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Abstract

We design a perfectly matched layer for the advection-diffusion
equation. We show that the reflection coefficient is exponentially small
with respect to the damping parameter and the width of the PML and
this independently of the advection and of the viscosity. Numerical
tests assess the efficiency of the approach.

Introduction

We are concerned here with the problem of truncating domains to compute
numerical solutions of problems in unbounded domains so that the solu-
tion of the problem in the reduced domain is a good approximation to the
solution of the original problem. In their seminal work on the wave equa-
tion, Engquist and Majda [BA77] introduced a quite general technique to
address this problem by designing absorbing boundary conditions (ABC).
Their technique has been applied to various equations and systems of equa-
tions in many fields: acoustics, electromagnetism, fluid dynamics elastody-
namics and so on. As far as the heat equation is concerned, in [Jol89],
[Giv89], [LH95] and [Dub96], ABCs are designed at the continuous level
and in [EM06] at the discrete level. In all these works, the difficulty lies in
the approximation of the square root of a partial differential operator by a
partial differential operator. This problem is inherent to the application of
the procedure in [BA77] to the heat operator. Let us mention also the use
of analytic solution with fast Fourier transforms, see [LG07] and references
therein.

For hyperbolic equations such as the wave or Maxwell equations, a differ-
ent way to handle artificial boundaries was introduced by Berenger [Ber94]
and [Ber96]. In this method, the computational domain is surrounded by a
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dissipative and non reflexive artificial media (perfectly matched layer, PML).
There is no need to approximate the square root of an operator by a partial
differential operator.

Since then, many works have been devoted to a better understand-
ing of their principle and behavior see [MPV98], [ZC96], [CW94], [LS00]
[MC98] [BFJ03][BJ02] [AGH02] to extensions to other geometries, see [ST04]
[CM98], or equations see [HN02] [AGH99][DJ03] [Nat06] and [BDM10]. In
these works, the equations are hyperbolic and the need for a PML comes
from the propagative modes that exist in the solution. For propagative equa-
tions, the purpose of a PML is to turn a propagative mode into a vanishing
one.

In this paper, we consider a parabolic equation for which there are only
vanishing modes. In this paper, we show that it is nevertheless possible to
design and test a PML for the advection-diffusion equation:

L(u) :=
∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
− ν∆u (1)

including the heat equation as a special case. In our work, the purpose of
the PML is to turn a slowly vanishing mode into a rapidly vanishing one.
The efficiency is not dependent on the parameters of the equation such as
the viscosity or the convection, see equation (8).

The paper is organized as follows. In the first part, we analyze the
operator (1) in the Fourier space and imantroduce the perfectly matched
layers to the advection-diffusion equation. In the second part, we apply this
method to numerical computation to validate our approach.

1 Perfectly Matched Layers

1.1 Fourier analysis of the operator L
In order to study the operator L, we look for solutions of the equation
L(u) = 0 and make use of the Fourier transform. Let u(t, x, y) be a function
and ˆ̂u(ω, x, k) be its Fourier transform w.r.t. the variables t and y and let
F−1 denote the inverse Fourier transform. We have:

(i ω + a∂x + bi k − ν∂xx + νk2)(ˆ̂u(ω, x, k)) = 0 .

For fixed ω and k, this is an ordinary differential equation in the variable x
whose solutions are of the form

ˆ̂u(ω, x, k) = α(ω, k) exp
(

λ+(ω, k)x
)

+ β(ω, k) exp
(

λ−(ω, k)x
)
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where

λ±(ω, k) :=

a
ν
±

√

a2

ν2 + 4
ν
(iω + ikb + ν k2)

2
(2)

and α and β are fixed by the boundary conditions.

1.2 Definition of the PML equations

The operator L (see eq. (1) is originally defined in the whole plane R
2 and

we want to truncate the domain x > 0 by a PML. The PML model for this
operator L is defined by replacing the x-derivative by a “pml” x-derivative.
The definition is as follows. Let σ > 0 be a positive damping parameter, we
define

∂pml
x (u) := F−1

(

iω + ikb

iω + ikb + ν
4σ

∂x
ˆ̂u(ω, x, k)

)

(3)

and
Lpml := ∂t + a∂pml

x + b∂y − ν(∂pml
x )2 − ν∂yy (4)

be the PML equation with the following interface conditions at x=0 between
the solution ucd in the convection-diffusion media and upml the solution in
the PML media:

ucd = upml and ∂x(ucd) = ∂pml
x (upml) (5)

1.3 Reflection coefficient

We show in this section that the reflection coefficient for a PML of width
δ > 0 is exponentially small with respect to the damping parameter σ and
the width δ and this independently of the advection (a, b) and of the viscosity
ν, see formula (8). For this, we use the following setting which mimics
the classical computation of the reflection coefficient for PML for the wave
equation. The function

uinc := F−1( exp
(

λ−(ω, k)x)
)

satisfies
L(uinc) = 0

and uinc tends to zero as x tends to infinity. We approach this special
solution by the following problem where the domain is truncated on the
right by the PML:
Find (ucd, upml) such that

L(ucd) = 0, t > 0, x < 0, y ∈ R

Lpml(upml) = 0, t > 0, δ > x > 0, y ∈ R

upml(t, δ, y) = 0, t > 0, y ∈ R

ucd − uinc tends to 0 as x to −∞ ,

and the interface conditions (5) are satisfied.
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We take the Fourier transform of the above system and we get:

ˆ̂L(ˆ̂ucd) = 0, t > 0, x < 0, y ∈ R

ˆ̂Lpml(ˆ̂upml) = 0, t > 0, δ > x > 0, y ∈ R

ˆ̂upml(t, δ, y) = 0, t > 0, y ∈ R

ˆ̂ucd − exp
(

λ−(ω, k)x
)

tends to 0 as x to −∞ ,

and the Fourier transform of the interface conditions (5) are satisfied at x = 0.

Easy computations show that ucd and upml have the following expression
with R, α and β coefficients that will be determined in the sequel:

ucd := exp
(

λ−x
)

+ R exp
(

λ+x
)

and
upml := α exp

(

λ−
pmlx

)

+ β exp
(

λ+
pmlx

)

.

where

λ±
pml :=

iω + ikb + ν
4σ

iω + ikb
λ± (6)

If R were equal to zero, the solution in the left-plane would be equal to
uinc and the PML would be an exact way to truncate the computational
domain. Thus, the smallness of R is a measure of the quality of the PML
procedure and defines a reflection coefficient.

By using (6), the Fourier transform of the interface conditions (5) at
x = 0 yield:

1 + R = α + β and λ− + Rλ+ = αλ− + βλ+

The Dirichlet boundary condition at the end of the PML (x = δ) gives:

α exp
(

λ−
pmlδ

)

+ β exp
(

λ+
pmlδ

)

= 0 .

A simple calculation yields the formula for the convergence rate:

R = − exp
(

−(λ+
pml − λ−

pml)δ
)

(7)

We prove now that we have a uniform bound on the reflection coefficient
R independently of the physical parameters (a, b, ν) and of the Fourier
variables (ω, k):

|R| ≤ exp
(

−
√

2σδ
)

(8)

Proof : We need to bound the real part of λ+
pml − λ−

pml from below by
√

2σ.
We have

λ+
pml − λ−

pml =

(

1 +
σν

4(iω + ikb)

)

√

a2

ν2
+

4

ν
(iω + ikb + ν k2) .
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Let p and q be two real numbers such that:

p + iq :=

√

a2

ν2
+

4

ν
(iω + ikb + ν k2)

Let us define

c :=
a2

ν2
+ 4k2 and d :=

4

ν
(ω + kb) .

Without loss of generality, assume now that d < 0. We have:

p =
1

2

√

2
√

c2 + d2 + 2 c and q = −1

2

√

2
√

c2 + d2 − 2 c

With these notations,

Re
(

λ+
pml − λ−

pml

)

= p +
σq

d

=
1√
2
(

√

√

c2 + d2 + c − σ

d

√

√

c2 + d2 − c)

=
1√
2
(

√

√

c2 + d2 + c + σ
1

√√
c2 + d2 + c

)

The function x 7→ x+σ/x has a minimum value of 2
√

σ reached at x =
√

σ.
Thus,

Re
(

λ+
pml − λ−

pml

)

≥
√

2σ .

The proof is similar for d > 0.

�

It is easy to check that the same reflection coefficient is obtained if the
PML is used to truncate the computational domain on the left.

A PML-y used for truncating the domain in the y direction would consist
in replacing in the operator L the y derivatives by a “pml” derivative in the
y direction defined as follows (ξ is the dual variable of x for the Fourier
transform in the x direction):

∂pml
y (u) := F−1

t,x

(

iω + iξa

iω + iξa + ν
4σ

∂x
ˆ̂u(ω, ξ, y)

)

(9)

The PML-y equations of the convection-diffusion operator L for the trunca-
tion of the domain in the y direction reads:

Lpml,y := ∂t + a∂x + b∂pml
y − ν(∂x)2 − ν∂pml

yy (10)

In order to give a complete definition of a PML bordering a rectangular
computational domain, we have three possibilities for the corner region.
The first one consists in designing a third PML model in the corner that
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is compatible with both PML-x and PML-y as was done for the Maxwell
system in [Ber94] for instance. The second possibility is to use prismatoidal
coordinates [LS01]. The advantage is that it allows for arbitrary convex
computational domains and not only rectangular ones. The third possibility
consists in not designing a new PML for the corner but simply in placing
side by side PML-x and PML-y regions. We have implemented this last
simple approach where convection coefficients a and b are chosen null in the
PML’ changes of variable (3) and (9) and we obtain good results for mild
convection term, see § 2. Of course, the two first options deserve further
investigations.

2 Numerical Results

We present in this section the numerical application of the method defined
in the previous section. We will first introduce the numerical experiment
and study the sensitivity of the computation with respect to the profile of
the damping parameter. We will then present the numerical results obtained
for the heat equation with or without advection terms and compare it with
the classical Neumann or Dirichlet homogeneous boundary conditions.

2.1 Numerical experiment

We are interesting in solving this advection-diffusion problem:







∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
− ν∆u = 0 with (x, y) ∈ R

2, 0 ≤ t ≤ T

u(x, y, 0) = u0(x, y)

(11)

where u0 is the initial condition, ν is the viscosity, (a, b) is the velocity field
and T is the final time.

To carry out numerical applications, we choose to solve this problem in
the particular case where an analytical solution is known. This will simplify
the study of the accuracy of the numerical applications. Problem (11) with
a Gaussian density (12) as initial condition :

u0(x, y) =
1

γ
e
−

x2+y2

νγ (12)

admits the analytical solution uEx:

uEx(x, y, t) =
1

4t + γ
e
−

(x+at)2+(y+bt)2

ν(4t+γ) . (13)

We approximate our problem with a P1-triangular Finite Element Method
(FEM) on a truncated domain ΩL = [−L× stdv,+L× stdv]2 where stdv =
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√
2νT is the standard deviation merging the viscosity (ν) and the final time

(T ) and L is a positive parameter. The associated approximated solution of
the FEM is denoted as uh, with h stands for the space step. We discretize
the time derivative with a implicit Euler scheme.

To study the numerical results, we define with a parameter 0 < η < L
an arbitrary domain Ωη = [−η×stdv,+η×stdv]2 nested in ΩL where errors
will be computed. We also introduce u∞

h a reference numerical solution of
(11) on a computational domain ΩL sufficiently large to avoid any bound-
ary conditions issue. Finally, let ǫ∞h (x, y, t) = |uh(x, y, t) − u∞

h (x, y, t)| and
ǫEx(x, y, t) = |uh(x, y, t) − uEx(x, y, t)| be two absolute errors expressed in
percentage. The ǫEx error is composed by a twofold error: the discretiza-
tion error of the FEM and the error introduced by the truncation of the
domain. On the other hand, we introduced the error ǫ∞h to only highlight
the truncation error.

2.2 Setup of the damping parameters for the heat equation

In actual numerical simulations, due to the discretization of the PML equa-
tions and to the finite width of the PML, small reflections occur. The damp-
ing parameter σ has to be null at the interface of medias in order to control
the numerical reflection introduced at the discrete level. This is why the

damping parameter σ has the following profile σ(z) = α
(

z
δ

)β
where z is the

distance to the interface in the normal direction to the interface (z ∈ [0, δ])
and (α, β) are arbitrary constants that will be chosen in the following sec-
tion. This was the original choice introduced by Berenger ([Ber94]). We
study the sensitivity of the computation with respect to the damping pa-
rameters. We took the following parameters for the discretization scheme
L = 1 and the number of discretization nodes in the PML is 11. The vis-
cosity ν is 0.5 and the final time T = 5. The initial condition (12) is chosen
with γ = 0.2. We solve u∞

h on ΩL, with L = 5 and errors in the L2 and L∞

norm are always computed on Ωη with η = 0.8. The time step for all the
numerical computations is ∆t = 0.025.

In FIG. 1, we plot ||ǫ∞h ||∞ as a function of α and β. After some
strong variation, the error seems to stabilize at a value of ≈ 0.01% for
(α, β) ∈ [20, 100] × [2, 10]. More precisely some small variations can be seen
is this range, but without any change of magnitude. A further study may be
deserved to adaptively optimize the profile to reduce the numerical reflection
as it is done in [LU06].

2.3 Comparison with classical boundary conditions

We now present some numerical results obtained with the PML according
to the setup parameters found in the previous section. To highlight the
accuracy of the PML method we will compare our numerical application to
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Figure 1: ||ǫ∞h ||∞(α, β) for a range of value: α ∈ [1, 101], β ∈ [1, 10]

the more classical boundary conditions: Dirichlet or Neumann homogeneous.
In order to have a fair comparison, when Neumann or Dirichlet boundary
conditions are used the computational domain includes the PML zone. In
figures (2, 3, 4, 5), the meshed surface of the curves in the middle represents
Ωη the domain where the error is computed, the dotted part stands for the
rest of the physical domain (ΩL \ Ωη).

Heat equation

The results are first presented for a pure heat equation with ν = 0.5. The
parameters of the discretization scheme are the following: L is 1, η is 0.8,
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h is the ratio 2stdv/51. The parameters for the PML media are α = 10,
β = 2 and the number of mesh point in the PML is N = 11. The space step
remains constant between the physical and the PML domain.
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Figure 2: The error ǫEx(x, y, T ) w.r.t. UEx (in %) for the PML.

The numerical results are shown in Fig. 2 and Fig. 3 and figures are pre-
sented in table 1 for various boundary conditions. The table shows that for
Dirichlet and Neumann boundary conditions the error w.r.t. the exact solu-
tion comes mainly from the truncation error and not from the discretization
of the equation.

We see on Fig. 2 that the most important part of the error, when using
the PML, is in the center of the computational domain far from the artificial
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Figure 3: The error ǫ∞h (x, y, T ) w.r.t. U∞ (in %) for Neumann homogeneous
boundary condition and the PML. The Dirichlet boundary condition results
are roughly the same as Neumann.

boundary. The PML scheme thus capture efficiently the solution at the
boundary of the physical domain and the remaining error only comes from
the discretization scheme. As shown in Fig. 3 the PML outperform the other
classical boundary conditions.

Advection-diffusion equation

We now assume a non null advection coefficient in the x-direction (a = 0.5
and b = 0) with the same viscosity. For larger velocity coefficients, we are
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ǫ∞h (0, 0) ||ǫ∞h ||2 ||ǫ∞h ||∞ ǫEx(0, 0) ||ǫEx||2 ||ǫEx||∞
u∞

h 0 0 0 0.0263% 0.0154% 0.0263%

uN
h 0.3533% 0.5915% 1.0194% 0.3795% 0.6038% 1.0188%

uD
h 0.3139% 0.5363% 0.8545% 0.3139% 0.5363% 0.8545%

uPML
h 0.0042% 0.0030% 0.0075% 0.0221% 0.0131% 0.0221%

Table 1: Numerical results obtained for the heat equation for various bound-
ary conditions: Neumann homogeneous (N), Dirichlet homogeneous (D),
and Perfectly Matched Layers (PML)

going to deal with an advection dominated equation and a simple Neumann
boundary condition will surely have a better efficiency. The PML change of
variable (see (3) for example) introduces a convection dominated problem
in the associated partial differential equations system. We use SUPG to
improve the resolution.

The parameters of the discretization scheme remain the same as before
and the numerical results are shown in Fig. 4 and Fig. 5 and in table 2 for
various boundary conditions.

ǫ∞h (0, 0) ||ǫ∞h ||2 ||ǫ∞h ||∞ ǫEx(0, 0) ||ǫEx||2 ||ǫEx||∞
u∞

h 0 0 0 0.0264% 0.0199% 0.0340%

uN
h 0.2066% 0.3467% 0.8491% 0.2330% 0.3636% 0.8564%

uD
h 0.1546% 0.3809% 1.0785% 0.1546% 0.3809% 1.0785%

uPML
h 0.0019% 0.0035% 0.0129% 0.0245% 0.0173% 0.0288%

Table 2: Numerical results obtained under a advection-diffusion model (a =
0.5, b = 0) for distinct boundary condition: Neumann homogeneous (N),
Dirichlet homogeneous (D), and Perfectly Matched Layers (PML)

Once again, we notice, see Fig 4, that the error is bigger inside the
physical domain away from the boundary. This error thus only come from
the discretization scheme and the PML scheme enables to efficiently treat
advection-diffusion equation. From Table 2, we see that for Dirichlet and
Neumann boundary conditions, the error is very strongly dominated by the
truncation error.

We finally introduce a third example with non null advection coefficient
in both directions (a = b = 0.25). The numerical results are shown in Fig. 6
and Fig. 7 and in table 3 for several boundary conditions in term of various
error. We observe the same order of accuracy as before in the center of the
computational domain except as shown in Fig. 6 in the corners. This is due
to our arbitrary choice of the treatment of the corner as explained before at
the end of section 1.

The numerical scheme proved to be stable for long time computations
in all cases.
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Figure 4: The error ǫEx(x, y, T ) w.r.t. UEx (in %) for the PML boundary
condition with positive advection coefficient in the x-direction.

3 Conclusion & Perspectives

In this article, we designed a perfectly matched layer for the heat and/or
advection-diffusion equation. After its definition, we prove that the reflec-
tion coefficient is exponentially small with respect to the damping parameter
and the width of the PML. It is worth noticing that the reflection coefficient
is independent of the equation parameters such as velocity or viscosity. We
have implemented this method with a P1-finite element method and its ef-
ficiency is highlighted by numerical results.
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