr(x) >e/2 Vece b},
(5.2a) Qe = {x€Q:r(x) <e and pe(x) >c/2 Ve € &},
Qe = {x€Q : 1re(x) <e and pee(x) < e},
we have the following properties:
QeNQe = @, Ve #e,
(5.2b) B(c,e)NB(c,e) = @, V' #c,
Qe N Qe = @, Ve #e.
We also define the larger neighborhoods with< ¢ < &’
QA = {xeN:rx)<e andr(x) >¢<"/2 Vce b},
(5.2¢) Q. = {xeQ:rx) <& and pee(x) >£"/2 Ve € &},
A, = {xeQ:r(x)<e and pe(x) < €'},
assuming the’ and<” are sufficiently close ta for the above propertie$ (20 to hold

for Q,, Q., andQ,. We finally introduce the smaller neighborhodd§ 2!, andQ2, by
inverting the roles of’ ands” and set,

(5.2d) Q=% Q=% =%
ce¥ ecé cEL ecée

We finally definef, as the remainder:

(526) Oy =9 \ Qe U Qe UQgpe.

Note that(, is far from the singular points dR. Replacing(’, Q22 and ., by Q¢, Qe
and (e, respectively, in the definition®(2d and 6.26, we define the larger “smooth”
neighborhoody.

Let V be any subdomain d2. We consider the system of local interior and boundary
equations

(5.3) Tou = 0 onlyNV, se.¥,

Diu = 0 onI NV, se.7,
where the operators, T; and Ds are homogeneous with constant coefficients and form an

elliptic system. The choic® = () gives back the global boundary value problem on the
polyhedrorn(.

{ Lu = f inQnV,
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Definition 5.1. OnV C Q, form € N andg = {fc}cer U {Be tecs, the weighted space
with homogeneous nortd;' (V) is defined as followsGf. [33, 34, 9, 10]

(5.4) KI(V) = {u L2 (V) : Ya, [a| <m, uel®(YNQ) and

re(x)% el 9oy e L2V N Q) Vee €,
re(x)% 90y € L2(VNQ.) Ve € &,
re(x)PF peo ()Pt 92 € L2(VN Q) Ve € F, Ve € @@c},

and endowed with its natural semi-norms and norm.

Note that the condition in the edge-vertex neighborhQgdcan be equivalently written
as
re(x)P e g (x)%F ol 9oy € L2V N Qee).

Remarks.2 The semi-norms issued fror.4) are equivalent to the globally defined semi-
norms

(5.5) {;kH{grﬁc+a|}{H (Leyetiel) oy HZ;V}% k=0....m.

Herery, denotes the distance function to the gébf corners. With this expression, the
relations between our spack§ (<2) and the spaceB’Bf”(sip(Q) defined in B3, §1.2] or [34,

§7.3] become obvious:

(5.6) K (€2) = ﬁn:sp(Q) if p=2 f= {Be+ m}ce%’ b= {Be + m}eeé”'

5.2. Anisotropic weighted spaces with homogeneous normdJnlike in the conical case,
the weighted spacé€; are in a certain sense too large to describe accuratelygoaréy
of solutions of the elliptic problem5(3) along the directions of edges. Mimicking the
definition of the spacel!}}’ in the pure edge casef, (4.17), we particularize for each edge
e € &, the derivatives in the directions transverse or parati¢hat edge by the notations
(5.7) O+ (transverse) andd?l (parallel) (e € &),
so that
Oy = 0+ o7

Of course these directions are edge dependent. They aralefgled in each of the do-
mains(2, and(). determined by the edge

The following spaces were introduced B) [LO] for similar purposes:

Definition 5.3. OnV C Q, form € N andg = {fc¢}ece U {Fe }ecs, We define

(5.8) M7(V) = {u L2 (V) : Va, [a] <m, duel’VNQy) and
re(x)*Hel 9oy e L2V N Q) Ve e,
re(x)% oLl 9oy € L2V NQ,) Ve € &,
re(x)Pt1l pe(x)PHotl 9oy € L2V N Q) Ve € €, Ve € @@c},
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We denote by - ||, and|- |, . its normand semi-norm, namely

m,B; V m,3;

m

2 . 2

||M;m,Q;V - Z| ’ |M;Z,Q;V
/=0

with
2 2
5.9 fulyyyy = D (195l g, + D 2050l g
lor|=¢ ce?
+ 3 et e ||0 o+ S0 et Be+|aﬂaau”0 mgce)
ec& ce? ecée

Note that the condition in the edge-vertex neighborh@gdcan be written equivalently as
re(x)Pe Pt p (x)Petlol 9o € L2(V N Qee).
We can then define the corresponding analytic class as fellow

Definition 5.4. We say that: € Az(Q) if u € M;(Q) for all & > 0 and there exists a
positive constant’ such that B

[l g0 < CFHRL VE > 0.

We rephrase Assumptigh3for the dihedral neighborhodd.:

Assumption 5.5.Lete € & andf, € R. We assume the following a priori estimate: There
is a constant’ such that any

ue K (),
solution of problem#.3) in V = Q, with f € K}, (%), satisfies:

. < '
(5.10) lulle, (0 = C<Hf||xge+2(ﬂg) * HUHK}se+1(Q;>>

We can apply Theorerh.9to the edge neighborhodel. We obtain that under Assump-
tion 5.5, any solutionu € Kj, (©2.) of problem 6.3 with f € Mj_,,(¢,) satisfies the
uniform estimates fod < k <n

1 k 1
65.12) 5 (3 Irsrlogull ) < o ST (S0 el )

lor|=k =0 " |al=t

|~

e
Now we consider the edge-vertex dom8&ig.

Proposition 5.6. Letc € % ande € &. Letf = {f, fe}. Under Assumptio.5,
any solutionu € Kj(€.,) of problem(5.3) with f € Mj_,(€2.,) belongs toM} () and
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FIGURE 2. Nested edge neighborhoods (section determined by azainut
anglef. = constant)

satisfies the uniform estimates foK £ <n

1 1
(612) - (D lrdtelpisledoguls )7 < oo

|al=k

e

k 1
2 2
27 (Z ||T§c+2+\a|pg;+2+\al|@3f||0;%) Tl o }
=0 o =¢ .

Proof. We mimic the proof of Theorerd.2 The proof of estimatex(12) is based on a
locally finite dyadic covering of2.. and(2.,. Define, compare with§(29-(5.29,

IA/:{XEQ D2 <re(x) <e and pe < €}
Vi={xeQ : Af—j, <re(x) <& and pee < €'},
and forp € N:
V, =27V and V,=2"V"
We check:
Qe =J V., and Q.= ]JV.

neN neEN

The estimateq.11) betweert2, and(2, also holds in the configuration df andV’ which

is similar: V andV’ arenested edge neighborhoodich do not touch any corner, see
Fig. 2.
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Sincer, is bounded from above and from below by strictly positivestants, the dis-
tancer, is equivalent tg on the reference domains: We have

= ( Z | pee(X 6e+|cu\aaA|| )5 < Ck+1{ zk: %( Z ||pce(§)5e+2+|aﬁ@3ﬂ|(2);]7, )%

|a|= =0 " lal=t

3 llpee®) 0, |-

la<1

for any reference functioa satisfying the boundary conditions &.8) andf := L.
For the same reason, we can insert powers @f the above estimate, to obtain our new
reference estimate

(5.13) <Z ||7~ BC‘HOC\ ( )ﬁe-l-\ozllaaun )é < C«k-l—l{

laf=k

| 1
3 (X Irel®y 2 pa(gpe 2 bl og )
=0

laf=¢

3 (@ pea (R0, 5, |-

o<1
The change of variables— x = 2-#% maps)’ to Vs (resp.V’ to V). We note that

Pee(X) = pee(x) and r¢(x) = 2"7¢(x).

With the change of functions
U(x):=u(x) and f(x):=Lu, whichimplies f(x) =2 f(x),

we deduce from estimaté.(3 that

1
2#5:( Z ||7" 6+\a| ( )Be+|%‘afu||z;v>2 < Ck—i—l{

o=k
kg 1
— on(Bet+2) 2 6+2+\a| Bet2+|o) | N 2
> (3 2% el celX) LR )
=0 |a|=¢
+ <2uﬁc Z [re(x Bc+\a| ce(X )Be+|a\aau”0 » )5}

la|<1

Multiplying this identity by2—#7, taking squares, and summing up overalle get the
requested estimaté.(L2). O

The estimates in pure vertex domains(i.e., close to corners but “relatively far” from
the edges) are similar to those in obtained in Theokedfior plane sectors:
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Proposition 5.7. Letc € ¥ andg = {5.}. Any solutioru € K}i(Q’C) of problem(5.3) with
fe Mg;S(Q’C) belongs taVI3(€2.) and satisfies the uniform estimates o k£ < n

(5.14) — ( Z ||TBC+\a|aau||0 o )% < Ck:+1{

|a|=k
1
— E Bet+2+]|al o
g‘ ( ||T a f”o Q/) + ||u||K1 Q/) }

|al=¢

k‘
l\D

14

Il
o

Proof. The proof is again based on the argument of dyadic partitiatis reference do-
mains defined as

V={x€Q., £ <re(x) <e} and V' ={xe, g < re(x) < €'}
and forp € N:
V,=2"V and V), =2""

Qe=JV. and @ =]V

pneN neN

We check:

We can apply the a priori estimates of the smooth case betWeamd )’ cf. (2.9 and
deduce $.14) in the same way. O

We obtain now the anisotropic regularity shift in homogareaeighted spaces on poly-
hedra :

Theorem 5.8. Let () be a polyhedron an@d = {j, f.} be a Weight multi-exponent. Let
Assumptiorb.5 be satisfied for all edges € &. Letu € H{_(Q\ &) be a solution of
problem(5.3). Then the following implications hold

(5.15a) ucK;j(Q) and fe M7,(Q) = ueMF(Q) (meN),
(5.15b) uecKy(Q) and f € Agin(Q) = uecAsQ).

Proof. The proof is a consequence of

(i) elliptic estimates in the smooth case applied betwieeand(,
(i) pure corner estimateS.(L4),
(iii) edge estimate$(11) between the pure edge domainsands,,
(iv) edge-vertex estimateS.(L2).

U

5.3. Anisotropic weighted spaces with non-homogeneous norms:or the same reason
as in the two-dimensional case, it is valuable to have atera statements tdb (159 and
(5.158 in which the a priori conditiom € Ké(Q) can be replaced by the weaker condition

u € J5(Q).
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Definition 5.9. For s = {5, 5.} andn € N, let us introduce the isotropic weighted space
(5.16)  Ji(V) = {u L2 (V) : Ya, [a| <n, Ouel?(YN$) and
re(x) T 0% € L2(VN Q) Ve e F,
re(x) 0% € L2(VN Q) Vec€ &,
re(X) M peo (X)P 1 90U € L2(V N Qee) Ve € F, Ve € @@c},
and its anisotropic companion, for> — min{mingc¢ f¢, Minecs Pe}, Cf. (4.29
(5.17) N3(V) = {u L2 (V) : Va, [a] <n, uecl’ (VN and
re(x) IO oo € LP(VN Q) Ve e,
re(x)maxiBetlarl0t goy e 1 2(Y N Q,) Ve € &,
re(x)matfetlal o}, (ymax{fetlarlOt 9oy e 12(Y N Q) Ve € €, Ve e @@c}.

We note that, like in the case &fweighted spaces, the semi-norms issued frorigj
are equivalent to the globally defined semi-norms, compéie (&.5)

(5.18) {ZH{H Bc+n}{H T’e Be+n}8a H }%7 k=0.....n

|a|=k ce?
It is useful to introduce, in the same spirit as #¥], a full range of intermediate spaces
betweerKj (€2) andJ3(£2).

Definition 5.10. Let us flag a subset, of corners and a subsét of edges, and define
J5(V; €0, &) as the space of functions such that all semi-norms

(5.19) H{H pletlol) £ H Bc+n}{H Te Be+\a|}{ H Te Be+n}aa H

cc%o ceb\%o ecéy eeé”'\o@o
are finite for|a| < n. Anisotropic spacesl;(V; o, &y) are defined similarly, replacing
in (5.17) the weightr®@ el py fetlel \whene € %, and {re, pee }mx{fetlal0} py

{7e, pee}?=!°l whene € &. The sum of the squares of these contributions|or= n
defines the squared semi-norm

|u|N”(V i60,80)
Note that withs, = &, = @, we obtain the maximal spaces already introduceé .ibgj
and 6.17):
(5.20) J(V) =V, 2,9); N;(V) =Nz (V;2,9) .

The corresponding analytic class is defined as usual:

Definition 5.11. We say that, € Bg(Q; %y, &) if u € NE(Q; %, &) for all k > ks =
— min{mincey B, Minecs e } and there exists a positive constahsuch that

< C*E Yk > kg

|u|Nk (Q%0,60)
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In accordance with5.20), we writeB;(§2) for Bs($2; @, ).

Remark5.12 (i) Choosing%, = ¢ and&, = &, we find that the spacel(2; ¢, &),
N3 (Q; ¢, &) andBg(€2; ¢, &) coincide with the homogeneous spaégs(2), Mj(2) and
Az(£2), respectively.

(i) The following relations hold between our spadgs(; 6, &) and the spacelé/%”(Q)
of Maz’ya and Rossmanr{l: 7

(5.21) JF(%%,2) =WiH(Q) if p=2, = {Bc+m} , 0={B+m}

ecé ’

In these spaces, the non-homogeneity is only relateigees Under the same condition
as in 6.21), the intermediate spacé@’ﬁi”g’(ﬁ; J) of [34, §7.3] coincide with our spaces

(€, &) if & is chosen as the same set of edges.as

(iii) Our analytic clas8;(2) coincides with the so-called countably normed sp@ﬁﬁ)
introduced by Guo in]7]: If Guo’s edge and corner exponeriis € (0,1) andg,, € (0, 1)
satisfy3;; = B + ¢ andf3,, = fc + ¢, respectively, them3;(Q) = Bs(€2).

We state the assumption fdarweighted spaces corresponding to Assump#diO for
the dihedral neighborhodd,:

Assumption 5.13.Lete € &. Letm > 1 be aninteger. Lef. € R such thatse+m > —1.
We assume the following a priori estimate: There is a consgtasuch that any

uc Jg":“(Qe) ,

solution of problem%.3) in V = Q with f € J;’erl?(Q;), satisfies:

(5.22) |u

<ol

)+||u

a1 (%) )
We then have the following anisotropic regularity shiftuksn the non-homogeneous
weighted spacel;(Q2; ¢, &) andBg(); ¢, 9):

L il

Theorem 5.14.Let () be a polyhedron ang = {5, 5.} be a weight multi-exponent. Let
m > 1 be an integer such that, +m > —1 for all edges. Let Assumptidnl3be satisfied
foralle € &. Letu € HE (0 \ &) be a solution of problent5.3) in V = Q. Then the

following implications hold
ucJj(¢,2) and f e Nj,(2%6,9) = ueNj(Q:¢,2) (n>m),

2
(5.23) uecJi' (¢, 9) and f € Bg,»(%;,4,9) = uecBs(%,9).

Proof. The proof is a consequence of suitable a priori estimatdsamalytic control in the
four types of regions in the polyhedron:
(i) Elliptic estimates in the smooth case can be applied betfgeamd(;.

(i) Pure corner estimateS.(4) are valid here: We note that in the pure corner redign
the norms irK andJ spaces, or itM andN spaces, are the same.

(iii) The edge estimated.Q6) are valid between the pure edge domdRsand(,.
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(iv) Finally, edge-vertex estimates are proved by the dyadittjpar argument starting
from the same reference domainand)’’ as in the proof of Propositios.6. The reference
estimate can be written as

(5.24) — (Z [mec{fetia | o}aauH )5 < C’f“{

|a|=k " . s
- max{6e+2+\a [,0} qa
S (X O )
£=0 la|=¢ L
maxy Be+| Q 2
+< S [restaeriel. 0 e u||w/> }

|a|<m

Sincer. and(r.)~! are bounded on the reference domains, we can

e replacere by pee
e insert powers of

in the previous estimate, thus obtaining

1
(Z [rBetlal pmax{fetial, 0}8°‘u|| )2 < Ck—H{

lo|=k
k 1
1 ~. 2 3
D g (2 ezl perlest O, )

(=0 " |a|=¢ 1
o max{Pe+|a Q 2
n < N el ppaxtsetlal. o} u||w/) }

la|<m

Owing to the homogeneity of the weights with respecttdhe dyadic partition argument
yields the desired edge-vertex estimate, which allows telcmle the proof of the theorem.
O

Remark5.15 (i) If we replace Assumption.13 by Assumption5.5 for edgese in the
flagged subsef;,, we can prove, instead db 23, the implications
ucJg'(¢,6&) and f € Ng (%%, 6) = ueN;(%E, &),

2
(5.25) uecJi' (¢, &) and f € Bgo(%4,&) = ueBg(¢,&).

(i) Under Assumptiorb.13 the implications in the maximal hon-homogeneous spaces,
i.e., withé, = & = o, are also true:

uecJi(Q) andf e N3 ,(Q) = ueNzQ),

5.26
(5.26) ucJg(Q) and f € Bg,2(Q2) = ueBg().

If Bc > —= for any cornerc, the statement$(23 and 6.26) coincide, since in this case
the spaceslﬁ (¢, 2) andJ;'(Q2) are the same (consequence of Hardy’s inequality). In
the general ca36(26) can be proved by two different methods:

e Deduced from %.23 by an argument of corner asymptotics (at each corner, the
asymptotics moduldj'(€2; ¢, @) contains only polynomials): For instance when



34

m = 1,if 5. € (=2, —3) for all cornersc, any element ofi € J;'(Q) splits as
u=uc+we in Q, with uelf(Q¢;2), weC",

and we can apply5(23 locally near each corner, to each functign
e Directly proved by the same method as for Theofev, starting with the refer-
ence estimate far > m

1
< Z ||,r,max{6e+|ou_\ O}aauH )2 < Ck:-l—l{

|a|=k A . ,
3 - ( 3 |lrpestBeratiol 0}3afH0 w)
=m—-1 " |a|=¢ 1
( Z ||,rmax{ﬁe+\a| O}aaAHO V/) }

|al=m

14

instead of §.24): The J;. norm present ing.24) is replaced here by the corre-
sponding semi-norngf. Corollary 1.2

6. ANALYTIC WEIGHTED REGULARITY OF VARIATIONAL SOLUTIONS

In this section, we investigate how Theor&m in the polygonal case, or Theorehs8
and5.14in the polyhedral case, apply to solutions of variationalkjpems.

Let Q be a polygon or a polyhedron. In coherence with the previeaans, we con-
sider a sesquilinear fora homogeneous of ordérand with constant coefficients acting
on vector-valued functions withh components

(6.1) (u,v :ZZZ Z/ ag; Oy uj(x) 07i(x) dx,
i=1 j=1 |a|=1|y|=1

and a subspac¥ of H'(Q)Y =: H'(Q) defined by essential boundary conditions on the
sidesI’s of Q2

(6.2) V={ucH'(Q): Du=0 on T, sc.7}.
We assume that the formis coerciveon V:
3, C >0, YueV, Rea(uu)>cdul,  —Clul

Standard examples of such sesquilinear forms are the gtddren for scalar functions

avy(u,v) = /QVu(x) - Vo (x) dx

and the stress-strain sesquilinear forms in linear eigstic

Aela = /Qa(u)(x) :%(x) dx,
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wheree is the symmetrized gradient tensor ane- A=, whereA is a material tensor with
the usual symmetry and positivity properties. Variatisgdced/ on whichay is coercive
can be defined by any subs#t, of the set of sides”:

V = {uecH(Q) : u‘rs =0 Vse p}.
As for a., we can take foM any space of the type

V={uecH Q) : u‘rs:O Vs €.p, u-n

I‘SZO Vs € . Sr
and uxn}FSZO Vs € v},

wheren is the outward unit normal vector iQ, and.¥p, -, and.¥y are disjoint subsets
of .. As a consequence of Korn’s inequalidy,, is coercive on such spac¥s
We consider the variational problem

(6.3) Find uweV suchthat Yv eV, a(uv)= / fvdx.
Q

Having the analytic shift results of Theorer@gl, 5.8 and5.14 at hand, the issue is to
find suitable exponents so that

(1) A5(92) or Bg(Q2) are compactly embedded H'(2), — in order to be useful in
error analysis for example.
(2) Variational solutionss with sufficiently smooth right hand sides beIongKg(Q)

or J5(9).
Condition (1) of compact embedding is satisfied on two- anetfdimensional domains

for all 5 < —1 (this means that all components and 3. are< —1). This is the reason
why we exhibit weights of the formi = —b — 1 with b > 0 in the statements below.

6.1. Regularity of variational solutions in polygons. Let (2 be a polygon with vertices
c € ¢. The standard Sobolev spdd&(2) coincides with)! | (), see 8.4). From Remark
3.3(ii), we know that for the comparison df , (Q) with K*, (Q2) we are in a critical case,
namely a function: € H'(2) neither has point values at corners nor satisfies € L%(2)
in general (seed]). There holdK!,(Q2) c JL,(©2) c KL, .(Q) forall e > 0.

Taking the essential boundary conditions into accountdkeéine the variational space
V c H'Y(Q), one will sometimes find tha¥ is embedded iK', (Q2). This happens in
particular if each corner lies on at least one side on whicltBlet conditions are imposed.
In the general case, one will just have ¢ K',, (Q2) for all ¢ > 0. Necessary and
sufficient conditions for the embeddingc K' | () are discussed irl3, Ch. 14].

The analytic regularity shift3.12 in classesA;(€2) can be applied to variational so-
lutions with well chosen weight exponerits< —1 in caseV C K' (Q), whereas in the
general case3(13h can be applied: For convenience, we write the weight expoinghe
form

B=—1—b, with b= (b)

ce?

Theorem 6.1. Let (2 be a polygon. We assume that the farms coercive orV, and that
V c K!,(Q). There exists a positive numkigt?, a, V) such that the following implication
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holds for any solutiom of the variational problen{6.3):
(6.4) IfVee?, 0<b.<b(aV)thenfecA , () = uecA_, ().

Proof. Invoking the general theory of corner problems in the varal setting, we know
that there exists a maximal positive numbg®, a, V) such that

(6.5) Ifvee?, 0<b.<b(Q,aV)thenfeK’, () = uvekK? (Q).

The proof of this essentially goes back to Kondrat'2@|[ see also 13, Ch. 10] for more
details on the application of Kondrat’ev’s technique toiatonal problems. Thert(4) is
a consequence 08(12h applied fors = —b — 1, and 6.5). O

Remark6.2 Let o(2(.) denote the spectrum of the “Mellin symbad¥l, of the system
(L, Ty, Ds)* at the cornet (see P5, 26)): In short, the complex numberbelongs tar (2L)

if there exists a non-zero functiam of the form}y(6.) solution of the homogeneous
problem @.2) (i.e., withf = 0) on the finite coné).. Thenb((2, a, V) is the supremum of
the numbers$ > 0 such that

(AeC:0<ReA<b}No@A)=0 VceE.

In (6.4) and 6.5), we have for the sake of simplicity chosen to write a comnsimete for

all corner weight exponents. The regularity question béaagl, it is clear that we could
have defined a bouridc, a, V) separately for each corner and then replaced the conditions
in (6.4) and 6.5) by the inequalitie® < b, < b(c, a, V) for all cornersc € % In this case,

we can take fob(c, a, V) the smallest positive real part of the elements @.).

Example6.3. Let us consider the gradient foran= ay on scalar functions. The associated
operator is the Laplaciai. Letw. be the opening of2 near the vertex and denote by
I':, i = 1,2, the two sides of2 containingc.
(i) For the Dirichlet problem, we haw¢ c K' ,(Q2) and
1y s 1}
b(§2,av, Hy) = min {wc :

(ii) In the mixed Neumann-Dirichlet case, if at all corners Ditét conditions are imposed
on at least one side containimgwe still haveV ¢ K' (Q) and

b(Q2,av, V) :min{min{l}, min{ T }},

cECp We cEC M 2CUC

where%p is the set of Dirichlet corners (Dirichlet conditions on both sidds)) and %),
the set of “Mixed” cornerg (Dirichlet conditions on only one sidé).

If we do not haveV C K',(9) or for more general data, it is convenient to start from a
regularity result inJ-weighted spaces.

Theorem 6.4. We assume that the forais coercive orV. There exists a positive number
b*(Q2,a, V) such that the following implication holds for any solutiorof the variational
problem(6.3):

(6.6) If Vee?, 0<b.<b'(2,a,V) thenfeB_,. () = ueB_,_1(9).

19 is also called “operator pencil” generated by the systén¥s, Ds).
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Proof. The proof relies on regularity results in spaces with nombgeneous norms: By
a modification of Kondrat'ev’'s method, se&l| 26] and [L6], one can prove that for any
m > 2, there exists a maximal numblgy, € (0, m] such that we have the implication

(6.7) If Ve €€, 0<bc<by, thenfeJ™2(Q) = uel’ (Q)

for variational solutions. The sequen(g,) is stationary forn > m, large enough, and
b*(Q2,a, V) is given byb,,,. A complete proof in this framework is presentedi,[Ch. 13].
Then 6.6) is a consequence 08130, and 6.7). O

Remark6.5. Forb € (k, k + 1) (with a natural numbet), formula @3.10 yields
B—b—l(Qc> = A_b—l(Qc> ©® (Pk)N (C c (f)

Remark6.6. The numben* (€2, a, V) can be characterized in a similar way &8, a, V)
(cf. Remark6.2). For each cornee, the spectrunw(2(.) has to be modified concerning
its possible integer elements (condition of injectivity aado polynomials L6, 13]). This
defines a possibly slightly different set, denotedbf?l.) andb*(€2, a, V) is the supremum
of the number$ > 0 such that

{AeC:0<ReA<b}No.(A)=92 VceF.

Example6.7. Let us come back to the gradient foem= ay on scalar functions. Fany
mixed Neumann-Dirichlet problem, including the pure Neamaroblem, Theorerfi.4is
valid and we find

b*(Q,av,V):min{ min {l}, min{ T }},

cctpUen \wel " ceen 2w,

where%) is the set of Dirichlet corner%’y is the set of Neumann corners, ang; the
set of “Mixed” cornersc. Thusb*(€2, ay, V) will always be greater thalj For the pure
Dirichlet or pure Neumann problem on a convex polygon, it b greater thar, and for
some triangles even greater tharbut never greater theah

Remark6.8. Theorem6.4 has to be compared with earlier results by Babuska and:Guo
The Laplace operator with non-homogeneous mixed boundamgittons is considered
in [3, 4]; more general scalar second order operators with anatgifficients are ad-
dressed in{] and finally the Lamé system of linear elasticity with noorogeneous
mixed Dirichlet-Neumann boundary conditions is invesigghin [18]. These results are
at the same time more general than Theofrsince they address non-homogeneous
boundary conditions and variable coefficients, but moré&iotise since they do not in-
clude a full class of coercive second order systems with earapproach. In sectiohwe
explain how our technique of proof generalizes to non-hcenegus boundary conditions
and variable coefficients. Since the results so obtainedatrentirely new, we try to be as
concise as possible, and we will only sketch the proofs. iRet@roofs and more general
results will be published in1[3, Part I1].

2Whenb € (0, 1), our spacd_,_, () coincides with their spacBj () for f =1 —b.
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6.2. Regularity of variational solutions in polyhedra. Let(2 be a polyhedron with edges
e € & and cornerg € ¥. The comparison between the variational spdand weighted
spaces<;(Q2) andJ5(2), cf. (5.4) and £.16), is still related with the multi-exponemnt, =
Be = —1 and essential boundary conditions: We have

JL(Q) = HY(Q)
and, in the Dirichlet case
Ho(Q2) € KL, ().
Moreover, the intermediate space
WL (€, 0)={uecH(Q) : ri'uel’(Q) VeceF},

also coincides withi!(2) by virtue of Hardy’s inequality.
The analogues of Theorersl and6.4 hold for polyhedra. For convenience, we con-

sider multi-exponents of the form
B=—1—-b with b= (b)., U (b)

ecs
The issue is twofold:

(1) Verify Assumption$.50r 5.13 which are closed range properties
(2) Give conditions for variational solutions to belong pmeesKj(€2) or J;(1).

Lete € &. Denote by, the wedge which coincides witf in a neighborhood of
the edgee and by, the plane sector such tha, = K. x R. A minimal condition for
Assumptionsb.5or 5.13to hold is an injectivity condition for the Fourier symbol thfe
system(L, Ty, Ds) on the plane sectof.. As a side remark, we mention that it can be
shown that in the variational case, such a condition isfeadigor all 5. < —1 with the
exception of a discrete set, ség[Part Ill].

As a matter of fact, the condition which ensures the regwlaf variational solutions
impliesAssumptions.50r 5.13 Hence we focus on conditions for the regularity. There
are not so many results on regularity for elliptic boundaalue problems in polyhedra. Let
us quote P8, 29 for early results in general-dimensional polyhedral domains in spaces
of K type, [L6] in n-dimensional polyhedral domains in standard Sobolev space more
recently B4] in 3-dimensional polyhedral domains in spadgs?’, &), cf. Remark5.12
(i) .

The latter results, especiall§4, Thms. 7.1 & 7.2], fit exactly to complement our results,
namely in the form%.25. For this reason we formulate the following theorem with th
assumptions of34], that is mixed Dirichlet-Neumann boundary conditions &&cond
order systems:

V={ueH(Q):u|, =0 s}

Let & be the set of edgaswhich are the sides of facég with s € .¥,. We still consider
sesquilinear forms( 1).

Theorem 6.9.We assume that the formis coercive orV. There exist two positive numbers
by (€2, a, V) andbg (£, a, V) such that the following implication holds for any solutioof
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the variational problent6.3):

(6.8) If Vee ¥, 0<b. <bg(2,a,V) and Veec &, 0<be < bs(£2,a,V)
then f € B—lg—i—l(Q;(ga go) — uc B_b_l(Q;(g,@@(]).

Proof. First Theorem 7.2 0fj4] guarantees that the Assumptibrbis satisfied withg, =
—be + 1, with b, satisfying 6.8). Second Theorem 7.1 084] show the regularityu €
I, (9 F, &) with b satisfying 6.8). Hence the conclusion follows from Theorémi4
(see Remark.15. O

Remark6.10 Let o(2.) ando(2le) denote the spectrum of the Mellin symit] and2l,
of the systen{ L, T, Ds) at the cornek and the edge, respectively. Thehs(2,a, V) is
the supremum of the numbérs> 0 such that

{AeC : 0<ReA<Db}No(A) =92 Vecd,
andby (2, a, V) is the supremum of the numbeérs- 0 such that
{AeC: —3<ReA<b—-1i}no@A)=92 Vce?.

Remark6.11 Let us defineby (2, a, V) as the supremum of positivesuch that for all

, —% < ReA<b— % the condition of injectivity modulo polynomials is satediat the
cornerc. Thenreplacing« (€2, a, V) by b%.(€2, a, V), we obtain the condition which ensures
the analytic regularity in the maximal clasd®s;,_;(2) = B_,_(€2; @, @) cf. Definition
511

7. GENERALIZATION TO NON-HOMOGENEOUS BOUNDARY DATA AND VARIABLE
COEFFICIENTS

The fundamental estimaté.() in the smooth case allows non-homogeneous boundary
data and variable coefficients, and the analytic regulaegylts can therefore be extended
to cover this more general situation. But the difficulty tosinis of a quite different level
for two-dimensional and for three-dimensional domaing(ttuthe anisotropy in the latter
case). Here we mainly address two-dimensional domains i@edgly some orientations
for the treatment of three-dimensional domains at the enldissection.

So, let us consider the general boundary value problemnstisopolygor:

Lu = f in €,
(7.0 Teu = g, only sev,
Dsu = hy onTly se.7,

where the operators = L(x;0x), Ts = Ts(x;0x) and Ds = Ds(x) may have variable
coefficients and lower order terms.

7.1. Trace spaces.First, we have to introduce the trace space&pf(2) andAs(2) on
each sidd’; of ). Let us choose a sideand denote by andc’ its two ends. We consider
a covering ofl’s by two open segmenisandl” so that

cel,d¢Tl and eI, cgl.
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We note that we can take:= r. as the tangential variable alofg Fork € N, o € (0,1)
and~y € R we define the weighted spaKé*"(F) by

KEo (D) = {g € KA(T) : [ #++0kg| | < oo},

where the Sobolev-Slobodeckii semi-norni_ ., is defined by

ol? _/F FMdrdf.

| |0,F - | — 7|12

For+' € R, we define similarlyKﬁ,“’(F’) using now the powers of. as weight. For
7 = (v,7') we define the following global weighted space on the $ide

KET7(Ts) = {g € Liee(Ts) = gf € KET(D), g, € KEF7 (1)}
Then (see e.g2p, §6.1.1]), for any multi-exponertt = (5¢)cee,

K /5 (Ts) s the trace space ofKj'(Q) onT.

Here, of course, we understand that we take the weight expefiet+ % andge + % at the
two endsc andc’ of I's.
The analytic classes, (I'), A,/ (I'), andA, (') are defined accordingly:

A (D) = { ge (KMD) : 30 >0,YmeN, [ marg|, < Cm+1m!},
m>0
—we recall that| - . is theL?(T")-norm, and
AZ(FS> = {g S leoc(rs) : g‘r < A“/(F>7 g I < A“{,<F/>}'

The trace spaces dfweighted spaces can be defined similarly, see the discuisgib2,
Rem. 3.20] and13, Ch.11]. Let us just give the definition of the correspondamglytic
class, locally

B,(I") = {g € ﬂ JMr) + 3C > 0,Ym > —y — 1, [ oyl < Cm+1m!},

whereJ?(I') = {g € Li, (') : ¥"*™dlg € L*(I), j =0,...,m}. Globally we set

Bl(FS) ={g € leoc(FS) : g‘p < B'y(r)7 Il € B“/’(F/)}-
7.2. Weighted spaces with homogeneous normale give now the generalization of the
first part of Theoren8.4 to non-homogeneous boundary conditions and variable eoeffi
cients.

Theorem 7.1. We assume thak, 7, and D have analytic coefficients ovét and I'
(L and T, may have lower order terms), and thffy, D} cover L at each point inl'
(denote byN, the number of Dirichlet conditions). Lgtbe a weight multi-exponent. Let
u € H2_(Q\ %) be a solution of probler(i.1) with

loc

(72a) feKj,(Q), g €Ky ()™, and h, € KI72(IT)™  (neN).
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Then the following implication holds

(7.2b) ueKy(Q) = uecKj?Q).

Likewise, if

(7.3a) feRg2(), 8 € Asian(ls)V ™™, and hy € Agiy)(T)™
then the following implication holds

(7.3b) ueKi(Q) = uchAyQ).

Proof. (SketchWWe will prove local estimates with analytic control of dexiives near each
corner. Pick up a cornar. We sets := .. We can assume without restriction tleat 0
andQ. = QN B(0,1).

(i) Case of homogeneous operators with constant coefficiertis. idea of the proof is
the same as in the “simple case” whgn= 0 andh = 0 (Theorem2.2): We start from
reference estimaté. (1) on the domain® andV’ defined in R.7):

k—2 2
1 1/~ ~ -~ ~
(7.4) il ; < A{ > (Bl D (Il oy + Il ) ) + 1G5 }

=0 s=1
with
(7.5) f:=Lu, g =74, and h:= D
Herel's, s = 1, 2 are the two sides df near the vertex = 0, and
I =0V NT.
Then we splilj|§sﬂz+%;fé and||ﬂs||£+%;fg into homogeneous components and insert weights

like in (2.10. We then perform the change of variables+ x = 27#x for anyu € N.
Definingu(x) := u(x) we have

(7.6) F(x) = 27f(x), 8(X)=27"g,(x), and hy(x) = hy(x).

Like in the proof of Theoren?.2, we find the common facta*(®*—Y) on every term. We
multiply the resulting inequalities by #*~1 | take squares and sum overc N to find
finally

1
(7)o, gA'fH{

k—2 2
1
- B+2+|al o

— s—=

with I, = 0Qc N L.
(i) Case of non-homogeneous operators with variable coefficidlow

L= L(x;0y), Ts="1Tix;0x) and Ds= Ds(x).
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We perform the same dyadic partition and for eac N, the same changes of variables
X — x = 27#x. Definingu(x) := u(x) we still have {.6) with, instead of 7.5):

f:=I't, g :=T"u, and hy:=D"G with
L' =272 L(27M%, 2105),  TU:=27MTy(27"%,2"%), and DY := Ds(27"X).

We note that whem — oo, the operatord* and7} tend to the principal parté andT’,

of L andT; frozen at0 respectively, and)¥ tends toDs(0) =: D,. As a consequence
of the ellipticity and covering properties of the boundaajue systenfL, T, D,) and the
analyticity of coefficients, estimate$.@) holds with one and the same constanthen

1 is large enough. For the finitely many remaining valueg oive use the ellipticity of
(L*, TF, D¥) and the analyticity of its coefficients. As a result, we findosgibly larger
constantA for which (7.4) holds for everyu € N. Then we insert the weights, scale and
sum with respect te as in the proof of Theorer.2, and we deduce that (/) still holds

in the case of variable coefficients and lower order terms.

(iif) With the local estimates/(7) at hands in all cases, we finish the proof of the analytic
shift result as before for Theore®. O

More details about the arguments of this proof can be fourjd3h In [14, Ch. 2] for
the local estimate7(4) in smooth domains with general data on the boundary andari
coefficients, in L3, Ch. 6] for model problems in cones with general data on thenGary,
and in [L3, Ch. 7] for variable coefficients in general corner domains.

Since Kondrat’ev’s results?p] apply to general operators with variable coefficients,
Theorem6.1 can be generalized to coercive problems with analytic coeffts.

7.3. Weighted spaces with non-homogeneous normd.he generalization to non-zero
boundary conditions goes through similarly with weightpdes) and analytic classes
B. However, the consideration of lower order terms and végiabefficients requires the
modification of some of the estimates. For the sake of sintyliet us consider a local
model problem as in 2)

Lu = f in KnW/,
(7.8) Tiu = 0 onl;NW/, i=1,2,

Diu = 0 onI,nW, i=12,
where L = L(x;dy) is a second order elliptic system with analytic coefficiens)V".
We assume for simplicity that the boundary operattirand D; are homogeneous with
constant coefficients. We assume that fo= 1,2 and for each poink, € I'; N W’

the systemL(xq; dy) frozen atx, is covered by the boundary operatdif, D;). As a
consequence of the proof above, Theotzfhgeneralizes: We have the estimate

k—2

(7.9) % ( Z ||7,6+\a|03u||§;w>5 < Ck+1{ ZO% (Z ||TB+2+‘Q|03LU||§;W,>§

|a|=k l= |ar|=¢
+ > Izl -

la|<1
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Now the question is wether it is possible to generalize insdu@me way Theorerd.6 on
non-homogeneous weighted norms in this new framework ek analytic coefficients.
The correct answer is that we have to modify estimatgg):

Proposition 7.2. With the above assumptions dn any solution of the boundary value
problem(7.8) Let 5 > —2 be a real number. Let € J}j(W’) be a solution of problem
(7.8). Then there exists a constafit> 1 independent afi such that for all integek: > 2,

k—2

(7.10) % ( 3 ||rﬁ+|a\agu||§;w>§ < C’““{ % (Z ||r6+2+\alagLu||§;W,>§

|| =k =0 " |a|=¢
> Il ogully b

la|<1

Remark7.3. The last term in the right hand side is nothing but\J}s(W,). Estimates{.9),
(7.10 and @.15 (for m = 1) are very close to each other. The main groups of terms with
factorial coefficients are identical. The difference isrbby theL? weighted norm ofu

in the right-hand side: In7(9), this term is||r?ul|o.y/, in (2.15 for m = 1, it is absent,
and in (7.10, it is equal to||r*+'ulo;1- . In applications to variational problems H',

this makes an important difference, since for= —1 — b with b € (0, 1), any function

u € H'(W') satisfies|r?+'ul|o.,/ < oo, but not||r’ul|o,: < oo in general.

Proof. Let us introduce an intermediate domai’
WCWwW'cw'
We first note thatl ;(W’) C Kj,,(W’) and that we can use the estimate in homogeneous

norms {.9) with 5 + 1:

(7.11) — ( Z ||TB+1+|a\aau||0 W>é < Ck—i—l{

|al=k

k‘
l\D

1 (03 (0% % (0% 163
S (2 gy ) Y g

£ |a|=¢ la<1

i
o

Let us recall that. denotes the principal part @f frozen at0. Using the analyticity of the
coefficients ofL, we can prove that there holds

1
(7.12) - (Z 2o (u = Lu)l; ., ) <
|a|=¢
42

B! Z ( Z ||frﬁ+1+\a|aau||0 w~> '

|al=k
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Then we use estimat@.(L5 in non-homogeneousorm for the operatof, with m = 1

(7.13) — ( Z ||7“5+|°“8°‘u|| W”)% < Ck:+1{

|a|=k
1 (0% (0% % (03 (0%
2 (2 Irelgepally ) 4+ D ozl -

=0 " |a|=¢ lo|=1
Using the straightforward inequality
Dt ATl I S S it TR N [ anre AT/

lal<1 la|=1 lal<1

k—2

together with a triangular inequality abu = Lu + (Lu — Lu), we deduce{.10 from
(7.1D—(7.13, with a new constant’ independent ok. This ends the proof. O

Remark7.4. Proposition/.2admits a natural generalization, which can proved in a aimil
way: If m > 1is an integer and is a real number such thgt+ m > —1, any solution
u € Ji'(W') of problem {.8) satisfies the estimates for all integer m + 1,

(7.14) = (anﬁﬂa@aun )égc’fﬂ{ kf (anﬁﬁwlaaLunow,)l
|a|=¢

lo|= Z:m—l

+ || Lu

+ ||u

J'gL(W/) }
To end this subsection, let us briefly indicate how thingskifor variational solutions.

Theorem6.4 can be extended to more general variational problems witiable coeffi-
cients and non-zero boundary data

v

(7.15) Find u €V suchthatvv € V, a(u,v) :/fv dx—i—Z/ g, vdr.
se.s

Theorem 7.5. Let a be a sesquilinear form of degreewith analytic coefficients ofe,
coercive on the spacé defined by the Dirichlet conditionS;u = 0 onT, forall s € ..
There exists a positive numbir((2, a, V) < 1 such that the following implication holds
for any solutionu € V of the variational problen{7.15 and anyb, 0 < b < b;(2,a, V):

(7.16) feB_,11(Q) and g, € B, 1po(ls)V ™™ = ueB_,4(Q).
We refer to [L3, Ch. 13 & 14] for more results and proofs.

7.4. Three-dimensional problems. Whereas the consideration of non-zero boundary data
can be performed in three-dimensional polyhedral domasnggusimilar tools as for zero
boundary data, the consideration of variable coefficient®ore delicate. There are two
situations:

(1) If coefficients areonstant in the direction of each ed@®it possibly variable in the
transverse direction) the estimat@s and (7.10 can be extended to edge neigh-
borhoods, and anisotropic estimates can be proved, basbe same assumptions
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as in sectiord. This implies in particular the generalization of the réswif sec-
tions4 and5 to problems witlconstant coefficien{®ot necessarily homogeneous)
in polyhedra. This also implies the generalizatiomtsymmetric problems

(2) If coefficients are not constant in the direction of eddbe level of difficulty in-
creases. One would need to go back to the primitive techrofastimating com-
mutatorscf. [13, Lemmas 1.6.2 & 2.6.2], which leads to the introduction afms
of Sobolev-Morrey type.

8. GENERALIZATION TO OTHER OPERATORS AND SYSTEMS

First we may easily extend the results of this paper to trasson problems, namely
problem like 6.3) where L has piecewise constant coefficients (hence some transmissi
conditions have to be imposed at the common boundary of thelsmains). Indeed an
estimate like {.1) holds for such problems and is proved irB] Theorem 5.2.2]. Second,
higher order differential operators likk* may be treated in a similar manner. Finally. our
method may be used for the Stokes system (8&gfpr two-dimensional results). Note
that the Maxwell system is more delicate: Whereasanvexpolygons or polyhedra the
natural variational space is containedHh and all our results apply, the presencenoh-
convex corners or edgésduces the appearance of nbi-fields which require a specific
treatment, se€lf] in dimension two.
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