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Optimal consumption and investment with
bounded downside risk measures for

logarithmic utility functions

Claudia Klüppelberg and Serguei Pergamenchtchikov

Abstract. We investigate optimal consumption problems for a Black-Scholes market under uniform
restrictions on Value-at-Risk and Expected Shortfall for logarithmic utility functions. We find the so-
lutions in terms of a dynamic strategy in explicit form, which can be compared and interpreted. This
paper continues our previous work, where we solved similar problems for power utility functions.

Key words. Black-Scholes model, Capital-at-Risk, Expected Shortfall, logarithmic utility, optimal
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1 Introduction

One of the principal questions in mathematical finance is the optimal investment/con-
sumption problem for continuous time market models. By applying results from sto-
chastic control theory, explicit solutions have been obtained for some special cases (see
e.g. Karatzas and Shreve [9], Korn [11] and references therein).

With the rapid development of the derivatives markets, together with margin tradings
on certain financial products, the exposure to losses of investments into risky assets can
be considerable. Without a careful analysis of the potential danger, theinvestment can
cause catastrophic consequences such as, for example, the recentcrisis in the “Société
Générale”.

To avoid such situations the Basel Committee on Banking Supervision in 1995sug-
gested some measures for the assessment of market risks. It is widely accepted that
the Value-at-Risk(VaR) is a useful summary risk measure (see, Jorion [7] or Dowd
[4]). We recall that the VaR is the maximum expected loss over a given horizon period
at a given confidence level. Alternatively, theExpected Shortfall(ES) orTail Condi-
tion Expectation(TCE) measures also the expected loss given the confidence level is
violated.

In order to satisfy the Basel commitee requirements, portfolios have to control the
level of VaR or (the more restrictive) ES throughout the investment horizon. This leads
to stochastic control problems under restrictions on such risk measures.

Our goal in this paper is the optimal choice of a dynamic portfolio subject to arisk

Second author: This work was supported by the European Science Foundation through the AMaMeF programme.
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limit specified in terms of VaR or ES uniformly over horizon time interval[0, T ].
In Klüppelberg and Pergamenshchikov in [10] we considered the optimal invest-

ment/consumption problem with uniform risk limits throughout the investment hori-
zon for power utility functions. In that paper also some interpretation of VaR and ES
besides an account of the relevant literature can be found. Our resultsin [10] have in-
teresting interpretations. We have, for instance, shown that for power utility functions
with exponents less than one, the optimal constrained strategies are riskless for suffi-
ciently small risk bounds: they recommend consumption only. On the contrary, for the
(utility bound) of a linear utility function the optimal constrained strategies recommend
to invest everything into risky assets and consume nothing.

In this paper we investigate the optimal investment/consumption problem for loga-
rithmitic utility functions again under constraints on uniform versions of VaR and ES
over the whole investment horizon[0, T ]. Using optimization methods in Hilbert func-
tional spaces, we find all optimal solutions in explicit form. It turns out that the optimal
constrained strategies are the unconstrained ones multiplied by some coefficient which
is less then one and depends on the specific constraints.

Consequently, we can make the main recommendation:To control the market risk
throughout the investment horizon[0, T ] restrict the optimal unconstrained portfolio
allocation by specific multipliers (given in explicit form in(3.6) for the VaR constraint
and in(3.26)for the ES constraint).

Our paper is organised as follows. In Section 2 we formulate the problem.We de-
fine the Black-Scholes model for the price processes and present thewealth process
in terms of an SDE. We define the cost function for the logarithmic utility function
and present the admissible control processes. We also present the unconstrained con-
sumption and investment problem of utility maximization for logarithmic utility. In
Sections 3 and 3.2 we consider the constrained problems. Section 3 is devoted to a risk
bound in terms of Value-at-Risk, whereas Section 4.1 discusses the consequences of a
risk bound in terms of Expected Shortfall. Auxiliary results and proofs are postponed
to Section 4. We start there with material needed for the proofs of both regimes, the
Value-at-Risk and the ES risk bounds. In Section 4.1 all proofs of Section 3 can be
found, and in Section 4.1 all proofs of Section 4.1. Some technical lemmas postponed
to the Appendix, again divided in two parts for the Value-at-Risk regime andthe ES
regime.

2 Formulating the problem

2.1 The model and first results

We work in the same framework of self-financing portfolios as in Klüppelberg and
Pergamenshchikov in [10], where the financial market is of Black-Scholes type consist-
ing of oneriskless bondand severalrisky stockson the interval[0, T ]. Their respective
pricesS0 = (S0(t))0≤t≤T andSi = (Si(t))0≤t≤T for i = 1, . . . , d evolve according to
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the equations:




dS0(t) = rt S0(t)dt , S0(0) = 1 ,

dSi(t) = Si(t)µi(t)dt + Si(t)
∑d

j=1
σij(t)dWj(t) , Si(0) > 0 .

(2.1)

HereWt = (W1(t), . . . ,Wd(t))
′ is a standardd-dimensional Wiener process inRd;

rt ∈ R is the riskless interest rate; µt = (µ1(t), . . . , µd(t))
′ is the vector ofstock-

appreciation ratesandσt = (σij(t))1≤i,j≤d is the matrix ofstock-volatilities. We as-
sume that the coefficients(rt)0≤t≤T , (µt)0≤t≤T and(σt)0≤t≤T are deterministic cadlag
functions. We also assume that the matrixσt is non degenerated for all0 ≤ t ≤ T .

We denote byFt = σ{Ws , s ≤ t}, t ≥ 0, the filtration generated by the Brownian
motion (augmented by the null sets). Furthermore,| · | denotes the Euclidean norm
for vectors and the corresponding matrix norm for matrices and prime denotes the
transposed. For(yt)0≤t≤T square integrable over the fixed interval[0, T ] we define

‖y‖T = (
∫ T

0 |yt|2 dt)1/2.
The portfolio process(πt = (π1(t), . . . , πd(t))

′)
0≤t≤T

represents the fractions of the
wealth process invested into the stocks. The consumption rate is denoted by(vt)0≤t≤T .

Then (see [10] for details) the wealth process(Xt)0≤t≤T is the solution to the SDE

dXt = Xt (rt + y′
t
θt − vt)dt + Xt y

′
t
dWt , X0 = x > 0 , (2.2)

where
θt = σ−1

t
(µt − rt 1) with 1 = (1, . . . , 1)′ ∈ R

d ,

and we assume that ∫ T

0

|θt|2 dt < ∞ .

The control variables areyt = σ′
t
πt ∈ R

d andvt ≥ 0. More precisely, we define the
(Ft)0≤t≤T -progressively measurable control process asν = (yt, vt)t≥0, which satisfies

∫ T

0

| yt |2 dt < ∞ and
∫ T

0

vt dt < ∞ a.s.. (2.3)

In this paper we consider logarithmitic utility functions. Consequently, we assume
throughout that ∫ T

0

(ln vt)−dt <∞ a.s., (2.4)

where(a)− = −min(a, 0).
To emphasize that the wealth process (2.2) corresponds to some control processν

we writeXν . Now we describe the set of control processes.

Definition 2.1 A stochastic control processν = (νt)0≤t≤T = ((yt, vt))0≤t≤T is called
admissible, if it is (Ft)0≤t≤T -progressively measurable with values inR

d ×R+, satis-
fying integrability conditions (2.3)–(2.4) such that the SDE (2.2) has a unique strong
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a.s. positive continuous solution(Xν
t
)0≤t≤T for which

E

(∫ T

0

(ln(vtX
ν
t ))− dt+ (lnXν

T )−

)
<∞ .

We denote byV the class of alladmissible control processes.

For ν ∈ V we define the cost function

J(x, ν) := Ex

(∫ T

0

ln
(
vtX

ν
t

)
dt + lnXν

T

)
. (2.5)

HereEx is the expectation operator conditional onXν
0
= x.

We recall a well-known result, henceforth called theunconstrained problem:

max
ν∈V

J(x, ν) . (2.6)

To formulate the solution we set

ω(t) = T − t+ 1 and r̂t = rt +
|θt|2
2

, 0 ≤ t ≤ T .

Theorem 2.2 (Karatzas and Shreve [9], Example 6.6, p. 104)
The optimal value ofJ(x, ν) is given by

max
ν∈V

J(x, ν) = J(x, ν∗) = (T + 1) ln
x

T + 1
+

∫ T

0

ω(t) r̂t dt .

The optimal control processν∗ = (y∗
t
, v∗

t
)0≤t≤T ∈ V is of the form

y∗
t
= θt and v∗

t
=

1

ω(t)
, (2.7)

where the optimal wealth process(X∗
t
)0≤t≤T is given as the solution to

dX∗
t
= X∗

t

(
rt + |θt|2 − v∗

t

)
dt + X∗

t
θ′
t
dWt , X∗

0
= x , (2.8)

which is

X∗
t

= x
T + 1− t

T + 1
exp

( ∫ t

0

r̂u du +

∫ t

0

θ′
u

dWu

)
.

Note that the optimal solution (2.7) of problem (2.6) is deterministic, and wedenote
in the following byU the set of deterministic functionsν = (yt, vt)0≤t≤T satisfying
conditions (2.3) and (2.4).

For the above result we can state that

max
ν∈V

J(x, ν) = max
ν∈U

J(x, ν) .
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Intuitively, it is clear that to construct financial portfolios in the market model (2.1) the
investor can invoke only information given by the coefficients(rt)0≤t≤T , (µt)0≤t≤T

and(σt)0≤t≤T which are deterministic functions.
Then forν ∈ U , by Itô’s formula, equation (2.2) has solution

Xν
t

= x Et(y) eRt−Vt+(y,θ)t ,

with Rt =
∫ t

0
rudu, Vt =

∫ t

0
vudu, (y, θ)t =

∫ t

0
y′
u
θudu and the stochastic exponential

Et(y) = exp
( ∫ t

0

y′
u
dWu − 1

2

∫ t

0

|yu|2du
)
.

Therefore, forν ∈ U the process(Xν
t
)0≤t≤T is positive, continuous and satisfies

sup
0≤t≤T

E | lnXν
t
| < ∞ .

This implies thatU ⊂ V. Moreover, forν ∈ U we can calculate the cost function (2.5)
explicitly as

J(x, ν) = (T + 1) lnx+

∫ T

0

ω(t)

(
rt + y′

t
θt −

1

2
|yt|2

)
dt

+

∫ T

0

(ln vt − Vt)dt − VT . (2.9)

3 Optimization with constraints: main results

3.1 Value-at-Risk constraints

As in Klüppelberg and Pergamenchtchikov [10] we use as risk measures the modifica-
tions of Value-at-Risk and Expected Shortfall introduced in Emmer, Klüppelberg and
Korn [5], which reflect the capital reserve. For simplicity, in order to avoid non-relevant
cases, we consider only0 < α < 1/2.

Definition 3.1 [Value-at-Risk (VaR)]
For a control processν and0 < α ≤ 1/2 define theValue-at-Risk (VaR)by

VaRt(ν, α) := x eRt −Qt , t ≥ 0 ,

where fort ≥ 0 the quantityQt = inf{z ≥ 0 : P
(
Xν

t
≤ z

)
≥ α} is theα-quantile

of Xν
t

.

Note that for everyν ∈ U we find

Qt = x exp

(
Rt − Vt + (y, θ)t −

1

2
‖y‖2

t
− |qα|‖y‖t

)
, (3.1)
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whereqα is theα-quantile of the standard normal distribution.
We define thelevel risk functionfor some coefficient0 < ζ < 1 as

ζt = ζ x eRt , t ∈ [0, T ] . (3.2)

The coefficientζ ∈ (0, 1) introduces some risk aversion behaviour into the model.
In that sense it acts similarly as a utility function does. However,ζ has a clear interpre-
tation, and every investor can choose and understand the influence of the risk boundζ
as a proportion of the riskless bond investment.

We consider the maximization problem for the cost function (2.9) over strategies
ν ∈ U for which the Value-at-Risk is bounded by the level function (3.2) over the
interval [0, T ], i.e.

max
ν∈U

J(x, ν) subject to sup
0≤t≤T

VaRt(ν, α)

ζt
≤ 1 . (3.3)

To formulate the solution of this problem we define

G(u, λ) :=

∫ T

0

(ω(t) + λ)2

(λ|qα|+ u(ω(t) + λ))2
|θt|2 dt , u ≥ 0 , λ ≥ 0 . (3.4)

Moreover, for fixedλ > 0 we denote by

ρ(λ) = inf{u ≥ 0 : G(u, λ) ≤ 1} , (3.5)

if it exists, and setρ(λ) = +∞ otherwise. For a proof of the following lemma see A.1.

Lemma 3.2 Assume that|qα| > ‖θ‖T > 0 and

0 ≤ λ ≤ λmax =
k1 +

√
k2
(
q2
α
− ‖θ‖2

T

)
+ k2

1

q2
α
− ‖θ‖2

T

,

wherek1 = ‖√ωθ‖2
T

andk2 = ‖ωθ‖2
T

. Then the equationG(·, λ) = 1 has the unique
positive solutionρ(λ). Moreover,ρ(λ) <∞ for all 0 ≤ λ ≤ λmax, andρ(λmax) = 0.

Now for λ ≥ 0 fixed and0 ≤ t ≤ T we define the weight function

τλ(t) =
ρ(λ)(ω(t) + λ)

λ|qα|+ ρ(λ)(ω(t) + λ)
. (3.6)

Here we setτλ(·) ≡ 1 for ρ(λ) = +∞. It is clear, that for every fixedλ ≥ 0,

0 ≤ τλ(T ) ≤ τλ(t) ≤ 1 , 0 ≤ t ≤ T . (3.7)

To take the VaR constraint into account we define

Φ(λ) = |qα|‖τλθ‖T +
1

2
‖τλθ‖2T − ‖√τλθ‖2T .

Denote byΦ−1 the inverse ofΦ, provided it exists. A proof of the following lemma is
given in A.1.
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Lemma 3.3 Assume that‖θ‖T > 0 and

0 < ζ < 1− e−|qα|‖θ‖T+‖θ‖2

T
/2 . (3.8)

Then for all0 ≤ a ≤ − ln(1− ζ) the inverseΦ−1(a) exists. Moreover,

0 ≤ Φ−1(a) < λmax for 0 < a ≤ − ln(1− ζ)

andΦ−1(0) = λmax.

Now set

φ(κ) := Φ−1

(
ln

1− κ

1− ζ

)
, 0 ≤ κ ≤ ζ , (3.9)

and define the investment strategy

ỹκ
t
:= θtτφ(κ)(t) , 0 ≤ t ≤ T . (3.10)

To introduce the optimal consumption rate we define

vκt =
κ

T − tκ
(3.11)

and recall that for

κ = κ0 =
T

T + 1

the functionvκt coincides with the optimal unconstrained consumption rate1/ω(t) as
defined in (2.7).

It remains to fix the parameterκ. To this end we introduce the cost function

Γ(κ) = ln(1− κ) + T lnκ+

∫ T

0

ω(t) |θt|2
(
τφ(κ)(t)−

1

2
τ2φ(κ)(t)

)
dt . (3.12)

To choose the parameterκ we maximizeΓ:

γ = γ(ζ) = argmax
0≤κ≤ζ

Γ(κ) . (3.13)

With this notation we can formulate the main result of this section.

Theorem 3.4 Assume that‖θ‖T > 0. Then for allζ > 0 satisfying(3.8) and for all
0 < α < 1/2 for which

|qα| ≥ 2 (T + 1) ‖θ‖T , (3.14)

the optimal value ofJ(x, ν) for problem(3.3) is given by

J(x, ν∗) = A(x) + Γ (γ(ζ)) , (3.15)

where

A(x) = (T + 1) lnx+

∫ T

0

ω(t)rt dt− T lnT (3.16)
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and the optimal controlν∗ = (y∗
t
, v∗

t
)0≤t≤T is of the form

y∗
t
= ỹγ

t
and v∗

t
= vγ

t
. (3.17)

The optimal wealth process is the solution of the SDE

dX∗
t
= X∗

t
(rt − v∗

t
+ (y∗

t
)′ θt)dt + X∗

t
(y∗

t
)′ dWt , X∗

0
= x ,

given by

X∗
t
= x Et(y∗)

T − γ(ζ)t

T
eRt−Vt+(y∗, θ)t , 0 ≤ t ≤ T .

The following corollary is a consequence of (2.9).

Corollary 3.5 If ‖θ‖T = 0, then for all0 < ζ < 1 and for all0 < α < 1/2

y∗
t
= 0 and v∗

t
= vγ

t

with γ = argmax
0≤κ≤ζ

(ln(1− κ) + T lnκ) = min(κ0, ζ). Moreover, the optimal
wealth process is the deterministic function

X∗
t
= x

T −min(κ0, ζ) t

T
eRt , 0 ≤ t ≤ T .

In the next corollary we give some sufficient condition, for which the investment
process equals zero (the optimal strategy is riskless). This is the first marginal case.

Corollary 3.6 Assume that‖θ‖T > 0 and that(3.8)and (3.14)hold. Define

|θ|∞ = sup
0≤t≤T

|θt| <∞ .

If 0 < ζ < κ0 and

|qα| ≥ (1 + T )‖θ‖T
(
1 +

ζ(T + 1)|θ|2
∞

(1− ζ)T − ζ

)
, (3.18)

thenγ = ζ and the optimal solutionν∗ = (y∗
t
, v∗

t
)0≤t≤T is of the form

y∗
t
= 0 and v∗

t
= vζ

t
.

Moreover, the optimal wealth process is the deterministic function

X∗
t
= x

T − ζt

T
eRt , 0 ≤ t ≤ T .

Below we give some sufficient conditions, for which the solution of optimization
problem (3.3) coincides with the unconstrained solution (2.7). This is the second
marginal case.

Theorem 3.7 Assume that

ζ > 1− 1

T
e−|qα|‖θ‖T+‖θ‖2

T
/2 . (3.19)

Then for all0 < α < 1/2 for which |qα| ≥ ‖θ‖T , the solution of the optimization
problem(3.3) is given by(2.7)–(2.8).
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3.2 Expected Shortfall Constraints

Our next risk measure is an analogous modification of theExpected Shortfall(ES).

Definition 3.8 [Expected Shortfall (ES)]
For a control processν and0 < α ≤ 1/2 define

mt(ν, α) = Ex

(
Xν

t
|Xν

t
≤ Qt

)
, t ≥ 0 ,

whereQt is theα-quantile ofXν
t

given by (3.1). TheExpected Shortfall (ES)is then
defined as

ESt(ν, α) = xeRt − mt(ν, α) , t ≥ 0 .

Again forν ∈ U we find

mt(ν, α) = xFα (|qα|+ ‖y‖t) eRt−Vt+(y,θ)t ,

where

Fα(z) =
1∫∞

|qα|
e−t2/2 dt

∫ ∞

z

e−t2/2 dt . (3.20)

We consider the maximization problem for the cost function (2.5) over strategies
ν ∈ U for which the Expected Shortfall is bounded by the level function (3.2) over the
interval [0, T ], i.e.

max
ν∈U

J(x, ν) subject to sup
0≤ t≤ T

ESt(ν, α)

ζt
≤ 1 . (3.21)

We proceed similarly as for the VaR-coinstraint problem (3.3). Define

G1(u, λ) :=

∫ T

0

(ω(t) + λ)2

(λ ια(u) + u(ω(t) + λ))
2 |θt|2 dt , u ≥ 0, λ ≥ 0 . (3.22)

where

ια(u) =
1

̟(u+ |qα|)
− u with ̟(y) = e

y2

2

∫ ∞

y

e−
t2

2 dt . (3.23)

It is well-known and easy to prove that

1

y
− 1

y3
≤ ̟(y) ≤ 1

y
, y > 0 . (3.24)

This means thatια(u) ≥ |qα| for all u ≥ 0, which implies for every fixedλ ≥ 0 that
G1(u, λ) ≤ G(u, λ) for all u ≥ 0. Moreover, similarly to (3.5) we define

ρ1(λ) = inf{u ≥ 0 : G1(u, λ) ≤ 1} . (3.25)

SinceH has similar behaviour asG, the following lemma is a modification of Lemma 3.2.
Its proof is analogous to the proof of Lemma 3.2.
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Lemma 3.9 Assume that|qα| > ‖θ‖T > 0 and

0 ≤ λ ≤ λ′
max

=
k1 +

√
k2
(
ψ2
α
(0)− ‖θ‖2

T

)
+ k2

1

ψ2
α
(0)− ‖θ‖2

T

,

wherek1 andk2 are given in Lemma 3.2. Then the equationG1(·, λ) = 1 has the unique
positive solutionρ1(λ). Moreover,ρ1(λ) <∞ for 0 ≤ λ ≤ λ′

max
andρ1(λ

′
max

) = 0.

Now for λ ≥ 0 fixed and0 ≤ t ≤ T we define the weight function

ςλ(t) =
ρ1(λ) (ω(t) + λ)

λ ια(ρ1(λ)) + ρ1(λ) (ω(t) + λ)
, (3.26)

and we setςλ(·) ≡ 1 for ρ1(λ) = +∞. Note that for every fixedλ ≥ 0,

0 ≤ ςλ(T ) ≤ ςλ(t) ≤ 1 , 0 ≤ t ≤ T . (3.27)

To take the ES constraint into account we define

Φ1(λ) = −‖√ςλθ‖2T − lnFα (|qα|+ ‖ςλθ‖T ) . (3.28)

Denote byΦ−1
1

the inverse ofΦ1 provided it exists. The proof of the next lemma is
given in Section A.2.

Lemma 3.10 Assume that‖θ‖T > 0 and

0 < ζ < 1− Fα (|qα|+ ‖θ‖T ) e‖θ‖
2

T . (3.29)

Then for all0 ≤ a ≤ − ln(1 − ζ) the inverseΦ−1
1

exists and0 ≤ Φ−1
1

(a) < λmax for
0 < a ≤ − ln(1 − ζ) andΦ−1

1
(0) = λ′

max
.

Now, similarly to (3.5) we set

φ1(κ) = Φ−1
1

(
ln

1− κ

1− ζ

)
, 0 ≤ κ ≤ ζ , (3.30)

and define the investment strategy

ỹ1,κ
t

= θtςφ
1
(κ)(t) , 0 ≤ t ≤ T . (3.31)

We introduce the cost function

Γ1(κ) = ln(1− κ) + T lnκ+

∫ T

0

ω(t) |θt|2
(
ςφ

1
(κ)(t)−

1

2
ς2
φ
1
(κ)

(t)

)
dt . (3.32)

To fix the parameterκ we maximizeΓ1:

γ1 = γ1(ζ) = argmax
0≤κ≤ζ

Γ1(κ) . (3.33)

With this notation we can formulate the main result of this section.
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Theorem 3.11 Assume that‖θ‖T > 0. Then for allζ > 0 satisfying(3.29)and for all
0 < α < 1/2 satisfying

|qα| ≥ max(1, 2(T + 1)‖θ‖T ) (3.34)

the optimal value ofJ(x, ν) for the optimization problem(3.21)is given by

J(x, ν∗) = A(x) + Γ1 (γ1(ζ)) ,

where the functionA is defined in(3.16)and the optimal controlν∗ = (y∗
t
, v∗

t
)0≤t≤T

is of the form (recall the definition ofvκ
t

in (3.11))

y∗
t
= ỹ

1,γ
1

t and v∗
t
= v

γ
1

t . (3.35)

The optimal wealth process is the solution to the SDE

dX∗
t
= X∗

t
(rt − v∗

t
+ (y∗

t
)′ θt)dt + X∗

t
(y∗

t
)′ dWt , X∗

0
= x ,

given by

X∗
t
= x Et(y∗)

T − γ1(ζ)t

T
eRt−Vt+(y∗, θ)t , 0 ≤ t ≤ T .

Corollary 3.12 If ‖θ‖T = 0, then the optimal solution of problem(3.21) is given in
Corollary 3.5.

Similarly to the optimization problem with VaR constraint we observe two marginal
cases. Note that the following corollary is again a consequence of (2.9).

Corollary 3.13 Assume that‖θ‖T > 0 and that(3.29)and (3.34)hold. Thenγ1 = ζ
and the assertions of Corollary 3.6 hold withκ1 replaced byκ1.

Theorem 3.14 Assume that ‖θ‖2T/2?
NO!!!

ζ > 1− 1

T + 1
Fα (|qα|+ ‖θ‖T ) e‖θ‖

2

T . (3.36)

Then for all0 < α < 1/2 for which|qα| > max(1, ‖θ‖T ) the solution of problem(3.21)
is given by(2.7)–(2.8).

3.3 Conclusion

If we compare the optimal solutions (3.17) and (3.35) with the unconstrained optimal
strategy (2.7), then the risk bounds forces investors to restrict their investment into the
risk assets by multiplying the unconstrained optimal strategy by the coefficients given
in (3.10) and (3.13) for VaR constraints and (3.30) and (3.33) forES constraints. The
impact of the risk measure constraints enter into the portfolio process through the risk
level ζ and the confidence levelα.
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4 Auxiliary results and proofs

In this section we consider maximization problems with constraints for the two terms
of (2.9):

I(V ) :=

∫ T

0

(ln vt − Vt)dt and H(y) :=

∫ T

0

ω(t)

(
y′tθt −

1

2
|yt|2

)
dt . (4.1)

We start with a result concerning the optimization ofI(·), which will be needed to
prove results from both Sections 3.1 and 3.2.

Let W[0, T ] be the set of differentiable functionsf : [0, T ] → R having positive
cadlag derivativeḟ satisfying condition (2.4). Forb > 0 we define

W0,b[0, T ] = {f ∈ W[0, T ] : f(0) = 0 and f(T ) = b} . (4.2)

Lemma 4.1 Consider the optimization problem

max
f∈W

0,b[0,T ]
I(f) . (4.3)

The optimal value ofI is given by

I∗(b) = max
f∈W

0,b[0,T ]
I(f) = I(f∗) = −T lnT − T ln

eb

eb − 1
, (4.4)

with optimal solution

f∗(t) = ln
Teb

Teb − t(eb − 1)
, 0 ≤ t ≤ T . (4.5)

Proof. Firstly, we consider the optimization problem (4.3) in the spaceC
2[0, T ] of

two times continuously differentiable functions on[0, T ]:

max
f∈W

0,b[0,T ]∩C
2[0,T ]

I(f) ,

By variational calculus methods we find that it has solution (4.4); i.e.

max
f∈W

0,b[0,T ]∩C
2[0,T ]

I(f) = I(f∗) ,

where the optimal solutionf∗ is given in (4.5).
Take nowf ∈ W0,b[0, T ] and suppose first that its derivative

ḟmin = inf
0≤t≤T

ḟ(t) > 0 .

LetΥ be a positive two times differentiable function on[−1, 1] such that
∫ 1

−1
Υ(z)dz =

1, and setΥ(z) := 0 for |z| ≥ 1. We can take, for example,

Υ(z) =





1∫
1

−1
exp

(
− 1

1−υ2

)
dυ

exp
(
− 1

1−z2

)
if |z| ≤ 1 ,

0 if |z| > 1 .
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By settingḟ(t) = ḟ(0) for all t ≤ 0 and ḟ(t) = ḟ(T ) for all t ≥ T , we define an
approximating sequence of functions by

υn(t) = n

∫

R

Υ(n(u− t)) ḟ(u)du .

It is clear that(υn)n≥1 ∈ C
2[0, T ]. Moreover, we recall thaṫf is cadlag, which implies

that it is bounded on[0, T ]; i.e.

sup
0≤t≤T

ḟ(t) := ḟmax < ∞ ,

and its discontinuity set has Lebesgue measure zero. Therefore, the sequence(υn)n≥1

is bounded; more preceisly,

0 < ḟmin ≤ υn(t) ≤ ḟmax < ∞ , 0 ≤ t ≤ T , (4.6)

andυn → ḟ asn → ∞ for Lebesgue almost allt ∈ [0, T ]. Therefore, by the Lebesgue
convergence theorem we obtain

lim
n→∞

∫ T

0

|υn(t)− ḟ(t)|dt = 0 .

Moreover, inequalities (4.6) imply

| ln υn| ≤ ln
(
max(ḟmax , 1)

)
+ | ln

(
min(ḟmin , 1)

)
| .

Therefore,fn(t) =
∫ t

0
υn(u)du belongs toΓbn

∩C
2[0, T ] for bn :=

∫ T

0 υn(u)du. It is
clear that

lim
n→∞

I(fn) = I(f) and lim
n→∞

bn = b .

This implies that
I(f) ≤ I∗(b) ,

whereI∗(b) is defined in (4.4).
Consider now the case, whereinf0≤t≤T ḟ(t) = 0. For 0 < δ < 1 we consider the
approximation sequence of functions

f̃δ(t) = max(δ , ḟ(t)) and fδ(t) =

∫ t

0

f̃δ(u)du , 0 ≤ t ≤ T .

It is clear thatfδ ∈ Γbδ
for bδ =

∫ T

0
f̃δ(t)dt. Therefore,I(fδ) ≤ I∗(bδ). Moreover, in

view of the convergence

lim
δ→0

∫ T

0

(
f̃δ(t)− ḟ(t)

)
dt = 0
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we getlim sup
δ→0

I(fδ) ≤ I∗(b). Moreover, note that

|I(fδ)− I(f)| ≤
∫

Aδ

(ln δ − ln ḟ(t))dt + T

∫

Aδ

(
δ − ḟ(t)

)
dt

≤
∫

Aδ

(ln ḟ(t))− dt + δ T Λ(Aδ) ,

whereAδ = {t ∈ [0, T ] : 0 ≤ ḟ(t) ≤ δ} andΛ(Aδ) is the Lebesgue measuere of
Aδ. Moreover, by the definition of theW[0, T ] in (4.2) the Lebesgue measure of the
set{t ∈ [0, T ] : ḟ(t) = 0} equals to zero and

∫ T

0 (ln ḟt)− dt < ∞. This implies that
limδ→0 Λ(Aδ) = 0 and hence

lim
δ→0

I(fδ) = I(f) ,

i.e. I(f) ≤ I∗(b). 2

In order to deal withH as defined in (4.1) we need some preliminary result. As
usual, we denote byL2[0, T ] the Hilbert space of functionsy satisfying the square
integrability condition in (2.3).

Define fory ∈ L2[0, T ] with ‖y‖T > 0

y
t
= yt/‖y‖T and ly(h) = ‖y + h‖T − ‖y‖T − (y, h)T . (4.7)

We shall need the following lemma.

Lemma 4.2 Assume thaty ∈ L2[0, T ] and‖y‖T > 0. Then for everyh ∈ L2[0, T ] the
functionly(h) ≥ 0.

Proof. Obviously, ifh ≡ ay for somea ∈ R, thenly(h) = (|1+ a| − 1− a)‖y‖T ≥ 0.
Let nowh 6≡ ay for all a ∈ R. Then

ly(h) =
2(y , h)T + ‖h‖2

T

‖y + h‖T + ‖y‖T
− (y, h)T =

‖h‖2
T
− (y, h)T ((y, h)T + ly(h))

‖y + h‖T + ‖y‖T
.

It is easy to show directly that for allh

‖y + h‖T + ‖y‖T + (y, h)T ≥ 0

with equality if and only ifh ≡ ay for somea ≤ −1.
Therefore, ifh 6≡ ay, we obtain

ly(h) =
‖h‖2

T
− (y , h)2

T

‖y + h‖T + ‖y‖T + (y, h)T
≥ 0 . 2
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4.1 Results and proofs of Section 3.1

We introduce the constraintK : L2[0, T ] → R as

K(y) :=
1

2
‖y‖2

T
+ |qα| ‖y‖T − (y, θ)T (4.8)

For0 < a ≤ − ln(1− ζ) we consider the following optimization problems

max
y∈L

2
[0,T ]

H(y) subject to K(y) = a (4.9)

Proposition 4.3 Assume that the conditions of Lemma 3.3 hold. Then the optimization
problem(4.9)has the unique solutiony∗ = ỹa = θtτλa

(t) with λa = Φ−1(a).

Proof. According to Lagrange’s method we consider the following unconstrained
problem

max
y∈L

2
[0,T ]

Ψ(y, λ) , (4.10)

whereΨ(y, λ) = H(y)− λK(y) andλ ∈ R is the Lagrange multiplier. Now it suffices
to find someλ ∈ R for which the problem (4.10) has a solution, which satisfies the
constraint in (4.9). To this end we representΨ as

Ψ(y, λ) =

∫ T

0

(ω(t) + λ)

(
y′
t
θt −

1

2
|yt|2

)
dt − λ |qα| ‖y‖T .

It is easy to see that forλ < 0 the maximum in (4.10) equals+∞; i.e. the problem
(4.9) has no solution. Therefore, we assume thatλ ≥ 0. First we calculate the Fréchet
derivative; i.e. the linear operatorDy(·, λ) : L2[0, T ] → R defined forh ∈ L2[0, T ] as

Dy(h, λ) = lim
δ→0

Ψ(y + δh, λ)−Ψ(y, λ)

δ
.

For‖y‖T > 0 we obtain

Dy(h, λ) =

∫ T

0

(dy(t, λ))
′ht dt

with
dy(t, λ) = (ω(t) + λ)(θt − yt)− λ|qα| yt .

If ‖y‖T = 0, then

Dy(h, λ) =

∫ T

0

(ω(t) + λ) θ′
t
ht dt− λ|qα| ‖h‖T .

Define now
∆y(h, λ) = Ψ(y + h, λ)−Ψ(y, λ)−Dy(h, λ) . (4.11)
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We have to show that∆y(h, λ ≤ 0 for all y, h ∈ L2[0, T ]. Indeed, if‖y‖T = 0 then

∆y(h, λ) = −1

2

∫ T

0

(ω(t) + λ) |ht|2 dt ≤ 0 .

If ‖y‖T > 0, then

∆y(h, λ) = −1

2

∫ T

0

(ω(t) + λ) |ht|2 dt − λ |qα| ly(h) ≤ 0 ,

by Lemma 4.2 for allλ ≥ 0 and for ally, h ∈ L2[0, T ].
To find the solution of the optimization problem (4.10) we have to findy ∈ L2[0, T ]
such that

Dy(h, λ) = 0 for all h ∈ L2[0, T ] . (4.12)

First notice that for‖θ‖T > 0, the solution of (4.12) can not be zero, since fory = 0 we
obtainDy(h, λ) < 0 for h = −θ. Consequently, we have to find an optimal solution to
(4.12) fory satisfying‖y‖T > 0. This means we have to find a non-zeroy ∈ L2[0, T ]
such that

dy(t, λ) = 0 .

One can show directly that for0 ≤ λ ≤ λmax the unique solution of this equation is
given by

yλ
t
:= θtτλ(t) , (4.13)

whereτλ(t) is defined in (3.6). It remains to choose the Lagrage multiplierλ so that it
satisfies the constraint in (4.9). To this end note that

K(yλ) = Φ(λ) .

Under the conditions of Lemma 3.3 the inverse ofΦ exists. Thus the functionyλa 6≡ 0
with λa = Φ−1(a) is the solution of the problem (4.9).2

We are now ready to proof the main results in Section 3.1. The auxiliary lemmas are
proved in A.1.

Proof of Theorem 3.4. In view of the representation of the cost functionJ(x, ν) in
the form (2.9), we start to maximizeJ(x, ν) by maximizingI over all functionsV . To???
this end we fix the last value of the consumption process, by settingκ = 1− e−VT . By
Lemma 4.1 we find that

I(V ) ≤ I(V κ) = −T lnT + T lnκ ,

where

V κ
t =

∫ t

0

vκ(t)dt = ln
T

T − κt
, 0 ≤ t ≤ T . (4.14)

Define now

Lt(ν) = (y, θ)t − 1

2
‖y‖2

t
− Vt − |qα| ‖y‖t , 0 ≤ t ≤ T ,
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and note that condition (3.3) is equivalent to

inf
0≤t≤T

Lt(ν) ≥ ln (1− ζ) . (4.15)

Firstly, we consider the bound in (4.15) only at timet = T :

LT (ν) ≥ ln (1− ζ) .

Recall definition (4.8) ofK and choose the functionV asV κ as in (4.14). Then we can
rewrite the bound forLT (ν) as a bound forK and obtain

K(y) ≤ ln
1− κ

1− ζ
, 0 ≤ κ ≤ ζ .

To find the optimal investment strategy we need to solve the optimization problem (4.9)
for 0 ≤ a ≤ ln((1 − κ)/(1− ζ)). By Proposition 4.3 for0 < a ≤ − ln(1 − ζ)

max
y∈L

2
[0,T ] ,K(y)=a

H(y) = H(ỹa) := C(a) , (4.16)

where the solutioñya is defined in Proposition 4.3. Note that the definitions of the
functionsH andỹa imply

C(a) =

∫ T

0

ω(t)

(
τλa

(t)− 1

2
τ2λa

(t)

)
|θt|2dt with λa = Φ−1(a) .

To consider the optimization problem (4.9) fora = 0 we observe that

K(y) ≥ ‖y‖T (|qα| − ‖θ‖T ) +
1

2
‖y‖2

T
≥ 0 ,

provided that|qα| > ‖θ‖T (which follows from (3.14)). Thus, there exists only one
function for whichK(y) = 0, namelyy ≡ 0. Furthermore, by Lemma 3.2ρ(λmax) = 0
and, therefore, definition (3.6) implies

τλ
max

(·) ≡ 0 , yλmax ≡ 0 and Φ(λmax) = 0 . (4.17)

This means thatλmax = Φ−1(0) and yΦ
−1(0) = 0; i.e. yλa with λa = Φ−1(a) is

the solution of the optimization problem (4.9) for all0 ≤ a ≤ − ln(1 − ζ). Now we
calculate the derivative ofC(a):

d
da
C(a) = λ̇a

∫ T

0

ω(t)
(
1− τλa

(t)
)
|θt|2

(
∂τλ(t)

∂λ
|λ=λa

)
dt ,

Sinceλ̇a = 1/Φ̇(λa), by Lemma A.1, the derivative ofC(a) is positive. Therefore,

max
0≤a≤ln((1−κ)/(1−ζ))

C(a) = C

(
ln

1− κ

1− ζ

)
,
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and we choosea = ln((1− κ)/(1− ζ) in (4.16).
Now recall the definitions (3.10) and (3.11) and setνκ = (ỹκ

t
, vκ

t
)0≤t≤T . Thus for

ν ∈ U with VT = − ln(1− κ) we have

J(x, ν) ≤ J(x, νκ) = A(x) + Γ(κ) .

It is clear that (3.13) gives the optimal value for the parameterκ.
To finish the proof we have to verify condition (4.15) for the strategyν∗ defined in
(3.17). Indeed, we have

Lt(ν
∗) = (y∗, θ)t −

1

2
‖y∗‖2

t
− |qα| ‖y∗‖t −

∫ t

0

v∗
s
ds

=: −
∫ t

0

g(u)du −
∫ t

0

v∗
s
ds ,

where

g(t) = τ∗
t
|θt|2

(
|qα|χ(t)− 1 +

τ∗
t

2

)
and χ(t) =

τ∗
t

2
√∫ t

0
(τ∗

s
)2|θs|2 ds

.

We recallφ(κ) from (3.9) andκ1 from (3.13), then

τ∗
t
= τυ

1
(t) with υ1 = φ(γ) .

Definition (3.6) implies

χ(t) ≥
τυ

1
(T )

2τυ
1
(0)‖θ‖T

≥ 1 + υ1
2‖θ‖T (1 + T + υ1)

≥ 1

2‖θ‖T (1 + T )
.

Therefore, condition (3.14) guarantees thatg(t) ≥ 0 for t ≥ 0, which implies

Lt(ν
∗) ≥ LT (ν

∗) = ln(1 − ζ) .

This concludes the proof of Theorem 3.4.2

Proof of Corollary 3.6. Consider now the optimization problem (3.13). To solve it
we have to find the derivative of the integral in (3.12)

E(κ) :=

∫ T

0

ω(t) |θt|2
(
τφ(κ)(t)−

1

2
τ2φ(κ)(t)

)
dt .

Indeed, we have withφ(κ) as in (3.9),

Ė(κ) =

∫ T

0

ω(t)|θt|2
(
1− τφ(κ)(t)

) ∂

∂κ
τφ(κ)(t)dt .

Definingτ1(t, φ(κ)) :=
∂τλ(t)
∂λ |λ=φ(κ) we obtain

∂

∂κ
τφ(κ)(t) = τ1(t, φ(κ))

d
dκ

φ(κ) . (4.18)
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Therefore,

Ė(κ) = − 1

1− κ
B(φ(κ))

with

B(λ) =

∫ T

0
ω(t)|θt|2 (1− τλ(t)) τ1(t, λ)dt

Φ̇(λ)
.

Defineτ̂ (t, λ) := |qα|τλ(t)/‖τλθ‖T . Then, in view of Lemma A.1, we haveτ1(t, λ) ≤ 0
and, therefore, taking representation (A.1) into account we obtain

B(λ) =

∫ T

0
ω(t)|θt|2 (1− τ(t, λ)) |τ1(t, λ)|dt∫ T

0
τ̂(t, λ) |τ1(t, λ)|dt

.

Moreover, using the lower bound (A.2) we estimate

B(λ) <
(1 + T )2|θ|2

∞
‖θ‖T

|qα| − (T + 1) ‖θ‖T
=: Bmax . (4.19)

Condition (3.18) for0 < ζ < κ0 implies that

Bmax ≤
(
1

ζ
− 1

)
T − 1 .

Thus for0 ≤ κ ≤ ζ < κ0 we obtain

Γ̇(κ) >
T

κ
− 1

1− κ
(1 +Bmax) ≥ T

ζ
− 1

1− ζ
(1 +Bmax) ≥ 0 .

This impliesγ = ζ and, therefore,a(γ) := ln((1− γ)/(1− ζ) = 0, which implies
also by Lemma 3.3 thatφ(a(γ)) = λmax. Therefore, we conclude from (4.17) that
y∗
t
= τλ

max
(t)θt = 0 for all 0 ≤ t ≤ T . 2

Proof of Theorem 3.7. It suffices to verify condition (4.15) for the strategyν∗ =
(y∗

t
, v∗

t
)0≤t≤T with y∗

t
= θt andv∗

t
= 1/ω(t) for t ∈ [0, T ]. It is easy to show that

condition (3.19) implies thatLT (ν
∗) ≥ ln(1 − ζ). Moreover, for0 ≤ t ≤ T we can

representLt(ν
∗) as

Lt(ν
∗) = −

∫ t

0

g∗
s
ds−

∫ t

0

v∗
s

ds ,

where

g∗
t
=

( |qα|
‖θ‖t

− 1

) |θt|2
2

≥
( |qα|
‖θ‖T

− 1

) |θt|2
2

≥ 0

since we have assumed that|qα| ≥ ‖θ‖T . Therefore,Lt(ν
∗) is decreasing int; i.e.

Lt(ν
∗) ≥ LT (ν

∗) for all 0 ≤ t ≤ T . This implies the assertion of Theorem 3.7.2



20 and

4.2 Results and proofs of Section 3.2

Next we introduce the constraint

K1(y) := −(y, θ)T − fα (‖y‖T ) (4.20)

with fα(x) := lnFα(|qα|+ x) andFα introduced in (3.20).
For 0 < a ≤ − ln(1− ζ) we consider the following optimization problems

max
y∈L

2
[0,T ]

H(y) subject to K1(y) = a . (4.21)

The following result is the analog of Proposition 4.3.

Proposition 4.4 Assume that the conditions of Lemma 3.10 hold. Then the optimiza-
tion problem(4.21)has the unique solutiony∗

t
= ỹ1,at = θtςλ

1,a
(t) withλ1,a = Φ−1

1
(a).

Proof. As in the proof of Proposition 4.3 we use Lagrange’s method. We consider the
unconstrained problem

max
y∈L

2
[0,T ]

Ψ1(y, λ) , (4.22)

whereΨ1(y, λ) = H(y) − λK1(y) andλ ≥ 0 is the Lagrange multiplier. Taking into
account the definingfα in (4.20), we obtain the representation

Ψ1(y, λ) =

∫ T

0

(
(ω(t) + λ ) θ′

t
yt − ω(t)

2
|yt|2

)
dt+ λ fα (‖y‖T ) .

Its Fréchet derivative is given by

D1,y(h, λ) = lim
δ→0

Ψ1(y + δh, λ)−Ψ1(y, λ)

δ
.

It is easy to show directly that for‖y‖T > 0

D1,y(h, λ) =

∫ T

0

(d1,y(t, λ))
′ht dt ,

where
d1,y(t, λ) = (ω(t) + λ)θt − ω(t) yt + λḟα(‖y‖T ) yt ,

andḟα(·) denotes the derivative offα(·).
If ‖y‖T = 0, then

D1,y(h, λ) =

∫ T

0

(ω(t) + λ) θ′
t
ht dt+ λ ḟα(0)‖h‖T .

We set now
∆1,y(h, λ) = Ψ1(y + h, λ)−Ψ1(y, λ)−D1,y(h, λ) , (4.23)
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and show that∆1,y(h, λ) ≤ 0 for all y, h ∈ L2[0, T ]. Indeed, if‖y‖T = 0, then

∆1,y(h, λ) = −1

2

∫ T

0

ω(t) |ht|2 dt ≤ 0 .

Let now‖y‖T > 0 andy = y/‖y‖T . Then

∆1,y(h, λ) = −1

2

∫ T

0

ω(t) |ht|2 dt + λ δ1,y(h) ,

where
δ1,y(h) = fα(‖y + h‖T )− fα(‖y‖T )− ḟα(‖y‖T ) (y, h)T .

Moreover, by Taylor’s formula and denoting bÿfα the second derivative offα, we get

δ1,y(h) = ḟα(‖y‖T ) ly(h) +
1

2
f̈α (ϑ) (‖y + h‖T − ‖y‖T )

2
,

wherely(·) is defined in (4.7) and

min(‖y‖T , ‖y + h‖T ) ≤ ϑ ≤ max(‖y‖T , ‖y + h‖T ) .

Recalling the definition of̟ in (3.23), the derivatives offα are given by

ḟα(x) = − 1

̟(x1)
and f̈α(x) = −1− x1̟(x1)

̟2(x1)
. (4.24)

The right inequality in (3.24) and Lemma 4.2 imply that∆1,y(h, λ) ≤ 0 for all λ ≥ 0
andy, h ∈ L2[0, T ]. The solution of the optimization problem (4.22) is given byy ∈
L2[0, T ] such that

D1,y(h, λ) = 0 for all h ∈ L2[0, T ] . (4.25)

Notice that for‖θ‖T > 0 the solution (4.25) can not be zero, since fory = 0 we obtain
D1,y(h, λ) < 0 for h = −θ. Therefore, we have to solve equation (4.25) fory with
‖y‖T > 0, equivalently, we have to find a non-zero function inL2[0, T ] satisfying

d1,y(t, λ) = 0 .

One can show directly that for0 ≤ λ ≤ λ∗
max

the solution of this equation is given by

y1,λ
t

= ςλ(t)θt , (4.26)

whereςλ(t) is defined in (3.26). Now we have to choose the parameterλ to satisfy the
constraint in (4.21). Note that

K1(y
1,λ) = Φ1(λ) .

Under the conditions of Lemma 3.10 the inverse ofΦ1 exists. Therefore, the function
yλa 6≡ 0 with λa = Φ−1

1
(a) is the solution of the optimization problem (4.21).2
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Proof of Theorem 3.11. Define

Lt(ν) = (y, θ)t − Vt + fα (‖y‖t) , 0 ≤ t ≤ T , (4.27)

with fα defined in (3.28).
First note that the risk bound in the optimization problem (3.21) is equivalent to

inf
0≤t≤T

Lt(ν) ≥ ln (1− ζ) , (4.28)

As in the proof of Theorem 3.4 we start with the constraint at timet = T :

LT (ν) ≥ ln (1− ζ) .

Taking the definition ofK1 in (4.20) into account and choosingV = V κ as in (4.14)
we rewrite this inequality as

K1(y) ≤ ln
1− κ

1− ζ
, 0 ≤ κ ≤ ζ .

To find the optimal strategy we use the optimization problem (4.21), extending the
range ofa to 0 ≤ a ≤ ln((1− κ)/(1− ζ). In Proposition 4.4 we established that for
each0 < a ≤ − ln(1− ζ)

max
y∈L

2
[0,T ] ,K

1
(y)=a

H(y) = H(yΦ
−1

1
(a)) =: C(Φ−1

1
(a)) , (4.29)

wherey1,λ is defined in (4.26) and

C(λ) =

∫ T

0

ω(t)|θt|2
(
ςλ(t)−

1

2
ς2λ(t)

)
dt .

To study the optimization problem (4.21) fora = 0 note that

K1(y) ≥ kmin(‖y‖T ) with kmin(x) = −x‖θ‖T − fα(x) , quadx ≥ 0 .

Moreover,

k̇min(x) =
1

̟(|qα|+ x)
− |θ‖T , quadx ≥ 0 ,

and by the right inequality in (3.24) we obtain for|qα| > ‖θ‖T (which follows from
condition (3.14))

k̇min(x) ≥ |qα|+ x− |θ‖T > 0 , quadx ≥ 0, .

Therefore,kmin(x) > kmin(0) = 0 for all x > 0 andkmin(x) = 0 if and only if x = 0.
This means that onlyy ≡ 0 satisfiesK1(y) = 0. Moreover, in view of Lemma 3.9 and

Lemma 3.10, as in the proof of Theorem 3.4, we obtainỹ
0
= 0. Therefore, the function

ỹ
)

is the solution of (4.21) for all0 ≤ a ≤ − ln(1− ζ).
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To choose the parameter0 ≤ a ≤ ln((1 − κ)/(1− ζ) we calculate the derivative of
C(Φ−1

1
(a)) as

d
da
C(Φ−1

1
(a)) =

d
da

Φ1
−1(a)

∫ T

0

ω(t)|θt|2
(
1− ςΦ−1

1
(a)(t)

) partial

∂λ
ςλ(t)|λ=Φ−1

1
(a) ,dt .

We recall that

d
da

Φ−1
1

(a) =
1

Φ̇1(Φ
−1
1 (a))

with Ψ1(a) =
d
da

Φ1(a) .

Therefore, by Lemma A.2, the derivative ofdda
C(Φ−1

1
(a)) > 0, which implies that

max
0≤a≤ln((1−κ)/(1−ζ)

C(Φ−1
1

(a)) = C(Φ−1
1

(
ln

1− κ

1− ζ

)
.

So in (4.29) we takea = ln((1 − κ)/(1− ζ).
Recalling the notatioñy

κ
= ςΦ

1
(κ)(t) from (3.31) we setνκ = (ỹ

κ

t
, vκ

t
)0≤t≤T . Then,

for ν ∈ U with VT = − ln(1− κ),

J(x, ν) ≤ J(x, νκ) = A(x) + Γ1(κ) .

It is clear that (3.33) gives the optimal value for the parameterκ.
To finish the proof we have to verify condition (4.28) for the strategyν∗ as defined in
(3.35). To this end, withφ(κ) = Φ−1

1

(
ln((1− κ)/(1− ζ))

)
, we set

ς∗t = ςφ
1
(t) , φ1 = φ1(γ1) and γ∗(t) =

ς∗
t

2‖ς∗θ‖t
.

With this notation we can represent the functionLt(ν
∗) in the following integral form

Lt(ν
∗) = −

∫ t

0

g∗(u)du −
∫ t

0

v∗
s
ds ,

where

g∗(t) = ς∗
t
|θt|2

(
βtγ

∗(t)

2
− 1

)
with βt = −ḟα (‖ς∗θ‖t) .

Note that definition (3.26) and the inequalities (3.27) imply

γ∗(t) ≥
ςφ̂

1

(T )

2ςφ
1
(0)‖θ‖t

≥ 1 + φ1
2‖θ‖t (1 + T + φ1)

≥ 1

2‖θ‖T (1 + T )
.

Moreover, from the right inequality in (3.24) we obtain

βt =
1

̟ (‖ς∗θ‖t)
≥ |qα|+ ‖ς∗θ‖t ≥ |qα| .

Therefore, condition (3.14) implies thatg∗(t) ≥ 0, i.e.

L∗
t
(ν∗) ≥ L∗

T
(ν∗) = ln(1− ζ) .
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This concludes the proof of Theorem 3.11.2

Proof of Corollary 3.13. Consider now the optimization problem (3.33). To solve
this we have to calculate the derivative ofE in (3.32). We obtain

d
dκ
E(κ) =

∫ T

0

ω(t)|θt|2 (1− ς(t))
∂

∂κ
ς̂(t, κ)dt .

We recall from (3.30) thatφ1(κ) = Φ−1
1

(ln 1−κ
1−ζ ) and define the partial derivative

ς1(t, λ) =
∂
∂λ ςλ(t). Then

∂

∂κ
ς(t, κ) = ς1(t, φ1(κ))

d
dκ

φ1(κ) . (4.30)

Therefore,
d

dκ
E(κ) = − 1

1− κ
B(Φ−1

1
(κ))

with

B(λ) =

∫ T

0
ω(t)|θt|2 (1− ςλ(t)) ς1(t, λ)dt

Φ̇(λ)
.

By Lemma A.2,ς1(t, λ) ≤ 0, therefore, taking representation (A.6) into account, we
obtain

B(λ) =

∫ T

0
ω(t)|θt|2 (1− ςλ(t)) |ς1(t, λ)|dt∫ T

0
η(t, λ) |ς1(t, λ)|dt

.

Moreover, with the lower bound (A.7) we can estimateB(λ) as in in (4.19), i.e.

B(λ) ≤ Bmax .

The remainding proof is the same as the proof of Corollary 3.13.2

Proof of Theorem 3.14. We have to verify condition (4.28) for the strategyν∗ =
(y∗

t
, v∗

t
)0≤t≤T with y∗

t
= θt andv∗

t
= 1/ω(t) for t ∈ [0, T ].

First note that condition (3.36) implies

LT (ν
∗) ≥ ln(1− ζ) .

Moreover, for0 ≤ t ≤ T we can represent the functionLt(ν
∗) as

Lt(ν
∗) = ‖θ‖2

t
+ fα(‖θ‖t)− V ∗

t
= −

∫ t

0

l∗
s
ds−

∫ t

0

v∗
s

ds ,

where

l∗
t
=

(
1

̟(|qα|+ ‖θ‖t)
− 1

)
|θt|2 .

Therefore, by the right inequality in (3.24) we obtain

l∗
t
≥ (|qα|+ ‖θ‖t − 1) |θt|2 ≥ (|qα| − 1) |θt|2
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and by condition (3.34) we getl∗
t
> 0 for 0 ≤ t ≤ T , therefore,Lt(ν

∗) is decreasing in
t, i.e. for0 < t ≤ T

Lt(ν
∗) ≥ LT (ν

∗) ≥ ln(1 − ζ) .

This concludes the proof of Theorem 3.14.2

5 Appendix

A.1 Results for Section 3.1

Proof of Lemma 3.2. SinceG(u, λ) is for fixed λ decreasing to 0 inu, equation
G(u, λ) = 1 has a positive solution if and only ifG(0, λ) ≥ 1. But this is equivalent
to k2 + 2λk1 − λ2(|qα|2 − ‖θ| T 2) ≥ 0, which gives the upper bound forλ. More-
over, taking into account thatG(0, λmax) = 1 we obtain through the definition (3.5)
ρ(λmax) = 0 2

Next we prove some properties ofΦ andτφ(κ).

Lemma A.1 The functionτλ(t) is continuously differentiable inλ for 0 ≤ λ ≤ λmax

with partial derivative

τ1(t, λ) =
∂

∂λ
τλ(t) < 0 , 0 ≤ t ≤ T .

Moreover, under the condition(3.14)the derivativeΦ̇(λ) < 0 for 0 ≤ λ ≤ λmax.

Proof. First note that

τ1(t, λ) = −|qα|
(ρ(λ)ω(t) − λρ̇(λ)(ω(t) + λ))

(λ|qα|+ ρ(λ)(ω(t) + λ))
2 .

By the definition ofρ(λ) in (3.5) we getG(ρ(λ), λ) = 1 for 0 ≤ λ ≤ λmax. Therefore,

ρ̇(λ) = −G2(ρ(λ), λ)

G1(ρ(λ), λ)

with

G1(u, λ) =
∂G(u, λ)

∂u
and G2(u, λ) =

∂G(u, λ)

∂λ
.

The definition ofG in (3.4) implies that

G1(u, λ) = −2

∫ T

0

(ω(t) + λ)3

(λ|qα|+ u(ω(t) + λ))3
|θt|2 dt

and

G2(u, λ) = −2|qα|
∫ T

0

ω(t)(ω(t) + λ)

(λ|qα|+ u(ω(t) + λ))3
|θt|2 dt .
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Therefore, for all0 ≤ λ ≤ λmax and0 ≤ t ≤ T

ρ̇(λ) < 0 and τ1(t, λ) < 0 .

We calculate now the derivative ofΦ as

Φ̇(λ) =

∫ T

0

τ̂ (t, λ) τ1(t, λ) |θt|2dt , (A.1)

where

τ̂(t, λ) =
|qα|τ(t, λ)
‖τλθ‖T

− 1 + τ(t, λ) .

To estimate this term from below note that by the inequlities (3.7)

τ(t, λ)

‖τλθ‖T
≥ τ(T, λ)

τ(0, λ)‖θ‖T
≥ 1

(T + 1)‖θ‖T
.

Therefore,

τ̂ (t, λ) ≥ |qα|
(T + 1)‖θ‖T

− 1 (A.2)

and by the condition (3.14)̂τ (t, λ) > 0 for 0 ≤ t ≤ T and0 ≤ λ ≤ λmax, i.e. Φ̇(λ) < 0.
2

Proof of Lemma 3.3. Taking into account thatτ0(·) ≡ 1 we get

Φ(0) = |qα|‖θ‖T − 1

2
‖θ‖2

T
.

Moreover, condition (3.8) impliesΦ(0) > − ln(1 − ζ). Therefore, in view of (4.17)
and Lemma A.1 we get that the inverseΦ−1(a) exists for0 < a ≤ − ln(1 − ζ) with
0 ≤ Φ−1(a) < λmax andΦ−1(0) = λmax. 2

A.2 Results for Section 3.2

We present some properties ofΦ1(λ) andςφ(κ).

Lemma A.2 The functionςλ(t) is continuously differentiable inλ for all 0 ≤ λ ≤ λ∗
max

with partial derivative

ς1(t, λ) =
∂

∂λ
ςλ(t) < 0 , ≤ t ≤ T .

Moreover, under condition(3.14)the derivativeΦ̇1(λ) < 0 for 0 ≤ λ ≤ λ∗
max

.

Proof. First note that

ς1(t, λ) = − b(t, λ) cα(λ)

(b(t, λ) + cα(λ))
2

(
ω(t)

λ(ω(t) + λ)
− ρ̇1(λ)Ωα(ρ1(λ))

)
(A.3)
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where

Ωα(ρ1) =
ια(ρ1)− ρ1 ψ̇α(ρ1)

ρ1 ια(ρ1)
.

Note that we can represent the numerator as

ια(ρ1)− ρ1 ψ̇α(ρ1) =
̟(y) (1 + y(y − |qα|))− (y − |qα|)

̟2(y)

with y = |qα|+ ρ1. Therefore, the left inequality in (3.24) implies

̟(y) (1 + y(y − |qα|))− (y − |qα|) ≥ (1 + y(y − |qα|))
(
1

y
− 1

y3

)
− (y − |qα|)

=
y|qα| − 1

y3
≥

q2
α
− 1

y3
,

and by condition (3.34) we obtain

Ωα(ρ1) ≥ 0 for ρ1 ≥ 0 .

Let us now calculatėρ1. To this end note that definition (3.25) impliesH(ρ1(λ), λ) = 1
for all 0 ≤ λ ≤ λ∗

max
. Therefore,

ρ̇1(λ) = −H2(ρ1(λ), λ)

H1(ρ1(λ), λ)

with

H1(u, λ) =
∂H(u, λ)

∂u
and G∗

2
(u, λ) =

∂G∗(u, λ)

∂λ
.

The definition ofH in (3.22) implies that

H1(u, λ) = −2

∫ T

0

(ω(t) + λ)2(λ(ψ̇α(u) + 1) + ω(t))

(λ ια(u) + u(ω(t) + λ))3
|θt|2 dt (A.4)

and

H2(u, λ) = −2ια(u)

∫ T

0

ω(t) (ω(t) + λ)

(λ ια(u) + u(ω(t) + λ))3
|θt|2 dt . (A.5)

Taking into account that

ψ̇α(u) + 1 =
1− |qα|+ u̟(|qα|+ u)

̟2(̟(|qα|+ u))
,

we obtain from the right inequality in (3.24)

ψ̇α(x) + 1 ≥ 0 for all x ≥ 0 .

Therefore, for all0 ≤ λ ≤ λ′
max

and0 ≤ t ≤ T

ρ̇1(λ) < 0 and ς1(t, λ) < 0 .
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Let us calculate now the derivative ofΦ1. We obtain

d
dλ

Φ1(λ) =

∫ T

0

η(t, λ) ς1(t, λ)dt , (A.6)

where

η(t, λ) = − ḟα(‖yλ‖T ) ςλ(t)‖yλ‖T
− 1 =

1

̟ (|qα|+ ‖yλ‖T )
ςλ(t)

‖yλ‖T
− 1 .

with ‖yλ‖T = ‖ςλθ‖T . In view of the inequlities (3.27) we obtain

ςλ(t)

‖yλ‖T
=

ςλ(t)

‖ςλθ‖T
≥ ςλ(T )

ςλ(0)‖θ‖T
≥ 1

(T + 1)‖θ‖T
.

Therefore, by the right inequality in (3.24) and the condition (3.14)

η(t, λ) ≥ |qα|+ ‖yλ‖T
(T + 1)‖θ‖T

− 1 ≥ |qα|
(T + 1)‖θ‖T

− 1 > 0 (A.7)

for 0 ≤ t ≤ T and0 ≤ λ ≤ λ∗
max

. 2

Proof of Lemma 3.10. Similarly to the proof of Lemma 3.3 we observe that condition
(3.29) implies

Φ1(0) = −‖θ‖T − lnFα(|qα|+ ‖θ‖T ) > − ln(1− ζ) .

Moreover,Φ1(λ
′
max

) = 0 sinceρ1(λ
′
max

) = 0. This means thatφ∗(0) = λ∗
max

.
In view of Lemma A.2Φ1(·) is strictly decraesing on[0, λ′

max
]. Therefore,Φ−1

1
exists

for all 0 < a ≤ − ln(1− ζ) such that0 ≤ φ1(a) < λ′
max

with φ1(λ
′
max

) = 0. 2
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