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Optimal consumption and investment with
bounded downside risk measures for
logarithmic utility functions

Claudia Kluppelberg and Serguei Pergamenchtchikov

Abstract. We investigate optimal consumption problems for a Blackebes market under uniform
restrictions on Value-at-Risk and Expected Shortfall égdrithmic utility functions. We find the so-
lutions in terms of a dynamic strategy in explicit form, wiican be compared and interpreted. This
paper continues our previous work, where we solved similablpms for power utility functions.

Key words. Black-Scholes model, Capital-at-Risk, Expected Shdrtiadarithmic utility, optimal
consumption, portfolio optimization, utility maximizati, Value-at-Risk
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1 Introduction

One of the principal questions in mathematical finance is the optimal investon-
sumption problem for continuous time market models. By applying resulis &to-
chastic control theory, explicit solutions have been obtained for sor@adgases (see
e.g. Karatzas and Shre\ [9], Kofn][11] and references therein)

With the rapid development of the derivatives markets, together withimieglings
on certain financial products, the exposure to losses of investmentsski@ssets can
be considerable. Without a careful analysis of the potential dangaenwbstment can
cause catastrophic consequences such as, for example, thecrisisrih the “Société
Générale”.

To avoid such situations the Basel Committee on Banking Supervision insL@95
gested some measures for the assessment of market risks. It Iy addepted that
the Value-at-RiskVaR) is a useful summary risk measure (see, Jotfipn [7] or Dowd
(). We recall that the VaR is the maximum expected loss over a giveadroperiod
at a given confidence level. Alternatively, tBgpected ShortfalES) or Tail Condi-
tion ExpectationTCE) measures also the expected loss given the confidence level is
violated.

In order to satisfy the Basel commitee requirements, portfolios haventinotdhe
level of VaR or (the more restrictive) ES throughout the investmenzbor This leads
to stochastic control problems under restrictions on such risk measures

Our goal in this paper is the optimal choice of a dynamic portfolio subjectigka

Second author: This work was supported by the European &clesundation through the AMaMeF programme.
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limit specified in terms of VaR or ES uniformly over horizon time interiall’].

In Kluppelberg and Pergamenshchikov [n][10] we considered thienapinvest-
ment/consumption problem with uniform risk limits throughout the investmernit h
zon for power utility functions. In that paper also some interpretation & &ad ES
besides an account of the relevant literature can be found. Our resffi§] have in-
teresting interpretations. We have, for instance, shown that for pavigy functions
with exponents less than one, the optimal constrained strategies aresrigklesiffi-
ciently small risk bounds: they recommend consumption only. On theargntfor the
(utility bound) of a linear utility function the optimal constrained strategiesmenend
to invest everything into risky assets and consume nothing.

In this paper we investigate the optimal investment/consumption problemdgas lo
rithmitic utility functions again under constraints on uniform versions of VaR BS
over the whole investment horizdm 7']. Using optimization methods in Hilbert func-
tional spaces, we find all optimal solutions in explicit form. It turns out tha optimal
constrained strategies are the unconstrained ones multiplied by sorfieientivhich
is less then one and depends on the specific constraints.

Consequently, we can make the main recommendafiorcontrol the market risk
throughout the investment horiz¢i 7] restrict the optimal unconstrained portfolio
allocation by specific multipliers (given in explicit form{@.4) for the VaR constraint
and in(B.2§)for the ES constraint).

Our paper is organised as follows. In Sec{ipn 2 we formulate the probiéende-
fine the Black-Scholes model for the price processes and presewetith process
in terms of an SDE. We define the cost function for the logarithmic utility fumctio
and present the admissible control processes. We also presenttresuained con-
sumption and investment problem of utility maximization for logarithmic utility. In
Sectiong]3 anfl 3.2 we consider the constrained problems. SHction ®isdléva risk
bound in terms of Value-at-Risk, whereas Sec 4.1 discusses theqummces of a
risk bound in terms of Expected Shortfall. Auxiliary results and prooésparstponed
to Section[4. We start there with material needed for the proofs of botmesg the
Value-at-Risk and the ES risk bounds. In Secfjor) 4.1 all proofs of Sefftican be
found, and in Sectiop 4.1 all proofs of Sectjon]4.1. Some technical &postponed
to the Appendix, again divided in two parts for the Value-at-Risk regimethadES
regime.

2 Formulating the problem

2.1 The model and first results

We work in the same framework of self-financing portfolios as in Kilpprg and
Pergamenshchikov if [ILO], where the financial market is of Bladkefs type consist-

ing of oneriskless bondind severalisky stockson the interval0, T']. Their respective
pricesS, = (S, (t))o<i<r ands; = (S;(t))o<t<r fori =1,...,d evolve according to
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the equations:

dSy(t) = r, Sp(t)dt, So(0) =1,
(2.1)

L o) dW(#), S;(0) > 0.

dS;(t) = S;(t) () dt + S,(t) 327
Here W, = (W,(t),...,W,(t))" is a standardi-dimensional Wiener process i,
r, € R is theriskless interest ratep, = (uq(t),...,u (t))" is the vector ofstock-
appreciation ratesando, = (0,;(t))1<i,j<a is the matrix ofstock-volatilities We as-
sume that the coefficients, )< ,< 7, (i;)g<;<r @and(o,) <, < are deterministic cadlag
functions. We also assume that the matrjxs non degenerated for all< ¢ < 7.

We denote byF, = o{W, ,s < t}, t > 0, the filtration generated by the Brownian
motion (augmented by the null sets). Furthermore|, denotes the Euclidean norm
for vectors and the corresponding matrix norm for matrices and priemetds the
transposed. Fofy,),<,<p Square integrable over the fixed intery&l7] we define
Iyl = (Jfy lu,|> dt)72.

The portfolio processr, = (m, (t), . wd(t))’)0<t<T represents the fractions of the
wealth process invested into the stocks The consumption rate is dendtgg,by. .

Then (see[[70] for details) the wealth procéis)o<.<r is the solution to the SDE

dx, fX(thLyt )dtJrXtytth, Xy =2>0, (2.2)

where
0, =0, "(n,—m, 1) with 1=(1,...,1) e R?,

T
/ 0,2dt < oo.
0

The control variables arg = o/r, € R? andv, > 0. More precisely, we define the

(F)o<t<r-Progressively measurable control process as(y,, v,)+>0, Which satisfies

and we assume that

T T
/ ly, [?dt < 0o and / v,dt < 0o as.. (2.3)
0 0

In this paper we consider logarithmitic utility functions. Consequently, werass
throughout that

T
/(lnvt)fdt<oo a.s., (2.4)
0

where(a)_ = —min(a, 0).
To emphasize that the wealth procefss](2.2) corresponds to somel gootess/
we write X”. Now we describe the set of control processes.

Definition 2.1 A stochastic control process= (v, )o<i<r = ((y;,v;))o<i<7 IS called
admissibleif it is (F,)o<¢<r-progressively measurable with valuesifi x R, , satis-
fying integrability conditions[(2]3)£(3.4) such that the SPE](2.2) haslque strong
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a.s. positive continuous SO|UtiQIX;’)0§tST for which

E (/0 (In(v: X})) dt+ (1nX%)> < 0.

We denote by the class of aladmissible control processes

Forv € V we define the cost function
T
J(z,v) = E, </ In (v, X7) dt + 1nX;) : (2.5)
0

HereE, is the expectation operator conditional & = =.
We recall a well-known result, henceforth called threeonstrained problem

max J(x,v). (2.6)
vey

To formulate the solution we set

16,*

wit)=T—-t+1 and 7, =7 + 5 0<t<T.
Theorem 2.2 (Karatzas and Shreve[]9], Example 6.6, p. 104)

The optimal value of (z, v) is given by

T
T
J(z,v) = J(x,v*) = (T +1)1 t)7, dt.
max J(z,v) = J(z,v7) = ( +)nT+1+/O w(t) T

The optimal control process’ = (y;, v} )<< € V is of the form

* * 1
yt = Ht and Ut = m, (27)

where the optimal wealth proce§X )o<:<r is given as the solution to

AX; = X7 (o + 10 — ) b+ X700, X =2, (28)

which is

. T+1-—t b L
X = $T7+1 exp(/0 7, du + /0 HUqu) )

Note that the optimal solutior (2.7) of problefn {2.6) is deterministic, andevete
in the following by/ the set of deterministic functions = (y,,v,)o<:<7 satisfying

conditions [2.8) and (3.4).

For the above result we can state that

max J(z,v) = max J(z,v).
vey veu
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Intuitively, it is clear that to construct financial portfolios in the markedeid(2.1) the

investor can invoke only information given by the coefficiets ,«,«,, (1;)o<i<r

and(o,) (<, Which are deterministic functions. o o
Then forv € U, by 1td’s formula, equation| (3.2) has solution

Xtu — mgt(y) eRt_‘/t+(y)9)p7

with R, = fo r,du, V, = fo v, du, (y,0), = fg y! 0, du and the stochastic exponential

¢ 1t ,
E(y) :exp(/0 y, dw, — 5/0 [y du).

Therefore, forw € U the proces$Xt”)0St§T is positive, continuous and satisfies

sup E[InX| < oo.
0<t<T

This implies that/ V. Moreover, forv € U we can calculate the cost functidn {2.5)
explicitly as

J(:z:,y)(T+1)lnx+/oTw()<rt+yt |yt|2) dt

T
+/ (Inv, — V,)dt — V.. (2.9)
0

3 Optimization with constraints: main results

3.1 \Value-at-Risk constraints

As in Kluppelberg and Pergamenchtchik$v][10] we use as risk messie modifica-
tions of Value-at-Risk and Expected Shortfall introduced in Emmerppédiberg and
Korn [H], which reflect the capital reserve. For simplicity, in order toidwnon-relevant
cases, we consider only< o < 1/2.

Definition 3.1 [Value-at-Risk (VaR)]
For a control process and0 < a < 1/2 define thevalue-at-Risk (VaR)y

VaR,(v,a) :=zeft —Q,, t>0,

where fort > 0 the quantityQ, = inf{z > 0 : P (X} < z) > a} is thea-quantile
of XV.
t

Note that for every € U we find

Q, = v exp (R Vi + (0.0), — 3wl - |qa|||y||t) , (3.)
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whereg,, is thea-quantile of the standard normal distribution.
We define thdevel risk functiorfor some coefficient < ( < 1 as

¢ = Cxel, te0,T]. (3.2)

The coefficient{ € (0,1) introduces some risk aversion behaviour into the model.
In that sense it acts similarly as a utility function does. Howeyéags a clear interpre-
tation, and every investor can choose and understand the influenaerigkibound,
as a proportion of the riskless bond investment.

We consider the maximization problem for the cost functipn] (2.9) ovetesiies
v € U for which the Value-at-Risk is bounded by the level functipn](3.2) over th
interval[0, 77, i.e.

max J(z,v) subjectto sup VaR,(v,2) <1. (3.3
veu 0<t<T Ct
To formulate the solution of this problem we define
T 2
G(u,\) = / (W®) + )
o (Aol +u(w®)+ X))

Moreover, for fixed\ > 0 we denote by

10,7 dt, w>0,1A>0. (3.4)

p(A) =inf{u >0 : G(u,\) <1}, (3.5)
if it exists, and sep(\) = +oco otherwise. For a proof of the following lemma speA.1.

Lemma 3.2 Assume thafy,, | > ||0|| > 0 and

kR (a2 - 1012) + K2

0 S >\ S )\max - )
a2 — 119113

wherek, = [|y/wb|2 andk, = [|wf||%. Then the equatiod(-, \) = 1 has the unique

positive solutiorp(X). Moreoverp(A\) < ocoforall 0 <X <A .., andp(A,,.) = 0.
Now for A > 0 fixed and0 < ¢ < T we define the weight function
P (W) + 1)
7 (t) = . 3.6
AU PR ESTOV IR 50
Here we set, (1) = 1 for p(\) = +o0. Itis clear, that for every fixed > 0,
0<n(T)<n(t) <1, 0<t<T. (3.7)

To take the VaR constraint into account we define
1
2(A) = g, |llmx0ll7 + §Hn9H2T — lv76l7-

Denote by®~! the inverse ofp, provided it exists. A proof of the following lemma is

given in[A.
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Lemma 3.3 Assume thaf6||, > 0 and
0<(¢<1— e lallflrton/2. (3.8)
Then for all0 < a < —In(1 — ¢) the inversed~!(a) exists. Moreover,
0<®d a)< A, for 0<a<—-In(1-¢)

and®1(0) = A s

Now set
o) = B! (mi_’g), 0<r<c, (3.9)
and define the investment strategy
gf = 9167_(25(&) (t) 5 0 <t< T. (310)

To introduce the optimal consumption rate we define

K
= A1
Uy T —ir (3.11)
and recall that for
T
S

the functionv;” coincides with the optimal unconstrained consumption réte¢) as
defined in [2]7).
It remains to fix the parameter To this end we introduce the cost function

(k) = (1 — &) + Tk + /OTw(t) 0, (Td)(n)(zs) - %T;(ﬁ) (t)) &, (3.12)
To choose the parametewe maximizel:
v =7(¢) =argmax_, _ T'(x). (3.13)
With this notation we can formulate the main result of this section.

Theorem 3.4 Assume thaf{d||, > 0. Then for all¢ > 0 satisfying(B-8) and for all
0 < a < 1/2 for which

|9l = 2(T+ 1) |10l (3.14)
the optimal value of/(z, v) for problem(B.3)is given by
J(z,v") = A(z) + T'(7(¢)) (3.15)

where

T
Alx)=(T+1)Inz + / wt)yr,dt =T InT (3.16)
0
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and the optimal controb* = (y;, v} )o<,<r IS Of the form

y; =y and v =v]. (3.17)

The optimal wealth process is the solution of the SDE

dx; = X/ (r, — v + (y:)/ﬁt)dt + X7 (y:)/th, Xy =,
given by
T— t .
X; =&y %e“*vﬂ“y e 0<t<T.
The following corollary is a consequence pf {2.9).

Corollary 3.5 If ||0|| = 0, thenforall0 < ¢ < 1andforall0 < o < 1/2

* * o
y; =0 and v} =]

with v = argmax_, _. (In(1 — k) 4+ TInk) = min(ky,¢). Moreover, the optimal
wealth process is the deterministic function
T — mi t
X: - mlg—‘(n(bg) eRf,
In the next corollary we give some sufficient condition, for which theegtment
process equals zero (the optimal strategy is riskless). This is the firgimakcase.

0<t<T.

Corollary 3.6 Assume thaftd||,» > 0 and that(3.8)and (8.14)hold. Define

10|, = sup 0, <oo.

0<t<T

oo

If0 < ¢ < ryand

«T+nw&>7 1)

1—OT ¢
theny = ¢ and the optimal solution” = (y;, v; )<< IS Of the form

maza+anTO+

y; =0 and v::vf.

Moreover, the optimal wealth process is the deterministic function
T —(t

X == TC el?

Below we give some sufficient conditions, for which the solution of optitzra

problem [3.B) coincides with the unconstrained solutjon] (2.7). This is ¢eensl
marginal case.

i, 0<t<T.

Theorem 3.7 Assume that
C>1- %e—malueuﬁueuim , (3.19)

Then for all0 < a < 1/2 for which|q,| > [|0||. the solution of the optimization

problem@B.3)is given by(E-1)<E2-3)
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3.2 Expected Shortfall Constraints
Our next risk measure is an analogous modification oBkgected ShortfallES).

Definition 3.8 [Expected Shortfall (ES)]
For a control process and0 < « < 1/2 define

m,(v,a) = EI(X;’|X;’§ Qt) , t>0,

whereQ), is thea-quantile of X" given by (31L). TheExpected Shortfall (ES$ then
defined as
ES,(v,a) = xzef'' — m,(v,a), t>0.

Again forv € U we find
my(v,a) = @ F, (Jgq] + [lyll,) eVt @0,

where

— 1 - —t%/2
Fo(2) = e / e 24y (3.20)
We consider the maximization problem for the cost functipn] (2.5) ovetesies
v € U for which the Expected Shortfall is bounded by the level functjor] (3/2) the
interval [0, 7], i.e
max J(xz,v) subjectto sup ESwa) <1. (3.21)
veld 0<t<T Ct

We proceed similarly as for the VaR-coinstraint probl¢m](3.3). Define

T
Gy, ) = / WOFNT peg wsorz0. (322
0 (Ag(u) +u(w(t) + X))
where . -
Ly(u) = ————— —u with w(y)=e*? / e~ dt 3.23
) = 7T () y (3.23)
It is well-known and easy to prove that
<@ <, y>0. (3.24)
y vy Y

This means that, (u) > |q,| for all v > 0, which implies for every fixech > 0 that
G (u, A) < G(u, A) for all w > 0. Moreover, similarly to[(3]5) we define

pr(A) =inf{u>0: Gy(u,\) <1}. (3.25)

SinceH has similar behaviour &, the following lemma is a modification of Lemrhaj3.2.
Its proof is analogous to the proof of Lemina]3.2.
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Lemma 3.9 Assume thalty, | > ||¢|| > 0 and

Doy Ry (20— 1917) + B
=0 0200~ 01

wherek, andk, are given in Lemmp 3.2. Then the equatioy(-, \) = 1 has the unique
positive solutiorp, (A). Moreover,p; (A\) < oo for0 <A <X andp; (X ) =0.

max

Now for A > 0 fixed and0 < ¢ < T we define the weight function

p1(A) (w(t) +A)
Ao (pi (V) +p (N (w(t) +A) (3.26)

and we set, (-) = 1 for p,(\) = +oo. Note that for every fixed > 0,

a(t) =

OSC,\(T)SC,\(t)Sl, 0<t<T. (3.27)
To take the ES constraint into account we define

@, () = =llVa0l7 = F, (la] + [x0l) - (3.28)

Denote by® ! the inverse ofp, provided it exists. The proof of the next lemma is
given in Sectiof A2

Lemma 3.10 Assume thaé||,, > 0 and
0<¢<1=F, (lgal +16]7) elVr. (3.29)

Then for all0 < a < —1In(1 — ¢) the inversed; ! exists and) < & '(a) < A, for
0<a<-—In(l-¢)and®;'(0) =\

Now, similarly to (3.F) we set

@@j:@f(mi_Z), 0<k<C, (3.30)

and define the investment strategy
Ut =0y (), 0<t<T, (3.31)

We introduce the cost function
r 2 1 2
(k) =In(l—k)+Tlnk+ w(t) 16, S, (x) (t) — §§¢1(K)(t) dt.  (3.32)
0
To fix the parametex we maximizel';:

1T=N (C) = argma)égﬁgg Fl(ﬁ) . (333)

With this notation we can formulate the main result of this section.
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Theorem 3.11 Assume tha¢|| > 0. Then for all¢ > 0 satisfying@.29)and for all
0 < a < 1/2 satisfying
90| = max(1,2(T' + 1)|[0]|7) (3.34)

the optimal value of/ (x, v) for the optimization probler(.23)is given by

J(w,v") = Alz) + Ty (1(Q)

where the functiont is defined inB.1§)and the optimal controb* = (y,v) <4<
is of the form (recall the definition of* in (8.13) T

yi=7"" and v =uv]". (3.35)

The optimal wealth process is the solution to the SDE

dx; = X (r, — o] + (y:)'et)dt + X/ (yt*)'th, X =u,

given by

T— t .
X* = mgt(y*)+(c)eRt_‘/t+(y 79)t, 0<t<T.

Corollary 3.12 If ||0]| = 0, then the optimal solution of proble8.2])is given in
Corollary[3.}.

Similarly to the optimization problem with VaR constraint we observe two malrgina
cases. Note that the following corollary is again a consequende pf (2.9)

Corollary 3.13 Assume thald||r > 0 and that(B.29)and (B.34)hold. Thery, = ¢
and the assertions of Corollaty 3.6 hold with replaced byg;.

Theorem 3.14 Assume that 6]2./2?
. NO!!
o 16112,
¢> 1= Folldal + 110ll7) e (3.36)
Then for allo < « < 1/2 for which|g, | > max(1, ]/ ;) the solution of problen3.2])
is given by(@.1R.8).

3.3 Conclusion

If we compare the optimal solutionf (3]17) afid (B.35) with the uncdnstizoptimal
strategy [2]7), then the risk bounds forces investors to restrict theistiment into the
risk assets by multiplying the unconstrained optimal strategy by the coatfiaiiven
in (B.10) and[(3.13) for VaR constraints arjd (3.30) dnd {3.33E®Iconstraints. The
impact of the risk measure constraints enter into the portfolio proceasgihtbe risk
level ¢ and the confidence level
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4  Auxiliary results and proofs

In this section we consider maximization problems with constraints for the twaste

of (29)
I(V):= /0 (Inv, — V)dt and H(y):= /0 w(t) (yé@t - %|yt|2) de. (4.1)

We start with a result concerning the optimization/¢f), which will be needed to
prove results from both Sectiops]3.1 4nd 3.2.

Let W0, T] be the set of differentiable functiorys : [0,7] — R having positive
cadlag derivativg’ satisfying condition [(2]4). Far > 0 we define

W,,[0,7] = {f € W[0,T] : f(0)=0 and f(T)=b}. (4.2)

Lemma 4.1 Consider the optimization problem

I(f). 4.3
fevglﬁw (f) 4.3

The optimal value of is given by
b

e
I*(b) = I =I(f"Y)= -ThhT —Tlnh —— 4.4
(0) P (f) =1(f") n n— (4.4)
with optimal solution
Teb
* =n————— <t<T. 4.
FO=trs g, 0Sts (4.5)

Proof.  Firstly, we consider the optimization problefn {4.3) in the sp&é@, 7 of
two times continuously differentiable functions g7

max I(f),

fEW, ,[0,71NC?[0,T]
By variational calculus methods we find that it has solutfor] (4.4); i.e.

max I(f) =I(f"),
FEW, ,[0,TINC2[0,T]
where the optimal solutiofi* is given in (4.5).
Take nowf € W, ,[0, 7] and suppose first that its derivative
0<t<T

LetY be a positive two times differentiable function jprl, 1] such thatf_l1 T(z)dz =
1, and sefl'(z) := 0 for |z| > 1. We can take, for example,

1

o omd o0 (7

—v

it |2 <1,

T(z) =
0 it 2> 1.
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By setting f(t) = f(0) for all ¢t < 0 and f(t) = f(T) for all t > T, we define an
approximating sequence of functions by

v, (t) = n/R T(n(u—t)) f(u)du.

Itis clear that(v, ), -, € C2[0,T]. Moreover, we recall thaf is cadlag, which implies
that it is bounded of0, 77; i.e.

sup f(t) = fmax < 0,
0<t<T

and its discontinuity set has Lebesgue measure zero. Thereforeghene€v,,),,-,
is bounded; more preceisly,

O<-}éminS Un(t) S fmax < o0, OStSTv (46)

andv, — f asn — oo for Lebesgue almost allc [0, T]. Therefore, by the Lebesgue
convergence theorem we obtain

T

lim v, (t) — f(t)|dt = 0.

n—oo 0

Moreover, inequalitied (4.6) imply
[Inv,| <In (max(fmax, 1)) + |In (min(fmin, 1)) |

Therefore,f,, () :fo v, (u) du belongs ta’, N C?[0, 7] for b, fo L (w) du. Itis
clear that

lim I(f,) = I(f) and lim b, =b.

n—oo n—oo
This implies that
I(f) < I7(b),

whererl*(b) is defined in[(4]4). '
Consider now the case, wheie,_, ., f(t) = 0. For0 < ¢ < 1 we consider the
approximation sequence of functions

f5(t) = max(§, f(t)) and f(;(t):/ f(wdu, 0<t<T.
0

Itis clear thatf; € I', for b5 = f f5(t) dt. ThereforeI(fs) < I*(bs). Moreover, in
view of the convergence
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we getlimsup;_,, I(fs5) < I*(b). Moreover, note that

I(f;5 / (Ind — In f(t )dt+T/ (6—f(t))dt
As A

)

/mf _dt + T A(Ay),
As

whered; = {t € [0,T] : 0 < f(t) < 0} andA(4,) is the Lebesgue measuere of
Ajs. Moreover, by the definition of th&v [0, 7] in ({.2) the Lebesgue measure of the
set{t € [0,T] : f(t) = 0} equals to zero and|, (In f,)_ dt < co. This implies that
lims_o A(A;) = 0 and hence

I(fs) =1(f),

6—0
ie. I(f) < I*(b). O

In order to deal withH as defined in[(4]1) we need some preliminary result. As
usual, we denote by,[0,7] the Hilbert space of functiong satisfying the square
integrability condition in[(2]3).

Define fory € £,[0,T] with ||y|l- > 0

Y, = v/ llylly and 1, (k) = lly + Az = lylr — @ h)p - (4.7)

We shall need the following lemma.

Lemma 4.2 Assume thay € £,[0,7] and||y||; > 0. Then for everyr € £,[0,T] the
functioni, (k) > 0.

Proof. Obviously, ifh = ay for somea € R, theni, (k) = (|1 +a| =1 —a)lly|[+ > 0.
Let nowh # ay for all a € R. Then

2(y, h)r + IRl7 (7 1)y = 127 — @, h)r (@, h)p + 1, (h))
ly + Rl + Nyl " Iy + Al + llyllr

l,(h) =
It is easy to show directly that for all

ly + hllz + llylle + @, h)r >0

with equality if and only ifh = ay for somea < —1.
Therefore, ifh # ay, we obtain

hl|% — (g, h)2
g -@ ma §
o+ kllz+ Tolle + @ )z

Ly(h) =
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4.1 Results and proofs of Sectiof 3.1

We introduce the constraidf : £,[0,7] — R as

1
K(y) = 5lvllz + laal 1yl — (v,60)7 (4.8)

For0 < a < —In(1 — ¢) we consider the following optimization problems

max H(y) subjectto K(y)=a (4.9)
YyEL,[0,T]

Proposition 4.3 Assume that the conditions of Lemma 3.3 hold. Then the optimization
problem(@.9) has the unique solution” = 7 = 67 (t) with A, = = *(a).

Proof.  According to Lagrange’s method we consider the following unconstiaine
problem
Uy, A 4.10
jonax (¥, A), (4.10)
where¥ (y, \) = H(y) — AK (y) andX € R is the Lagrange multiplier. Now it suffices
to find some\ € R for which the problem[(4.10) has a solution, which satisfies the
constraint in [4)9). To this end we represénas

T / 1
W) = [ )4 (10~ ) & = Mol
0

It is easy to see that fox < 0 the maximum in[(4.30) equalscc; i.e. the problem
(.9) has no solution. Therefore, we assume that0. First we calculate the Fréchet
derivative; i.e. the linear operatdr, (-, A) : £,[0,7] — R defined forh € £,[0,7] as

Y 6—0 1)

For|ly|l+ > 0 we obtain

D, (hA) = / ", (60 by
0

with
dy(t,A) = (w(t) + A) (0, — y,) — Mdal Y, -
If ||yl = 0, then

T
D, (1 \) = / (w(t) +X) 0, hy ot — Mg, | |7
0

Define now
Ay(h, AN =U(y+h,\)—T(y,\) — Dy(h, A). (4.11)
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We have to show thah, (h, A < 0 forall y,h € £,[0,7]. Indeed, ifl|y[|; = 0 then

A, (k) = —% /T (w(t) + N b2t < 0.
0

If |yl > 0, then

Ay (hA) == /T (w(t) + A) 7y |* dt = Xgy |1, (R) <0,
0

|~

by Lemma[4]2 for all > 0 and for ally, h € £,[0, T7].
To find the solution of the optimization proble .10) we have to find £, [0, 7]
such that

D,(h,\)=0 forall heL,[0,T]. (4.12)

First notice that fofi6]||~ > 0, the solution of[(4.]2) can not be zero, sincefer 0 we
obtainD,(h,\) < 0 for h = —f. Consequently, we have to find an optimal solution to
(B.12) fory satisfying||y|l;- > 0. This means we have to find a non-zgre £,[0, 7]
such that

d,(t,\) =0.

One can show directly that for < XA < X .. the unique solution of this equation is
given by
y;\ = 0,7,(t), (4.13)

wherer,(t) is defined in|(3J6). It remains to choose the Lagrage multipliso that it
satisfies the constraint in (4.9). To this end note that

Under the conditions of Lemnja B.3 the inversebagxists. Thus the functiop*= # 0
with A, = ®~'(a) is the solution of the problenf (4.9

We are now ready to proof the main results in Sedtioh 3.1. The auxiliary éname
proved infA.]L.

Proof of Theorem[3.4. In view of the representation of the cost functidte, ) in
the form [2.p), we start to maximiz&(z, ») by maximizing! over all functionsy’. To
this end we fix the last value of the consumption process, by setting — e~V=. By
Lemma[4.]L we find that

I(V)<I(V®) =TT + Tk,

where

t

V;‘:/ w(t)dtzlnT—, 0<t<T. (4.14)
0

Define now

1
Liv) = (v,0); = 5lyllf =V, = laal lyll;, 0<t<T,
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and note that conditior] (3.3) is equivalent to

inf L,(v) >In(1-¢). (4.15)

0<t<T
Firstly, we consider the bound ip (4]}15) only at time 7
Lp(v) 2 In(1-¢).

Recall definition [4]8) of and choose the functiori asV* as in (4.14). Then we can
rewrite the bound fo(v) as a bound fo# and obtain

1—k
<k<C(.
¢ 0SRsC

To find the optimal investment strategy we need to solve the optimization pncglé)
for0 <a <In((1—&)/(1—¢)). By Propositio] 4]3 fob < a < —In(1 - ¢)

K(y) <1In

max H(y)=H(y") :=C(a), 4.16
YELL[0,T], K(y)=a ) (") (a) ( )

where the solutiorj® is defined in Propositioh 4.3. Note that the definitions of the
functionsH andy® imply

T
C(a) :/ w(t) (T,\a (t) — %Tfa (t)) |9t|2dt with A\, = <I>_1(a).
0
To consider the optimization problerp (4.9) for= 0 we observe that

1
K(y) = lyllr (laa] = 10ll2) + 5llyll7 > 0,

provided thatiq,| > ||6]|, (which follows from [3.1})). Thus, there exists only one
function for whichK (y) = 0, namelyy = 0. Furthermore, by Lemmfa3,2,_,.) = 0
and, therefore, definitiof (3.6) implies

. ()=0, ylwex=0 and ®(\,,,)=0. 4.17)

max
This means thah,,,, = ®~1(0) andy® (@ = 0; i.e. y* with A\, = & (a) is
the solution of the optimization problerp (4.9) for all< a < —In(1 — ¢). Now we
calculate the derivative a@f'(a):

d_‘lc(a) =, /0 w(t) (1 =7, (1) 16,1 (82A(t)lx—xa ) dt,

Sincel, = 1/®(),), by Lemm& AL, the derivative af(a) is positive. Therefore,

11—k
max Cla) =C{In ,
0<a<In((1-k)/(1-()) (@) ( 1- C)
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and we choose = In((1 — ) /(1 — ¢) in ( ).
Now recall the definitions[(3.]10) an 11) and set= (7, v/")y<,<r- Thus for
v €U with V, = —In(1 — k) we have o

J(x,v) < J(x,v") = A(x) + T'(K).

Itis clear that[(3.93) gives the optimal value for the parameter
To finish the proof we have to verify conditioh (4.15) for the strategydefined in
(B-17). Indeed, we have

* * 1 * * ‘ *
L) = 00 = 5 = lael ol — [ o
0

¢ ¢
:—/ g(u) du —/ vids,
0 0

*

o) =710, (Jal () = 14 F ) and (1) =

where
k
Ty

2/ ()06, 2 ds

We recallg(x) from (3.9) andk; from @B.13), then
=1 (t) with v, = (7).
Definition (3.6) implies

() > —u (T) 140 > ! .
~ 27, (OO0l T 2010l A+ T +vy) ~ 2[0llp (1 +1T)

Therefore, condition[(3.14) guarantees tha) > 0 for ¢ > 0, which implies
L,(v") = Lyp(v*) =In(1 - ().
This concludes the proof of Theordm|3.

Proof of Corollary $.6.  Consider now the optimization problerh (3.13). To solve it
we have to find the derivative of the integral jn (3.12)

E(k) = /OT (t) 10,7 (qu(n (t) — 174%(“)@)) dt.

Indeed, we have with(x) as in (3.D),

g 0
/0 DI (1= Tty (1) (1)

Defining, (t, o(x)) := 228 |,_, ) we obtain

aa To(m) (t) = T1(8, (K)) % ¢(K) - (4.18)
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Therefore,

B(r) = ——— B(6(x))

1—k

with
ST w02 (1 =) (¢, A e
Dd(N) '

B(A) =

Define7(t, \) := |qa|7a(t)/||7A0]7. Then, inview of LemmBAl1, we have(t, \) < 0
and, therefore, taking representatl-A 1) into account we obtain

S w ()10, (1= 7(t, X)) |y (£, A)] ot |
Sy R I (80

Moreover, using the lower bounfl (A.2) we estimate

B()) =

(1+7)202, [16]l7
|90l = (T + 1) [10]]7

B()) < = Binax - (4.19)

Condition (3.1B) foi0 < ¢ < &, implies that

By < <11> T-1.
¢

Thus for0 < x < ¢ < K, We obtain

ey > L 1

K 1—&

1
1-¢

(1+B (1 4+ Bmax) > 0.

max) —_—

f\rlﬂ

This impliesy = ¢ and, thereforea(y) := In((1 —v)/(1 — ¢) = 0, which implies
also by Lemmd_3]3 that(a(y)) = A,.... Therefore, we conclude fronf (4]17) that

max

yr=m, ()0, =0forall0<t<7T.0

Proof of Theorem It suffices to verify condition[(4.]5) for the strategy =
(v}, with y¥ = 0, andv; = 1/w(t) fort € [0,7]. Itis easy to show that
ib)

condltlon |mpI|es thaLT( ) > In(1 — ¢). Moreover, for0 < ¢ < T we can
represent., (v
t t
L,(v") = —/ g:ds—/ v ds,
0 0
where

o (14al ) A <|q | ) 16,
g5 = 1 > | >0
' <|9||t 2 161l 2

since we have assumed that| > ||0||r. Therefore,L,(v*) is decreasing ir; i.e.
L,(v*) > Lp(v*) forall 0 < ¢ < T. This implies the assertion of Theor¢m|3.7.
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4.2 Results and proofs of Sectiofi 3.2

Next we introduce the constraint

Ky (y) = =,0)7 — fo (l¥llr) (4.20)

with f,(z) := In F, (|¢a| + =) and E, introduced in [3.20).
For0 < a < —1In(1 — ¢) we consider the following optimization problems

H subjectto K =a. 4.21
jonax (y) j (y)=a (4.21)

The following result is the analog of Propositipn|4.3.
Proposition 4.4 Assume that the conditions of Lemma[3.10 hold. Then the optimiza-
tion problem(f.21)has the unique solutiogy = ;" = f;cx,  (t) with \, , = & (a).

Proof. As in the proof of Propositioh 4.3 we use Lagrange’s method. We centie
unconstrained problem

o A 4.22
yelgjé(,T] 1o ( )

whereU, (y,\) = H(y) — AK,(y) and\ > 0 is the Lagrange multiplier. Taking into
account the defining), in (¢.20), we obtain the representation

T , w(t
) = [ (408~ ) d AL ol
0
Its Fréchet derivative is given by

. Ui (y+0h,A) — U (y, A
DLy(h’; )\) — }ER) 1( 6) 1( ) )

It is easy to show directly that fdjy|| > 0

T
l%ﬂmﬂz/)wm@Jme,
0

where .
dy o, (t,A) = (W) + )0, —w(t) y, + Mo (Iyllr) Y,

andf, (-) denotes the derivative df,(-).
If |lyll- = 0, then

T .
Dwmxra/<ww+»%mw+xgmmwp
0

We set now
Al_’y(h, AN =", (y+h,A) =T (y,\) — Dl_’y(h, A, (4.23)



Optimal consumption and investment 21

and show that\, | (h,A) < 0forally,h € £,[0,7]. Indeed, iff|y[|; = 0, then
1 T
Ay, (hN) = -5 / w(t)|h|?dt < 0.
0
Let now ||yl > 0 andy = y/|ly||r. Then
I 2 4
Ary(hX) = —3 ; w(t) [h,|"dt + Ay, (h),

where

01,y (1) = foly +Rlix) = £ullyllz) = fulllylr) @ h)p -

Moreover, by Taylor’s formula and denoting iy the second derivative of , we get
. 1 .
014(h) = fallyllr) by (h) + 5 fo (9) (ly + Allr — lyllr)*
wherel, (-) is defined in[4]7) and

win(([yllz, [y + 2llr) <0 <max((lylz, [y + hllz) -
Recalling the definition of> in (B-23), the derivatives of,, are given by

! and fa(x) == ! _;21(2(;1)

The right inequality in[(3.34) and Lemnfa]4.2 imply that  (h, \) < 0 forall A > 0
andy,h € L,[0,T]. The solution of the optimization proble@ 22) is givenipy
L5[0,T] such that

fulw) = - (4.29)

w(y)

Dy ,(h,A)=0 forall he L,[0,T]. (4.25)

Notice that for||0| - > 0 the solution [(4.35) can not be zero, sincegjcu& 0 we obtain
D, ,(h,\) < 0for h = —0. Therefore, we have to solve equatign (4.25) fowith
HyHT > 0, equivalently, we have to find a non-zero functionCif{0, 7] satisfying

dy ,(t,A) =0.
One can show directly that for< A < \* the solution of this equation is given by
y =), (4.26)

whereq, (¢) is defined in[(3.36). Now we have to choose the parametersatisfy the
constraint in[4.31). Note that

Ky = &, (V).

Under the conditions of Lemn{a_3]10 the inversebgfexists. Therefore, the function
y*« # 0with A, = ®7'(a) is the solution of the optimization problefn (4.21).
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Proof of Theorem[3.1]L. Define
L) =(y,0), = Vi + fo(lyl), 0<t<T, (4.27)

with £, defined in [3.28).
First note that the risk bound in the optimization probl¢m (3.21) is equitéden

Lt T0) = I (1-0). (4.28)

As in the proof of Theorerh 3.4 we start with the constraint at tiraeT:
Ly(v) > In (1-¢) .

Taking the definition ofi, in (B.20) into account and choosing = V* as in (4.14)
we rewrite this inequality as

1—
K (y) Slnl—’;, 0<Kk<C.

To find the optimal strategy we use the optimization problgém ]4.21), extgritim
range ofa to 0 < a < In((1 — x)/(1 — ¢). In Propositior] 4]4 we established that for
each0 < a < —1In(1 — ()

H(y) = Hg" ') = C(a7" 4.29
el 0K (5)=a (v) @ ) (@ '(a)), (4.29)

wherey ! is defined in[(4.36) and

o= | " ule, (50 5200 @

To study the optimization problenh (4]21) for= 0 note that
Kl(y) > kmin(”y”T) with kmin(x) = 7$||9HT - fa(z) ,quadx > 0.

Moreover,
1

Fnin(®) = ST D)

and by the right inequality in[(3.p4) we obtain far,| > ||0]|,> (which follows from
condition (3.14))

—10ll7, quadz >0,

kmin(‘r) Z |qa| +x— |9HT > quuadm Z Oa .

Thereforek,,, (z) > k,;,(0) = 0 forall z > 0 andk,_; () = 0 ifand only if z = 0.
This means that only = 0 satisfiesk’, (y) = 0. Moreover, in view of Lemm# 3.9 and

Lemmg3.1[0, as in the proof of Theor§m 3.4, we obfair- 0. Therefore, the function

5) is the solution of[(4.31) for ald < a < —In(1 —¢).
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To choose the parameter< a < In((1 — x)/(1 — ¢) we calculate the derivative of

C(®'(a)) as

d— _1 T 5 partial
0@ @) = g @ [ @B (1 s 0) RO 0
We recall that

d 1 d

— P (a) = ———— with T (a) = afbl(a).

Therefore, by Lemmf A2, the derivative é@(@;l(a)) > 0, which implies that

C(®; (a)) = C(@] " (m 1_’;) :

max
0<a<In((1-x)/(1-C)

Soin (4.2P) we take = In((1 — x)/(1 — ¢).
Recalling the notatiofy” = <5 (. (t) from @:3}) we ser” = (, , vF),<, 7. Then,
forv e U with V, = —In(1 — k), o

J(x,v) < J(z,7%) = A(x) + T (k).

Itis clear that[[3.33) gives the optimal value for the parameter
To finish the proof we have to verify conditioh (4.28) for the strategyas defined in

(B-3%). To this end, withp(x) = @' (In((1 — x)/(1 - ())), we set

* * g*
St = So, (t), ¢, = ¢71('71) and ~*(t) = 2||§:9H :
t

With this notation we can represent the functigrir*) in the following integral form

t t
L,(v") = —/ 9" (u) du —/ vids,
0 0

where Bt ()

=g (250 1) witr 5=, (ool
Note that definition[(3.26) and the inequaliti¢s (B.27) imply

. <5, (1) - 1+ ¢,

1
t) > > > .
26, (01011, — 20101l L+ T+ ¢y) — 2[0llp (1 +T)
Moreover, from the right inequality irf (3]24) we obtain

By > |gal + 11570l > 190l -

- 1
@ ([[<*0],)
Therefore, condition[(3.}4) implies that(¢) > 0, i.e.

Li(*) = Ly(w') = (1 = Q).
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This concludes the proof of Theordm 3.11.

Proof of Corollary §.13.  Consider now the optimization problerh (3.33). To solve
this we have to calculate the derivativeoiin (B.32). We obtain

T
L Bw) = [ et a-so) s

We recall from [3.30) thap, () = ®;'(In{=£) and define the partial derivative
Gt A) = 8/\9\( ). Then

%“t K) = st ¢1(K) g d ACE (4.30)
Therefore, | 1
g E(R) = =7 B(®'(x))
with .
E()\) _ fo w(t)|t9t|2 (1 — g/\(t)) gl(ta)\) dt

b))
By Lemmal[A2.¢, (t,\) < 0, therefore, taking representatidn (A.6) into account, we
obtain .
B = Jo w®)]6,? (1= (t)) la(t, >\)|dt
Jin(t ) [sq (8, 2)] dt
Moreover, with the lower bound (4.7) we can estimate\) as in in (4.1P), i.e.

B(\) < Bax

The remainding proof is the same as the proof of Corolfary] 3-1.3.

Proof of Theorem [3 . We have to verify condition[(4.28) for the strategy =
andv! = 1/w(t) fort € [0, T7.

(W7 v} )o<e<r With y7
First rfote that condltlor-6) implies
Ly(v*) 2 In(1 - Q).

Moreover, for0 < ¢ < T we can represent the functii@(y*) as

t t
L) = 102 + 2,100 = v; = = [ 1zds— [ uds,
0 0

1
UV=(————11)10,%.
= (S 1)
Therefore, by the right inequality ifi (3]24) we obtain

> (gl + 101, = 1) 10, > (g0 — 1) 6,*

where
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and by condition4) we gét > 0 for 0 <t < T, therefore L, (v*) is decreasing in
ti.e.for0<t<T
L") 2 Ly(v") 2 In(1 - Q).

This concludes the proof of Theordm 3.12

5 Appendix

A.1 Results for Sectiorf 3]1

Proof of Lemma[3.:2. SinceG(u, \) is for fixed A decreasing to 0 in, equation
G(u,\) = 1 has a positive solution if and only (0, A) > 1. But this is equivalent
to ko + 20k — A?(|qa|? — ||0]-T2) > 0, which gives the upper bound for More-
over, taking into account that (0 = 1 we obtain through the definitiof (B.5)

p()\max) - 0 O
Next we prove some properties dfandr,,.).

? de)

Lemma A.1 The functionr,(¢) is continuously differentiable in for 0 < A < A ..
with partial derivative

7t A) = %T)\(t)<0, 0<t<T.

Moreover, under the conditiof8.14)the derivatived(\) < 0for0 < A < A_...

Proof. First note that

() = —jq | PO = W) <>+§>>_
(Aol + pAN)(w(t) +A))
By the definition ofp()\) in (.3) we geG(p(\),\) = 1for0 < A < A_._. Therefore,
=)
with
G = 280N ang G ) = acg;, N

The definition ofG in (B.4) implies that

T N :
G =2 [ o g

and

B T OB N
Gy, )) = 2], / STl ooy .
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Therefore, foralD < A< A . and0 <t <T
p(A) <0 and 7 (t,\) <O0.

We calculate now the derivative @fas

T
B()) = / 2t A) 7y (1) (6, A1)
0
where 078 0)
N 4., |7(t,
T, N) = —=2———= —1+4+7(t,]N).
) = 2ol (&)

To estimate this term from below note that by the inequlified (3.7)

T(t, \) - (T, \) 1
70l = 70,0l — (T + 1)I6]l7
Therefore,
- g,
PN > ol (A.2)
N 2 T T,

and by the condition] (3.14)¢, \) > 0for0 <¢ < Tand0 < A < A
O

i.e. d(\) < 0.

Proof of Lemma[3.3. Taking into account thaty(-) = 1 we get

1
®(0) = lg 101l = 511617

Moreover, condition [(3]8) implie®(0) > —In(1 — ¢). Therefore, in view of[(4.17)
and Lemmd AJ1 we get that the inverde ! (a) exists for0 < a < —In(1 — ¢) with
0<®a) <\, andd1(0) =)0

max

A.2 Results for Sectior{ 3]2
We present some properties®f(\) andcy ).

Lemma A.2 The function;, (¢) is continuously differentiable inforall 0 < A\ < Al
with partial derivative

0
Gy (E,N) :59\“) <0, <t<T.

Moreover, under conditioB.14)the derivatived, (\) < 0for0 < A < \* .

Proof. First note that

b(t, A) e, (N) ( w(t)
(b(t,A) + co(N)” \AW

§1(t, )‘) - -
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where

Qa(pl) — La(plzl_L p(lpzp)a(pl) )

Note that we can represent the numerator as

@(y) (1 +y(y—lg.l) — (W —lg.1)
@?(y)

with y = |q,, | + p,. Therefore, the left inequality i (3]24) implies

to(p1) = Py 77/.104(91) =

1 1

o) L+ 50y — 1ga)) — @ — laa) = (1 + 90y — laa]) (5 - y—) S

_Yla =1 a1l
y3 A

)

and by condition[(3.34) we obtain

Q,(py) >0 for p; >0.

Let us now calculatg, . To this end note that definitiop (3]25) implig&p, (\), \) = 1

forall0 <A <\ . Therefore,

_ Hy(p (NN
AN = 00
with .
Hl(u,)\):w and G;(U,A):w.

The definition of in ([3.22) implies that

[T @) N A () D) Fw(t) e
Hy(u,2) = 2/0 Do (@) +u +ar ol

and
w(t) (w(t) +A)
u) + u(w(t) + N))

Hy(u,\) = —2La(u)/ o
0 [e%

Taking into account that

~ 16,7 dt

1 — g, | +uw(lg,| + )
w?(w(lg,| +u))

we obtain from the right inequality irf (324)

Vo (u) +1 =

)

Y (x)+1>0 foral z>0.

Therefore, foralD <A< X and0 <t <T

pr(A) <0 and ¢ (t,A) <0.

(A.4)

(A.5)
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Let us calculate now the derivative ®f . We obtain

d ‘T
a0 = [ s e, (A6)
where
flallr) sx 0 I X0
A) = — 1= 1.
() lyalr L (e ol Toallr

with [y, [l = ||lsx0]l7- In view of the inequlities[(3.27) we obtain

a(t) al) o o o 1

lyalle — ll8le = < ©)8lly = (T + )]0l
Therefore, by the right inequality ifi (3]24) and the condition (3.14)

90| + [lyallT 19,
n(t,A) > e TIN5 Mol (A7)
(T + 1[0l (T + D6l

foro<t<Tand0 <A< X\ . O

Proof of Lemma.1{. Similarly to the proof of Lemmp 3.3 we observe that condition
(B:29) implies

®,(0) = =10l — m F, (g | + 10]l7) > —In(1 = ().

Moreover,®, (X ) = 0sincep,(\ )= 0. This means that*(0) = \* .
In view of Lemmg A.P®, (-) is strictly decraesing of, X' |. Therefore® ' exists
forall0 <a < —In(1 —¢) suchthad < ¢,(a) <\ with¢, (X )=0.0

max X
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