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ANALYTIC REGULARITY FOR LINEAR ELLIPTIC SYSTEMS IN
POLYGONS AND POLYHEDRA

MARTIN COSTABEL, MONIQUE DAUGE AND SERGE NICAISE

ABSTRACT. We prove weighted anisotropic analytic estimates fortsmhg of model el-
liptic boundary value problems in polyhedra. The weightedlygtic classes which we use
are the same as those introduced by B. Guo in 1993 in view abkshing exponential
convergence fohp methods in polyhedra. We first give a simple proof of the wiidh
analytic regularity in a polygon, relying on new elliptic aigri estimates with analytic
control of derivatives in smooth domains. The techniqueisell on dyadic partitions near
the corners. This technique can be successfully extendedlybedra, but only isotropic
analytic regularity can be proved in this way. We therefambine it with a nested open
set technique to obtain the three-dimensional anisotrapaytic result. Our proofs are
global and do not rely on the analysis of singularities.
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INTRODUCTION

Elliptic boundary value problems in domains with cornerd adges have been investi-
gated by many authors. Let us quote the pioneering papersAf Kondrat'ev P1] and
of V. Maz’'ya and B. Plamenevskik, 25, 26, 27]. In these works, the regularity of the
solution and its singular behavior near edges and cornéesisribed in terms of weighted
Sobolev spaces. Besides their own theoretical interessethesults are the basis for the
convergence analysis of finite element approximations eftlibundary value problems.
But whereas these classical results allow to prove optimavergence estimates for the
h version or thep version of the finite element method, they are not sufficienpfoving
the (numerically observed) exponential convergence raieedp-version of the finite el-
ement method. Indeed, as has been shown for two-dimengionialems by I. BabuSka
and B. Guo in P, 3], the convergence analysis of the-FEM requires the introduction of
weighted spaces with analytic-type control of all derivasi, so-called “countably normed
spaces”. BabuSka and Guo proved corresponding regutastyts for several model prob-
lems |, 3, 14, 17].

In three-dimensional domains, as sooredgesare present, thép-version introduces
anisotropic refinement, performed only in the directiongsgerse to the edge. Thus the cor-
responding weighted spaces have to take this anisotropyaaaount. In 15, 16] BabuSka
and Guo have started proving such estimates in a modelisituat

For three-dimensional polyhedra (containing edges anaeecsy Guo has introduced the
corresponding relevant spaces in 1993]] The anisotropy along edges has to combine
with the distance to corners. Since that time, the proof thatregularity of solutions
of elliptic boundary value problems with analytic right ltasides is described by these
spaces has been an open problem, even for the simplest datbes laaplace equation
with Dirichlet or Neumann boundary conditions. In the eramalysis ofhp-FEM, such
regularity estimates have been taken as an assumptiphd, 32].

In this paper, we first give a simple proof of the 2D result otygons, for Dirichlet and
Neumann conditions, using a dyadic partition techniquenl'relying on a nested open set
technique, we prove anisotropic regularity along edgekerfiamework of the anisotropic
weighted spaces introduced and usedGn7], but now with analytic-type estimates for
all derivatives. Combining the previous two steps with a 3@dic partition technique at
polyhedral corners, we obtain the desired analytic wedjhggularity in a 3D polyhedron.

We use two types of weighted spaces of analytic functionse flilst type is con-
structed from weighted Sobolev spaces of Kondrat'ev tydees€ spaces with “homoge-
neous norms” are suitable for the description of the regylar the presence of Dirichlet
boundary conditions. For Neumann conditions, a new clasgegjhted analytic function
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spaces, constructed from Maz'ya-Plamenevskii-type wesobolev spaces with “non-
homogeneous norms”, has to be used.

It is important to notice that the above spaces naturalljtainrthe singular parts of
solutions, and give an accurate account of their generiglaeity. Thus, in contrast with
investigations such ad.§], we do not need to address separately vertex, edge and edge-
vertex singularities. Our estimates cover regular andusargarts at the same time.

Our proof of analytic regularity estimates is modular in se@se that it starts from low-
regularity a-priori estimates on smooth domains and prxée singular points, edges,
and finally polyhedral corners by employing the two techegof dyadic partitions and
nested open sets. In order to avoid drowning this clear tstreign too many technical
difficulties, we mainly restrict ourselves to the situata@rhomogeneous elliptic equations
with constant coefficients. Generalizations to operatath lewer order terms and vari-
able coefficients will be briefly indicated. They will be dissed in more detail in our
forthcoming book $].

PLAN OF THE PAPER

In sectionl we quote from 0] an elliptic a priori estimate with analytic control of
derivatives. This estimate improves the readability aritiehcy of classical proofs of
analytic regularity in smooth domains as can be found3ify BO, 23]. We refine this
estimate in view of tackling problems of Neumann type. Intisec2, we make use of a
dyadic partition technique to construct weighted analgitimates in plane sectors. This
technique is a powerful tool to prove what we ca#itural regularity shiftresults near
corners. This expression means that from two ingredieatsiety basicregularity, i.e. a
certain weighted Sobolev regularity of low order, of 8wution andimprovedregularity,
i.e. high order weighted Sobolev regularity or weightedwiaregularity of theright hand
side one deduces improved regularity of the solution. The teglnof dyadic partitions
has been used in a similar framework #} for weighted Gevrey regularity. It has been
employed earlier for domains with edgeXS] and for the Laplace operator on a polygon
with non-linear boundary condition&()]. In section3, we combine the local estimates to
obtain the analytical regularity shift in polygons.

In section4 we start the three-dimensional investigation with estesationg an edge.
We introduce anisotropic weighted spaces in which dexieatalong the direction of the
edge are less singular towards the edge. Under the assungbteo certain local a pri-
ori estimate of low order at the neighborhood of an edge pairt prove local analytic
anisotropic regularity shift along this edge, by combingygdic partition technique and
the classical (and delicate) tool of nested open sets. lioses, we treat polyhedral cor-
ners. Relying on suitable definitions of various familiesveighted spaces with anisotropy
along edges (as ir2P]) we are able to prove the analytic regularity shift for gudgra by
dyadic partitions around each corner of a polyhedron.

In section6, we combine our analytic regularity shift results with knmoestimates giv-
ing basic regularity of the solution for the case of problemgariational form. On poly-
gons, we use for this purpose Kondrat’ev’s classical regyleesults in weighted Sobolev
spaces, and on polyhedra, we use recent regularity resuNtab’ya and Rossmanr2§)].

In this way, we finally obtain the weighted analytic regulaaf variational solutions in the
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right functional classes ofL[]. For polygons, we thus prove again in a different and sim-
pler way results which were first established by BabuSkaGmal [2, 14]. For polyhedra,
the results are new.

We conclude our paper in sectiongnd8 by discussing various generalizations of our
results. For our proofs, we choose in this paper the simptestible framework of second
order homogeneous systems with constant coefficients andnandary data on domains
with piecewise straight or plane boundaries. In dimensjatria mere technicality to gen-
eralize these proofs to the case of second order elliptiesyswith analytic coefficients
and non-zero boundary data. In dimension 3, the possiblatiar of coefficients along
edges introduces more serious complications and wouldreetpuestimate commutators
in a systematic way as ii(), Lemmas 1.6.2 & 2.6.2]. In comparison, the generalizatmon t
homogeneous transmission problems with constant coeffscien a polyhedral partition
would be much less difficult. Whereas the Stokes system doeildonsidered similarly,
things are different for regularized harmonic Maxwell etiuas, for which it is necessary
to detach the first singularity if one wants to obtain a valeabsult, seel[1] in dimension
two.

We denote byH™(2) the usual Hilbert Sobolev space of exponentby || - ||,..o and
| |m: o its norm and semi-norm. TH&(Q2)-norm is denoted by - ||o. o or simply by|| - ||q -
Boldface letters likdH™(£2) indicate spaces of vector functions.

1. LOCAL ANALYTIC ESTIMATES IN SMOOTH DOMAINS

The starting and key point is a local analytic estimate inatinalomains that is proved
by using nested open sets on model problems and a Faa di Biumala for local maps,
see [LO, Theorem 2.7.1] for details.

Theorem 1.1.Let 2 be a bounded domain iR",n > 2. LetI" be an analytic part of
the boundary of2. Let L be a N x N elliptic system of second order operators with
analytic coefficients ovee UT". Let{T', D} be a set of boundary operators drof order1
and 0, respectively, with analytic coefficients, satisfying 8tepiro-Lopatinskii covering
condition with respect tdé onT. Let two bounded subdomaifis= /N2 andY’ = 1//NQ

be given witli{ andi/’ open inR™ andZ/ C U’ We assume that := 9{’'NsY is contained

in I'. Then there exists a constafisuch that any € H?(Q)) satisfies foralk € N, k > 2,
the improved a priori estimates (“finite analytic estimades

k—2
1 1
@D ol o< A0 (12ul, o+ ITull,y o 1Dl )+l g )

For boundary value problems of Neumann type, it will be comset to replace in the
right-hand side of1.1) the H'-norm by theH'-semi-norm. When, 7" and D are ho-
mogeneous with constant coefficients, this version is aemumsnce of the previous result,
obtained by a simple argument based on the Bramble-Hileemtrla. In the following
statement, we present a general version of such estimatessesmi-norms in the right-
hand side.
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Corollary 1.2. We assume that the operatadrs7 and D are homogeneous with constant
coefficients. Letn > 1. There exists a constant independent of such that there hold
the following estimates for alt > m and all u satisfying the zero boundary conditions
Tu=0andDu = 0onT":

k—2

1 1
(1.2) ol A<Ak+1{ 3 E|Lu|&§,+|u|m;ﬁ,}.

l=m—1

Proof. We start with anyu € H*(€Y') and use estimate.(1). We split the right hand side
of the inequality into two pieces according to:

k—2
1 *
>~ 5 (ILul, o+ ITull, ot IDul, s 5 )+l o = B (w) + B.(u)
=0
with
k—2 1 J4 /+1
B = 3 G(1Lul, g+ [Tul,yp+ D0 [Tul o+ Dul, D [Dul g )
l=m—1 j=m—1 Jj=m
m—2 1
B (u) = 2 E(\Lu\é o T \Tu|€+%;f, + \Du|€+%;f,)
k—2 1 min{¢,m—2} min{¢+1,m—1}
30D e Y bl ) g
=0 =0 =0

Since the orders ok, 7"and D are2, 1 and0 respectively, we obtain
B.(u) < Clull,

Since, moreover, the operataks 7" and D are homogeneous, we have the invariance of
B*(u) by subtraction of polynomials of degree less than- 1

B'(u—¢)=B'(u), Ve ecP ().
Altogether, using1.1) for u — ¢ we obtain for allk > m
1 * m—1 /7
Slul g < ATHB W + Cullu—l, 5} Ve PP,
With the Bramble-Hilbert lemma5], this gves

Slul, g < AFHB W + Cllul )

Applying this to functionas satisfying zero boundary condltlons, we obtalir?y. O

2. LOCAL ANALYTIC ESTIMATES IN PLANE SECTORS

The model singular domains in two dimensions are the infpli@e sectors. Let be
an infinite sector with vertex at the coordinate origia- (0,0). In polar coordinate§r, 6)
such a sector can be described as

(21) K:{XGRZ : (.U1<9<C<J2},
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wherew; = wy + w with wy € (—m, ) andw € (0, 27] is the opening of the sectds. For
1=1,2,letl’; be the sidé = w; of K.

We consider an elliptic system of ord&rhomogeneous with constant coefficients, cov-
ered on each sidg; by a set{7;, D;} of boundary conditions. For any subdomai# of
IC, we consider the system of local interior and boundary egusit

Lu = f in KnWwW,
(2.2) Tou = 0 onl,NnW, i=1,2,

Diu = 0 onI,nW, i=12,

which is the localization tdV’ of the elliptic boundary value probledu = f in &, with
zero boundary conditions dn, andI’s.

2.1. Weighted spaces with homogeneous norma hese spaces coincide with those in-
troduced by KONDRAT EV in his pioneering study of corner problentsl]. The weight
depends on the order of the derivatives. We adopt a differemiention thang1] in our
notation in order to make the definition of correspondingwitaclasses more natural (see
(3.6) below).

Definition 2.1. Let 5 be a real number called thveeight exponentand letimn > 0 be an
integer called th&obolev exponentet )V be a subdomain dt.

Theweighted space with homogeneous n&n()V) is defined, with the distance
r = |x| to the vertex0, by

(2.3) KFW) ={uelp. (W) : r"Helogu e LP(W), Va, |af <m}

loc

and endowed with semi-norm and norm respectively defined as

m
2 . B+|e 2 2 . 2
(24) |u|m,ﬁ;W - Z ||T “ a)?uHQW and ||u||Kgb(W) - kz; |u|k,ﬁ;W .

|al=m

Theorem 2.2.Let)V and W'’ be the intersections &f with the balls centered dt of radii
1 and1 + 0, respectively. Les € R andn € N. Letu € H: (W' \ {0}) be a solution of
problem(2.2). Then the following implication holds

(2.5) ue KyW') and f e Kj,(W') = uecK;?W)

and there exists a constant > 1 independent ot andn such that for any integek,
0 <k <n+2,we have

e

-2

(2.6) % (Z ||7=6+\alagu||§;w)E < C’““{ i (Z ||r/3+2+\cvlagf||§;W,)5

|a|=Ek L |oo|=¢
+ > Irelogal b

la|<1

Il
o

Proof. Let us assume that € K}g(W’) andLu = f € Kj,,(W’). Let us prove estimate
(2.6). By definition of the weighted spaces, the right-hand sidE®) is bounded. The



FIGURE 1. Reference and scaled annuli for a se&faf opening3r /2

proof of the estimate is based on a locally finite dyadic cioggof YV andW’. Let us
introduce the reference annuli, see Hig.

(27 V={xek : L<r(x)<1} and V' ={xek : T—d<r(x)<1+4}.
and forp € N the scaled annuli:

V,=2"V and V,=2""
We check immediately that

W=JV. and W =[]V

peN peN

STeEP 1. We are going to apply Theoreinlin two regions which separate the two sides
I'; andI'; of K where the boundary conditions can be distinct. We recallttieasectoiC

is defined by the angular inequalities < 6 < wy. Letws := %(wl + wsy). We define the
sectorsiC; and/C;, by

={xeR’: w<f<w} and Ky={xeR? : w3 <l <ws}
Letd < 1(ws — wi). We define the larger sectok§ andK’, by
={xeR? : wy<fO<ws+d} and Ky={xeR? : w3 —§ <0 <w)}.

Leti € {1,2}. Since the systeni is elliptic and covered by its boundary conditions
{T;, D;} on T, the reference domaing N IC; and V' N K. satisfy the assumptions of
Theoreml.l, and there exists a positive constahtsuch that for allk € N, &£ > 2, we
have:

1
(2.8) il |

k—
< At zi +3
k; VﬂIC — g Z V’OIC’ Z v'm/c; ?
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for any functionu satisfying the boundary conditions ¢.9) andf := Lu. From these
estimates foi = 1,2 we deduce immediately, with = max{A;, A}

k—2

1
(2.9) % ul, 5 < 2A’“+1{ |? S+ [l }

— /=0

STEP 2. Sincer(x) ~ 1 on V', we can insert weights in the reference estimaté){(
There exists a positive constaBitsuch that for alk € N, & > 2

k—2

(2.10) — < Z [ER¢ B+|a\aa/\|| )é < Bk+1{ % (Z 7 +2+|a\aafHO v/)é
o= =0 || =¢
+ 3 I log, g, |-
la|<1

By the change of variablés— x = 2~#x that maps) onto), (resp.V’ ontoV),) coupled
with the change of functions

U(x) :=u(x) and f(X):=La whichimplies f(x) = 2 f(x),
we deduce from estimat@.(L0 that

_2#5 M( Z ||7~ B+|a\aau” )5 < Bkz—i—l{

|al=k

i Qu(B+2)— ( Z 9 2“||7“ )6+2+\a|aaf||0 v'> 4 oHP—n Z 7 BHQ\@S"“O;WL }

/=0 |oo|=¢ la<1

Multiplying this identity by2—+#%+#, the above estimate is equivalent to

( Z [|7( ﬁ+\a|8a H ) Bk+1<z i ( Z 7 ( B+2+|a\aafH0 . )%

laf=k |af=¢

£ 30 160 Flgal, )

la|<1

Summing up the square of this estimate ovepahd considering that only a finite number
of theV,, overlap, we get the desired estima2es]. O

2.2. Weighted spaces with non-homogeneous normsn these spaces the weight expo-
nent does not depend on the order of derivatives. Standaweighted Sobolev spaces
are a special case. The weighted Sobolev spaces with nogfem®@ous norms allow an
accurate description of the regularity of functions witmstavial Taylor expansion at the
corners. In particular, they are useful for studying vaoiadl problems of Neumann type,
because the variational spagdédoes not fit properly into the scaﬂ%.

Definition 2.3. Let 5 be a real number and > 0 an integer.
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Let W be a subdomain of. Theweighted space with non-homogeneous norm
J5 (W) is defined by

(2.11) W) ={uelp W) : r7mou e LX(W), Va, o] <m}

loc

2 2
[ally oy = D2 I3zl

laj<m

with its norm

Note that the semi-norm dff' (W) coincides with the semi-norm &fZ'(W). They are
both denoted by- \mB_W. With this notation, we have

2 - 2
(212) ||u||ng(W) = Z |u|k7ﬁ+m—k;W ’
k=0

We recall from B] the “step-weighted” characterization ¢f in the case of two space
dimensions:

Proposition 2.4. Let 3 € R andm € N such that3 + m > —1. Leto be any real number
in the interval(—1, 3 + m]. Then the norm in the spadg (V) is equivalent to

(2.13) (Z ||rmax{ﬁ+alva}agu||§;w)%.

|laj<m

Corollary 2.5. Let 5 € R. Letm be a natural number such that+ m > —1. Then
JEH W) C Jp(w).

Theorem 2.6.LetW andW’ be the intersections d&f with the balls centered dt of radii
land1 + 6, respectively. Let be a real number and let: > 1 be an integer. We assume
that3+m > —1. Letn > m — 1 be another integer. Lat € H,_(V"\ {0}) be a solution
of problem(2.2). Then the following implication holds

(2.19) ueJjOV) and fe Ji,0) = ueJ5w)

and there exists a constant > 1 independent ofi and » such that for all integert,
m <k <n+ 2, we have

1 k=2 1
@15) = (3 g, )t < o] > o (S g )

+ 3 Izl b

|laj=m

Proof. Let us assume that € Ji'(W') is such thaf € Ji,,(W'). Letk,m <k < n + 2.
Let us prove estimate2(15. Since5 + m > —1, we haves + 2 + |o| > —1 for all
with length> m — 1. Therefore, as a consequence of Proposifigdhnthe right-hand side
of (2.15 is bounded.

Then, in a similar way as in the proof of Theoré&n2, we start from estimatel(2) writ-
ten for the reference domaitsand)’ and we apply the same dyadic covering technique.
We arrive directly at the estimat@.(5).
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It remains to prove that € JZ”(W). SinceW is bounded, estimat@ (15 implies that
r#tn+290u belongs tal*(W) for all o, m < |a| < n + 2. Sinceu € J7 (W), we deduce
thatr5+"+292u also belongs t&.*(1W) when|a| < m, which ends the proof. O

3. ANALYTIC WEIGHTED REGULARITY SHIFT IN POLYGONS

Let 2 be a polygonal domain. This means that the boundafyisfthe union of a finite
number of line segments (the sides for indicess € .’). We do not assume th&kis a
Lipschitz domain, that is we include the presence of craclkair analysis. The vertices
are the ends of the edges. Let us denot&the set of vertices and

(3.1) re(x) = dist(x, c).
There exists > 0 such that, setting
(3.2a) Qe={xe€Q : rc<e},
we have
(3.2b) QcNQe =, Vc#.
Choosing=” < ¢ and setting2! = {x € Q : r. < £"}, we define
(3.2¢) Qo =0\ [ Jar.

ce?
We also define larger neighborhoods choosing ¢ such that
(3.2d) A ={xecQ:r.<e}, AUNQ, =2, Vc#,
and we finally set
(3.2€) =\ .

ce?

For each corner there is a plane sedtpwith vertex0 such that the translation— x — ¢
sendg. onto . N B(0, ¢).

Let 8 = (Bc)cey € R*? be a weight multi-exponent and € N a Sobolev exponent.
By localization we define the weighted semi-norm on any dor¥aC (2:

2 o 2 -+ o] Qo 2
(3.3) I PINE S (12 R S 7 o N B
|a|=m ce®
and the norms;f. (2.4) and .12
2 - 2 2 - 2
(3.4) HUHKEL(V) - kZ—O |u|k,§;v and lu Q) - kz_o ‘u‘k’,ﬁ-i-m—k;V )

defining the spacek'(V) and Jj'(V), respectively. If all weight exponenti coincide
with the same numbe?, these spaces are simply denotedd§§()’) and J3*(V), respec-
tively. Boldface notation&j' (V) andJj' (V) indicate vector-valued functions.
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Remark3.1 The semi-norrﬁu|mﬂQ is equivalent to the globally defined semi-norm

@9 {3 o]}

|a|=m ce¥
We define on any domaii C () the corresponding weighted analytic classes.
(i) With homogeneous norm:

3.6)  As(V) = { we (YKP(V) : 3C>0,YmeN, |u . < om+1m1}.

m,B;V —
m>0

(i) With non-homogeneous norm: For a multi-exponeet

(3.7) 7 = max —f(, — 1.
ce?

As a consequence of Propositiar, for all m > n we have the continuous embedding of
Jp (V) into J3 (V). We introduce

(3.8)  By(V) = { we (VJFW) : 3C>09m>n |, < (Jm+1m!}.

m>n

Remark3.2 (i) The classed;(2) andBs(2) can be equivalently defined replacing semi-
norms|u|mﬂQ by the global semi-norms(5).

(i) The cIaéseAQ(Q) can also be equivalently defined locally i.e.
As(Q) = {u € Lin.(Q) : u| L €A() and U‘Qc € As () Ve € ©}.

HereA(€) is the unweighted class of analytic functions@n The space8;((2) allow
analogous local descriptions.

Q

Remark3.3. (i) Our space®;(£2) coincide with the family ofcountably normed spaces
Bj(€2), introduced by Babuska and Gugj;[ The spaces3j((?) are defined fof € N and
0 < 8 < 1, and there holds

(3.9) B4(Q) = Bs_i(€).

(i) The relation between the classkg(2) andBs((2) follows from the relation between
the weighted spaces with homogeneous and nonhomogenewns Kig(€2) and J5*(€2).
On the finite sectof. there holds27, 22] (more details are given ir8] and [9, Ch. 11]):
If 3> —1, thenJ (Q) = K (€2) for all m € N.
If 3 < —1andm < —f — 1, then, again)7' (%) = K7 ().
If 5 < —1andm > —( — 1, then one has to distinguish two cases:
¢ the generic case§ ¢ N, in which one has

J7(Qe) = KF () @ PP
whereP[~#~1] is the space of polynomials of degree not exceedifg— 1;

e thecritical case—3 € N, in which J7'(€).) containsK'(€2.) & P~7~! as a strict
subspace.
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As a consequence it follows that for> —1 there holdB;(2.) = Az(£2), whereas for
£ < —1 one has in the non-critical case3 ¢ N:

(3.10) Bs(Q) = Ag(Q) @ PP
and in thecritical case—3 € N: B5(Q.) containsAs(€2.) & P~°~! as a strict subspace.

We consider a “mixed” boundary value problem on the polydgdioanain(2: We sup-
pose that we are given an homogeneous second order eliiptens/, with constant coef-
ficients and for each sidea covering set of boundary operatdf&, Ds} of order1 and0,
homogeneous with constant coefficients. The boundary yahldem under consideration
is:

Lu = f in €,
(3.11) Tsu = 0 onlg se.7,
Dsu = 0 onls, se.7.

Note that one off; or Ds may be the zero operator, in which case the corresponding
boundary condition is empty.

We can now prove the following statement of natural regtyathift in weighted analytic
spaces with homogeneous or non-homogeneous semi-norms:

Theorem 3.4.Let3 = (Bc)., b€ @ weight multi-exponent. Late H; (2 \ €) be a
solution of problen{3.11).
(i) The following implications hold

(3.12a) ueKy(Q) and fe K} ,(Q) = uecKj™?(Q) (neN).
and
(3.12b) ucKy(Q) and fe Agin(Q) =  uecAzQ).

(i) Let m > 1 be an integer such that. + m > —1 for all c € . Then the following
implications hold

(3.13a) ueli(Q) andfelj () = welj™Q) (neN).
and
(3.13b) uecJi'(Q) and f € Bg»(?) = ueBg(Q).

Proof. The finite regularity shift results ir8(129 and @.133 are obvious consequences of
Theorem=2.2and?2.6. Let us prove 8.120. The uniform estimate2(6) is valid between
Q. and(2, for all c € €. The uniform estimatel(1) of the smooth case is valid betwe@p
and(2,. Combining these estimates we obtain the global uniforimese for all integer
k> 2

k—2
1 k+1 1
o, <C (Z o+ Ul )
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If f € Ago(92), it satisfiegf]|
estimate yields

cgia S F*1¢! for some constant’ > 1. Thus the previous

k—2 Fk F
k+1 041 _ k+1 —
ul, .0 <K C (;F +||u||Ké(Q)> S +||u||Ké(Q)).
Henceu € A;(2). The proof of 8.130) is similar, based on estimat. (5. O

4. LOCAL ANISOTROPIC ANALYTIC ESTIMATES IN DIHEDRAL DOMAINS

Infinite dihedral domains (or wedges) are the model domainpdlyhedra which have
the lowest level of complexity. In this section, we considigredral domain® in a model
configuration, that is there exists a plane sef&tavith vertex0 so that

(41) D=KxR and X:(l'l,l'g,l'g):(XJ_,l'g)GD < x €K, xz3 €R.

The edgee of the dihedral domaif® is the linex; = x5, = 0.
Let V be any subdomain dP. We consider the system of local interior and boundary
equations
Lu = f in DNV,
(4.2) Tiu = 0 on([;xR)NY, i=1,2,
Diu = 0 on (I;xR)NY, i=1,2,
where the operators, T; and D; are homogeneous with constant coefficients and form

an elliptic system. The system.p) is the localization td’ of the elliptic boundary value
problemZu = f in D, with zero boundary conditions dn x R andl'; x R.

4.1. Isotropic estimates: natural regularity shift. The weighted spaces for the dihedron
are defined by the same formulas as in the case of a plane:sector
Definition 4.1. Let 5 be a real number and let > 0 be an integer. LexV C D.

Theisotropic weighted spacesy (W) andJi' (W) are defined, with the distance
ri=|x,| = \/2? + 23 to the edgee, by

KFOW) = {ueLp (W) : r"Helogu e LP(W), Va, |a] <m}

W) ={uelp W) : r7mou e LX(W), Va, o] <m}
endowed with their natural semi-norms and norms. Recatl #ladenotes the
derivative with respect to the three variabigszs, 3.

We call these spacésotropic in opposition with theanisotropicspacesMy (VW) and
N’ (W) which will be introduced in the next subsection.

We gather in one statement the results concerningthed the) spaces. Here we set
W= (KNB0,1)) x (—1,1)

(4.3)
W.=(KNB(0,1+¢)) x (~1—¢e,1+¢), &>0.
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Theorem 4.2.Let3 € R andn € N. Letu € H} _(W. \ e) be a solution of problert#.2)
with V = W..

(i) If u € Ky(W.) andf € Kj_ ,(W.) thenu € K}**(W) and there exists a constant
C > 1 independent ol andn such that for any integek, 0 < k < n + 2, we have

k—2

@ (Zur“a'aaunow)%sckﬂ{ LS iz )’

(=0 la|=¢
+ Z HTBHQ‘&;Y"HO;WE }

lo|<1

(ii) Let m > 1 be an integer. We assume thatt m > —1. Letn > m — 1 be another
integer. Ifu € Jij'(W.) andf € J},,(W.), thenu € J5™(W) and there exists a constant
C > 1 independent o andn such that for any integek, m < k < n + 2, we have

k—2

(4.5) = ( Z Hrﬁﬂalaauno w)é < Ck—i—l{ i ( Z Hrﬁ+2+\a|aaf||0 " )1
l=m—1 |or|=¢
£ 30 ozl -
|a)l=m

Proof. Like in the case of Theoren&s2and?2.6, the proof relies on a locally finite dyadic
covering ofY¥ andW.. The reference domains are now

17—{xL ek x| <1y x (=11
Vi={x eK:i-e<|xi|<l+e}x(—1—¢13+¢)
and fory € Nandv € Z:
Vo =277V +(0,0,%) and V, =2V +(0,0,%)).
We check immediately that
w=J U VY and W.o ) |J Vi
HEN |y|<2p+1 pEN |y|<2n+l

and that these coverings are locally finite. An a priori eaterbetweer),, andV,,, is
deduced from a reference a priori estimate betweéemd )’ by the change of variables

x — x=27#(x+ (0,0, 7)) that maps/ ontoV,, and)’ ontoﬁ’w. Here we use the fact
that the operatorg, 7' and D are homogeneous with constant coefficients. Then the rest
of the proof goes exactly as in the case of the plane sectors. O

4.2. Tangential regularity along the edge (homogeneous norms)r'he result in the pre-
vious sections only rely on the ellipticity of the boundamglue problem under consid-
eration. Now we will require a stronger condition, which isoaal Peetre-type a priori
estimate in an edge neighborhood. From this condition wkdeilive analytic type esti-
mates for all derivative8/, in the direction of the edge.
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Assumption 4.3.Let 5 € R. Let W andW’ = W. be the domains defined id.Q3) for
somes > 0. We assume that the following a priori estimate holds fotprm @.2) on
Y = W' There is a constarit such that any

uec K;W),
solution of problem4.2) with f € K% ,,(W’), satisfies:
(4.6) lll sy < C (WPl +0ls o) )-

Remark4.4. (i) Assumptiord.3is independent of (although the constarit depends on
it), and more generally independent of the choice of the diesid and)V’, if they satisfy
the following conditions: There exists a ball with centertbe edges contained in/V, and
W’ containsy) N D.

(i) The inequality 4.6) is a Peetre-type estimate, sirlé%(W) is compactly embedded in
Kh (V).

(iif) As a consequence of Theoreh?, it is equivalent to postulate the estimate

H HKl(W) — C(H HK% Q(W,) H HK};+1(W’))
IOI' a” u E l(é(wl) l Iloc(W/ \ E)

The first step for higher order estimates is fhestimate for which we control the de-
pendence of the constaftin (4.6) on the “distance” between’ and)V'.

Lemma 4.5. Under Assumptio.3 let R € [0,¢) andp € (0, — R]. Assume that
u € K3(Wg) is a solution of problen.2) with f € K%, (V) for V = Wk, . There exists
a constant' independent ofi, R and p such that

: < -1 -2 )
(4 7) ||u||K%(WR) — C<||fHKg+2(WR+p) + P ||u||K%3+1(WR+p) + P Hu||K%+2(WR+p)

Proof. We introduce a special family of cut-off functions. Let xy € €>°(R) be such that
X =1on(—oo,0]andy = 0on|l, +o0). Definex, onR by:

. [t —-1-R
(4.8) Xo(t) = X (HT) .
Thusy, equalsl in [-1 — R, 1+ R] and0 outside(—1 — R — p,1 + R + p). Then we set
(4.9) Xp(%) = Xp([xL]) Xp(23).

Thus by constructiorgf. (4.3
X, =1onWg and x,=0 outside Wg,,,.
We note the following important bound on the derivatives pf
(4.10) 3D >0, Vp>0,Va,la| <2, (0%, < Dp .
Then in order to prove4(7), it suffices to apply estimaté () to x,u and to check that the
commutator L, x,| applied tou satisfies

. < -1 —2 )
(4.11) II[L,xp]UIIK%H(WM) _C(p IIUIIKEH(WM)M IIUIIK%H(WM)
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The latter estimate is an obvious consequencéd 4} and the fact that

10 ull g < [Jullyz-a

WR+ K5+‘(¥‘(WR+P)

for all a, O

Corollary 4.6. Under the assumptions of Lemm, if 0,.,f € K5+2(WR+p)’ thend,,u
KB(WR) and there exists a consta@it > 1 independent oR, p andu such that

(4.12) (1054l s o, <C<H3x3fll +p " ul + 7 ully,

Ky Wriip) KZ(Wr.)) WR+p))'

Proof. For anyh < p/2, we apply ¢.7) in Wg.,/» to v, defined by
v, i x — b (u(x + hes) — u(x)),
whereez = (0,0, 1). This yields

<401 L

||vh||K%(WR) K%+2(WR+/J/2)

(4.13)

+ 7 IVl e P2 vl

11Wrip)2) K oOWRyp/2) ) ’

where(' is the positive constant from Lemmdas. By noticing that

h
v, = h_1/ Opu(x + tez) dt
0

we check that for alb < p/2

<
HLVhH WR+p/2) - ||8m3Lu|| [1‘+2 Wrp)’
L R WY
||Vh||K%+2(WR+p/2) . HamsuHKO 2(Wr+p) < ||Kﬁ+1 (Wr+p) -

This shows that the right-hand side df13) is bounded uniformly irk. Therefore passing
to the limitin (4.13, we find that),,u belongs td(%(WR) and that 4.12 holds. O

Corollary 4.7. Under Assumptiod.3, letu € K%(WE) be a solution 0f(4.2). LetR €
[0,e/2] and R’ > ¢/2 with R + R’ < . Then there exists a constafitindependent oR,
R’ andu such that for alll € N, we have

]_ Y /+1
(4.14) EHamsuHK%‘(WR) <C { Z _H LUH +2oWryir) + [l HK/l3+1(WR+R’) }

Jj= 0

Proof. If / = 0, this is a consequence of estimaded]. For/ > 1 the proof is divided into
two steps. To keep notations simpler we tdke- 0.
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(i) We first prove by induction otithat if p < ¢/(2¢ — 1), then

¢
_ < é{ ~(=)||9
(4.15) ||8ﬁ3UIIK%(W) < (20) ; p~ 7 |0%, Lull o K »Wiar_ )

+plu] +p 7 lu

KZ(Wize-1)p) Kb 1 Wiae-1)p) }’

whereC' > 1 is the constant from Corollar.6.

e If / =1, the estimate4.15 is nothing else tham(12). Hence it suffices to show that if
(4.19 holds for/, it holds for¢ + 1.

e For that purpose, we first applg.(L5 to v, defined as before by

v, i x — b7 u(x + hez) — u(x)),
and passing to the limitih, we get

4
(+1 < V4 —(=3) |1 Ai+1
195l 0, < (20) {le 192 Lull g oms
‘7:

+ |0z, u] +p 7|0, v

K}iﬂ(wﬂp) } '

For the second term of this right-hand side, we apglyl® to u but betweerwgg,, and
Wae+1),, While for the third term we use the fact thigd,.,u| ., < |ul|
B

This leads to

K%(W2€p)

11 (Waep) K3 (Wagp)”

l
1925 ulea o) < (20) Y p “PN|0s Lu|

J=1

+(20)Cp* (|10, Lu

KEaWeeri—5),)

-1 -2
||U|| +p ||U|| 1 1(W(2l+1)p)>

+(20) ™ 1IIUII

K% oW2et1)p ) KZW2e41)p)
K% (Wag,)
By the change of index = j + 1 in the sum ory, we finally get (sincé2C)* < 2¢/C*+1)

l+1
< ol (rt+1 Z p—(Z-i-l—j) ||ai3Lu||
j=1

+(2C)(C +1)p 7 |u]

041
19z, "ul KZOW) KS 2 Wia(e+1)—5)p)

+(20) Cp™ 7 |ul

KZ(W(2e11)p)
SinceC > 1, C' + 1 < 2C, and this proves that(15 holds for/ + 1.
(i) Now we choose such that

W(le C W., with 8/28/2.

Kb Weaern),)

This holds if we take
p= % with v = min{%, 1}.
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Hence applying4.15 with this choice ofp, we obtain for alll > 1

Vi —1 (b—3) pt—
10 gy SCO DTN ET 0 Ll o,

(4.16) i=1
(’Y 1)£€£||u||K2(W6,)_'_ (7—1>£+1€£+1||u||K}RH(WE/)}.

~

Sincey < 1, (v 1)) < (y~1)’. Moreover by Stirling’s formula, one has
0F < S|
for someS > 1. We find
R ]
T
sincej! < j7 < ¢, Inserting this into4.16) gives, withC, = 2C~y~18,

SZ

¢ ¢ -1
||8m3u||K%(W)§CI{Z—H Ll vy T 0l )+ 00 HuI|KéH(WE,)}-

7j=1

Using the trivial inequality < 2¢, we arrive at

||a£3u||K%(W>sc*§{Z—u Ly g+l + Ol o}

7j=1

which, combined with4.7) between/V., andW. , yields the requested estimate. [

4.3. Anisotropic estimates in dihedral domains (homogeneous mms). We are now
ready to prove the main results of this section, namely thighted anisotropic regularity
of solutions of our local boundary value problefn3). For this we introduce the following
new class of weighted spaces:

Definition 4.8. Let 5 be a real number and let > 0 be an integer.

Let W be a subdomain of the dihedral domdm We recall that = |x, | denotes
the distance to the edge = {x, = 0}. Theanisotropic weighted space with
homogeneous norM;”(W) is defined by

(4.17) MZ(W) = {u € Lp W) : rPTlwlogu e L2(W), Va, |a] <m}

where fora = (ay, as, a3), a1 = (a1, as) is the component af in the direction
perpendicular to the edge The norm of this space is defined as

(4.18) |u|| Z S (rHedogul; -

k=0|a|=k
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Theorem 4.9. Under Assumptiod.3 letu € Ké(Wa) be a solution of problen4.2). If
f € Mg, ,(W.), thenu € M7;(WV), and there exists a positive constadntndependent ofi
andm such that for all integek;, 0 < k < n we have

1 k 1
(4.19) — ( 3 ||7~ﬂ+|aﬂaau||0 Wf < c’“l{ Z% ( 3 ||T6+z+\auagf||§;ws ) ’

|| =k =0 " |a|=¢

s }

Proof. (i) We first apply the isotropic estimaté.¢) betweenV andV.,,, and combine
with (4.6) between\V. ,, andW. , (cf. Remark4.4(i)). This yields the estimate for af,
0 <k <n,andwithe’ = /2

??‘

-2

% (Z HTBHO@?UH(Z);V\/)% < CHl{ % (Z ||7“B+2+|°“8°‘f||0 W )1

|a|=k (=0 |a|=¢
B+2
2l Ml o) T
In order to absorb the terﬂ‘rr/”?f” in the sum on the right-hand side (including when

k = 0 or 1), we write the previous mequallty in the slightly weakerrfo

% < > ||7“5+|°‘8§‘UI|(2);W)% < Cf+1{ i /! <Z I +2+Ia‘8af”0 W )1

laf=k laf=¢

vl o) }

We reduce the left-hand side to any= (ay,0) of lengthg > 0, and bound-#*+2+lel
by rA+2+lesl in the right-hand side (recall thatis bounded inW.) to obtain for allg,

0<g<n
%( Z ||Tﬁ+lcuaozjuHé;W)é < C'SH{
(4.20) et i )
; 5 (g::é o iolope|? ) +lully o, }
(i) We now prove that for al, = 0,...,n and for all¢g = 0,...,n — p one has the

following estimates with: := ¢ + p and a constant’; independent ofi, ¢ and

1 o oo 2 3
= (O3 g on ) ) < bt

lar]|=q
k
Z % ( Z Hrﬁ+2+\allaaf||0 ™ ) + ||u||K1 We) }

=0 |or|=¢
1. If u = 0, this estimate is a consequence 420 sinceWW., C W..

(4.21)
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2. If > 0 (or equivalently; < k), we apply ¢.20 to 9%, u to obtain

1
2 2 1
( S ozl ) < o

lai|=q

B2+ | Ha 2
Zg,(an daponslZ,, ) Ioul o}

laf=¢

(4.22)

The last term of this right-hand side is now estimated withhiblp of Corollaryt.7. Using
that

-1
||a§3u||K}i+1(ng) S ||05; u”K%(WE/) )
and applying4.14) betweenA.. andW. with ¢/ = . — 1, we obtain

pn—1

1 )
H < (O# — 1\ < E —1H7 )
||0x3u||K};+1(WE/) — C(4 (lu 1) ]| ||0x3f||K%+2(WS) + ||u||K};+1(W5)

i=0

Using this estimate in4(22 we obtain that

1
2 1 2 2
(3 i anll,, ) < oS g (S Il )

ot |=q o |a|=¢
pn—1
g+l e _
e e >(ZO 192, F s oy * s vy ):
J

Multiplying this estimate by;!(k!)~!, we find (since!(p — 1)!(k!)~* < 1)

1 a o 2 % +1 2+ |a a2 %
5 (X2 gz o, )" < 0 Z M(Zn eedor oefll; . )

lot |=q lo|=¢
p—1 1
q+1p ~1HI
+ ool (ZO 108 omy + M0l vy )
J:

For the first term of this right-hand side we finally noticettfg 9 = 0°+(*%+) and that
la+ (0,0, u)| = ¢ + p. Hence we have to check that

q! 1
< )
Ok = (04 p)!

which is equivalent to
Ig!
(04 p)lq! <1
ok =
and holds sincé + ; < k andq < k.
Altogether we have proved that.@1) holds for allu € N such thaty + . = k.
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(i) Summing the square of this estimageql) ong = 0,...,kanduy =0,...,k — ¢, we
arrive at

k
% ( Z H,rﬁ—i-alaauHi;W)% < k20§+1(z <Z ||TB+2+|aL|8af||§;WS>%

|| =k =0 " |a|=¢

|~

ﬂw@mmy

This proves the theorem. O

4.4. Anisotropic estimates in dihedral domains (non-homogenags norms). In this last
part of sectior devoted to local estimates in dihedral domains, we invastithe situation
where the a priori estimate holds in thaeveighted scale instead tikescale. We set:

Assumption 4.10.Letm > 1 be aninteger. Let € R such that3 +m > —1. We assume
that the following a priori estimate holds for problet): There is a constardt such that
any

uc JZLH(W) ,
solution of problem4.2) in V = W' with f € Jj) (W’), satisfies:
(4.23) [0l s 30y < C (I oy + 0l )
Remark4.11 Using the analogue of Propositi@ for dihedral domains, i.e., that the
norm in the space’ (W) is equivalent to( 3", ., ||rmaX{ﬁ+‘a|v”}83u||§;W)% forall o €
(—1,8+m], we can taker = 0 for J3"' (W) wheng+m > —1,i.e,+m+1> 0: We

obtain that in the situation of AssumptidrnlOthe normin the spac:)%”1 (W) is equivalent
to

1

max o 1% 2 2

(4.24) < Z a8+ I,o}gquO;W) .
| <m+1

The non-homogeneous anisotropic weighted spaces arediafrfellows on the model
of the homogeneous ones (Definitidrd):
Definition 4.12. Letm > 1 be an integer. Lef € R such that5 + m > —1.
Let W be a subdomain of the dihedral domd@nandn > m be an integer. The
anisotropic weighted space with non-homogeneous gj(#V) is defined by

(4.25)  NzOW) ={ueLp (W) : pmxtftloclgoy e 12(W), Va, |a] <n}

loc
endowed with its natural norm.
Our aim is to prove the “non-homogeneous” analogue of Thear&:

Theorem 4.13.Under Assumption.1Q letu € J7'(WV.) be a solution of problert#.2). If
f € N, ,(W.) foranintegem > m, thenu € Nj3()V), and there exists a positive constant
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C' independent of andn such that for all integek, 0 < k£ < n we have

@.26) L (3 rtrriesiorgou? ) < o

|al=k

i
1 max « (03 2
ZE (Z [rmax{8+2+ l|70}8xf||o;ws> 4 u

=0 " |a|=¢

J’HL WE) }

Proof. We review the sequence of steps leading to Theotedrand adapt them to non-
homogeneous norms.

(i) Applying (4.23 to x,u with the functiony, introduced in 4.9), we obtain, — compare
with (4.7),

1-X
[y—— c(||fHJm Tovms T Zp lall s v )
(i) By the differential quotients technique we deduce, — compath (4.12),

oy < C (1981 s om +Zp“||u||w v )
=0

|0, u

since||0,,u

I5 A Wri) 's bounded by|u I T N Wrap)”
(iii) Iterating this on the model o#(15 we find for¢ > 1

/ —(r— .
||0x3u||JgL+l(W) { Z ( ])HagC;Lu

~

m—1
I5r2 Wiae—i)p)

m

—0—\
20 Pl gy, o f

A=0
leading to the analytic type estimate, — compare withi 4),
@27)  5]ul < 5~ Lo, ol + lu] }
' e TR (We) = — 4! I35 Wrir) I8 1 Wryr) ]
J:

(iv) To prove @.26), we start with the proof of, — compare with.20),

1
q' < Z ||,r,max{6+\ou_| O}aou_uH )2 < Cg-l—l{

lo s |=¢

(4.28)

q

Z gl (Z || max{S+2+|a |, 0}8°‘f|| )é + ||u

£=0 || =¢
e Forqg = 0,...,m, we rely on the estimate}(23 combined with the use of the norm
(4.24) for J?“(W): If we restrict the left-hand side to the derivatives of toenfi o5 -
and replace the weight>{5+2+lal, 0} py pmax{f+2+la .0} jn the right-hand side, we obtain

(4.28.

Jm (W /) }
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e Forq > m + 1, we combine the estimatd.3 with the isotropic non-homogeneous
estimate 4.5 and making the same restriction&y:* in the left-hand side and the same
change of weights in the right-hand side.

(v) We continue with the proof that forall = 0,...,n and forallg = 0,...,n — p one
has the following estimates with:= ¢ + . and a constant’s independent of, ¢ andu

1 1
E ( Z ||,r,max{6+\ou_| 0}8041_8/1 u||(2);W>2 S C§+1{

X I3
o [=q

k 1
max « (63 2 2
D2 g (X0 et gz )

=0 7 |al=¢

(4.29)

|~

J}j‘nJrl(Ws) } '

1. If u = 0, this estimate is a consequence4P@ sinceW., C W..
2. If > 0 (or equivalentlyy < k), we apply ¢.28 to 9/ u to obtain

1
. < Z ||rmax{6+\al\ O}agfagiu||§;w>2 < Cg-‘rl{

o [=q
1 max a a 2 %
Z E < Z ||’I“ ol O}ax agifHO;WE/) + || uHJm L (W) }

=0 " |a|=t

(4.30)

The last term of this right-hand side is now estimated withttalp of @.27) with ¢/ = 1 —1

—

s S MO0 gy < <§£: 08l oy M, 5))

:0

195 ull

Using this estimate ir4(30 we obtain that

1
max e (63 2 2
. ( Z [t 0} gad i uHo;w) <

X| I3 —
lot |[=q
1 2 3
1 max «a 1o

op Y g (X I o, )

£=0 || =t
u—l
atleowe il
+ 3 (- 1) (; 1921y + 100 o )
We note that the norm in the spa.l:@r2 ) is equivalent to¢f. (4.24))

1
2 2
(¥ ||rmax{ﬁ+2+'a*’°}afuuo;W) -

ja|<m—1
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Thus dividing the latter estimate hy and recalling that = ¢ + 1 we deduce

1

1 max « (03 2 2
(X2 e ol ) <

lai|=q

q 1
1 2 3
k+1 max{S8+2+|a |,0}
Ay (3 frmtosztiosiobamop g )
=0

|af=¢

n—1
1 max o @ 97
n C§+1<Z ﬁ Z |7 {B+2+]| I,O}gx QﬂmeO; w. t HUHJZ‘H(WE) )

7=0 7" |a|<m—1

From this we deduce}(29. The final way to4.26) is very similar to the conclusion of the
proof of Theoremt.9. This ends the proof of Theoreml13 U

Remark4.14 We note some similarities between our estimates and thdaeeld in [L6)]
for the Laplace operator. Our argument based on the dyadiitipa technique clearly
improves the structure of the whole proof.

5. ANALYTIC ANISOTROPIC WEIGHTED REGULARITY SHIFT IN POLYHEDR

5.1. Edge and corner neighborhoods.Let 2 be a polyhedron iR?, that is a domain
whose boundary is a finite union of plane domains (the fages € .’). The faces are
polygonal, the segments forming their boundaries are thesdof (2, and the ends of the
edges are the corneef (2. We denote the set of edges &yand the set of corners .
Edge openings may be equal2e, allowing domains with crack surfaces.

In order to prove global regularity results in suitable weégl Sobolev spaces, we in-
troduce corner, edge and edge-vertex neighborhood& oFor a fixed cornec € %,
we denote by, the set of edges that haeeas extremities. Similarly for a fixed edge
e € &, we denote by, the set of corners that are extremitieseoNow we introduce the
following distances:

(5.1) re(x) = dist(x,€), 7e(x) = dist(x,e), pee(X) =

There existg > 0 small enough such that if we set
Ne = {x€Q:71e(x) <e andr(x) >¢c/2 Vee b},
(5.2a) Qe = {xeQ:r(x)<e and pe(x) >c/2 Ve € &},
Qe = {x€Q : 1e(x) <e and pee(x) < €},
we have the following properties:
QeNQe = @, Ve #e,
(5.2b) B(c,e)NB(c',e) = @, V' #c,
ﬁce N ﬁce’ ve' # e.

|
N
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We also define the larger neighborhoods with< ¢ < &’
Q, = {xeQ:rex)<e andr(x) >e"/2 Ve e E},
(5.2¢c) Q. = {xeQ:r(x) <& and pee(x) >£"/2 Ve € &},
O, = {xeQ:rx) < and pe(x) < €'},
assuming the’ and<” are sufficiently close ta for the above propertie$ (20 to hold

for 2, Q, and2,,. We finally introduce the smaller neighborhodd$ €2/, and2, by
inverting the roles of’ ands” and set,

(5.2d) Q=% Q=% =%
ce? ecs CEY ecée
We finally definef), as the remainder:

(5.2e) Qo= \ Qe N Qe N Qge.

Note that(), is far from the singular points di. Replacing2/, Q7 and 2/, by Q, Qe
and (), respectively, in the definition®(2d and 6.2, we define the larger “smooth”
neighborhoody.

Let V be any subdomain d?. We consider the system of local interior and boundary
equations

(5.3) T,u = 0 onlynNV, sc.¥,
Diu = 0 onI NV, se.7,
where the operators, T; and Ds are homogeneous with constant coefficients and form an
elliptic system. The choic® = () gives back the global boundary value problem on the

polyhedrorn.

Definition 5.1. On VY C Q, form € N andg = {5c}cer U {fe }ecs, the weighted space
with homogeneous noriki' (V) is defined as followsst. [28, 29, 6, 7]

{ Lu = f in 2NV,

loc
re(x)% el 9oy e L2V N Q) Vee €,
re(x)% 90 € L2(VNQ.) Ve e &,
re(x)% el peg(x)% 0l 9oy € L2(V N Q) Ve € €, Ve € @@}

and endowed with its natural semi-norms and norm.

(5.4) KI(V) = {u L2 (V) : Va, [a] <m, uecl’(VNQy) and

Note that the condition in the edge-vertex neighborhQgdcan be equivalently written
as
re(x)% e g (x)% ol 90y € L2V N Qce).

Remarks.2 The semi-norms issued fror.@) are equivalent to the globally defined semi-
norms

(5.5) {ZH{Hrfﬂ*a'}{]l(:—;)B”“'}&fuuz;v}é, k=0,....m.

|oe|=k ce?
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Herery, denotes the distance function to the gébf corners. With this expression, the
relations between our spack§ (2) and the spaceB’BI”(sip(Q) defined in P8, §1.2] or [29,

§7.3] become obvious:

(5.6) Ky =Viw(Q it p=2 F={f+m}p 0={fetm},.

5.2. Anisotropic weighted spaces with homogeneous normgJnlike in the conical case,
the weighted spacés€;’ are in a certain sense too large to describe accuratelygoéarety

of solutions of the elliptic problem5(3) along the directions of edges. Mimicking the
definition of the space®!}}’ in the pure edge casef, (4.17), we particularize for each edge
e € &, the derivatives in the directions transverse or paradi¢hat edge by the notations

(5.7) O+ (transverse) anddll (parallel) (e € &),
so that
O = 0+ o7

Of course these directions are edge dependent. They aralefgled in each of the do-
mains, and).. determined by the edge
The following spaces were introduced &) [/] for similar purposes:

Definition 5.3. OnV C Q, form € Nandg = {fc}cer U {Pe fecs, We define

(5.8) My(V) = {u L2, (V) : Va, [a| <m, Ofucl®’(YNQ) and
re(x)% el 9oy e L2V NQ) Ve e,
re(x)%HeLl 9oy e L2V NQ,) Ve € &,
re(x)PHO pe(x) %Ll 9oy € LAV N Q) Ve € €, Ve € g}

We denote by - ||, and|- |, . its normand semi-norm, namely

m,B; V m,3;

m

2 . 2

HM;m,Q;V - Z| ’ |M;Z,Q;V
/=0

with
2 2
5.9 fuly = D (1950l g, + D 2050l g
lor|=¢ ce?
+ Z ||rﬁe+|ou\@au||0 o + Z Z ||rﬁc+\a| 5e+|0‘ﬂ0o‘u||0 - )
ecd ce? ecée

Note that the condition in the edge-vertex neighborh@gdcan be written equivalently as
re(x)Pe Pt p (x)Petlel 9oy € L2(V N Qee).

We can then define the corresponding analytic class as fellow
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Definition 5.4. We say that: € Az(Q) if u € M;(Q) for all k& > 0 and there exists a
positive constanf’ such that

|ul < CHIE VE>0.

M; k,3;
We rephrase Assumptigh3for the dihedral neighborhodd,:

Assumption 5.5.Lete € & andf, € R. We assume the following a priori estimate: There
is a constant’ such that any
ue K3 (),

solution of problem#%.3) in V = Q with f € K}, (%), satisfies:
(5.10) lulls iy < C(IFlls, o + s o) ):

We can apply Theorerh.9to the edge neighborhodel. We obtain that under Assump-
tion 5.5, any solutionu € KEG(Q;_) of problem 6.3) with f € Mj_,,(€2,) satisfies the
uniform estimates fob < k <n

1 k 5
1 a o112 2 1 «a g2 2
(511) E < Z ||,r.eﬁe+| J.‘aquO’Qe)z S Ck+1{z@ (Z ||T£e+2+| J.‘axf||079é>2

)=k =0 la|=¢

+lul, o J
Now we consider the edge-vertex dom&in.

Proposition 5.6. Letc € % ande € &. Letp = {f, fe}. Under Assumptio.5,
any solutionu € Kj(€.,) of problem(5.3) with f € Mj_,(€2.,) belongs toM} () and
satisfies the uniform estimates foxK k£ < n - -

1 (7 (e} o 2 l
(612) — (Y rérelptiolopuls ) )7 < 0

|a|=k

k 1
Z 1 Z 2 2
_ Bc+2+‘a| Be"‘Z‘HOl I [e%
€| ( ||Tc pce - ax f||0;Q£e) + ||u||K(11+1(Qée) }

(=0 |or|=¢
Proof. We mimic the proof of Theorerd.2. The proof of estimatex(12) is based on a
locally finite dyadic covering of2.. and(2.,. Define, compare with5(29-(5.29),
V={xeQ: T <re(x) <e and pee < e}
V' ={xe:

j—j, < re(x) <& and pe < €'},
and forp € N:

V, =27V and V,=2"V"
We check:

Qe =JV, and Q. =[]V

neN neN
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FIGURE 2. Nested edge neighborhoods (section determined by azainut
anglef. = constant)

The estimateq.11) betweert), and(2, also holds in the configuration df and)’ which

is similar: V and )’ are nested edge neighborhoodich do not touch any corner, see
Fig. 2.

Sincer. is bounded from above and from below by strictly positivestants, the dis-
tancer, is equivalent tg. on the reference domains: We have

kl( Z ||P 6e+|aL‘8a’\|| )% < CkH{ig[(Z ||Pce Be+2+|aLaafH0w>1

laf=k laf=¢

3 llpee®) g, 5, }-

la|<1

for any reference functioa satisfying the boundary conditions &.8) andf := Lu.
For the same reason, we can insert powers @f the above estimate, to obtain our new
reference estimate

(513) — (Z ||7~ ﬁc+|a\ ( )ﬁe-i-alla?an(z);ﬁ)% < Ck_H{

laf=k

k 1
3 (X I e gl 5, )
=0

|laf=¢

3 re®) e peo )l 5, .

la|<1
The change of variables— x = 2-#% mapsV to Vs (resp.V’ to V). We note that
Pee(X) = pee(x) aNd r¢(x) = 2re(x).
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With the change of functions
U(x) :=u(x) and f(x):=Lu, whichimplies f(X)=2"f(x),
we deduce from estimaté (L3 that

1
_ 2u5c< Z ||r 6+\a| )Be+|%‘afu||z;v> 2 < Ck—i—l{

laf=k

k 1

1 « e (63 2
Zg_ u(Bet2) <Z 921 (x) P20l (x)Pet 2L e f”o v{)
=0

|a|=¢
1
« e e (63 2
I <2uﬁc S lre(x)% 1 pea (x) 11 ||OV/> }
|| <1

Multiplying this identity by2—+4, taking squares, and summing up over;allve get the
requested estimaté.(L2). O

The estimates in pure vertex domains(i.e., close to corners but “relatively far” from
the edges) are similar to those in obtained in Theokedfior plane sectors:

Proposition 5.7. Letc € ¢ and = {f.}. Any solutioru € Kj(€2.) of problem(5.3) with
fe Mg;S(Q’C) belongs taM3(€2.) and satisfies the uniform estimates fo & < n

(5.14) — ( S lretelgeul ) <o

|al=k

??‘
l\’)

1
(I, ) il )

|al=¢

~
Il
o

Proof. The proof is again based on the argument of dyadic partitiatis reference do-
mains defined as

V={xeQ, S<r(x)<e} and V' ={xecQ, = <rx) <}
and forp € N:
V, =27V and V=2V

Qe=JV. and o =)V

neN HeEN

We check:

We can apply the a priori estimates of the smooth case betWeamd )’ cf. (2.9 and
deduce %.14) in the same way. O

We obtain now the anisotropic regularity shift in homogareaeighted spaces on poly-
hedra:
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Theorem 5.8.Let (2 be a polyhedron ang = {5, .} be a weight multi-exponent. Let
Assumptiorb.5 be satisfied for all edges € &. Letu € Hi_(Q\ &) be a solution of
problem(5.3). Then the following implications hold

(5.15a) ucK;y(Q) and fe M7 ,(Q) = uweMF(Q) (meN),

(5.15b) ucKy(Q) and f e Az () =  ueAs).

Proof. The proof is a consequence of

(i) elliptic estimates in the smooth case applied betwieeand(,,
(i) pure corner estimates.(L4),
(iii) edge estimate$(11) between the pure edge domaiasand(,,
(iv) edge-vertex estimateS.(2).

O

5.3. Anisotropic weighted spaces with non-homogeneous norms:or the same reason
as in the two-dimensional case, it is valuable to have atera statements tdb (159 and
(5.158 in which the a priori conditiom € Ké(Q) can be replaced by the weaker condition

uc Jé(Q)

Definition 5.9. Forg = {5, fe} andn € N, let us introduce the isotropic weighted space

loc
re(x)% 90U € L2(V N Q) Ve € F,
re(x)* 00 € L2(V N Q) Ve € &,

re(X)% M peo (X)PH 90U € L2V N Qee) Ve € F, Ve € g}

(5.16)  JI(V) = {u L2 (V) : Va, [a| <n, uel®(YNQ) and

and its anisotropic companion, for> — min{mingc¢ f¢, Minecs Pe }, cf. (4.29

loc

re(x)mextBetlal 0 goy € 12(V N Q) Ve e E,
re(x)metletlocl Ot 9oy € L2(V N Qe) Ve € 8,
(

re X)max{ﬁc+\a|70} pce(x)max{ﬁe-i-lm_\,o} Nu e L2(V NQe) VceE, Vec é@c}.

(5.17) N3(V) = {u L2 (V) : Va, [a] <n, uecl® VN and

We note that, like in the case &fweighted spaces, the semi-norms issued frorigj
are equivalent to the globally defined semi-norms, compéite (&.5)

(5.18) { alzzjk H{C];[gr?ﬁ”}{ ]; (7)™} oy sz} k=0,....n.

It is useful to introduce, in the same spirit as i8], a full range of intermediate spaces
betweerK} (€2) andJ3 ().
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Definition 5.10. Let us flag a subset;, of corners and a subsé} of edges, and define
Jg(V' %o, p) as the space of functions such that all semi-norms

(5.19) H{H pletiol) £ H Bc+n}{H Te 5e+\a|}{ H Te Be+n}aa H

cc%o ceb\%o ecéy eeé”'\é”b
are finite for|a| < n. Anisotropic spacesl;(V; %o, &) are defined similarly, replacing

in (5.17) the Weightr?ax{ﬁcﬂal’o} by ch+|0¢\ whenc € %,, and {Teypce}max{ﬁe—ir\am} by
{re, pce}t1*l whene € &. The sum of the squares of these contributions|ddr= n
defines the squared semi-norm

|u|N”(V i60,80)
Note that withs, = &, = @, we obtain the maximal spaces already introduceé .ibgj
and 6.17):
(5.20) JV) =V, 2,9); N;(V) =Nz (V;2,9) .

The corresponding analytic class is defined as usual:

Definition 5.11. We say that, € Bg(Q; %y, &) if u € NE(Q; %, &) for all k > ks =
— min{mincey B, Minecs e } and there exists a positive constahsuch that

< C*E Yk > kg

|u|Nk Q;%0,40)

In accordance with5.20), we writeB;(§2) for Bs(2; @, ).
Remark5.12 (i) Choosing%; = ¢ andé, = &, we find that the space(2; ¢, &),

N3(Q; €, &) andBs(§2; ¢, &) coincide with the homogeneous spa&és(?), Mj(€2) and
As(2), respectively.

(i) The following relations hold between our spadgs(; 6;, &) and the spacelé/’g}”(Q)
of Maz’ya and Rossmanr2§)]:

(5.21) JF(%,0)=WiH(Q) if p=2, B={Bc+m}_,. 6={Be+m},_,.

In these spaces, the non-homogeneity is only relateigees Under the same condition
as in 6.21), the intermediate spacé@’gg’(ﬁ; J) of [29, §7.3] coincide with our spaces
JF(Q; €, &) if & is chosen as the same set of edges.as

(iii) Our analytic clas85(2) coincides with the so-called countably normed sp@ﬁﬁ)
introduced by Guo in]3]: If Guo’s edge and corner exponeriis € (0,1) andg,, € (0, 1)
satisfy3;; = B + ¢ andf3,, = fc + ¢, respectively, them3;(Q) = Bs(€2).

We state the assumption forweighted spaces corresponding to AssumptidiO for
the dihedral neighborhodd,:

Assumption 5.13.Lete € &. Letm > 1 be aninteger. Lef. € R such thatse+m > —1.
We assume the following a priori estimate: There is a congtasuch that any

uc Jg":“(Qe) ,
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solution of problem#%.3) in V = Q with f € J7/5(€2), satisfies:

sy < C(IF oet))

We then have the foIIowmg anisotropic regularity shiftuksn the non-homogeneous
weighted spacel;(Q2; ¢, &) andBg(); ¢, 9):

(5.22) |u

+ ||u

I 5 ()

Theorem 5.14.Let () be a polyhedron ang = {5, 5.} be a weight multi-exponent. Let
m > 1 be an integer such thai, +m > —1 for all edges. Let Assumptidnl3be satisfied
foralle € &. Letu € HE_(Q\ &) be a solution of problent5.3) in V = Q. Then the

following implications hold
£ 23 ueclJi'(¢,9) and f € N3, ,(Q,4,9) = uweNzQ¢,2) (n>m),
(5-23) uecJi' (¢, 9) and f € Bg5(%¢,9) = uecBs(%,9).

Proof. The proof is a consequence of suitable a priori estimatdsamalytic control in the
four types of regions in the polyhedron:

(i) Elliptic estimates in the smooth case can be applied betfgeamd(2;.

(i) Pure corner estimateS.(4) are valid here: We note that in the pure corner redin
the norms irK andJ spaces, or itV andN spaces, are the same.

(iii) The edge estimated.@6) are valid between the pure edge domdnsand(2,.

(iv) Finally, edge-vertex estimates are proved by the dyadittipsar argument starting
from the same reference domainand)’ as in the proof of Propositidh 6. The reference
estimate can be written as

(5.24) — ( S [frmetetiosl o}@auH )5 < Cm{

o=k o )
- max{6e+2+\a [,0} qa
> (X OG5 )
(=0 || =£ 1
max{ [Be+| o4 2
+< S [reieriel. 0 o u||w/> }

|oo| <m
Sincer. and(r.)~! are bounded on the reference domains, we can

e replacere by pee
e insert powers of-

in the previous estimate, thus obtaining

1
<Z [ elal pmax{fetle, O}aauH >2 < C’““{

|a|=k
k 1
1 ol max{fe « a
S (3 et ppstvuszslect ooy )

=0 " |a|=t f
4 ( Z [-fHlal pmax{Be+ial, O}aauH )2}

|| <m
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Owing to the homogeneity of the weights with respeattdhe dyadic partition argument
yields the desired edge-vertex estimate, which allows telcmle the proof of the theorem.
0

Remark5.15 (i) If we replace Assumptio.13 by Assumption5.5 for edgese in the
flagged subsef;, we can prove, instead 0523, the implications

ucJi (%, 6) andf € N ,(Q2;%,6) = uecNjQT, &),

5.25
29 ¢ JHQE, &) and f € Byyo(%6, &) —  ueBy(%,&).

(i) Under Assumptiorb.13 the implications in the maximal hon-homogeneous spaces,
i.e., withé, = & = o, are also true:
uecJi () andf e N3 ,(Q) = ueNzQ),

5.26
(5.26) uecJi(Q) andf € Bg.5(2) == ueBgQ).

If 5c > —% for any cornerc, the statement$(23 and £.26) coincide, since in this case
the spaced}'(Q2; ¢, @) andJ;'(Q2) are the same (consequence of Hardy’s inequality). In
the general cas®(26) can be proved by two different methods:

e Deduced from %.23 by an argument of corner asymptotics (at each corner, the
asymptotics moduldy'(€2; ¢, @) contains only polynomials): For instance when

m = 1,if . € (—2,—2) for all cornersc, any element ofi € J5'(©2) splits as
u=uc+we in Qg with u,e JE(Q;CK; ), weeCV,

and we can applys(23 locally near each corner, to each functign
e Directly proved by the same method as for Theotfedv, starting with the refer-
ence estimate fat > m

1
b (X prmeseinga ) < oo

o r 1 2 3
max{Se ay |, oy 2
3 - (Z (et 2+l 0}8xf||0;17,>
=m 1
max{fe+|al, s 2 2
(D0 el oioeg) )L

|a|=m

instead of §.24): The J;! norm present ing.24) is replaced here by the corre-
sponding semi-norngf. Corollary 1.2

6. ANALYTIC WEIGHTED REGULARITY OF VARIATIONAL SOLUTIONS

In this section, we investigate how Theor&m in the polygonal case, or Theorehs8
and5.14in the polyhedral case, apply to solutions of variationaljpems.

Let 2 be a polygon or a polyhedron. In coherence with the previeaans, we con-
sider a sesquilinear fora homogeneous of ordérand with constant coefficients acting
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on vector-valued functions withh components
N N

(6.1) a(u,v) = Z Z Z Z / ag; Oyuj(x) 070;(x) dx,
i=1 j=1 |a|=1|y=1"%

and a subspac¥ of H'(Q)Y =: H'(Q) defined by essential boundary conditions on the
sidesI’s of Q2

(6.2) V={ucH(Q): Du=0 on T, sc.7}.
We assume that the formis coerciveon V:
e, C >0, YueV, Rea(uu)>dlul  —Clul .

Standard examples of such sesquilinear forms are the gtddren for scalar functions

avy(u,v) = /QVu(x) - Vo (x) dx

and the stress-strain sesquilinear forms in linear eigstic

s = / o(w)(x) : ZW)(x) dx,

wheres is the symmetrized gradient tensor ane- A=, whereA is a material tensor with
the usual symmetry and positivity properties. Variatisdced/ on whichay is coercive
can be defined by any subsgt, of the set of sides””

V={ueH(Q) : ul, =0 Yse S}
As for a, we can take foM any space of the type

=0 VSGyT
and uxn| =0 Vse 7y},

V={ucH(Q) : u}rs:O Vse . “p, u-n

Ts

wheren is the outward unit normal vector ia, and.¥p, .7, and.¥y are disjoint subsets
of .. As a consequence of Korn’s inequality, is coercive on such spac¥s
We consider the variational problem

(6.3) Find uweV suchthat Yv eV, a(uv)= / fvdx.
Q

Having the analytic shift results of Theorer@gl, 5.8 and5.14 at hand, the issue is to
find suitable exponents$ so that

(1) A5(92) or Bg(Q2) are compactly embedded H'(2), — in order to be useful in
error analysis for example.
(2) Variational solutionss with sufficiently smooth right hand sides beIongKQ(Q)
or J5(9Q).
Condition (1) of compact embedding is satisfied on two- anetfdimensional domains
for all 5 < —1 (this means that all components and 3. are< —1). This is the reason
why we exhibit weights of the formi = —b — 1 with b > 0 in the statements below.
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6.1. Regularity of variational solutions in polygons. Let 2 be a polygon with vertices
c € ¢. The standard Sobolev spdd&(2) coincides with)! | (), see 8.4). From Remark
3.3(ii), we know that for the comparison df , (Q) with K*, (Q2) we are in a critical case,
namely a function: € H'(Q2) neither has point values at corners nor satisfies € L%(2)
in general (seeX?)). There holdK!,(Q2) c JL,(2) c KL, .(Q) forall e > 0.

Taking the essential boundary conditions into accountdieéihe the variational space
V c H'Y(Q), one will sometimes find tha¥ is embedded iK' ,(Q). This happens in
particular if each corner lies on at least one side on whicltBlet conditions are imposed.
In the general case, one will just have ¢ K',, (Q) for all ¢ > 0. Necessary and
sufficient conditions for the embeddivgc K' | (Q) are discussed irf[ Ch. 14].

The analytic regularity shift3.12 in classesA;(2) can be applied to variational so-
lutions with well chosen weight exponents< —1 in caseV c K' (Q), whereas in the
general case3(13h can be applied: For convenience, we write the weight expoinghe
form

B=-1-0b with b= (b)), -

Theorem 6.1. Let (2 be a polygon. We assume that the faris coercive orV, and that
V c K, (Q). There exists a positive numbigt?, a, V) such that the following implication
holds for any solutiom of the variational problen{6.3):

6.4) If Vee?, 0<b<b(aV)thenfeA ,,1(Q) = uecA_, ().

Proof. Invoking the general theory of corner problems in the vaiatl setting, we know
that there exists a maximal positive numbge, a, V) such that

(6.5) Ifvce?, 0<b.<b(Q,aV)thenfeK’, () = uvekK? (Q).

The proof of this essentially goes back to Kondrat'gy][ see alsoJ, Ch. 10] for more
details on the application of Kondrat'ev’s technique toiatonal problems. Thert(4) is
a consequence 08(12h applied fors = —b — 1, and 6.5). O

Remark6.2 Let o(2(.) denote the spectrum of the “Mellin symbad¥l, of the system
(L, Ty, Ds)* at the cornet (see P1, 22)): In short, the complex numberbelongs tar (2L.)

if there exists a non-zero functiam of the form}y(6.) solution of the homogeneous
problem @.2) (i.e., withf = 0) on the finite coné&2.. Thenb (£, a, V) is the supremum of
the number$ > 0 such that

{AeC:0<ReA<b}No(A)=92 Vcev.

In (6.4) and 6.5), we have for the sake of simplicity chosen to write a comnsimete for

all corner weight exponents. The regularity question bémagl, it is clear that we could
have defined a bouridc, a, V) separately for each corner and then replaced the conditions
in (6.4) and 6.5) by the inequalitie® < b, < b(c, a, V) for all cornersc € % In this case,

we can take fob(c, a, V) the smallest positive real part of the elements (i, ).

Example5.3. Let us consider the gradient foran= ay on scalar functions. The associated
operator is the Laplaciai. Letw. be the opening of2 near the vertex and denote by
I'., i = 1,2, the two sides of2 containingc.

19 is also called “operator pencil” generated by the systén¥s, Ds).
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(i) For the Dirichlet problem, we hawé ¢ K' (Q) and
n T
a5 H) = wip {7}

(ii) In the mixed Neumann-Dirichlet case, if at all corners Ditét conditions are imposed
on at least one side containingwe still haveV c K' (©) and

™ ™
o) =ming min A} min A5
(2w V) =i s 2 2

where%), is the set of Dirichlet corners (Dirichlet conditions on both sidds.) and %,
the set of “Mixed” cornerg (Dirichlet conditions on only one sid#.).

If we do not haveV C K',(9) or for more general data, it is convenient to start from a
regularity result inJ-weighted spaces.

Theorem 6.4.We assume that the foraris coercive orV. There exists a positive number
b*(€2,a, V) such that the following implication holds for any solutiorof the variational
problem(6.3):

(6.6) If Vee?, 0<b.<b*(2,a,V) thenfeB_,. () = ueB_,_1(9).

Proof. The proof relies on regularity results in spaces with nombgeneous norms: By
a modification of Kondrat'ev’'s method, se27] 22] and [1Z], one can prove that for any
m > 2, there exists a maximal numbgy, € (0, m| such that we have the implication

(6.7) If Ve €€, 0<bc<by, thenfeJ™2(Q) = uel’ (Q)

for variational solutions. The sequen@g,) is stationary forn > m, large enough, and
b*(Q2,a,V) is given byb,,,. A complete proof in this framework is presented9nCh. 13].
Then 6.6) is a consequence 08130, and 6.7). O

Remark6.5. Forb € (k, k + 1) (with a natural numbet), formula .10 yields
B, 1(2)=A_4 1() @ P (ce?b).

Remark6.6. The numben* (2, a, V) can be characterized in a similar way &8, a, V)
(cf. Remark6.2). For each cornee, the spectrunw(2(.) has to be modified concerning
its possible integer elements (condition of injectivity ando polynomials 12, 9]). This
defines a possibly slightly different set, denotedbf?l.) andb*(€2, a, V) is the supremum
of the number$ > 0 such that

{AeC:0<ReA<b}No.(A)=92 VceF.

Example6.7. Let us come back to the gradient foem= ay on scalar functions. Fany
mixed Neumann-Dirichlet problem, including the pure Neamaroblem, Theorerf.4is
valid and we find

b*(Q,ay,V) = min{ min {1} min { T }}

v cebpUen LW " ceby 2we ’

where%) is the set of Dirichlet corner%’y is the set of Neumann corners, ang; the
set of “Mixed” cornersc. Thusb*(€2, ay, V) will always be greater than}j. For the pure
Dirichlet or pure Neumann problem on a convex polygon, it & greater thar, and for
some triangles even greater tharbut never greater theah
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Remark6.8. Theorem6.4 has to be compared with earlier results by Babuska and:Guo
The Laplace operator with non-homogeneous mixed boundamgittons is considered
in [2, 3]; more general scalar second order operators with anatgifficients are ad-
dressed in J] and finally the Lamé system of linear elasticity with noorfogeneous
mixed Dirichlet-Neumann boundary conditions is invesiéghin [L4]. These results are
at the same time more general than Theofrhsince they address non-homogeneous
boundary conditions and variable coefficients, but moré&iotise since they do not in-
clude a full class of coercive second order systems with earapproach. In sectiohwe
explain how our technique of proof generalizes to non-hcenegus boundary conditions
and variable coefficients. Since the results so obtainedarentirely new, we try to be as
concise as possible, and we will only sketch the proofs. iRet@roofs and more general
results will be published ind, Part 11].

6.2. Regularity of variational solutions in polyhedra. Let(2 be a polyhedron with edges
e € & and cornerg € ¥. The comparison between the variational spdcand weighted
spaces<;(Q2) andJ5(Q2), cf. (5.4) and 6.16), is still related with the multi-exponemnt, =
Be = —1 and essential boundary conditions: We have

JL () = HY(Q)
and, in the Dirichlet case
H5 () € KL, (Q).
Moreover, the intermediate space
WL (%,2)={ucH(Q) : ritue L}(Q) Yee @),

also coincides witti!(2) by virtue of Hardy’s inequality.
The analogues of Theorerngsl and6.4 hold for polyhedra. For convenience, we con-
sider multi-exponents of the form

B=—1—b with b=(b)._, U (b)
The issue is twofold:

(1) Verify Assumption$.50r 5.13 which are closed range properties
(2) Give conditions for variational solutions to belong pmeesKj(€2) or J;(<2).

Lete € &. Denote by, the wedge which coincides witf in a neighborhood of
the edgee and byK, the plane sector such the¥, = . x R. A minimal condition for
Assumptionsb.5 or 5.13to hold is an injectivity condition for the Fourier symbol thfe
system(L, T, Ds) on the plane sectof.. As a side remark, we mention that it can be
shown that in the variational case, such a condition isfeadigor all 5. < —1 with the
exception of a discrete set, séx Part 111].

As a matter of fact, the condition which ensures the regylaf variational solutions
impliesAssumption$.50r 5.13 Hence we focus on conditions for the regularity. There
are not so many results on regularity for elliptic boundaalpe problems in polyhedra. Let
us quote P4, 25] for early results in general-dimensional polyhedral domains in spaces
of K type, [L2] in n-dimensional polyhedral domains in standard Sobolev space more

ecs ’

2Whenb € (0, 1), our spacd_,_, () coincides with their spacBj () for f =1 —b.
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recently P9 in 3-dimensional polyhedral domains in spadgs?¢’, &), cf. Remark5.12
(i) .

The latter results, especiall®9, Thms. 7.1 &7.2], fit exactly to complement our results,
namely in the form%.25. For this reason we formulate the following theorem with th
assumptions of49], that is mixed Dirichlet-Neumann boundary conditions g&cond
order systems:

V={ueH(Q):u| =0 s}

Let & be the set of edgaswhich are the sides of facég with s € .. We still consider
sesquilinear forms( 1).

Theorem 6.9.We assume that the formis coercive orV/. There exist two positive numbers
by (€2, a, V) andbg (£, a, V) such that the following implication holds for any solutioof
the variational problent6.3):

(6.8) If Yee ¥, 0<b. <bg(2,a,V) and Ve e &, 0<be < bg(£,a,V)
thenf e B_,11(,%,8) = ueB_,_1(7,6).

Proof. First Theorem 7.2 0f{9] guarantees that the Assumptibrbis satisfied withg, =
—be + 1, with b satisfying 6.8). Second Theorem 7.1 o2$] show the regularityu €
I, (%, &) with b satisfying 6.8). Hence the conclusion follows from Theoréni4
(see Remark.15. O

Remark6.10 Let o(2.) ando(2le) denote the spectrum of the Mellin symit] and2l,
of the system{ L, T, Ds) at the corner and the edge, respectively. Thehs(2,a, V) is
the supremum of the numbers> 0 such that

{AeC : 0<ReA<bINo(Ae) =2 VYecd,
andby (2, a, V) is the supremum of the numbeérs- 0 such that
{fAeC: —3<Red<b—3}No@)=92 Vce¥.

Remark6.11 Let us defineby (2, a, V) as the supremum of positivesuch that for all
A, —% < ReA<b— % the condition of injectivity modulo polynomials is satediat the
cornerc. Thenreplacing« (€2, a, V) by b%.(2, a, V), we obtain the condition which ensures
the analytic regularity in the maximal clas€®s,_(2) = B_,_1(2; @, @) cf. Definition
5.11

7. GENERALIZATION TO NON-HOMOGENEOUS BOUNDARY DATA AND VARIABLE
COEFFICIENTS

The fundamental estimaté.() in the smooth case allows non-homogeneous boundary
data and variable coefficients, and the analytic regulaegylts can therefore be extended
to cover this more general situation. But the difficulty tosinis of a quite different level
for two-dimensional and for three-dimensional domaing(ttuthe anisotropy in the latter
case). Here we mainly address two-dimensional domains i@edgly some orientations
for the treatment of three-dimensional domains at the enldissection.
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So, let us consider the general boundary value problem stbisopolygorn:

Lu = f in €,
(7.0) Teu = g, only sev,
Dsu = hy onl se.¥,

where the operators = L(x;0x), Ts = Ts(x;0x) and Ds = Ds(x) may have variable
coefficients and lower order terms.

7.1. Trace spaces.First, we have to introduce the trace space&pf(2) andAs(2) on
each sidd’s of €. Let us choose a sideand denote by andc’ its two ends. We consider
a covering ofl’s by two open segmenisandI” so that

ccl,d ¢l and eI, cgl.
We note that we can take:= r. as the tangential variable alohg Fork € N, o € (0,1)
andy € R we define the weighted spa&™”(T") by

KE(T) = {g € KE(T) = [r4400kg| | < oo},

where the Sobolev-Slobodeckii semi-nofaj__. is defined by
2 _ o(r) —o(@®)*
‘U|0’F = /r e drdr.
For+' € R, we define similarlyKﬁ,“’(F’) using now the powers of. as weight. For
7 = (v,7') we define the following global weighted space on the $ide

KET7(Ts) = {g € Liee(Ts) = gf € KET2(D), g, € KEF7 (1))
Then (see e.g2P, §6.1.1]), for any multi-exponent = (5¢)cee,

Kgfll/;(l“s) is the trace space ofKj'(2) onTs.

Here, of course, we understand that we take the weight expefe+ % andSy + % at the
two endsc andc’ of I's.
The analytic classes, ('), A,/ (I'), andA, (') are defined accordingly:

A (D) = { ge (KMT) : 3C>0,YmeN, [P marg|, < cm+1m!},
m>0
—we recall thaf] - || . is theL*(T")-norm, and
Al(FS) ={g € I—|20c(FS) : g}r € A (D), g}rl €A, (I}

The trace spaces dfweighted spaces can be defined similarly, see the discussi8,
Rem. 3.20] andq, Ch. 11]. Let us just give the definition of the correspondamglytic
class, locally

B.(I) = {g e () IM@) :3C>0Ym> —y—L, oyl < cm+1m!},

m>—7—%
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whereJ?(I') = {g € Li, (') : ¥"*™dlg € L*(I), j =0,...,m}. Globally we set

loc

BQ(FS) ={g€ LIQOC(FS) : g}r € B, (I), g}p/ € BV’(F,)}-

7.2. Weighted spaces with homogeneous normale give now the generalization of the
first part of Theoren8.4 to non-homogeneous boundary conditions and variable eoeffi
cients.

Theorem 7.1. We assume thak, 7, and D, have analytic coefficients ovér and I'
(L and T, may have lower order terms), and thff;, D} cover L at each point in['
(denote byN, the number of Dirichlet conditions). Lgtbe a weight multi-exponent. Let
u € H2 _(Q\ %) be a solution of probler(i7.1) with

loc

(7.2a)  feKi,(Q), g K2V, and h, e KI72(T)N  (neN).

B+3/2 8+1/2
Then the following implication holds
(7.2b) ueKi() = ueKj?(Q).
Likewise, if
(733.) fe AQ+2(Q), g © A@+3/2(FS)N_NS, and hs € A@+1/2(FS)NS
then the following implication holds
(7.3b) ueKi(Q) = uecAQ).

Proof. (SketchWWe will prove local estimates with analytic control of dexiives near each
corner. Pick up a cornar. We sets := .. We can assume without restriction tleat 0
andQ. = QN B0, 1).

(i) Case of homogeneous operators with constant coefficiertis. idea of the proof is
the same as in the “simple case” whgn= 0 andh = 0 (Theorem2.2): We start from
reference estimaté.(1) on the domain® andV’ defined in R.7):

k—2 2
1 1/~ ~ ~ ~
(7.4) il 5 < A{ S (Flpt D2 (08l el ) + NG5, }

=0 s=1 ’
with

(7.5) f:=Lu, g =74, and h:= Dqu.
Herel's, s = 1, 2 are the two sides df near the vertex = 0, and
I =0y NTs.
Then we spliq|§sﬂe+%;ﬂ and||ﬂs||é+%;fé into homogeneous components and insert weights

like in (2.10. We then perform the change of variables+ x = 27#x for anyu € N.
Definingu(x) := u(x) we have

(7.6) (%) =272f(x), 8.(X) =2"g.(x), and hy(xX) = h(x).
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Like in the proof of Theoren?.2, we find the common facta*(®~ on every term. We
multiply the resulting inequalities by +(*~1) | take squares and sum overc N to find
finally

1
(7.7) gurﬁﬂalaguuﬂ SA’““{

N

-2 2
1
- B+2+]|al Ha
s—

with I', = 0Qc N L.
(i) Case of non-homogeneous operators with variable coefficiélow

Il
o

L =L(x;0), Ts=7Tsx;0x) and Ds= Ds(x).

We perform the same dyadic partition and for each N, the same changes of variables
X — x = 27#x. Definingu(x) := u(x) we still have {.6) with, instead of {.5):

f:=L'0, g :=T"u, and hy:=D'G with
LV = 27 L(27HK, 210%),  TF = 27MTy(27M%,2"0), and D! := Ds(27"X).

We note that whem — oo, the operatord* and7} tend to the principal partsé and7’,

of L andT; frozen at0 respectively, and¥ tends toDs(0) =: D,. As a consequence
of the ellipticity and covering properties of the boundaajue systeniL, T, D,) and the
analyticity of coefficients, estimate$.@) holds with one and the same constantvhen

1 is large enough. For the finitely many remaining valueg oive use the ellipticity of
(L*,TH DE) and the analyticity of its coefficients. As a result, we findesgibly larger
constantA for which (7.4) holds for everyu € N. Then we insert the weights, scale and
sum with respect tg as in the proof of Theorerf.2, and we deduce that (/) still holds

in the case of variable coefficients and lower order terms.

(iif) With the local estimates/(7) at hands in all cases, we finish the proof of the analytic
shift result as before for Theore®w. O

More details about the arguments of this proof can be four[@]inin [10, Ch. 2] for
the local estimate7(4) in smooth domains with general data on the boundary andbari
coefficients, in §, Ch. 6] for model problems in cones with general data on thenGary,
and in P, Ch. 7] for variable coefficients in general corner domains.

Since Kondrat’ev’s results?[l] apply to general operators with variable coefficients,
Theorem6.1can be generalized to coercive problems with analytic coeffts.

7.3. Weighted spaces with non-homogeneous normg.he generalization to non-zero
boundary conditions goes through similarly with weightedes) and analytic classes
B. However, the consideration of lower order terms and végiabefficients requires the
modification of some of the estimates. For the sake of sintyliet us consider a local
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model problem as in(2)

Lu = f in KnWwW/,
(7.8) Tou = 0 onl,NnW, i=1,2,
Diu = 0 onI,nW, i=12,

where L = L(x;d,) is a second order elliptic system with analytic coefficiens)V’.
We assume for simplicity that the boundary operatGrand D; are homogeneous with
constant coefficients. We assume that fo= 1,2 and for each poink, € I, N W'
the systemL(xq; dy) frozen atx, is covered by the boundary operatdif, D;). As a
consequence of the proof above, Theotzfhgeneralizes: We have the estimate

k—2

(7.9) % ( 3 ||r5+‘°‘|0,‘f‘u||§;w>§ < c’f“{z (Z ||r5+2+\a|afLu||§;W,>§

lo|=k =0 " |a|=¢
+ 0 gl b

lo|<1

=|

Now the question is wether it is possible to generalize insdume way Theorerd.6 on
non-homogeneous weighted norms in this new framework ek analytic coefficients.
The correct answer is that we have to modify estimat&g):

Proposition 7.2. With the above assumptions dn any solution of the boundary value
problem(7.8) Let 5 > —2 be a real number. Let € J}j(W’) be a solution of problem
(7.8). Then there exists a constafit> 1 independent afi such that for all integek: > 2,

e

-2

1
2 2
(> I#eeiog ral? )
|or|=¢
> I ogul b

lo|<1

| =

(7.10) % ( > ||Tﬁ+la8)?U||z;W>5 < ckH{

|a|=k l

I
o

Remark7.3. The last term in the right hand side is nothing n)uﬂJé(W,). Estimates.9),
(7.10 and @.15 (for m = 1) are very close to each other. The main groups of terms with
factorial coefficients are identical. The difference isrbby theL? weighted norm of

in the right-hand side: In7(9), this term is||r?ul|o.y/, in (2.15 for m = 1, it is absent,
and in (7.10, it is equal to||r?+'ulo;- . In applications to variational problems H',

this makes an important difference, since for= —1 — b with b € (0, 1), any function

u € H'(W') satisfies|r?+'ul|o. s < oo, but not|[r?ul|o, v < oo in general.

Proof. Let us introduce an intermediate domai’

wWcw’'"cw'.
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We first note thatl ;') C K, ,(W’) and that we can use the estimate in homogeneous
norms {.9) with 5 + 1:

(7.11) — < Z ||TB+1+|a\aau||0 W>é < Ck—i—l{

|al=k

??‘
l\’)

1 2 2
o (S izl )+ ST I gl )

0 |ar|=¢ lo|<1

o~
Il

Let us recall that. denotes the principal part @f frozen at0. Using the analyticity of the
coefficients ofL, we can prove that there holds

1

(7.12) - (Z r#e el o (Lu = L)y ., )7 <
|a|=¢

0+2

1
2 2
BMZ (D2 ez )

|a|=k

Then we use estimat@.(L5 in non-homogeneousorm for the operatof, with m = 1

(7.13) — ( Z ||TB+|a\3au||O W”)% < Ck+1{

|a|=k
1 [e% (0% % (o3 (63
S (2 IrreElog s ) 4+ DT ozl b

laf=¢ laf=1

k‘

-2

12

i
=)

Using the straightforward inequality

Sl L+ S g < e ST g,

|| <1 |a|=1 || <1

together with a triangular inequality abu = Lu + (Lu — Lu), we deduceq.10 from
(7.19)—(7.13, with a new constant’ independent ok. This ends the proof. O

Remark7.4. Proposition7.2admits a natural generalization, which can proved in a aimil
way: If m > 1is an integer and is a real number such thgt+ m > —1, any solution
u € J7'(W’) of problem {7.8) satisfies the estimates for all integer m + 1,

@aay L (3 rapll, ) < ot 3 o (S Ioeteiogral? )

la|=k f=m—1 |oo|=¢

+ || Lu

+ ||u

sezown * 1lpoun -
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To end this subsection, let us briefly indicate how thingskiWfor variational solutions.
Theorem6.4 can be extended to more general variational problems witiable coeffi-
cients and non-zero boundary data

/ g vdr.

Theorem 7.5. Let a be a sesquilinear form of degrdewith analytic coefficients ofe,
coercive on the spacé defined by the Dirichlet conditionS;u = 0 onT', for all s € ..
There exists a positive numbr(€2, a, V) < 1 such that the following implication holds
for any solutionu € V of the variational problen{7.15 and anyb, 0 < b < b;(2,a, V):

(7.15) Find u € V such thatvv € V, a(u,v) = / fvdx+ Z
Q se.”

(716) fe B_b+1(Q) and g € B_b+1/2(FS)N_NS — uc B_b_l(Q).

We refer to P, Ch. 13 & 14] for more results and proofs.

7.4. Three-dimensional problems. Whereas the consideration of non-zero boundary data
can be performed in three-dimensional polyhedral domasiggusimilar tools as for zero
boundary data, the consideration of variable coefficient®are delicate. There are two
situations:

(1) If coefficients areonstant in the direction of each ed@®it possibly variable in the
transverse direction) the estimat@s and (7.10 can be extended to edge neigh-
borhoods, and anisotropic estimates can be proved, baske same assumptions
as in sectiord. This implies in particular the generalization of the réswif sec-
tions4 and5 to problems witlconstant coefficieni®ot necessarily homogeneous)
in polyhedra. This also implies the generalizatiomtsymmetric problems

(2) If coefficients are not constant in the direction of eddbe level of difficulty in-
creases. One would need to go back to the primitive techrofastimating com-
mutatorscf. [9, Lemmas 1.6.2 & 2.6.2], which leads to the introduction ofms
of Sobolev-Morrey type.

8. GENERALIZATION TO OTHER OPERATORS AND SYSTEMS

First we may easily extend the results of this paper to tragsson problems, namely
problem like 6.3) where L has piecewise constant coefficients (hence some transmissi
conditions have to be imposed at the common boundary of th&lemains). Indeed an
estimate like 1.1) holds for such problems and is proved # Theorem 5.2.2]. Second
higher order differential operators liks*> may be treated in a similar manner. Finally our
method may be used for the Stokes system ($&gfpr two-dimensional results). Note
that the Maxwell system is more delicate: Whereasadanvexpolygons or polyhedra the
natural variational space is containedHh and all our results apply, the presencenoh-
convex corners or edgésduces the appearance of nbi-fields which require a specific
treatment, se€lfl] in dimension two.
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