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ANALYTIC REGULARITY FOR LINEAR ELLIPTIC SYSTEMS IN
POLYGONS AND POLYHEDRA

MARTIN COSTABEL, MONIQUE DAUGE AND SERGE NICAISE

ABSTRACT. We prove weighted anisotropic analytic estimates for solutions of model el-
liptic boundary value problems in polyhedra. The weighted analytic classes which we use
are the same as those introduced by B. Guo in 1993 in view of establishing exponential
convergence forhp methods in polyhedra. We first give a simple proof of the weighted
analytic regularity in a polygon, relying on new elliptic a priori estimates with analytic
control of derivatives in smooth domains. The technique is based on dyadic partitions near
the corners. This technique can be successfully extended topolyhedra, but only isotropic
analytic regularity can be proved in this way. We therefore combine it with a nested open
set technique to obtain the three-dimensional anisotropicanalytic result. Our proofs are
global and do not rely on the analysis of singularities.
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INTRODUCTION

Elliptic boundary value problems in domains with corners and edges have been investi-
gated by many authors. Let us quote the pioneering papers of V. A. Kondrat’ev [21] and
of V. Maz’ya and B. Plamenevskii [24, 25, 26, 27]. In these works, the regularity of the
solution and its singular behavior near edges and corners isdescribed in terms of weighted
Sobolev spaces. Besides their own theoretical interest, these results are the basis for the
convergence analysis of finite element approximations of the boundary value problems.
But whereas these classical results allow to prove optimal convergence estimates for the
h version or thep version of the finite element method, they are not sufficient for proving
the (numerically observed) exponential convergence rate of thehp-version of the finite el-
ement method. Indeed, as has been shown for two-dimensionalproblems by I. Babuška
and B. Guo in [2, 3], the convergence analysis of thehp-FEM requires the introduction of
weighted spaces with analytic-type control of all derivatives, so-called “countably normed
spaces”. Babuška and Guo proved corresponding regularityresults for several model prob-
lems [2, 3, 14, 17].

In three-dimensional domains, as soon asedgesare present, thehp-version introduces
anisotropic refinement, performed only in the direction transverse to the edge. Thus the cor-
responding weighted spaces have to take this anisotropy into account. In [15, 16] Babuška
and Guo have started proving such estimates in a model situation.

For three-dimensional polyhedra (containing edges and corners) Guo has introduced the
corresponding relevant spaces in 1993 [13]: The anisotropy along edges has to combine
with the distance to corners. Since that time, the proof thatthe regularity of solutions
of elliptic boundary value problems with analytic right hand sides is described by these
spaces has been an open problem, even for the simplest cases of the Laplace equation
with Dirichlet or Neumann boundary conditions. In the erroranalysis ofhp-FEM, such
regularity estimates have been taken as an assumption [13, 18, 32].

In this paper, we first give a simple proof of the 2D result on polygons, for Dirichlet and
Neumann conditions, using a dyadic partition technique. Then, relying on a nested open set
technique, we prove anisotropic regularity along edges in the framework of the anisotropic
weighted spaces introduced and used in [6, 7], but now with analytic-type estimates for
all derivatives. Combining the previous two steps with a 3D dyadic partition technique at
polyhedral corners, we obtain the desired analytic weighted regularity in a 3D polyhedron.

We use two types of weighted spaces of analytic functions. The first type is con-
structed from weighted Sobolev spaces of Kondrat’ev type. These spaces with “homoge-
neous norms” are suitable for the description of the regularity in the presence of Dirichlet
boundary conditions. For Neumann conditions, a new class ofweighted analytic function
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spaces, constructed from Maz’ya-Plamenevskii-type weighted Sobolev spaces with “non-
homogeneous norms”, has to be used.

It is important to notice that the above spaces naturally contain the singular parts of
solutions, and give an accurate account of their generic regularity. Thus, in contrast with
investigations such as [19], we do not need to address separately vertex, edge and edge-
vertex singularities. Our estimates cover regular and singular parts at the same time.

Our proof of analytic regularity estimates is modular in thesense that it starts from low-
regularity a-priori estimates on smooth domains and proceeds to singular points, edges,
and finally polyhedral corners by employing the two techniques of dyadic partitions and
nested open sets. In order to avoid drowning this clear structure in too many technical
difficulties, we mainly restrict ourselves to the situationof homogeneous elliptic equations
with constant coefficients. Generalizations to operators with lower order terms and vari-
able coefficients will be briefly indicated. They will be discussed in more detail in our
forthcoming book [9].

PLAN OF THE PAPER

In section1 we quote from [10] an elliptic a priori estimate with analytic control of
derivatives. This estimate improves the readability and efficiency of classical proofs of
analytic regularity in smooth domains as can be found in [31, 30, 23]. We refine this
estimate in view of tackling problems of Neumann type. In section 2, we make use of a
dyadic partition technique to construct weighted analyticestimates in plane sectors. This
technique is a powerful tool to prove what we callnatural regularity shiftresults near
corners. This expression means that from two ingredients, namelybasicregularity, i.e. a
certain weighted Sobolev regularity of low order, of thesolution, andimprovedregularity,
i.e. high order weighted Sobolev regularity or weighted analytic regularity of theright hand
side, one deduces improved regularity of the solution. The technique of dyadic partitions
has been used in a similar framework in [4] for weighted Gevrey regularity. It has been
employed earlier for domains with edges [26] and for the Laplace operator on a polygon
with non-linear boundary conditions [20]. In section3, we combine the local estimates to
obtain the analytical regularity shift in polygons.

In section4 we start the three-dimensional investigation with estimates along an edge.
We introduce anisotropic weighted spaces in which derivatives along the direction of the
edge are less singular towards the edge. Under the assumption of a certain local a pri-
ori estimate of low order at the neighborhood of an edge point, we prove local analytic
anisotropic regularity shift along this edge, by combiningdyadic partition technique and
the classical (and delicate) tool of nested open sets. In section 5, we treat polyhedral cor-
ners. Relying on suitable definitions of various families ofweighted spaces with anisotropy
along edges (as in [29]) we are able to prove the analytic regularity shift for polyhedra by
dyadic partitions around each corner of a polyhedron.

In section6, we combine our analytic regularity shift results with known estimates giv-
ing basic regularity of the solution for the case of problemsin variational form. On poly-
gons, we use for this purpose Kondrat’ev’s classical regularity results in weighted Sobolev
spaces, and on polyhedra, we use recent regularity results by Maz’ya and Rossmann [29].
In this way, we finally obtain the weighted analytic regularity of variational solutions in the
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right functional classes of [13]. For polygons, we thus prove again in a different and sim-
pler way results which were first established by Babuška andGuo [2, 14]. For polyhedra,
the results are new.

We conclude our paper in sections7 and8 by discussing various generalizations of our
results. For our proofs, we choose in this paper the simplestpossible framework of second
order homogeneous systems with constant coefficients and zero boundary data on domains
with piecewise straight or plane boundaries. In dimension 2, it is a mere technicality to gen-
eralize these proofs to the case of second order elliptic systems with analytic coefficients
and non-zero boundary data. In dimension 3, the possible variation of coefficients along
edges introduces more serious complications and would require to estimate commutators
in a systematic way as in [10, Lemmas 1.6.2 & 2.6.2]. In comparison, the generalization to
homogeneous transmission problems with constant coefficients on a polyhedral partition
would be much less difficult. Whereas the Stokes system couldbe considered similarly,
things are different for regularized harmonic Maxwell equations, for which it is necessary
to detach the first singularity if one wants to obtain a valuable result, see [11] in dimension
two.

We denote byHm(Ω) the usual Hilbert Sobolev space of exponentm, by ‖ · ‖m; Ω and
| · |m; Ω its norm and semi-norm. TheL2(Ω)-norm is denoted by‖ · ‖0; Ω or simply by‖ · ‖Ω .
Boldface letters likeHm(Ω) indicate spaces of vector functions.

1. LOCAL ANALYTIC ESTIMATES IN SMOOTH DOMAINS

The starting and key point is a local analytic estimate in smooth domains that is proved
by using nested open sets on model problems and a Faà di Brunoformula for local maps,
see [10, Theorem 2.7.1] for details.

Theorem 1.1. Let Ω be a bounded domain inRn, n ≥ 2. Let Γ be an analytic part of
the boundary ofΩ. Let L be aN × N elliptic system of second order operators with
analytic coefficients overΩ∪Γ. Let{T,D} be a set of boundary operators onΓ of order1
and0, respectively, with analytic coefficients, satisfying theShapiro-Lopatinskii covering
condition with respect toL onΓ. Let two bounded subdomainsΩ̂ = U∩Ω andΩ̂′ = U ′∩Ω

be given withU andU ′ open inRn andU ⊂ U ′. We assume that̂Γ′ := ∂Ω̂′∩∂Ω is contained
in Γ. Then there exists a constantA such that anyu ∈ H2(Ω̂) satisfies for allk ∈ N, k ≥ 2,
the improved a priori estimates (“finite analytic estimates”)

(1.1)
1

k!
|u|

k; Ω̂
≤ Ak+1

{ k−2∑

ℓ=0

1

ℓ!

(
|Lu|

ℓ; Ω̂′+ ‖Tu‖
ℓ+ 1

2
; Γ̂′+ ‖Du‖

ℓ+ 3
2
; Γ̂′

)
+ ‖u‖

1; Ω̂′

}
.

For boundary value problems of Neumann type, it will be convenient to replace in the
right-hand side of (1.1) theH1-norm by theH1-semi-norm. WhenL, T andD are ho-
mogeneous with constant coefficients, this version is a consequence of the previous result,
obtained by a simple argument based on the Bramble-Hilbert lemma. In the following
statement, we present a general version of such estimates using semi-norms in the right-
hand side.
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Corollary 1.2. We assume that the operatorsL, T andD are homogeneous with constant
coefficients. Letm ≥ 1. There exists a constantA independent ofk such that there hold
the following estimates for allk ≥ m and all u satisfying the zero boundary conditions
Tu = 0 andDu = 0 on Γ̂:

(1.2)
1

k!
|u|

k; Ω̂
≤ Ak+1

{ k−2∑

ℓ=m−1

1

ℓ!
|Lu|

ℓ; Ω̂′ + |u|
m; Ω̂′

}
.

Proof. We start with anyu ∈ Hk(Ω̂′) and use estimate (1.1). We split the right hand side
of the inequality into two pieces according to:

k−2∑

ℓ=0

1

ℓ!

(
|Lu|

ℓ; Ω̂′+ ‖Tu‖
ℓ+ 1

2
; Γ̂′+ ‖Du‖

ℓ+ 3
2
; Γ̂′

)
+ ‖u‖

1; Ω̂′ = B∗(u) +B∗(u)

with

B∗(u) =

k−2∑

ℓ=m−1

1

ℓ!

(
|Lu|

ℓ; Ω̂′ + |Tu|
ℓ+ 1

2
; Γ̂′ +

ℓ∑

j=m−1

|Tu|
j; Γ̂′ + |Du|

ℓ+ 3
2
; Γ̂′ +

ℓ+1∑

j=m

|Du|
j; Γ̂′

)

B∗(u) =

m−2∑

ℓ=0

1

ℓ!

(
|Lu|

ℓ; Ω̂′ + |Tu|
ℓ+ 1

2
; Γ̂′ + |Du|

ℓ+ 3
2
; Γ̂′

)

+

k−2∑

ℓ=0

1

ℓ!

(min{ℓ,m−2}∑

j=0

|Tu|
j; Γ̂′ +

min{ℓ+1,m−1}∑

j=0

|Du|
j; Γ̂′

)
+ ‖u‖

1; Ω̂′

Since the orders ofL, T andD are2, 1 and0 respectively, we obtain

B∗(u) ≤ Cm‖u‖m; Ω̂′

Since, moreover, the operatorsL, T andD are homogeneous, we have the invariance of
B∗(u) by subtraction of polynomials of degree less thanm− 1

B∗(u− ϕ) = B∗(u), ∀ϕ ∈ P
m−1(Ω̂′).

Altogether, using (1.1) for u−ϕ we obtain for allk ≥ m

1

k!
|u|

k; Ω̂
≤ Ak+1

{
B∗(u) + Cm‖u− ϕ‖

m; Ω̂′

}
, ∀ϕ ∈ P

m−1(Ω̂′).

With the Bramble-Hilbert lemma [5], this gves
1

k!
|u|

k; Ω̂
≤ Ak+1

{
B∗(u) + C ′

m|u|m; Ω̂′

}
.

Applying this to functionsu satisfying zero boundary conditions, we obtain (1.2). �

2. LOCAL ANALYTIC ESTIMATES IN PLANE SECTORS

The model singular domains in two dimensions are the infiniteplane sectors. LetK be
an infinite sector with vertex at the coordinate origin0 = (0, 0). In polar coordinates(r, θ)
such a sector can be described as

(2.1) K = {x ∈ R
2 : ω1 < θ < ω2},
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whereω2 = ω1 + ω with ω1 ∈ (−π, π) andω ∈ (0, 2π] is the opening of the sectorK. For
i = 1, 2, letΓi be the sideθ = ωi of K.

We consider an elliptic system of order2, homogeneous with constant coefficients, cov-
ered on each sideΓi by a set{Ti, Di} of boundary conditions. For any subdomainW ′ of
K, we consider the system of local interior and boundary equations

(2.2)





Lu = f in K ∩W ′,

Ti u = 0 on Γi ∩W ′, i = 1, 2,

Di u = 0 on Γi ∩W ′, i = 1, 2,

which is the localization toW ′ of the elliptic boundary value problemLu = f in K, with
zero boundary conditions onΓ1 andΓ2.

2.1. Weighted spaces with homogeneous norms.These spaces coincide with those in-
troduced by KONDRAT’ EV in his pioneering study of corner problems [21]. The weight
depends on the order of the derivatives. We adopt a differentconvention than [21] in our
notation in order to make the definition of corresponding analytic classes more natural (see
(3.6) below).

Definition 2.1. Let β be a real number called theweight exponent, and letm ≥ 0 be an
integer called theSobolev exponent. LetW be a subdomain ofK.

Theweighted space with homogeneous normK
m
β (W) is defined, with the distance

r = |x| to the vertex0, by

(2.3) K
m
β (W) =

{
u ∈ L

2
loc
(W) : rβ+|α|∂α

x u ∈ L
2(W), ∀α, |α| ≤ m

}

and endowed with semi-norm and norm respectively defined as

(2.4) |u|
2

m,β ;W
=

∑

|α|=m

‖rβ+|α|∂α
x u‖

2

0;W
and ‖u‖

2

Km
β (W)

=

m∑

k=0

|u|
2

k,β ;W
.

Theorem 2.2.LetW andW ′ be the intersections ofK with the balls centered at0 of radii
1 and1 + δ, respectively. Letβ ∈ R andn ∈ N. Letu ∈ H2

loc
(W ′ \ {0}) be a solution of

problem(2.2). Then the following implication holds

(2.5) u ∈ K1
β(W

′) and f ∈ Kn
β+2(W

′) =⇒ u ∈ Kn+2
β (W)

and there exists a constantC ≥ 1 independent ofu andn such that for any integerk,
0 ≤ k ≤ n+ 2, we have

(2.6)
1

k!

( ∑

|α|=k

‖rβ+|α|∂α
x u‖

2

0;W

) 1
2
≤ Ck+1

{ k−2∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rβ+2+|α|∂α
x f‖

2

0;W ′

) 1
2

+
∑

|α|≤1

‖rβ+|α|∂α
x u‖0;W ′

}
.

Proof. Let us assume thatu ∈ K1
β(W

′) andLu = f ∈ Kn
β+2(W

′). Let us prove estimate
(2.6). By definition of the weighted spaces, the right-hand side of (2.6) is bounded. The
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•
0

K

x = 2−µx̂

V̂

V̂ ′

Vµ
V ′
µ

FIGURE 1. Reference and scaled annuli for a sectorK of opening3π/2

proof of the estimate is based on a locally finite dyadic covering of W andW ′. Let us
introduce the reference annuli, see Fig.1

(2.7) V̂ = {x ∈ K : 1
4
< r(x) < 1} and V̂ ′ = {x ∈ K : 1

4
− δ < r(x) < 1 + δ}.

and forµ ∈ N the scaled annuli:

Vµ = 2−µV̂ and V ′
µ = 2−µV̂ ′.

We check immediately that

W =
⋃

µ∈N

Vµ and W ′ =
⋃

µ∈N

V ′
µ .

STEP 1. We are going to apply Theorem1.1 in two regions which separate the two sides
Γ1 andΓ2 of K where the boundary conditions can be distinct. We recall that the sectorK
is defined by the angular inequalitiesω1 < θ < ω2. Let ω3 := 1

2
(ω1 + ω2). We define the

sectorsK1 andK2 by

K1 = {x ∈ R
2 : ω1 < θ < ω3} and K2 = {x ∈ R

2 : ω3 < θ < ω2}.

Let δ < 1
2
(ω2 − ω1). We define the larger sectorsK′

1 andK′
2 by

K′
1 = {x ∈ R

2 : ω1 < θ < ω3 + δ} and K′
2 = {x ∈ R

2 : ω3 − δ < θ < ω2}.

Let i ∈ {1, 2}. Since the systemL is elliptic and covered by its boundary conditions
{Ti, Di} on Γi, the reference domainŝV ∩ Ki and V̂ ′ ∩ K′

i satisfy the assumptions of
Theorem1.1, and there exists a positive constantAi such that for allk ∈ N, k ≥ 2, we
have:

(2.8)
1

k!
|û|

k; V̂∩Ki
≤ Ak+1

i

{ k−2∑

ℓ=0

1

ℓ!
|̂f|

ℓ; V̂ ′∩K′
i

+

1∑

ℓ=0

|û|
ℓ; V̂ ′∩K′

i

}
,
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for any functionû satisfying the boundary conditions of (2.2) and f̂ := Lû. From these
estimates fori = 1, 2 we deduce immediately, withA = max{A1, A2}

(2.9)
1

k!
|û|

k; V̂
≤ 2Ak+1

{ k−2∑

ℓ=0

1

ℓ!
|̂f|

ℓ; V̂ ′ +
1∑

ℓ=0

|û|
ℓ; V̂ ′

}
,

STEP 2. Sincer(x̂) ≃ 1 on V̂ ′, we can insert weights in the reference estimate (2.9):
There exists a positive constantB such that for allk ∈ N, k ≥ 2

1

k!

( ∑

|α|=k

‖r(x̂)β+|α|∂α
x̂ û‖

2

0; V̂

) 1
2

≤ Bk+1
{ k−2∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖r(x̂)β+2+|α|∂α
x̂ f̂‖

2

0; V̂ ′

) 1
2

(2.10)

+
∑

|α|≤1

‖r(x̂)β+|α|∂α
x̂ û‖0; V̂ ′

}
.

By the change of variableŝx → x = 2−µx̂ that mapŝV ontoVµ (resp.V̂ ′ ontoV ′
µ) coupled

with the change of functions

û(x̂) := u(x) and f̂(x̂) := Lû which implies f̂(x̂) = 2−2µf(x),

we deduce from estimate (2.10) that

1

k!
2µβ−µ

( ∑

|α|=k

‖r(x)β+|α|∂α
x u‖

2

0;Vµ

) 1
2
≤ Bk+1

{

k−2∑

ℓ=0

1

ℓ!
2µ(β+2)−µ

( ∑

|α|=ℓ

2−2µ‖r(x)β+2+|α|∂α
x f‖

2

0;V ′
µ

) 1
2

+ 2µβ−µ
∑

|α≤1

‖r(x)β+|α|∂α
x u‖0;V ′

µ

}
.

Multiplying this identity by2−µβ+µ, the above estimate is equivalent to

1

k!

( ∑

|α|=k

‖r(x)β+|α|∂α
x u‖

2

0;Vµ

) 1
2
≤ Bk+1

( k−2∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖r(x)β+2+|α|∂α
x f‖

2

0;V ′
µ

) 1
2

+
∑

|α|≤1

‖r(x)β+|α|∂α
x u‖0;V ′

µ

)
.

Summing up the square of this estimate over allµ and considering that only a finite number
of theV ′

µ overlap, we get the desired estimate (2.6). �

2.2. Weighted spaces with non-homogeneous norms.In these spaces the weight expo-
nent does not depend on the order of derivatives. Standard unweighted Sobolev spaces
are a special case. The weighted Sobolev spaces with nonhomogeneous norms allow an
accurate description of the regularity of functions with non-trivial Taylor expansion at the
corners. In particular, they are useful for studying variational problems of Neumann type,
because the variational spaceH

1 does not fit properly into the scaleK1
β .

Definition 2.3. Let β be a real number andm ≥ 0 an integer.
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Let W be a subdomain ofK. The weighted space with non-homogeneous norm
J
m
β (W) is defined by

(2.11) J
m
β (W) =

{
u ∈ L

2
loc
(W) : rβ+m∂α

x u ∈ L
2(W), ∀α, |α| ≤ m

}

with its norm
‖u‖

2

Jmβ (W)
=

∑

|α|≤m

‖rβ+m∂α
x u‖

2

0;W
.

Note that the semi-norm ofJmβ (W) coincides with the semi-norm ofKm
β (W). They are

both denoted by| · |
m,β ;W

. With this notation, we have

(2.12) ‖u‖
2

Jmβ (W)
=

m∑

k=0

|u|
2

k,β+m−k ;W
.

We recall from [8] the “step-weighted” characterization ofJmβ in the case of two space
dimensions:

Proposition 2.4. Letβ ∈ R andm ∈ N such thatβ +m > −1. Letσ be any real number
in the interval(−1, β +m]. Then the norm in the spaceJmβ (W) is equivalent to

(2.13)
( ∑

|α|≤m

‖rmax{β+|α|, σ}∂α
x u‖

2

0;W

) 1
2

.

Corollary 2.5. Let β ∈ R. Let m be a natural number such thatβ + m > −1. Then
J
m+1
β (W) ⊂ J

m
β (W).

Theorem 2.6.LetW andW ′ be the intersections ofK with the balls centered at0 of radii
1 and1 + δ, respectively. Letβ be a real number and letm ≥ 1 be an integer. We assume
thatβ+m > −1. Letn ≥ m−1 be another integer. Letu ∈ H2

loc
(W ′ \{0}) be a solution

of problem(2.2). Then the following implication holds

(2.14) u ∈ Jmβ (W
′) and f ∈ Jnβ+2(W

′) =⇒ u ∈ Jn+2
β (W)

and there exists a constantC ≥ 1 independent ofu and n such that for all integerk,
m ≤ k ≤ n + 2, we have

(2.15)
1

k!

( ∑

|α|=k

‖rβ+|α|∂α
x u‖

2

0;W

) 1
2

≤ Ck+1
{ k−2∑

ℓ=m−1

1

ℓ!

( ∑

|α|=ℓ

‖rβ+2+|α|∂α
x f‖

2

0;W ′

) 1
2

+
∑

|α|=m

‖rβ+|α|∂α
x u‖0;W ′

}
.

Proof. Let us assume thatu ∈ Jmβ (W
′) is such thatf ∈ Jnβ+2(W

′). Let k, m < k ≤ n+ 2.
Let us prove estimate (2.15). Sinceβ + m > −1, we haveβ + 2 + |α| > −1 for all α
with length≥ m − 1. Therefore, as a consequence of Proposition2.4, the right-hand side
of (2.15) is bounded.

Then, in a similar way as in the proof of Theorem2.2, we start from estimate (1.2) writ-
ten for the reference domainŝV andV̂ ′ and we apply the same dyadic covering technique.
We arrive directly at the estimate (2.15).
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It remains to prove thatu ∈ Jn+2
β (W). SinceW is bounded, estimate (2.15) implies that

rβ+n+2∂α
x u belongs toL2(W) for all α, m ≤ |α| ≤ n + 2. Sinceu ∈ Jmβ (W

′), we deduce
thatrβ+n+2∂α

x u also belongs toL2(W) when|α| < m, which ends the proof. �

3. ANALYTIC WEIGHTED REGULARITY SHIFT IN POLYGONS

LetΩ be a polygonal domain. This means that the boundary ofΩ is the union of a finite
number of line segments (the sidesΓs, for indicess ∈ S ). We do not assume thatΩ is a
Lipschitz domain, that is we include the presence of cracks in our analysis. The verticesc
are the ends of the edges. Let us denote byC the set of vertices and

(3.1) rc(x) = dist(x, c).

There existsε > 0 such that, setting

(3.2a) Ωc = {x ∈ Ω : rc < ε},

we have

(3.2b) Ωc ∩ Ωc′ = ∅, ∀c 6= c′.

Choosingε′′ < ε and settingΩ′′
c = {x ∈ Ω : rc < ε′′}, we define

(3.2c) Ω0 = Ω \
⋃

c∈C

Ω′′
c .

We also define larger neighborhoods choosingε′ > ε such that

(3.2d) Ω′
c = {x ∈ Ω : rc < ε′}, Ω′

c ∩ Ω′
c′ = ∅, ∀c 6= c′ ,

and we finally set

(3.2e) Ω′
0 = Ω \

⋃

c∈C

Ωc .

For each corner there is a plane sectorKc with vertex0 such that the translationx 7→ x− c

sendsΩc ontoKc ∩ B(0, ε).
Let β = (βc)c∈C

∈ R#C be a weight multi-exponent andm ∈ N a Sobolev exponent.
By localization we define the weighted semi-norm on any domain V ⊂ Ω:

(3.3) |u|
2

m,β ;V
=

∑

|α|=m

(
‖∂α

x u‖
2

0;V∩Ω0
+
∑

c∈C

‖rβc+|α|
c ∂α

x u‖
2

0;V∩Ωc

)
,

and the norms,cf. (2.4) and (2.12)

(3.4) ‖u‖
2

Km
β (V)

=

m∑

k=0

|u|
2

k,β ;V
and ‖u‖

2

Jmβ (Ω)
=

m∑

k=0

|u|
2

k,β+m−k ;V
,

defining the spacesKm
β (V) andJmβ (V), respectively. If all weight exponentsβc coincide

with the same numberβ, these spaces are simply denoted byK
m
β (V) andJmβ (V), respec-

tively. Boldface notationsKm
β (V) andJmβ (V) indicate vector-valued functions.
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Remark3.1. The semi-norm|u|
m,β ; Ω

is equivalent to the globally defined semi-norm

(3.5)
{ ∑

|α|=m

∥∥∥
(∏

c∈C

rβc+|α|
c

)
∂α
x u

∥∥∥
2

0; Ω

} 1
2
.

We define on any domainV ⊂ Ω the corresponding weighted analytic classes.
(i) With homogeneous norm:

(3.6) Aβ(V) =
{
u ∈

⋂

m≥0

K
m
β (V) : ∃C > 0, ∀m ∈ N, |u|

m,β ;V
≤ Cm+1m!

}
.

(ii) With non-homogeneous norm: For a multi-exponentβ let

(3.7) η := max
c∈C

−βc − 1.

As a consequence of Proposition2.4, for all m > η we have the continuous embedding of
J
m+1
β (V) into J

m
β (V). We introduce

(3.8) Bβ(V) =
{
u ∈

⋂

m>η

J
m
β (V) : ∃C > 0, ∀m > η |u|

m,β ;V
≤ Cm+1m!

}
.

Remark3.2. (i) The classesAβ(Ω) andBβ(Ω) can be equivalently defined replacing semi-
norms|u|

m,β ; Ω
by the global semi-norms (3.5).

(ii) The classesAβ(Ω) can also be equivalently defined locally i.e.

Aβ(Ω) = {u ∈ L
2
loc
(Ω) : u

∣∣
Ω0

∈ A(Ω0) and u
∣∣
Ωc

∈ Aβc
(Ωc) ∀c ∈ C }.

HereA(Ω0) is the unweighted class of analytic functions onΩ0. The spacesBβ(Ω) allow
analogous local descriptions.

Remark3.3. (i) Our spacesBβ(Ω) coincide with the family ofcountably normed spaces
Bℓ

β(Ω), introduced by Babuška and Guo [2]: The spacesBℓ
β(Ω) are defined forℓ ∈ N and

0 < β < 1, and there holds

(3.9) Bℓ
β(Ω) = Bβ−ℓ(Ω) .

(ii) The relation between the classesAβ(Ω) andBβ(Ω) follows from the relation between
the weighted spaces with homogeneous and nonhomogeneous normsKm

β (Ω) andJmβ (Ω).
On the finite sectorΩc there holds [27, 22] (more details are given in [8] and [9, Ch. 11]):

If β > −1, thenJmβ (Ωc) = K
m
β (Ωc) for all m ∈ N.

If β ≤ −1 andm ≤ −β − 1, then, again,Jmβ (Ωc) = K
m
β (Ωc).

If β ≤ −1 andm > −β − 1, then one has to distinguish two cases:

• the generic case−β 6∈ N, in which one has

J
m
β (Ωc) = K

m
β (Ωc)⊕ P

[−β−1]

whereP[−β−1] is the space of polynomials of degree not exceeding−β − 1;
• the critical case−β ∈ N, in which J

m
β (Ωc) containsKm

β (Ωc) ⊕ P
−β−1 as a strict

subspace.
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As a consequence it follows that forβ > −1 there holdsBβ(Ωc) = Aβ(Ωc), whereas for
β ≤ −1 one has in the non-critical case−β 6∈ N:

(3.10) Bβ(Ωc) = Aβ(Ωc)⊕ P
[−β−1]

and in thecritical case−β ∈ N: Bβ(Ωc) containsAβ(Ωc)⊕ P−β−1 as a strict subspace.

We consider a “mixed” boundary value problem on the polygonal domainΩ: We sup-
pose that we are given an homogeneous second order elliptic systemL with constant coef-
ficients and for each sides a covering set of boundary operators{Ts, Ds} of order1 and0,
homogeneous with constant coefficients. The boundary valueproblem under consideration
is:

(3.11)





Lu = f in Ω,

Ts u = 0 on Γs, s ∈ S ,

Ds u = 0 on Γs, s ∈ S .

Note that one ofTs or Ds may be the zero operator, in which case the corresponding
boundary condition is empty.

We can now prove the following statement of natural regularity shift in weighted analytic
spaces with homogeneous or non-homogeneous semi-norms:

Theorem 3.4. Let β = (βc)c∈C
be a weight multi-exponent. Letu ∈ H2

loc
(Ω \ C ) be a

solution of problem(3.11).
(i) The following implications hold

(3.12a) u ∈ K1
β(Ω) and f ∈ Kn

β+2(Ω) =⇒ u ∈ Kn+2
β (Ω) (n ∈ N).

and

(3.12b) u ∈ K1
β(Ω) and f ∈ Aβ+2(Ω) =⇒ u ∈ Aβ(Ω).

(ii) Let m ≥ 1 be an integer such thatβc + m > −1 for all c ∈ C . Then the following
implications hold

(3.13a) u ∈ Jmβ (Ω) and f ∈ Jnβ+2(Ω) =⇒ u ∈ Jn+2
β (Ω) (n ∈ N).

and

(3.13b) u ∈ Jmβ (Ω) and f ∈ Bβ+2(Ω) =⇒ u ∈ Bβ(Ω).

Proof. The finite regularity shift results in (3.12a) and (3.13a) are obvious consequences of
Theorems2.2 and2.6. Let us prove (3.12b). The uniform estimate (2.6) is valid between
Ωc andΩ′

c for all c ∈ C . The uniform estimate (1.1) of the smooth case is valid betweenΩ0

andΩ′
0. Combining these estimates we obtain the global uniform estimate for all integer

k ≥ 2

1

k!
|u|

k,β ; Ω
≤ Ck+1

( k−2∑

ℓ=0

1

ℓ!
|f|

ℓ,β+2 ;Ω
+ ‖u‖

K1
β(Ω)

)
.
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If f ∈ Aβ+2(Ω), it satisfies|f|
ℓ,β ; Ω

≤ F ℓ+1ℓ! for some constantF > 1. Thus the previous
estimate yields

|u|
k,β ; Ω

≤ k! Ck+1
( k−2∑

ℓ=0

F ℓ+1 + ‖u‖
K1
β(Ω)

)
= k! Ck+1

(F k − F

F − 1
+ ‖u‖

K1
β(Ω)

)
.

Henceu ∈ Aβ(Ω). The proof of (3.13b) is similar, based on estimate (2.15). �

4. LOCAL ANISOTROPIC ANALYTIC ESTIMATES IN DIHEDRAL DOMAINS

Infinite dihedral domains (or wedges) are the model domains for polyhedra which have
the lowest level of complexity. In this section, we considerdihedral domainsD in a model
configuration, that is there exists a plane sectorK with vertex0 so that

(4.1) D = K × R and x = (x1, x2, x3) = (x⊥, x3) ∈ D ⇔ x⊥ ∈ K, x3 ∈ R.

The edgee of the dihedral domainD is the linex1 = x2 = 0.
Let V be any subdomain ofD. We consider the system of local interior and boundary

equations

(4.2)





Lu = f in D ∩ V,

Ti u = 0 on (Γi × R) ∩ V, i = 1, 2,

Di u = 0 on (Γi × R) ∩ V, i = 1, 2,

where the operatorsL, Ti andDi are homogeneous with constant coefficients and form
an elliptic system. The system (4.2) is the localization toV of the elliptic boundary value
problemLu = f in D, with zero boundary conditions onΓ1 × R andΓ2 × R.

4.1. Isotropic estimates: natural regularity shift. The weighted spaces for the dihedron
are defined by the same formulas as in the case of a plane sector:

Definition 4.1. Let β be a real number and letm ≥ 0 be an integer. LetW ⊂ D.

The isotropic weighted spacesKm
β (W) andJmβ (W) are defined, with the distance

r := |x⊥| =
√
x2
1 + x2

2 to the edgee, by

K
m
β (W) =

{
u ∈ L

2
loc
(W) : rβ+|α|∂α

x u ∈ L
2(W), ∀α, |α| ≤ m

}

J
m
β (W) =

{
u ∈ L

2
loc
(W) : rβ+m∂α

x u ∈ L
2(W), ∀α, |α| ≤ m

}

endowed with their natural semi-norms and norms. Recall that ∂α
x denotes the

derivative with respect to the three variablesx1, x2, x3.

We call these spacesisotropic, in opposition with theanisotropicspacesMm
β (W) and

N
n
β(W) which will be introduced in the next subsection.
We gather in one statement the results concerning theK and theJ spaces. Here we set

(4.3)
W =

(
K ∩ B(0, 1)

)
× (−1, 1)

Wε =
(
K ∩ B(0, 1 + ε)

)
× (−1− ε, 1 + ε), ε > 0.
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Theorem 4.2.Letβ ∈ R andn ∈ N. Letu ∈ H2
loc
(Wε \ e) be a solution of problem(4.2)

with V = Wε.
(i) If u ∈ K1

β(Wε) and f ∈ Kn
β+2(Wε) thenu ∈ Kn+2

β (W) and there exists a constant
C ≥ 1 independent ofu andn such that for any integerk, 0 ≤ k ≤ n+ 2, we have

(4.4)
1

k!

( ∑

|α|=k

‖rβ+|α|∂α
x u‖

2

0;W

) 1
2
≤ Ck+1

{ k−2∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rβ+2+|α|∂α
x f‖

2

0;Wε

) 1
2

+
∑

|α|≤1

‖rβ+|α|∂α
x u‖0;Wε

}
.

(ii) Let m ≥ 1 be an integer. We assume thatβ + m > −1. Letn ≥ m − 1 be another
integer. Ifu ∈ Jmβ (Wε) andf ∈ Jnβ+2(Wε), thenu ∈ Jn+2

β (W) and there exists a constant
C ≥ 1 independent ofu andn such that for any integerk, m ≤ k ≤ n + 2, we have

(4.5)
1

k!

( ∑

|α|=k

‖rβ+|α|∂α
x u‖

2

0;W

) 1
2
≤ Ck+1

{ k−2∑

ℓ=m−1

1

ℓ!

( ∑

|α|=ℓ

‖rβ+2+|α|∂α
x f‖

2

0;Wε

) 1
2

+
∑

|α|=m

‖rβ+|α|∂α
x u‖0;Wε

}
.

Proof. Like in the case of Theorems2.2and2.6, the proof relies on a locally finite dyadic
covering ofW andWε. The reference domains are now

V̂ = {x⊥ ∈ K : 1
4
< |x⊥| < 1} × (−1

2
, 1
2
)

V̂ ′ = {x⊥ ∈ K : 1
4
− ε < |x⊥| < 1 + ε} × (−1

2
− ε, 1

2
+ ε)

and forµ ∈ N andν ∈ Z:

Vµ,ν = 2−µ
(
V̂ + (0, 0, ν

2
)
)

and V ′
µ = 2−µ

(
V̂ ′ + (0, 0, ν

2
)
)
.

We check immediately that

W =
⋃

µ∈N

⋃

|ν|<2µ+1

Vµ,ν and Wε ⊃
⋃

µ∈N

⋃

|ν|<2µ+1

V ′
µ,ν .

and that these coverings are locally finite. An a priori estimate betweenVµ,ν andV ′
µ,ν is

deduced from a reference a priori estimate betweenV̂ andV̂ ′ by the change of variables
x̂ → x = 2−µ(x̂ + (0, 0, ν

2
)) that mapŝV ontoVµ,ν andV ′ onto V̂ ′

µ,ν . Here we use the fact
that the operatorsL, T andD are homogeneous with constant coefficients. Then the rest
of the proof goes exactly as in the case of the plane sectors. �

4.2. Tangential regularity along the edge (homogeneous norms).The result in the pre-
vious sections only rely on the ellipticity of the boundary value problem under consid-
eration. Now we will require a stronger condition, which is alocal Peetre-type a priori
estimate in an edge neighborhood. From this condition we will derive analytic type esti-
mates for all derivatives∂j

x3
in the direction of the edge.
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Assumption 4.3. Let β ∈ R. Let W andW ′ = Wε be the domains defined in (4.3) for
someε > 0. We assume that the following a priori estimate holds for problem (4.2) on
V = W ′: There is a constantC such that any

u ∈ K2
β(W) ,

solution of problem (4.2) with f ∈ K0
β+2(W

′), satisfies:

(4.6) ‖u‖
K2

β(W)
≤ C

(
‖f‖

K0
β+2(W

′)
+ ‖u‖

K1
β+1(W

′)

)
.

Remark4.4. (i) Assumption4.3 is independent ofε (although the constantC depends on
it), and more generally independent of the choice of the domainsW andW ′, if they satisfy
the following conditions: There exists a ball with center onthe edgee contained inW, and
W ′ containsW ∩D.
(ii) The inequality (4.6) is a Peetre-type estimate, sinceK2

β(W) is compactly embedded in
K1

β+1(W).
(iii) As a consequence of Theorem4.2, it is equivalent to postulate the estimate

‖u‖
K1

β(W)
≤ C

(
‖f‖

K0
β+2(W

′)
+ ‖u‖

K1
β+1(W

′)

)
.

for all u ∈ K1
β(W

′) ∩H2
loc
(W ′ \ e)

The first step for higher order estimates is theρ-estimate for which we control the de-
pendence of the constantC in (4.6) on the “distance” betweenW andW ′.

Lemma 4.5. Under Assumption4.3, let R ∈ [0, ε) and ρ ∈ (0, ε − R]. Assume that
u ∈ K2

β(WR) is a solution of problem(4.2) with f ∈ K0
β+2(V) for V = WR+ρ . There exists

a constantC independent ofu, R andρ such that

(4.7) ‖u‖
K2

β(WR)
≤ C

(
‖f‖

K0
β+2(WR+ρ)

+ ρ−1‖u‖
K1

β+1(WR+ρ)
+ ρ−2‖u‖

K0
β+2(WR+ρ)

)
.

Proof. We introduce a special family of cut-off functionsχρ. Let χ̂ ∈ C ∞(R) be such that
χ̂ ≡ 1 on (−∞, 0] andχ̂ ≡ 0 on [1,+∞). Defineχ̂ρ onR by:

(4.8) χ̂ρ(t) = χ̂

(
|t| − 1−R

ρ

)
.

Thusχ̂ρ equals1 in [−1−R, 1 +R] and0 outside(−1−R− ρ, 1 +R+ ρ). Then we set

(4.9) χρ(x) = χ̂ρ(|x⊥|) χ̂ρ(x3).

Thus by construction,cf. (4.3)

χρ ≡ 1 on WR and χρ ≡ 0 outsideWR+ρ.

We note the following important bound on the derivatives ofχρ

(4.10) ∃D > 0, ∀ρ > 0, ∀α, |α| ≤ 2, |∂α
x χρ| ≤ Dρ−|α|.

Then in order to prove (4.7), it suffices to apply estimate (4.6) to χρu and to check that the
commutator[L, χρ] applied tou satisfies

(4.11) ‖[L, χρ]u‖K0
β+2(WR+ρ)

≤ C
(
ρ−1‖u‖

K1
β+1(WR+ρ)

+ ρ−2‖u‖
K0

β+2(WR+ρ)

)
.
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The latter estimate is an obvious consequence of (4.10) and the fact that

‖∂α
x u‖K0

β+2(WR+ρ)
≤ ‖u‖

K
2−|α|
β+|α|

(WR+ρ)

for all α, |α| ≤ 1. �

Corollary 4.6. Under the assumptions of Lemma4.5, if ∂x3f ∈ K0
β+2(WR+ρ), then∂x3u ∈

K2
β(WR) and there exists a constantC ≥ 1 independent ofR, ρ andu such that

(4.12) ‖∂x3u‖K2
β(WR)

≤ C
(
‖∂x3f‖K0

β+2(WR+ρ)
+ ρ−1‖u‖

K2
β(WR+ρ)

+ ρ−2‖u‖
K1

β+1(WR+ρ)

)
.

Proof. For anyh < ρ/2, we apply (4.7) in WR+ρ/2 to vh defined by

vh : x → h−1(u(x+ he3)− u(x)),

wheree3 = (0, 0, 1). This yields

(4.13)
‖vh‖K2

β(WR)
≤ 4C

(
‖Lvh‖K0

β+2(WR+ρ/2)

+ ρ−1‖vh‖K1
β+1(WR+ρ/2)

+ ρ−2‖vh‖K0
β+2(WR+ρ/2)

)
,

whereC is the positive constant from Lemma4.5. By noticing that

vh = h−1

∫ h

0

∂x3u(x+ te3) dt,

we check that for allh < ρ/2

‖Lvh‖K0
β+2(WR+ρ/2)

≤ ‖∂x3Lu‖K0
β+2(WR+ρ)

,

‖vh‖K1
β+1(WR+ρ/2)

≤ ‖∂x3u‖K1
β+1(WR+ρ)

≤ ‖u‖
K2

β(WR+ρ)
,

‖vh‖K0
β+2(WR+ρ/2)

≤ ‖∂x3u‖K0
β+2(WR+ρ)

≤ ‖u‖
K1

β+1(WR+ρ)
.

This shows that the right-hand side of (4.13) is bounded uniformly inh. Therefore passing
to the limit in (4.13), we find that∂x3u belongs toK2

β(WR) and that (4.12) holds. �

Corollary 4.7. Under Assumption4.3, let u ∈ K2
β(Wε) be a solution of(4.2). LetR ∈

[0, ε/2] andR′ ≥ ε/2 with R + R′ ≤ ε. Then there exists a constantC independent ofR,
R′ andu such that for allℓ ∈ N, we have

(4.14)
1

ℓ!
‖∂ℓ

x3
u‖

K2
β(WR)

≤ Cℓ+1
{ ℓ∑

j=0

1

j!
‖∂j

x3
Lu‖

K0
β+2(WR+R′ )

+ ‖u‖
K1

β+1(WR+R′ )

}
.

Proof. If ℓ = 0, this is a consequence of estimate (4.6). Forℓ ≥ 1 the proof is divided into
two steps. To keep notations simpler we takeR = 0.
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(i) We first prove by induction onℓ that if ρ ≤ ε/(2ℓ− 1), then

(4.15) ‖∂ℓ
x3
u‖

K2
β(W)

≤ (2C)ℓ
{ ℓ∑

j=1

ρ−(ℓ−j)‖∂j
x3
Lu‖

K0
β+2(W(2ℓ−j)ρ)

+ ρ−ℓ‖u‖
K2

β(W(2ℓ−1)ρ)
+ ρ−ℓ−1‖u‖

K1
β+1(W(2ℓ−1)ρ)

}
,

whereC ≥ 1 is the constant from Corollary4.6.
• If ℓ = 1, the estimate (4.15) is nothing else than (4.12). Hence it suffices to show that if
(4.15) holds forℓ, it holds forℓ+ 1.
• For that purpose, we first apply (4.15) to vh defined as before by

vh : x → h−1(u(x+ he3)− u(x)),

and passing to the limit inh, we get

‖∂ℓ+1
x3

u‖
K2

β(W)
≤ (2C)ℓ

{ ℓ∑

j=1

ρ−(ℓ−j)‖∂j+1
x3

Lu‖
K0

β+2(W(2ℓ+1−j)ρ)

+ ρ−ℓ‖∂x3u‖K2
β(W2ℓρ)

+ ρ−ℓ−1‖∂x3u‖K1
β+1(W2ℓρ)

}
.

For the second term of this right-hand side, we apply (4.12) to u but betweenW2ℓρ and
W(2ℓ+1)ρ, while for the third term we use the fact that‖∂x3u‖K1

β+1(W2ℓρ)
≤ ‖u‖

K2
β(W2ℓρ)

.

This leads to

‖∂ℓ+1
x3

u‖
K2

β(W)
≤ (2C)ℓ

ℓ∑

j=1

ρ−(ℓ−j)‖∂j+1
x3

Lu‖
K0

β+2(W(2ℓ+1−j)ρ)

+ (2C)ℓCρ−ℓ
(
‖∂x3Lu‖K0

β+2(W(2ℓ+1)ρ)
+ ρ−1‖u‖

K2
β(W(2ℓ+1)ρ)

+ ρ−2‖u‖
K1

β+1(W(2ℓ+1)ρ)

)

+ (2C)ℓρ−ℓ−1‖u‖
K2

β(W2ℓρ)
.

By the change of indexj′ = j + 1 in the sum onj, we finally get (since(2C)ℓ ≤ 2ℓCℓ+1)

‖∂ℓ+1
x3

u‖
K2

β(W)
≤ 2ℓCℓ+1

ℓ+1∑

j=1

ρ−(ℓ+1−j)‖∂j
x3
Lu‖

K0
β+2(W(2(ℓ+1)−j)ρ)

+ (2C)ℓ(C + 1)ρ−ℓ−1‖u‖
K2

β(W(2ℓ+1)ρ)
+ (2C)ℓCρ−ℓ−2‖u‖

K1
β+1(W(2ℓ+1)ρ)

.

SinceC ≥ 1, C + 1 ≤ 2C, and this proves that (4.15) holds forℓ+ 1.

(ii) Now we chooseρ such that

W(2ℓ−1)ρ ⊂ Wε′ with ε′ = ε/2.

This holds if we take

ρ =
γ

ℓ
with γ = min{

ε

4
, 1} .
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Hence applying (4.15) with this choice ofρ, we obtain for allℓ ≥ 1

(4.16)
‖∂ℓ

x3
u‖

K2
β(W)

≤(2C)ℓ
{ ℓ∑

j=1

(γ−1)(ℓ−j)ℓℓ−j‖∂j
x3
Lu‖

K0
β+2(Wε′ )

+ (γ−1)ℓℓℓ‖u‖
K2

β(Wε′ )
+ (γ−1)ℓ+1ℓℓ+1‖u‖

K1
β+1(Wε′ )

}
.

Sinceγ ≤ 1, (γ−1)(ℓ−j) ≤ (γ−1)ℓ. Moreover by Stirling’s formula, one has

ℓℓ ≤ Sℓℓ !

for someS > 1. We find
ℓℓ−jj!

ℓ!
=

ℓℓj!

ℓ!ℓj
≤

Sℓj!

ℓj
≤ Sℓ ,

sincej! ≤ jj ≤ ℓj . Inserting this into (4.16) gives, withC1 = 2Cγ−1S,

‖∂ℓ
x3
u‖

K2
β(W)

≤ Cℓ
1

{ ℓ∑

j=1

ℓ!

j!
‖∂j

x3
Lu‖

K0
β+2(Wε′ )

+ ℓ! ‖u‖
K2

β(Wε′ )
+ γ−1ℓ ℓ! ‖u‖

K1
β+1(Wε′ )

}
.

Using the trivial inequalityℓ ≤ 2ℓ, we arrive at

‖∂ℓ
x3
u‖

K2
β(W)

≤ Cℓ
2

{ ℓ∑

j=1

ℓ!

j!
‖∂j

x3
Lu‖

K0
β+2(Wε′ )

+ ℓ! ‖u‖
K2

β(Wε′ )
+ ℓ! ‖u‖

K1
β+1(Wε′ )

}
,

which, combined with (4.7) betweenWε′ andWε , yields the requested estimate. �

4.3. Anisotropic estimates in dihedral domains (homogeneous norms). We are now
ready to prove the main results of this section, namely the weighted anisotropic regularity
of solutions of our local boundary value problem (4.2). For this we introduce the following
new class of weighted spaces:

Definition 4.8. Let β be a real number and letm ≥ 0 be an integer.

Let W be a subdomain of the dihedral domainD. We recall thatr = |x⊥| denotes
the distance to the edgee ≡ {x⊥ = 0}. The anisotropic weighted space with
homogeneous normMm

β (W) is defined by

(4.17) M
m
β (W) =

{
u ∈ L

2
loc
(W) : rβ+|α⊥|∂α

x u ∈ L
2(W), ∀α, |α| ≤ m

}

where forα = (α1, α2, α3), α⊥ = (α1, α2) is the component ofα in the direction
perpendicular to the edgee. The norm of this space is defined as

(4.18) ‖u‖
2

Mm
β (W)

=
m∑

k=0

∑

|α|=k

‖rβ+|α⊥|∂α
x u‖

2

0;W
.
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Theorem 4.9. Under Assumption4.3, let u ∈ K1
β(Wε) be a solution of problem(4.2). If

f ∈ Mn
β+2(Wε), thenu ∈ Mn

β(W), and there exists a positive constantC independent ofu
andm such that for all integerk, 0 ≤ k ≤ n we have

(4.19)
1

k!

( ∑

|α|=k

‖rβ+|α⊥|∂α
x u‖

2

0;W

) 1
2
≤ Ck+1

{ k∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rβ+2+|α⊥|∂α
x f‖

2

0;Wε

) 1
2

+ ‖u‖
K1

β+1(Wε)

}
.

Proof. (i) We first apply the isotropic estimate (4.4) betweenW andWε/4, and combine
with (4.6) betweenWε/4 andWε/2 (cf. Remark4.4 (i)). This yields the estimate for allk,
0 ≤ k ≤ n, and withε′ = ε/2

1

k!

( ∑

|α|=k

‖rβ+|α|∂α
x u‖

2

0;W

) 1
2
≤ Ck+1

{ k−2∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rβ+2+|α|∂α
x f‖

2

0;Wε′

) 1
2

+ ‖rβ+2f‖
0;Wε′

+ ‖u‖
K1

β+1(Wε′ )

}
.

In order to absorb the term‖rβ+2f‖
0;Wε′

in the sum on the right-hand side (including when

k = 0 or 1), we write the previous inequality in the slightly weaker form

1

k!

( ∑

|α|=k

‖rβ+|α|∂α
x u‖

2

0;W

) 1
2
≤ Ck+1

1

{ k∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rβ+2+|α|∂α
x f‖

2

0;Wε′

) 1
2

+ ‖u‖
K1

β+1(Wε′ )

}
.

We reduce the left-hand side to anyα = (α⊥, 0) of lengthq ≥ 0, and boundrβ+2+|α|

by rβ+2+|α⊥| in the right-hand side (recall thatr is bounded inWε) to obtain for allq,
0 ≤ q ≤ n

(4.20)

1

q!

( ∑

|α⊥|=q

‖rβ+|α⊥|∂α⊥
x⊥

u‖
2

0;W

) 1
2
≤ Cq+1

2

{

q∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rβ+2+|α⊥|∂α
x f‖

2

0;Wε′

) 1
2
+ ‖u‖

K1
β+1(Wε′ )

}
.

(ii) We now prove that for allµ = 0, . . . , n and for all q = 0, . . . , n − µ one has the
following estimates withk := q + µ and a constantC3 independent ofu, q andµ

(4.21)

1

k!

( ∑

|α⊥|=q

‖rβ+|α⊥|∂α⊥
x⊥

∂µ
x3
u‖

2

0;W

) 1
2
≤ Ck+1

3

{

k∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rβ+2+|α⊥|∂α
x f‖

2

0;Wε

) 1
2
+ ‖u‖

K1
β+1(Wε)

}
.

1. If µ = 0, this estimate is a consequence of (4.20) sinceWε′ ⊂ Wε.
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2. If µ > 0 (or equivalentlyq < k), we apply (4.20) to ∂µ
x3
u to obtain

(4.22)

1

q!

( ∑

|α⊥|=q

‖rβ+|α⊥|∂α⊥
x⊥

∂µ
x3
u‖

2

0;W

) 1
2
≤ Cq+1

2

{

q∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rβ+2+|α⊥|∂α
x ∂

µ
x3
f‖

2

0;Wε′

) 1
2
+ ‖∂µ

x3
u‖

K1
β+1(Wε′ )

}
.

The last term of this right-hand side is now estimated with the help of Corollary4.7. Using
that

‖∂µ
x3
u‖

K1
β+1(Wε′ )

≤ ‖∂µ−1
x3

u‖
K2

β(Wε′ )
,

and applying (4.14) betweenWε′ andWε with ℓ = µ− 1, we obtain

‖∂µ
x3
u‖

K1
β+1(Wε′ )

≤ Cµ
4 (µ− 1)!

( µ−1∑

j=0

1

j!
‖∂j

x3
f‖

K0
β+2(Wε)

+ ‖u‖
K1

β+1(Wε)

)
.

Using this estimate in (4.22) we obtain that

1

q!

( ∑

|α⊥|=q

‖rβ+|α⊥|∂α⊥
x⊥

∂µ
x3
u‖

2

0;W

) 1
2
≤ Cq+1

2

q∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rβ+2+|α⊥|∂µ
x3
∂α
x f‖

2

0;Wε

) 1
2

+ Cq+1
2 Cµ

4 (µ− 1)!
( µ−1∑

j=0

1

j!
‖∂j

x3
f‖

K0
β+2(Wε)

+ ‖u‖
K1

β+1(Wε)

)
.

Multiplying this estimate byq!(k!)−1, we find (sinceq!(µ− 1)!(k!)−1 ≤ 1)

1

k!

( ∑

|α⊥|=q

‖rβ+|α⊥|∂α⊥
x⊥

∂µ
x3
u‖

2

0;W

) 1
2
≤ Cq+1

2

q∑

ℓ=0

q!

ℓ!k!

( ∑

|α|=ℓ

‖rβ+2+|α⊥|∂µ
x3
∂α
x f‖

2

0;Wε

) 1
2

+ Cq+1
2 Cµ

4

( µ−1∑

j=0

1

j!
‖∂j

x3
f‖

K0
β+2(Wε)

+ ‖u‖
K1

β+1(Wε)

)
.

For the first term of this right-hand side we finally notice that ∂µ
x3
∂α = ∂α+(0,0,µ) and that

|α + (0, 0, µ)| = ℓ+ µ. Hence we have to check that

q!

ℓ!k!
≤

1

(ℓ+ µ)!
,

which is equivalent to

(ℓ+ µ)!q!

ℓ!k!
≤ 1,

and holds sinceℓ+ µ ≤ k andq ≤ k.
Altogether we have proved that (4.21) holds for allµ ∈ N such thatq + µ = k.
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(iii) Summing the square of this estimate (4.21) on q = 0, . . . , k andµ = 0, . . . , k − q, we
arrive at

1

k!

( ∑

|α|=k

‖rβ+|α⊥|∂αu‖
2

0;W

) 1
2

≤ k2Ck+1
3

( k∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rβ+2+|α⊥|∂αf‖
2

0;Wε

) 1
2

+‖u‖
K1

β+1(Wε)

)
.

This proves the theorem. �

4.4. Anisotropic estimates in dihedral domains (non-homogeneous norms). In this last
part of section4 devoted to local estimates in dihedral domains, we investigate the situation
where the a priori estimate holds in theJ-weighted scale instead theK scale. We set:

Assumption 4.10.Letm ≥ 1 be an integer. Letβ ∈ R such thatβ+m > −1. We assume
that the following a priori estimate holds for problem (4.2): There is a constantC such that
any

u ∈ Jm+1
β (W) ,

solution of problem (4.2) in V = W ′ with f ∈ Jm−1
β+2 (W

′), satisfies:

(4.23) ‖u‖
Jm+1
β (W)

≤ C
(
‖f‖

Jm−1
β+2 (W ′)

+ ‖u‖
Jmβ+1(W

′)

)
.

Remark4.11. Using the analogue of Proposition2.4 for dihedral domains, i.e., that the

norm in the spaceJmβ (W) is equivalent to
(∑

|α|≤m ‖rmax{β+|α|, σ}∂α
x u‖

2

0;W

) 1
2 for all σ ∈

(−1, β+m], we can takeσ = 0 for Jm+1
β (W) whenβ+m > −1, i.e.,β+m+1 > 0: We

obtain that in the situation of Assumption4.10the norm in the spaceJm+1
β (W) is equivalent

to

(4.24)
( ∑

|α|≤m+1

‖rmax{β+|α|, 0}∂α
x u‖

2

0;W

) 1
2

.

The non-homogeneous anisotropic weighted spaces are defined as follows on the model
of the homogeneous ones (Definition4.8):

Definition 4.12. Letm ≥ 1 be an integer. Letβ ∈ R such thatβ +m > −1.

Let W be a subdomain of the dihedral domainD andn > m be an integer. The
anisotropic weighted space with non-homogeneous normN

n
β(W) is defined by

(4.25) N
n
β(W) =

{
u ∈ L

2
loc
(W) : rmax{β+|α⊥|, 0}∂α

x u ∈ L
2(W), ∀α, |α| ≤ n

}

endowed with its natural norm.

Our aim is to prove the “non-homogeneous” analogue of Theorem 4.9:

Theorem 4.13.Under Assumption4.10, letu ∈ Jmβ (Wε) be a solution of problem(4.2). If
f ∈ Nn

β+2(Wε) for an integern > m, thenu ∈ Nn
β(W), and there exists a positive constant
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C independent ofu andn such that for all integerk, 0 ≤ k ≤ n we have

(4.26)
1

k!

( ∑

|α|=k

‖rmax{β+|α⊥|, 0}∂α
x u‖

2

0;W

) 1
2
≤ Ck+1

{

k∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rmax{β+2+|α⊥|, 0}∂α
x f‖

2

0;Wε

) 1
2
+ ‖u‖

Jmβ+1(Wε)

}
.

Proof. We review the sequence of steps leading to Theorem4.9 and adapt them to non-
homogeneous norms.
(i) Applying (4.23) to χρu with the functionχρ introduced in (4.9), we obtain, – compare
with (4.7),

‖u‖
Jm+1
β (WR)

≤ C
(
‖f‖

Jm−1
β+2 (WR+ρ)

+
m∑

λ=0

ρ−1−λ‖u‖
Jm−λ
β+1+λ(WR+ρ)

)
.

(ii) By the differential quotients technique we deduce, – compare with (4.12),

‖∂x3u‖Jm+1
β (WR)

≤ C
(
‖∂x3f‖Jm−1

β+2 (WR+ρ)
+

m∑

λ=0

ρ−1−λ‖u‖
Jm+1−λ
β+λ (WR+ρ)

)
,

since‖∂x3u‖Jm−λ
β+1+λ(WR+ρ)

is bounded by‖u‖
Jm+1−λ
β+λ (WR+ρ)

.

(iii) Iterating this on the model of (4.15) we find forℓ ≥ 1

‖∂ℓ
x3
u‖

Jm+1
β (W)

≤ (2C)ℓ
{ ℓ∑

j=1

ρ−(ℓ−j)‖∂j
x3
Lu‖

Jm−1
β+2 (W(2ℓ−j)ρ)

+
m∑

λ=0

ρ−ℓ−λ‖u‖
Jm+1−λ
β+λ (W(2ℓ−1)ρ)

}
,

leading to the analytic type estimate, – compare with (4.14),

(4.27)
1

ℓ!
‖∂ℓ

x3
u‖

Jm+1
β (WR)

≤ Cℓ+1
{ ℓ∑

j=0

1

j!
‖∂j

x3
Lu‖

Jm−1
β+2 (WR+R′)

+ ‖u‖
Jmβ+1(WR+R′ )

}
.

(iv) To prove (4.26), we start with the proof of, – compare with (4.20),

(4.28)

1

q!

( ∑

|α⊥|=q

‖rmax{β+|α⊥|, 0}∂α⊥
x⊥

u‖
2

0;W

) 1
2
≤ Cq+1

2

{

q∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rmax{β+2+|α⊥|, 0}∂α
x f‖

2

0;Wε′

) 1
2
+ ‖u‖

Jmβ+1(Wε′ )

}
.

• For q = 0, . . . , m, we rely on the estimate (4.23) combined with the use of the norm
(4.24) for Jm+1

β (W): If we restrict the left-hand side to the derivatives of the form ∂α⊥
x⊥

and replace the weightrmax{β+2+|α|, 0} by rmax{β+2+|α⊥|, 0} in the right-hand side, we obtain
(4.28).
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• For q ≥ m + 1, we combine the estimate (4.23) with the isotropic non-homogeneous
estimate (4.5) and making the same restriction to∂α⊥

x⊥
in the left-hand side and the same

change of weights in the right-hand side.

(v) We continue with the proof that for allµ = 0, . . . , n and for allq = 0, . . . , n − µ one
has the following estimates withk := q + µ and a constantC3 independent ofu, q andµ

(4.29)

1

k!

( ∑

|α⊥|=q

‖rmax{β+|α⊥|, 0}∂α⊥
x⊥

∂µ
x3
u‖

2

0;W

) 1
2
≤ Ck+1

3

{

k∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rmax{β+2+|α⊥|, 0}∂α
x f‖

2

0;Wε

) 1
2

+ ‖u‖
Jmβ+1(Wε)

}
.

1. If µ = 0, this estimate is a consequence of (4.28) sinceWε′ ⊂ Wε.
2. If µ > 0 (or equivalentlyq < k), we apply (4.28) to ∂µ

x3
u to obtain

(4.30)

1

q!

( ∑

|α⊥|=q

‖rmax{β+|α⊥|, 0}∂α⊥
x⊥

∂µ
x3
u‖

2

0;W

) 1
2
≤ Cq+1

2

{

q∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rmax{β+2+|α⊥|, 0}∂α
x ∂

µ
x3
f‖

2

0;Wε′

) 1
2
+ ‖∂µ

x3
u‖

Jmβ+1(Wε′ )

}
.

The last term of this right-hand side is now estimated with the help of (4.27) with ℓ = µ−1

‖∂µ
x3
u‖

Jmβ+1(Wε′ )
≤ ‖∂µ−1

x3
u‖

Jm+1
β (Wε′ )

≤ Cµ
4 (µ−1)!

( µ−1∑

j=0

1

j!
‖∂j

x3
f‖

Jm−1
β+2 (Wε)

+‖u‖
Jmβ+1(Wε)

)
.

Using this estimate in (4.30) we obtain that

1

q!

( ∑

|α⊥|=q

‖rmax{β+|α⊥|, 0}∂α⊥
x⊥

∂µ
x3
u‖

2

0;W

) 1
2
≤

Cq+1
2

q∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rmax{β+2+|α⊥|, 0}∂α
x ∂

µ
x3
f‖

2

0;Wε

) 1
2

+ Cq+1
2 Cµ

4 (µ− 1)!
( µ−1∑

j=0

1

j!
‖∂j

x3
f‖

Jm−1
β+2 (Wε)

+ ‖u‖
Jmβ+1(Wε)

)
.

We note that the norm in the spaceJm−1
β+2 (Wε) is equivalent to (cf. (4.24))

( ∑

|α|≤m−1

‖rmax{β+2+|α|, 0}∂α
x u‖

2

0;W

) 1
2
.
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Thus dividing the latter estimate byµ! and recalling thatk = q + µ we deduce

1

k!

( ∑

|α⊥|=q

‖rmax{β+|α⊥|, 0}∂α⊥
x⊥

∂µ
x3
u‖

2

0;W

) 1
2
≤

Ck+1
5

q∑

ℓ=0

1

ℓ!µ!

( ∑

|α|=ℓ

‖rmax{β+2+|α⊥|, 0}∂α
x ∂

µ
x3
f‖

2

0;Wε

) 1
2

+ Ck+1
5

( µ−1∑

j=0

1

j!

∑

|α|≤m−1

‖rmax{β+2+|α|, 0}∂α
x ∂

j
x3
f‖

0;Wε
+ ‖u‖

Jmβ+1(Wε)

)
.

From this we deduce (4.29). The final way to (4.26) is very similar to the conclusion of the
proof of Theorem4.9. This ends the proof of Theorem4.13. �

Remark4.14. We note some similarities between our estimates and those obtained in [16]
for the Laplace operator. Our argument based on the dyadic partition technique clearly
improves the structure of the whole proof.

5. ANALYTIC ANISOTROPIC WEIGHTED REGULARITY SHIFT IN POLYHEDRA

5.1. Edge and corner neighborhoods.Let Ω be a polyhedron inR3, that is a domain
whose boundary is a finite union of plane domains (the facesΓs, s ∈ S ). The faces are
polygonal, the segments forming their boundaries are the edgese of Ω, and the ends of the
edges are the cornersc of Ω. We denote the set of edges byE and the set of corners byC .
Edge openings may be equal to2π, allowing domains with crack surfaces.

In order to prove global regularity results in suitable weighted Sobolev spaces, we in-
troduce corner, edge and edge-vertex neighborhoods ofΩ. For a fixed cornerc ∈ C ,
we denote byEc the set of edges that havec as extremities. Similarly for a fixed edge
e ∈ E , we denote byCe the set of corners that are extremities ofe. Now we introduce the
following distances:

(5.1) rc(x) = dist(x, c), re(x) = dist(x, e), ρce(x) =
re(x)

rc(x)
.

There existsε > 0 small enough such that if we set

Ωe = {x ∈ Ω : re(x) < ε and rc(x) > ε/2 ∀c ∈ Ce},

Ωc = {x ∈ Ω : rc(x) < ε and ρce(x) > ε/2 ∀e ∈ Ec},(5.2a)

Ωce = {x ∈ Ω : rc(x) < ε and ρce(x) < ε},

we have the following properties:

(5.2b)





Ωe ∩ Ωe′ = ∅, ∀e′ 6= e,

B(c, ε) ∩ B(c′, ε) = ∅, ∀c′ 6= c,

Ωce ∩ Ωce′ = ∅, ∀e′ 6= e.
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We also define the larger neighborhoods withε′′ < ε < ε′

Ω′
e = {x ∈ Ω : re(x) < ε′ and rc(x) > ε′′/2 ∀c ∈ Ce},

Ω′
c = {x ∈ Ω : rc(x) < ε′ and ρce(x) > ε′′/2 ∀e ∈ Ec},(5.2c)

Ω′
ce = {x ∈ Ω : rc(x) < ε′ and ρce(x) < ε′},

assuming theε′ andε′′ are sufficiently close toε for the above properties (5.2b) to hold
for Ω′

e, Ω
′
c, andΩ′

ce. We finally introduce the smaller neighborhoodsΩ′′
e , Ω′′

c , andΩ′′
ce by

inverting the roles ofε′ andε′′ and set,

(5.2d) ΩC =
⋃

c∈C

Ω′′
c , ΩE =

⋃

e∈E

Ω′′
e , ΩC E =

⋃

c∈C

⋃

e∈Ec

Ω′′
ce.

We finally defineΩ0 as the remainder:

(5.2e) Ω0 = Ω \ ΩC ∩ ΩE ∩ ΩC E .

Note thatΩ0 is far from the singular points ofΩ. ReplacingΩ′′
c , Ω′′

e andΩ′′
ce by Ωc, Ωe

andΩce, respectively, in the definitions (5.2d) and (5.2e), we define the larger “smooth”
neighborhoodΩ′

0.
Let V be any subdomain ofΩ. We consider the system of local interior and boundary

equations

(5.3)





Lu = f in Ω ∩ V,

Ts u = 0 on Γs ∩ V , s ∈ S ,

Ds u = 0 on Γs ∩ V , s ∈ S ,

where the operatorsL, Ts andDs are homogeneous with constant coefficients and form an
elliptic system. The choiceV = Ω gives back the global boundary value problem on the
polyhedronΩ.

Definition 5.1. On V ⊂ Ω, for m ∈ N andβ = {βc}c∈C ∪ {βe}e∈E , the weighted space
with homogeneous normKm

β (V) is defined as follows,cf. [28, 29, 6, 7]

K
m
β (V) =

{
u ∈ L

2
loc(V) : ∀α, |α| ≤ m, ∂α

x u ∈ L
2(V ∩ Ω0) and(5.4)

rc(x)
βc+|α| ∂α

x u ∈ L
2(V ∩ Ωc) ∀c ∈ C ,

re(x)
βe+|α| ∂α

x u ∈ L
2(V ∩ Ωe) ∀e ∈ E ,

rc(x)
βc+|α| ρce(x)

βe+|α| ∂α
x u ∈ L

2(V ∩ Ωce) ∀c ∈ C , ∀e ∈ Ec

}
,

and endowed with its natural semi-norms and norm.

Note that the condition in the edge-vertex neighborhoodΩce can be equivalently written
as

rc(x)
βc−βe re(x)

βe+|α| ∂α
x u ∈ L

2(V ∩ Ωce).

Remark5.2. The semi-norms issued from (5.4) are equivalent to the globally defined semi-
norms

(5.5)
{ ∑

|α|=k

∥∥∥
{∏

c∈C

rβc+|α|
c

}{∏

e∈E

( re
rC

)βe+|α|}
∂α
x u

∥∥∥
2

0;V

} 1
2
, k = 0, . . . , m.
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HererC denotes the distance function to the setC of corners. With this expression, the
relations between our spacesKm

β (Ω) and the spacesV m,p
~β,~δ

(Ω) defined in [28, §1.2] or [29,
§7.3] become obvious:

(5.6) K
m
β (Ω) = V m,p

~β,~δ
(Ω) if p = 2, ~β =

{
βc +m

}
c∈C

, ~δ =
{
βe +m

}
e∈E

.

5.2. Anisotropic weighted spaces with homogeneous norms.Unlike in the conical case,
the weighted spacesKm

β are in a certain sense too large to describe accurately the regularity
of solutions of the elliptic problem (5.3) along the directions of edges. Mimicking the
definition of the spacesMm

β in the pure edge case,cf. (4.17), we particularize for each edge
e ∈ E , the derivatives in the directions transverse or parallel to that edge by the notations

(5.7) ∂α⊥
x (transverse) and ∂α‖

x
(parallel), (e ∈ E ),

so that

∂α
x = ∂α⊥

x ∂α‖

x
.

Of course these directions are edge dependent. They are well-defined in each of the do-
mainsΩe andΩce determined by the edgee.

The following spaces were introduced in [6, 7] for similar purposes:

Definition 5.3. OnV ⊂ Ω, for m ∈ N andβ = {βc}c∈C ∪ {βe}e∈E , we define

M
m
β (V) =

{
u ∈ L

2
loc(V) : ∀α, |α| ≤ m, ∂α

x u ∈ L
2(V ∩ Ω0) and(5.8)

rc(x)
βc+|α| ∂α

x u ∈ L
2(V ∩ Ωc) ∀c ∈ C ,

re(x)
βe+|α⊥| ∂α

x u ∈ L
2(V ∩ Ωe) ∀e ∈ E ,

rc(x)
βc+|α| ρce(x)

βe+|α⊥| ∂α
x u ∈ L

2(V ∩ Ωce) ∀c ∈ C , ∀e ∈ Ec

}
,

We denote by‖ · ‖
M;m,β;V

and| · |
M;m,β;V

its norm and semi-norm, namely

‖ · ‖
2

M;m,β;V
=

m∑

ℓ=0

| · |
2

M; ℓ,β;V

with

|u|
2

M; ℓ,β;V
=

∑

|α|=ℓ

(
‖∂α

x u‖
2

0;V∩Ω0
+
∑

c∈C

‖rβc+|α|
c ∂α

x u‖
2

0;V∩Ωc
(5.9)

+
∑

e∈E

‖rβe+|α⊥|
e ∂α

x u‖
2

0;V∩Ωe
+
∑

c∈C

∑

e∈Ec

‖rβc+|α|
c ρβe+|α⊥|

ce ∂α
x u‖

2

0;V∩Ωce

)
.

Note that the condition in the edge-vertex neighborhoodΩce can be written equivalently as

rc(x)
βc−βe+α‖ re(x)

βe+|α| ∂α
x u ∈ L

2(V ∩ Ωce).

We can then define the corresponding analytic class as follows:
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Definition 5.4. We say thatu ∈ Aβ(Ω) if u ∈ M
k
β(Ω) for all k ≥ 0 and there exists a

positive constantC such that

|u|
M;k,β; Ω

≤ Ck+1k! ∀k ≥ 0.

We rephrase Assumption4.3for the dihedral neighborhoodΩe:

Assumption 5.5.Let e ∈ E andβe ∈ R. We assume the following a priori estimate: There
is a constantC such that any

u ∈ K2
βe
(Ωe) ,

solution of problem (5.3) in V = Ω′
e with f ∈ K0

βe+2(Ω
′
e), satisfies:

(5.10) ‖u‖
K2

βe
(Ωe)

≤ C
(
‖f‖

K0
βe+2(Ω

′
e)
+ ‖u‖

K1
βe+1(Ω

′
e)

)
.

We can apply Theorem4.9to the edge neighborhoodΩe. We obtain that under Assump-
tion 5.5, any solutionu ∈ K1

βe
(Ω′

e) of problem (5.3) with f ∈ Mn
βe+2(Ω

′
e) satisfies the

uniform estimates for0 ≤ k ≤ n

(5.11)
1

k!

( ∑

|α|=k

‖rβe+|α⊥|
e ∂α

x u‖
2

0; Ωe

) 1
2

≤ Ck+1
{ k∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rβe+2+|α⊥|
e ∂α

x f‖
2

0; Ω′
e

) 1
2

+ ‖u‖
K1

βe+1(Ω
′
e)

}
.

Now we consider the edge-vertex domainΩce.

Proposition 5.6. Let c ∈ C and e ∈ Ec. Let β = {βc, βe}. Under Assumption5.5,
any solutionu ∈ K1

β(Ω
′
ce) of problem(5.3) with f ∈ Mn

β+2(Ω
′
ce) belongs toMn

β (Ωce) and
satisfies the uniform estimates for0 ≤ k ≤ n

(5.12)
1

k!

( ∑

|α|=k

‖rβc+|α|
c ρβe+|α⊥|

ce ∂α
x u‖

2

0; Ωce

) 1
2
≤ Ck+1

{

k∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rβc+2+|α|
c ρβe+2+|α⊥|

ce ∂α
x f‖

2

0; Ω′
ce

) 1
2
+ ‖u‖

K1
β+1(Ω

′
ce)

}
.

Proof. We mimic the proof of Theorem2.2. The proof of estimate (5.12) is based on a
locally finite dyadic covering ofΩce andΩ′

ce. Define, compare with (5.2a)-(5.2c),

V̂ = {x ∈ Ω : ε
4
< rc(x) < ε and ρce < ε}

V̂ ′ = {x ∈ Ω : ε2

4ε′
< rc(x) < ε′ and ρce < ε′},

and forµ ∈ N:
Vµ = 2−µV̂ and V ′

µ = 2−µV̂ ′.

We check:
Ωce =

⋃

µ∈N

Vµ and Ω′
ce =

⋃

µ∈N

V ′
µ .
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•
c

•
c

e e

Ωe

Ω′
e

V̂
V̂ ′

FIGURE 2. Nested edge neighborhoods (section determined by azimuthal
angleθe = constant)

The estimate (5.11) betweenΩe andΩ′
e also holds in the configuration of̂V andV̂ ′ which

is similar: V̂ and V̂ ′ arenested edge neighborhoodswhich do not touch any corner, see
Fig. 2.

Sincerc is bounded from above and from below by strictly positive constants, the dis-
tancere is equivalent toρce on the reference domains: We have

1

k!

( ∑

|α|=k

‖ρce(x̂)
βe+|α⊥|∂α

x û‖
2

0; V̂

) 1
2

≤ Ck+1
{ k∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖ρce(x̂)
βe+2+|α⊥|∂α

x f̂‖
2

0; V̂ ′

) 1
2

+
∑

|α|≤1

‖ρce(x̂)
βe+|α|∂α

x û‖0; V̂ ′

}
.

for any reference function̂u satisfying the boundary conditions of (5.3) andf̂ := Lû.
For the same reason, we can insert powers ofrc in the above estimate, to obtain our new

reference estimate

1

k!

( ∑

|α|=k

‖rc(x̂)
βc+|α|ρce(x̂)

βe+|α⊥|∂α
x û‖

2

0; V̂

) 1
2

≤ Ck+1
{

(5.13)

k∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rc(x̂)
βc+2+|α|ρce(x̂)

βe+2+|α⊥|∂α
x f̂‖

2

0; V̂ ′

) 1
2

+
∑

|α|≤1

‖rc(x̂)
βc+|α|ρce(x̂)

βe+|α|∂α
x û‖0; V̂ ′

}
.

The change of variableŝx → x = 2−µx̂ mapsV̂ to Vµ (resp.V̂ ′ to V ′
µ). We note that

ρce(x̂) = ρce(x) and rc(x̂) = 2µrc(x).
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With the change of functions

û(x̂) := u(x) and f̂(x̂) := Lû , which implies f̂(x̂) = 2−2µf(x),

we deduce from estimate (5.13) that

1

k!
2µβc

( ∑

|α|=k

‖rc(x)
β+|α|ρce(x)

βe+|α⊥|∂α
x u‖

2

0;V

) 1
2
≤ Ck+1

{

k∑

ℓ=0

1

ℓ!
2µ(βc+2)

( ∑

|α|=ℓ

2−2µ‖rc(x)
β+2+|α|ρce(x)

βe+2+|α⊥|∂α
x f‖

2

0;V ′

) 1
2

+
(
2µβc

∑

|α|≤1

‖rc(x)
βc+|α|ρce(x)

βe+|α|∂α
x u‖

2

0;V ′

) 1
2
}
.

Multiplying this identity by2−µβ, taking squares, and summing up over allµ, we get the
requested estimate (5.12). �

The estimates in pure vertex domainsΩc (i.e., close to corners but “relatively far” from
the edges) are similar to those in obtained in Theorem2.2for plane sectors:

Proposition 5.7. Letc ∈ C andβ = {βc}. Any solutionu ∈ K1
β(Ω

′
c) of problem(5.3) with

f ∈ Mn−2
β+2(Ω

′
c) belongs toMn

β (Ωc) and satisfies the uniform estimates for0 ≤ k ≤ n

(5.14)
1

k!

( ∑

|α|=k

‖rβc+|α|
c ∂α

x u‖
2

0; Ωc

) 1
2
≤ Ck+1

{

k−2∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rβc+2+|α|
c ∂α

x f‖
2

0; Ω′
c

) 1
2
+ ‖u‖

K1
β+1(Ω

′
c)

}
.

Proof. The proof is again based on the argument of dyadic partitionswith reference do-
mains defined as

V̂ = {x ∈ Ωc,
ε
4
< rc(x) < ε} and V̂ ′ = {x ∈ Ω′

c,
ε2

4ε′
< rc(x) < ε′}.

and forµ ∈ N:

Vµ = 2−µV̂ and V ′
µ = 2−µV̂ ′.

We check:

Ωc =
⋃

µ∈N

Vµ and Ω′
c =

⋃

µ∈N

V ′
µ .

We can apply the a priori estimates of the smooth case betweenV̂ and V̂ ′, cf. (2.9) and
deduce (5.14) in the same way. �

We obtain now the anisotropic regularity shift in homogeneous weighted spaces on poly-
hedra :
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Theorem 5.8. LetΩ be a polyhedron andβ = {βc, βe} be a weight multi-exponent. Let
Assumption5.5 be satisfied for all edgese ∈ E . Let u ∈ H2

loc
(Ω \ E ) be a solution of

problem(5.3). Then the following implications hold

u ∈ K1
β(Ω) and f ∈ Mm

β+2(Ω) =⇒ u ∈ Mm
β (Ω) (m ∈ N),(5.15a)

u ∈ K1
β(Ω) and f ∈ Aβ+2(Ω) =⇒ u ∈ Aβ(Ω).(5.15b)

Proof. The proof is a consequence of

(i) elliptic estimates in the smooth case applied betweenΩ0 andΩ′
0,

(ii) pure corner estimates (5.14),
(iii) edge estimates (5.11) between the pure edge domainsΩe andΩ′

e,
(iv) edge-vertex estimates (5.12).

�

5.3. Anisotropic weighted spaces with non-homogeneous norms.For the same reason
as in the two-dimensional case, it is valuable to have alternative statements to (5.15a) and
(5.15b) in which the a priori conditionu ∈ K1

β(Ω) can be replaced by the weaker condition
u ∈ J1β(Ω).

Definition 5.9. Forβ = {βc, βe} andn ∈ N, let us introduce the isotropic weighted space

J
n
β (V) =

{
u ∈ L

2
loc(V) : ∀α, |α| ≤ n, ∂α

x u ∈ L
2(V ∩ Ω0) and(5.16)

rc(x)
βc+n ∂α

x u ∈ L
2(V ∩ Ωc) ∀c ∈ C ,

re(x)
βe+n ∂α

x u ∈ L
2(V ∩ Ωe) ∀e ∈ E ,

rc(x)
βc+n ρce(x)

βe+n ∂α
x u ∈ L

2(V ∩ Ωce) ∀c ∈ C , ∀e ∈ Ec

}
,

and its anisotropic companion, forn > −min{minc∈C βc,mine∈E βe}, cf. (4.25)

N
n
β (V) =

{
u ∈ L

2
loc(V) : ∀α, |α| ≤ n, ∂α

x u ∈ L
2(V ∩ Ω0) and(5.17)

rc(x)
max{βc+|α|,0} ∂α

x u ∈ L
2(V ∩ Ωc) ∀c ∈ C ,

re(x)
max{βe+|α⊥|,0} ∂α

x u ∈ L
2(V ∩ Ωe) ∀e ∈ E ,

rc(x)
max{βc+|α|,0} ρce(x)

max{βe+|α⊥|,0} ∂α
x u ∈ L

2(V ∩ Ωce) ∀c ∈ C , ∀e ∈ Ec

}
.

We note that, like in the case ofK-weighted spaces, the semi-norms issued from (5.16)
are equivalent to the globally defined semi-norms, compare with (5.5)

(5.18)
{ ∑

|α|=k

∥∥∥
{∏

c∈C

rβc+n
c

}{∏

e∈E

( re
rC

)βe+n}
∂α
x u

∥∥∥
2

0;V

} 1
2
, k = 0, . . . , n.

It is useful to introduce, in the same spirit as in [29], a full range of intermediate spaces
betweenKn

β (Ω) andJnβ (Ω).
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Definition 5.10. Let us flag a subsetC0 of corners and a subsetE0 of edges, and define
J
n
β (V;C0, E0) as the space of functions such that all semi-norms

(5.19)
∥∥∥
{ ∏

c∈C0

rβc+|α|
c

}{ ∏

c∈C \C0

rβc+n
c

}{ ∏

e∈E0

( re
rC

)βe+|α|}{ ∏

e∈E \E0

( re
rC

)βe+n}
∂α
x u

∥∥∥
0;V

are finite for|α| ≤ n. Anisotropic spacesNn
β (V;C0, E0) are defined similarly, replacing

in (5.17) the weightrmax{βc+|α|,0}
c by r

βc+|α|
c whenc ∈ C0, and{re, ρce}max{βe+|α|,0} by

{re, ρce}
βe+|α| whene ∈ E0. The sum of the squares of these contributions for|α| = n

defines the squared semi-norm

|u|
2

Nn
β (V ;C0,E0)

.

Note that withC0 = E0 = ∅, we obtain the maximal spaces already introduced in (5.16)
and (5.17):

(5.20) J
n
β (V) = J

n
β (V;∅,∅) ; N

n
β (V) = N

n
β (V;∅,∅) .

The corresponding analytic class is defined as usual:

Definition 5.11. We say thatu ∈ Bβ(Ω;C0, E0) if u ∈ N
k
β(Ω;C0, E0) for all k > kβ :=

−min{minc∈C βc,mine∈E βe} and there exists a positive constantC such that

|u|
Nk
β(Ω;C0,E0)

≤ Ck+1k! ∀k > kβ.

In accordance with (5.20), we writeBβ(Ω) for Bβ(Ω;∅,∅).

Remark5.12. (i) ChoosingC0 = C andE0 = E , we find that the spacesJnβ (Ω;C , E ),
N

n
β (Ω;C , E ) andBβ(Ω;C , E ) coincide with the homogeneous spacesK

n
β (Ω), M

n
β (Ω) and

Aβ(Ω), respectively.

(ii) The following relations hold between our spacesJ
m
β (Ω;C0, E0) and the spacesWm,p

~β,~δ
(Ω)

of Maz’ya and Rossmann [29]:

(5.21) J
m
β (Ω;C ,∅) = Wm,p

~β,~δ
(Ω) if p = 2, ~β =

{
βc +m

}
c∈C

, ~δ =
{
βe +m

}
e∈E

.

In these spaces, the non-homogeneity is only related toedges. Under the same condition
as in (5.21), the intermediate spacesWm,p

~β,~δ
(Ω; J̃) of [29, § 7.3] coincide with our spaces

J
m
β (Ω;C , E0) if E0 is chosen as the same set of edges asJ̃ .

(iii) Our analytic classBβ(Ω) coincides with the so-called countably normed spacesBℓ
β(Ω)

introduced by Guo in [13]: If Guo’s edge and corner exponentsβij ∈ (0, 1) andβm ∈ (0, 1
2
)

satisfyβij = βe + ℓ andβm = βc + ℓ, respectively, thenBℓ
β(Ω) = Bβ(Ω).

We state the assumption forJ-weighted spaces corresponding to Assumption4.10 for
the dihedral neighborhoodΩe:

Assumption 5.13.Lete ∈ E . Letm ≥ 1 be an integer. Letβe ∈ R such thatβe+m > −1.
We assume the following a priori estimate: There is a constant C such that any

u ∈ Jm+1
βe

(Ωe) ,
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solution of problem (5.3) in V = Ω′
e with f ∈ Jm−1

βe+2(Ω
′
e), satisfies:

(5.22) ‖u‖
Jm+1
βe

(Ωe)
≤ C

(
‖f‖

Jm−1
βe+2(Ω

′
e)
+ ‖u‖

Jmβe+1(Ω
′
e)

)
.

We then have the following anisotropic regularity shift result in the non-homogeneous
weighted spacesNn

β (Ω;C ,∅) andBβ(Ω;C ,∅):

Theorem 5.14.LetΩ be a polyhedron andβ = {βc, βe} be a weight multi-exponent. Let
m ≥ 1 be an integer such thatβe+m > −1 for all edges. Let Assumption5.13be satisfied
for all e ∈ E . Let u ∈ H2

loc
(Ω \ E ) be a solution of problem(5.3) in V = Ω. Then the

following implications hold

(5.23)
u ∈ Jmβ (Ω;C ,∅) and f ∈ Nn

β+2(Ω;C ,∅) =⇒ u ∈ Nn
β (Ω;C ,∅) (n > m),

u ∈ Jmβ (Ω;C ,∅) and f ∈ Bβ+2(Ω;C ,∅) =⇒ u ∈ Bβ(Ω;C ,∅).

Proof. The proof is a consequence of suitable a priori estimates with analytic control in the
four types of regions in the polyhedron:
(i) Elliptic estimates in the smooth case can be applied betweenΩ0 andΩ′

0.

(ii) Pure corner estimates (5.14) are valid here: We note that in the pure corner regionΩc

the norms inK andJ spaces, or inM andN spaces, are the same.

(iii) The edge estimates (4.26) are valid between the pure edge domainsΩe andΩ′
e.

(iv) Finally, edge-vertex estimates are proved by the dyadic partition argument starting
from the same reference domainsV̂ andV̂ ′ as in the proof of Proposition5.6. The reference
estimate can be written as

(5.24)
1

k!

( ∑

|α|=k

‖rmax{βe+|α⊥|, 0}
e ∂α

x û‖
2

0; V̂

) 1
2
≤ Ck+1

{

k∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rmax{βe+2+|α⊥|, 0}
e ∂α

x f̂‖
2

0; V̂ ′

) 1
2

+
( ∑

|α|≤m

‖rmax{βe+|α|,0}
e ∂α

x û‖
2

0; V̂ ′

) 1
2
}
.

Sincerc and(rc)−1 are bounded on the reference domains, we can

• replacere by ρce
• insert powers ofrc

in the previous estimate, thus obtaining

1

k!

( ∑

|α|=k

‖rβc+|α|
c ρmax{βe+|α⊥|, 0}

ce ∂α
x û‖

2

0; V̂

) 1
2
≤ Ck+1

{

k∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rβc+2+|α|
c ρmax{βe+2+|α⊥|, 0}

ce ∂α
x f̂‖

2

0; V̂ ′

) 1
2

+
( ∑

|α|≤m

‖rβc+|α|
c ρmax{βe+|α|,0}

ce ∂α
x û‖

2

0; V̂ ′

) 1
2
}
.
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Owing to the homogeneity of the weights with respect torc, the dyadic partition argument
yields the desired edge-vertex estimate, which allows to conclude the proof of the theorem.

�

Remark5.15. (i) If we replace Assumption5.13 by Assumption5.5 for edgese in the
flagged subsetE0, we can prove, instead of (5.23), the implications

(5.25)
u ∈ Jmβ (Ω;C , E0) and f ∈ Nn

β+2(Ω;C , E0) =⇒ u ∈ Nn
β (Ω;C , E0),

u ∈ Jmβ (Ω;C , E0) and f ∈ Bβ+2(Ω;C , E0) =⇒ u ∈ Bβ(Ω;C , E0).

(ii) Under Assumption5.13, the implications in the maximal non-homogeneous spaces,
i.e., withC0 = E0 = ∅, are also true:

(5.26)
u ∈ Jmβ (Ω) and f ∈ Nn

β+2(Ω) =⇒ u ∈ Nn
β (Ω),

u ∈ Jmβ (Ω) and f ∈ Bβ+2(Ω) =⇒ u ∈ Bβ(Ω).

If βc > −3
2

for any cornerc, the statements (5.23) and (5.26) coincide, since in this case
the spacesJmβ (Ω;C ,∅) andJmβ (Ω) are the same (consequence of Hardy’s inequality). In
the general case (5.26) can be proved by two different methods:

• Deduced from (5.23) by an argument of corner asymptotics (at each corner, the
asymptotics moduloJmβ (Ω;C ,∅) contains only polynomials): For instance when
m = 1, if βc ∈ (−5

2
,−3

2
) for all cornersc, any element ofu ∈ Jmβ (Ω) splits as

u = uc +wc in Ωc, with uc ∈ Jmβ (Ω;C ;∅), wc ∈ C
N ,

and we can apply (5.23) locally near each corner, to each functionuc.
• Directly proved by the same method as for Theorem5.14, starting with the refer-

ence estimate fork ≥ m

1

k!

( ∑

|α|=k

‖rmax{βe+|α⊥|,0}
e ∂α

x û‖
2

0; V̂

) 1
2
≤ Ck+1

{

k∑

ℓ=m−1

1

ℓ!

( ∑

|α|=ℓ

‖rmax{βe+2+|α⊥|, 0}
e ∂α

x f̂‖
2

0; V̂ ′

) 1
2

+
( ∑

|α|=m

‖rmax{βe+|α|,0}
e ∂α

x û‖
2

0; V̂ ′

) 1
2
}
,

instead of (5.24): The J
m
βe

norm present in (5.24) is replaced here by the corre-
sponding semi-norm,cf. Corollary1.2.

6. ANALYTIC WEIGHTED REGULARITY OF VARIATIONAL SOLUTIONS

In this section, we investigate how Theorem3.4 in the polygonal case, or Theorems5.8
and5.14in the polyhedral case, apply to solutions of variational problems.

Let Ω be a polygon or a polyhedron. In coherence with the previous sections, we con-
sider a sesquilinear forma, homogeneous of order1 and with constant coefficients acting
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on vector-valued functions withN components

(6.1) a(u, v) =

N∑

i=1

N∑

j=1

∑

|α|=1

∑

|γ|=1

∫

Ω

aαγij ∂α
x uj(x) ∂

γ
x vi(x) dx,

and a subspaceV of H1(Ω)N =: H1(Ω) defined by essential boundary conditions on the
sidesΓs of Ω

(6.2) V = {u ∈ H1(Ω) : Dsu = 0 on Γs, s ∈ S }.

We assume that the forma is coerciveonV:

∃c, C > 0, ∀u ∈ V, Re a(u, u) ≥ c‖u‖
2

1;Ω
− C‖u‖

2

0;Ω
.

Standard examples of such sesquilinear forms are the gradient form for scalar functions

a∇(u, v) =

∫

Ω

∇u(x) · ∇v(x) dx

and the stress-strain sesquilinear forms in linear elasticity:

aela =

∫

Ω

σ(u)(x) : ε(v)(x) dx,

whereε is the symmetrized gradient tensor andσ = Aε, whereA is a material tensor with
the usual symmetry and positivity properties. VariationalspacesV on whicha∇ is coercive
can be defined by any subsetSD of the set of sidesS :

V = {u ∈ H
1(Ω) : u

∣∣
Γs

= 0 ∀s ∈ SD}.

As for aela we can take forV any space of the type

V = {u ∈ H1(Ω) : u
∣∣
Γs

= 0 ∀s ∈ SD, u · n
∣∣
Γs

= 0 ∀s ∈ ST

and u× n
∣∣
Γs

= 0 ∀s ∈ SN},

wheren is the outward unit normal vector toΓs, andSD, ST , andSN are disjoint subsets
of S . As a consequence of Korn’s inequality,aela is coercive on such spacesV.

We consider the variational problem

(6.3) Find u ∈ V such that ∀v ∈ V, a(u, v) =

∫

Ω

f v dx .

Having the analytic shift results of Theorems3.4, 5.8 and5.14at hand, the issue is to
find suitable exponentsβ so that

(1) Aβ(Ω) or Bβ(Ω) are compactly embedded inH1(Ω), — in order to be useful in
error analysis for example.

(2) Variational solutionsu with sufficiently smooth right hand sides belong toK1
β(Ω)

or J1β(Ω).

Condition (1) of compact embedding is satisfied on two- and three-dimensional domains
for all β < −1 (this means that all componentsβc andβe are< −1). This is the reason
why we exhibit weights of the formβ = −b− 1 with b > 0 in the statements below.
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6.1. Regularity of variational solutions in polygons. Let Ω be a polygon with vertices
c ∈ C . The standard Sobolev spaceH

1(Ω) coincides withJ1−1(Ω), see (3.4). From Remark
3.3 (ii) , we know that for the comparison ofJ1−1(Ω) with K

1
−1(Ω) we are in a critical case,

namely a functionu ∈ H
1(Ω) neither has point values at corners nor satisfiesr−1u ∈ L

2(Ω)
in general (see [22]). There holdsK1

−1(Ω) ⊂ J
1
−1(Ω) ⊂ K

1
−1+ε(Ω) for all ε > 0.

Taking the essential boundary conditions into account thatdefine the variational space
V ⊂ H1(Ω), one will sometimes find thatV is embedded inK1

−1(Ω). This happens in
particular if each corner lies on at least one side on which Dirichlet conditions are imposed.
In the general case, one will just haveV ⊂ K1

−1+ε(Ω) for all ε > 0. Necessary and
sufficient conditions for the embeddingV ⊂ K1

−1(Ω) are discussed in [9, Ch. 14].
The analytic regularity shift (3.12b) in classesAβ(Ω) can be applied to variational so-

lutions with well chosen weight exponentsβ < −1 in caseV ⊂ K1
−1(Ω), whereas in the

general case, (3.13b) can be applied: For convenience, we write the weight exponent in the
form

β = −1− b, with b =
(
bc
)
c∈C

.

Theorem 6.1. LetΩ be a polygon. We assume that the forma is coercive onV, and that
V ⊂ K1

−1(Ω). There exists a positive numberb(Ω, a,V) such that the following implication
holds for any solutionu of the variational problem(6.3):

(6.4) If ∀c ∈ C , 0 ≤ bc < b(Ω, a,V) then f ∈ A−b+1(Ω) =⇒ u ∈ A−b−1(Ω).

Proof. Invoking the general theory of corner problems in the variational setting, we know
that there exists a maximal positive numberb(Ω, a,V) such that

(6.5) If ∀c ∈ C , 0 ≤ bc < b(Ω, a,V) then f ∈ K0
−b+1(Ω) =⇒ u ∈ K2

−b−1(Ω).

The proof of this essentially goes back to Kondrat’ev [21], see also [9, Ch. 10] for more
details on the application of Kondrat’ev’s technique to variational problems. Then (6.4) is
a consequence of (3.12b) applied forβ = −b− 1, and (6.5). �

Remark6.2. Let σ(Ac) denote the spectrum of the “Mellin symbol”Ac of the system
(L, Ts, Ds)

1 at the cornerc (see [21, 22]): In short, the complex numberλ belongs toσ(Ac)
if there exists a non-zero functionu of the form rλcϕ(θc) solution of the homogeneous
problem (2.2) (i.e., with f = 0) on the finite coneΩc. Thenb(Ω, a,V) is the supremum of
the numbersb > 0 such that

{λ ∈ C : 0 ≤ Reλ ≤ b} ∩ σ(Ac) = ∅ ∀c ∈ C .

In (6.4) and (6.5), we have for the sake of simplicity chosen to write a common estimate for
all corner weight exponents. The regularity question beinglocal, it is clear that we could
have defined a boundb(c, a,V) separately for each corner and then replaced the conditions
in (6.4) and (6.5) by the inequalities0 ≤ bc < b(c, a,V) for all cornersc ∈ C . In this case,
we can take forb(c, a,V) the smallest positive real part of the elements ofσ(Ac).

Example6.3. Let us consider the gradient forma = a∇ on scalar functions. The associated
operator is the Laplacian∆. Let ωc be the opening ofΩ near the vertexc and denote by
Γi
c, i = 1, 2, the two sides ofΩ containingc.

1
Ac is also called “operator pencil” generated by the system(L, Ts, Ds).
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(i) For the Dirichlet problem, we haveV ⊂ K1
−1(Ω) and

b(Ω, a∇,H
1
0) = min

c∈C

{ π

ωc

}
.

(ii) In the mixed Neumann-Dirichlet case, if at all corners Dirichlet conditions are imposed
on at least one side containingc, we still haveV ⊂ K1

−1(Ω) and

b(Ω, a∇,V) = min
{
min
c∈CD

{ π

ωc

}
, min
c∈CM

{ π

2ωc

}}
,

whereCD is the set of Dirichlet cornersc (Dirichlet conditions on both sidesΓi
c) andCM

the set of “Mixed” cornersc (Dirichlet conditions on only one sideΓi
c).

If we do not haveV ⊂ K1
−1(Ω) or for more general data, it is convenient to start from a

regularity result inJ-weighted spaces.

Theorem 6.4.We assume that the forma is coercive onV. There exists a positive number
b∗(Ω, a,V) such that the following implication holds for any solutionu of the variational
problem(6.3):

(6.6) If ∀c ∈ C , 0 ≤ bc < b∗(Ω, a,V) then f ∈ B−b+1(Ω) =⇒ u ∈ B−b−1(Ω).

Proof. The proof relies on regularity results in spaces with non-homogeneous norms: By
a modification of Kondrat’ev’s method, see [27, 22] and [12], one can prove that for any
m ≥ 2, there exists a maximal numberbm ∈ (0, m] such that we have the implication

(6.7) If ∀c ∈ C , 0 ≤ bc < bm , then f ∈ Jm−2
−b+1(Ω) =⇒ u ∈ Jm−b−1(Ω)

for variational solutions. The sequence(bm) is stationary form ≥ m0 large enough, and
b∗(Ω, a,V) is given bybm0 . A complete proof in this framework is presented in [9, Ch. 13].
Then (6.6) is a consequence of (3.13b), and (6.7). �

Remark6.5. For b ∈ (k, k + 1) (with a natural numberk), formula (3.10) yields

B−b−1(Ωc) = A−b−1(Ωc)⊕ (Pk)N (c ∈ C ).

Remark6.6. The numberb∗(Ω, a,V) can be characterized in a similar way asb(Ω, a,V)
(cf. Remark6.2). For each cornerc, the spectrumσ(Ac) has to be modified concerning
its possible integer elements (condition of injectivity modulo polynomials [12, 9]). This
defines a possibly slightly different set, denoted byσ∗(Ac) andb∗(Ω, a,V) is the supremum
of the numbersb > 0 such that

{λ ∈ C : 0 < Reλ ≤ b} ∩ σ∗(Ac) = ∅ ∀c ∈ C .

Example6.7. Let us come back to the gradient forma = a∇ on scalar functions. Forany
mixed Neumann-Dirichlet problem, including the pure Neumann problem, Theorem6.4is
valid and we find

b∗(Ω, a∇,V) = min
{

min
c∈CD∪CN

{ π

ωc

}
, min
c∈CM

{ π

2ωc

}}
,

whereCD is the set of Dirichlet corners,CN is the set of Neumann corners, andCM the
set of “Mixed” cornersc. Thusb∗(Ω, a∇,V) will always be greater than1

4
. For the pure

Dirichlet or pure Neumann problem on a convex polygon, it will be greater than1, and for
some triangles even greater than2, but never greater than3.
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Remark6.8. Theorem6.4 has to be compared with earlier results by Babuška and Guo2:
The Laplace operator with non-homogeneous mixed boundary conditions is considered
in [2, 3]; more general scalar second order operators with analyticcoefficients are ad-
dressed in [1] and finally the Lamé system of linear elasticity with non-homogeneous
mixed Dirichlet-Neumann boundary conditions is investigated in [14]. These results are
at the same time more general than Theorem6.4 since they address non-homogeneous
boundary conditions and variable coefficients, but more restrictive since they do not in-
clude a full class of coercive second order systems with a unified approach. In section7 we
explain how our technique of proof generalizes to non-homogeneous boundary conditions
and variable coefficients. Since the results so obtained arenot entirely new, we try to be as
concise as possible, and we will only sketch the proofs. Detailed proofs and more general
results will be published in [9, Part II].

6.2. Regularity of variational solutions in polyhedra. LetΩ be a polyhedron with edges
e ∈ E and cornersc ∈ C . The comparison between the variational spaceV and weighted
spacesK1

β(Ω) andJ1β(Ω), cf. (5.4) and (5.16), is still related with the multi-exponentβc =
βe = −1 and essential boundary conditions: We have

J
1
−1(Ω) = H

1(Ω)

and, in the Dirichlet case
H

1
0(Ω) ⊂ K

1
−1(Ω).

Moreover, the intermediate space

J
1
−1(Ω;C ,∅) =

{
u ∈ H

1(Ω) : r−1
c u ∈ L

2(Ω) ∀c ∈ C
}
,

also coincides withH1(Ω) by virtue of Hardy’s inequality.
The analogues of Theorems6.1 and6.4 hold for polyhedra. For convenience, we con-

sider multi-exponents of the form

β = −1 − b, with b =
(
bc
)
c∈C

∪
(
be
)
e∈E

.

The issue is twofold:
(1) Verify Assumptions5.5or 5.13, which are closed range properties
(2) Give conditions for variational solutions to belong to spacesK1

β(Ω) or J1β(Ω).

Let e ∈ E . Denote byWe the wedge which coincides withΩ in a neighborhood of
the edgee and byKe the plane sector such thatWe

∼= Ke × R. A minimal condition for
Assumptions5.5 or 5.13to hold is an injectivity condition for the Fourier symbol ofthe
system(L, Ts, Ds) on the plane sectorKe. As a side remark, we mention that it can be
shown that in the variational case, such a condition is satisfied for all βe < −1 with the
exception of a discrete set, see [9, Part III].

As a matter of fact, the condition which ensures the regularity of variational solutions
impliesAssumptions5.5 or 5.13. Hence we focus on conditions for the regularity. There
are not so many results on regularity for elliptic boundary value problems in polyhedra. Let
us quote [24, 25] for early results in generaln-dimensional polyhedral domains in spaces
of K type, [12] in n-dimensional polyhedral domains in standard Sobolev spaces, and more

2Whenb ∈ (0, 1), our spaceB−b−1(Ω) coincides with their spaceB2

β(Ω) for β = 1− b.
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recently [29] in 3-dimensional polyhedral domains in spacesJ
n
β (C , E0), cf. Remark5.12

(ii) .
The latter results, especially [29, Thms. 7.1 & 7.2], fit exactly to complement our results,

namely in the form (5.25). For this reason we formulate the following theorem with the
assumptions of [29], that is mixed Dirichlet-Neumann boundary conditions forsecond
order systems:

V = {u ∈ H1(Ω) : u
∣∣
Γs

= 0, s ∈ SD}.

Let E0 be the set of edgese which are the sides of facesΓs with s ∈ SD. We still consider
sesquilinear forms (6.1).

Theorem 6.9.We assume that the forma is coercive onV. There exist two positive numbers
bC (Ω, a,V) andbE (Ω, a,V) such that the following implication holds for any solutionu of
the variational problem(6.3):

(6.8) If ∀c ∈ C , 0 ≤ bc < bC (Ω, a,V) and ∀e ∈ E , 0 ≤ be < bE (Ω, a,V)

then f ∈ B−b+1(Ω;C , E0) =⇒ u ∈ B−b−1(Ω;C , E0).

Proof. First Theorem 7.2 of [29] guarantees that the Assumption5.5is satisfied withβe =
−be + 1, with be satisfying (6.8). Second Theorem 7.1 of [29] show the regularityu ∈
J1−b−1(Ω;C , E0) with b satisfying (6.8). Hence the conclusion follows from Theorem5.14
(see Remark5.15). �

Remark6.10. Let σ(Ac) andσ(Ae) denote the spectrum of the Mellin symbolAc andAe

of the system(L, Ts, Ds) at the cornerc and the edgee, respectively. ThenbE (Ω, a,V) is
the supremum of the numbersb > 0 such that

{λ ∈ C : 0 ≤ Reλ ≤ b} ∩ σ(Ae) = ∅ ∀e ∈ E ,

andbC (Ω, a,V) is the supremum of the numbersb > 0 such that

{λ ∈ C : −1
2
≤ Reλ ≤ b− 1

2
} ∩ σ(Ac) = ∅ ∀c ∈ C .

Remark6.11. Let us defineb∗
C
(Ω, a,V) as the supremum of positiveb such that for all

λ, −1
2
≤ Reλ ≤ b − 1

2
, the condition of injectivity modulo polynomials is satisfied at the

cornerc. Then replacingbC (Ω, a,V) by b∗
C
(Ω, a,V), we obtain the condition which ensures

the analytic regularity in the maximal classesB−b−1(Ω) = B−b−1(Ω;∅,∅) cf. Definition
5.11.

7. GENERALIZATION TO NON-HOMOGENEOUS BOUNDARY DATA AND VARIABLE

COEFFICIENTS

The fundamental estimate (1.1) in the smooth case allows non-homogeneous boundary
data and variable coefficients, and the analytic regularityresults can therefore be extended
to cover this more general situation. But the difficulty to doso is of a quite different level
for two-dimensional and for three-dimensional domains (due to the anisotropy in the latter
case). Here we mainly address two-dimensional domains and give only some orientations
for the treatment of three-dimensional domains at the end ofthis section.
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So, let us consider the general boundary value problem, set on the polygonΩ:

(7.1)





Lu = f in Ω,

Ts u = gs on Γs, s ∈ S ,

Ds u = hs on Γs, s ∈ S ,

where the operatorsL = L(x; ∂x), Ts = Ts(x; ∂x) andDs = Ds(x) may have variable
coefficients and lower order terms.

7.1. Trace spaces.First, we have to introduce the trace spaces ofK
m
β (Ω) andAβ(Ω) on

each sideΓs of Ω. Let us choose a sides and denote byc andc′ its two ends. We consider
a covering ofΓs by two open segmentsΓ andΓ′ so that

c ∈ Γ, c′ 6∈ Γ and c′ ∈ Γ′, c 6∈ Γ′.

We note that we can taker := rc as the tangential variable alongΓ. Fork ∈ N, σ ∈ (0, 1)
andγ ∈ R we define the weighted spaceKk+σ

γ (Γ) by

K
k+σ
γ (Γ) = {g ∈ K

k
γ(Γ) : |rγ+k+σ∂k

r g|σ,Γ < ∞},

where the Sobolev-Slobodeckii semi-norm| · |
σ,Γ

is defined by

|v|
2

σ,Γ
=

∫

Γ

∫

Γ

|v(r)− v(r̃)|2

|r − r̃|1+2σ
dr dr̃ .

For γ′ ∈ R, we define similarlyKk+σ
γ′ (Γ′) using now the powers ofrc′ as weight. For

γ = (γ, γ′) we define the following global weighted space on the sideΓs

K
k+σ
γ (Γs) = {g ∈ L

2
loc
(Γs) : g

∣∣
Γ
∈ K

k+σ
γ (Γ), g

∣∣
Γ′ ∈ K

k+σ
γ′ (Γ′)}.

Then (see e.g. [22, §6.1.1]), for any multi-exponentβ = (βc)c∈C ,

K
m−1/2
β+1/2 (Γs) is the trace space ofKm

β (Ω) onΓs .

Here, of course, we understand that we take the weight exponentsβc +
1
2

andβc′ +
1
2

at the
two endsc andc′ of Γs.

The analytic classesAγ(Γ), Aγ′(Γ), andAγ(Γs) are defined accordingly:

Aγ(Γ) =
{
g ∈

⋂

m≥0

K
m
γ (Γ) : ∃C > 0, ∀m ∈ N, ‖rγ+m∂m

r g‖
Γ
≤ Cm+1m!

}
,

– we recall that‖ · ‖
Γ

is theL2(Γ)-norm, and

Aγ(Γs) = {g ∈ L
2
loc
(Γs) : g

∣∣
Γ
∈ Aγ(Γ), g

∣∣
Γ′ ∈ Aγ′(Γ′)}.

The trace spaces ofJ-weighted spaces can be defined similarly, see the discussion in [8,
Rem. 3.20] and [9, Ch. 11]. Let us just give the definition of the correspondinganalytic
class, locally

Bγ(Γ) =
{
g ∈

⋂

m>−γ− 1
2

J
m
γ (Γ) : ∃C > 0, ∀m > −γ − 1

2
, ‖rγ+m∂m

r g‖
Γ
≤ Cm+1m!

}
,
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whereJmγ (Γ) = {g ∈ L
2
loc
(Γ) : rγ+m∂j

rg ∈ L
2(Γ), j = 0, . . . , m}. Globally we set

Bγ(Γs) = {g ∈ L
2
loc
(Γs) : g

∣∣
Γ
∈ Bγ(Γ), g

∣∣
Γ′ ∈ Bγ′(Γ′)}.

7.2. Weighted spaces with homogeneous norms.We give now the generalization of the
first part of Theorem3.4 to non-homogeneous boundary conditions and variable coeffi-
cients.

Theorem 7.1. We assume thatL, Ts and Ds have analytic coefficients overΩ and Γs

(L and Ts may have lower order terms), and that{Ts, Ds} coverL at each point inΓs

(denote byNs the number of Dirichlet conditions). Letβ be a weight multi-exponent. Let
u ∈ H2

loc
(Ω \ C ) be a solution of problem(7.1) with

(7.2a) f ∈ Kn
β+2(Ω), gs ∈ K

n+1/2
β+3/2(Γs)

N−Ns, and hs ∈ K
n+3/2
β+1/2(Γs)

Ns (n ∈ N).

Then the following implication holds

(7.2b) u ∈ K1
β(Ω) =⇒ u ∈ Kn+2

β (Ω).

Likewise, if

(7.3a) f ∈ Aβ+2(Ω), gs ∈ Aβ+3/2(Γs)
N−Ns, and hs ∈ Aβ+1/2(Γs)

Ns

then the following implication holds

(7.3b) u ∈ K1
β(Ω) =⇒ u ∈ Aβ(Ω).

Proof. (Sketch)We will prove local estimates with analytic control of derivatives near each
corner. Pick up a cornerc. We setβ := βc. We can assume without restriction thatc = 0

andΩc = Ω ∩ B(0, 1).
(i) Case of homogeneous operators with constant coefficients. The idea of the proof is
the same as in the “simple case” wheng = 0 andh = 0 (Theorem2.2): We start from
reference estimate (1.1) on the domainŝV andV̂ ′ defined in (2.7):

(7.4)
1

k!
|û|

k; V̂
≤ Ak+1

{ k−2∑

ℓ=0

1

ℓ!

(
|̂f|

ℓ; V̂ ′+

2∑

s=1

(
‖ĝs‖ℓ+ 1

2
; Γ̂′

s

+ ‖ĥs‖ℓ+ 3
2
; Γ̂′

s

))
+ ‖û‖

1; V̂ ′

}
.

with

(7.5) f̂ := Lû, ĝs := Tsû, and ĥs := Dsû.

HereΓs, s = 1, 2 are the two sides ofΩ near the vertexc = 0, and

Γ̂′
s = ∂V̂ ′ ∩ Γs .

Then we split‖ĝs‖ℓ+ 1
2
; Γ̂′

s

and‖ĥs‖ℓ+ 3
2
; Γ̂′

s

into homogeneous components and insert weights

like in (2.10). We then perform the change of variablesx̂ 7→ x = 2−µx̂ for anyµ ∈ N.
Definingû(x̂) := u(x) we have

(7.6) f̂(x̂) = 2−2µf(x), ĝs(x̂) = 2−µgs(x), and ĥs(x̂) = hs(x).
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Like in the proof of Theorem2.2, we find the common factor2µ(β−1) on every term. We
multiply the resulting inequalities by2−µ(β−1), take squares and sum overµ ∈ N to find
finally

(7.7)
1

k!
‖rβ+|α|∂α

x u‖Ωc
≤ Ak+1

{

k−2∑

ℓ=0

1

ℓ!

(
‖rβ+2+|α|∂α

x f‖Ω′
c

+
2∑

s=1

(
‖gs‖Kℓ+1/2

β+3/2
(Γ′

s)
+ ‖hs‖

K
ℓ+3/2
β+1/2

(Γ′
s)

))
+ ‖u‖

K1
β(Ω

′
c)

}

with Γ′
s = ∂Ωc ∩ Γs.

(ii) Case of non-homogeneous operators with variable coefficients: Now

L = L(x; ∂x), Ts = Ts(x; ∂x) and Ds = Ds(x).

We perform the same dyadic partition and for eachµ ∈ N, the same changes of variables
x̂ 7→ x = 2−µx̂. Definingû(x̂) := u(x) we still have (7.6) with, instead of (7.5):

f̂ := Lµ û, ĝs := T µ
s û, and ĥs := Dµ

s û with

Lµ := 2−2µL(2−µx̂, 2µ∂x̂), T µ
s := 2−µTs(2

−µx̂, 2µ∂x̂), and Dµ
s := Ds(2

−µx̂).

We note that whenµ → ∞, the operatorsLµ andT µ
s tend to the principal partsL andT s

of L andTs frozen at0 respectively, andDµ
s tends toDs(0) =: Ds. As a consequence

of the ellipticity and covering properties of the boundary value system(L, T s, Ds) and the
analyticity of coefficients, estimates (7.4) holds with one and the same constantA when
µ is large enough. For the finitely many remaining values ofµ, we use the ellipticity of
(Lµ, T µ

s , D
µ
s ) and the analyticity of its coefficients. As a result, we find a possibly larger

constantA for which (7.4) holds for everyµ ∈ N. Then we insert the weights, scale and
sum with respect toµ as in the proof of Theorem2.2, and we deduce that (7.7) still holds
in the case of variable coefficients and lower order terms.
(iii) With the local estimates (7.7) at hands in all cases, we finish the proof of the analytic
shift result as before for Theorem3.4. �

More details about the arguments of this proof can be found in[9]: In [10, Ch. 2] for
the local estimate (7.4) in smooth domains with general data on the boundary and variable
coefficients, in [9, Ch. 6] for model problems in cones with general data on the boundary,
and in [9, Ch. 7] for variable coefficients in general corner domains.

Since Kondrat’ev’s results [21] apply to general operators with variable coefficients,
Theorem6.1can be generalized to coercive problems with analytic coefficients.

7.3. Weighted spaces with non-homogeneous norms.The generalization to non-zero
boundary conditions goes through similarly with weighted spacesJ and analytic classes
B. However, the consideration of lower order terms and variable coefficients requires the
modification of some of the estimates. For the sake of simplicity, let us consider a local
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model problem as in (2.2)

(7.8)





Lu = f in K ∩W ′,

Ti u = 0 on Γi ∩W ′, i = 1, 2,

Di u = 0 on Γi ∩W ′, i = 1, 2,

whereL = L(x; ∂x) is a second order elliptic system with analytic coefficientson W ′.
We assume for simplicity that the boundary operatorsTi andDi are homogeneous with
constant coefficients. We assume that fori = 1, 2 and for each pointx0 ∈ Γi ∩ W ′

the systemL(x0; ∂x) frozen atx0 is covered by the boundary operators(Ti, Di). As a
consequence of the proof above, Theorem2.2generalizes: We have the estimate

(7.9)
1

k!

( ∑

|α|=k

‖rβ+|α|∂α
x u‖

2

0;W

) 1
2
≤ Ck+1

{ k−2∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rβ+2+|α|∂α
x Lu‖

2

0;W ′

) 1
2

+
∑

|α|≤1

‖rβ+|α|∂α
x u‖0;W ′

}
.

Now the question is wether it is possible to generalize in thesame way Theorem2.6 on
non-homogeneous weighted norms in this new framework of variable analytic coefficients.
The correct answer is that we have to modify estimate (2.15):

Proposition 7.2. With the above assumptions onL, any solution of the boundary value
problem(7.8) Let β > −2 be a real number. Letu ∈ J1β(W

′) be a solution of problem
(7.8). Then there exists a constantC ≥ 1 independent ofu such that for all integerk ≥ 2,

(7.10)
1

k!

( ∑

|α|=k

‖rβ+|α|∂α
x u‖

2

0;W

) 1
2
≤ Ck+1

{ k−2∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rβ+2+|α|∂α
x Lu‖

2

0;W ′

) 1
2

∑

|α|≤1

‖rβ+1∂α
x u‖0;W ′

}
.

Remark7.3. The last term in the right hand side is nothing but‖u‖J1β(W ′). Estimates (7.9),
(7.10) and (2.15) (for m = 1) are very close to each other. The main groups of terms with
factorial coefficients are identical. The difference is born by theL2 weighted norm ofu
in the right-hand side: In (7.9), this term is‖rβu‖0;W ′ , in (2.15) for m = 1, it is absent,
and in (7.10), it is equal to‖rβ+1u‖0;W ′ . In applications to variational problems inH1,
this makes an important difference, since forβ = −1 − b with b ∈ (0, 1), any function
u ∈ H1(W ′) satisfies‖rβ+1u‖0;W ′ < ∞, but not‖rβu‖0;W ′ < ∞ in general.

Proof. Let us introduce an intermediate domainW ′′

W ⊂ W ′′ ⊂ W ′.
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We first note thatJ1β(W
′) ⊂ K1

β+1(W
′) and that we can use the estimate in homogeneous

norms (7.9) with β + 1:

(7.11)
1

k!

( ∑

|α|=k

‖rβ+1+|α|∂α
x u‖

2

0;W

) 1
2
≤ Ck+1

{

k−2∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rβ+1+2+|α|∂α
x Lu‖

2

0;W ′′

) 1
2
+

∑

|α|≤1

‖rβ+1+|α|∂α
x u‖0;W ′′

}
.

Let us recall thatL denotes the principal part ofL frozen at0. Using the analyticity of the
coefficients ofL we can prove that there holds

(7.12)
1

ℓ!

( ∑

|α|=ℓ

‖rβ+2+|α|∂α
x (Lu− Lu)‖

2

0;W ′′

) 1
2
≤

Bℓ+1

ℓ+2∑

k=0

1

k!

( ∑

|α|=k

‖rβ+1+|α|∂α
x u‖

2

0;W ′′

) 1
2
.

Then we use estimate (2.15) in non-homogeneousnorm for the operatorL with m = 1

(7.13)
1

k!

( ∑

|α|=k

‖rβ+|α|∂α
x u‖

2

0;W ′′

) 1
2
≤ Ck+1

{

k−2∑

ℓ=0

1

ℓ!

( ∑

|α|=ℓ

‖rβ+2+|α|∂α
x Lu‖

2

0;W ′

) 1
2

+
∑

|α|=1

‖rβ+|α|∂α
x u‖0;W ′

}
.

Using the straightforward inequality

∑

|α|≤1

‖rβ+1+|α|∂α
x u‖0;W ′′ +

∑

|α|=1

‖rβ+|α|∂α
x u‖0;W ′ ≤ c

∑

|α|≤1

‖rβ+1∂α
x u‖0;W ′

together with a triangular inequality onLu = Lu + (Lu − Lu), we deduce (7.10) from
(7.11)–(7.13), with a new constantC independent ofk. This ends the proof. �

Remark7.4. Proposition7.2admits a natural generalization, which can proved in a similar
way: If m ≥ 1 is an integer andβ is a real number such thatβ + m > −1, any solution
u ∈ Jmβ (W

′) of problem (7.8) satisfies the estimates for all integerk ≥ m+ 1,

(7.14)
1

k!

( ∑

|α|=k

‖rβ+|α|∂α
x u‖

2

0;W

) 1
2
≤ Ck+1

{ k−2∑

ℓ=m−1

1

ℓ!

( ∑

|α|=ℓ

‖rβ+2+|α|∂α
x Lu‖

2

0;W ′

) 1
2

+ ‖Lu‖
Jm−2
β+2 (W ′)

+ ‖u‖
Jmβ (W ′)

}
.
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To end this subsection, let us briefly indicate how things work for variational solutions.
Theorem6.4 can be extended to more general variational problems with variable coeffi-
cients and non-zero boundary data

(7.15) Find u ∈ V such that∀v ∈ V, a(u, v) =

∫

Ω

f v dx+
∑

s∈S

∫

Γs

gs v dτ.

Theorem 7.5. Let a be a sesquilinear form of degree1 with analytic coefficients onΩ,
coercive on the spaceV defined by the Dirichlet conditionsDsu = 0 onΓs, for all s ∈ S .
There exists a positive numberb1(Ω, a,V) ≤ 1 such that the following implication holds
for any solutionu ∈ V of the variational problem(7.15) and anyb, 0 < b < b1(Ω, a,V):

(7.16) f ∈ B−b+1(Ω) and gs ∈ B−b+1/2(Γs)
N−Ns =⇒ u ∈ B−b−1(Ω).

We refer to [9, Ch. 13 & 14] for more results and proofs.

7.4. Three-dimensional problems. Whereas the consideration of non-zero boundary data
can be performed in three-dimensional polyhedral domains using similar tools as for zero
boundary data, the consideration of variable coefficients is more delicate. There are two
situations:

(1) If coefficients areconstant in the direction of each edge(but possibly variable in the
transverse direction) the estimates (7.9) and (7.10) can be extended to edge neigh-
borhoods, and anisotropic estimates can be proved, based onthe same assumptions
as in section4. This implies in particular the generalization of the results of sec-
tions4 and5 to problems withconstant coefficients(not necessarily homogeneous)
in polyhedra. This also implies the generalization toaxisymmetric problems.

(2) If coefficients are not constant in the direction of edges, the level of difficulty in-
creases. One would need to go back to the primitive techniqueof estimating com-
mutators,cf. [9, Lemmas 1.6.2 & 2.6.2], which leads to the introduction of norms
of Sobolev-Morrey type.

8. GENERALIZATION TO OTHER OPERATORS AND SYSTEMS

First we may easily extend the results of this paper to transmission problems, namely
problem like (5.3) whereL has piecewise constant coefficients (hence some transmission
conditions have to be imposed at the common boundary of the sub-domains). Indeed an
estimate like (1.1) holds for such problems and is proved in [9, Theorem 5.2.2]. Second
higher order differential operators like∆2 may be treated in a similar manner. Finally our
method may be used for the Stokes system (see [17] for two-dimensional results). Note
that the Maxwell system is more delicate: Whereas inconvexpolygons or polyhedra the
natural variational space is contained inH1 and all our results apply, the presence ofnon-
convex corners or edgesinduces the appearance of non-H1 fields which require a specific
treatment, see [11] in dimension two.
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