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We investigate optimal consumption problems for a Black-Scholes market under uniform restrictions on Value-at-Risk and Expected Shortfall for logarithmic utility functions. We find the solutions in terms of a dynamic strategy in explicit form, which can be compared and interpreted. This paper continues our previous work, where we solved similar problems for power utility functions.

Introduction

One of the principal questions in mathematical finance is the optimal investment/consumption problem for continuous time market models. By applying results from stochastic control theory, explicit solutions have been obtained for some special cases (see e.g. Karatzas and Shreve [START_REF] Karatzas | Methods of Mathematical Finance[END_REF], Korn [START_REF] Korn | Optimal Portfolios[END_REF] and references therein).

With the rapid development of the derivatives markets, together with margin tradings on certain financial products, the exposure to losses of investments into risky assets can be considerable. Without a careful analysis of the potential danger, the investment can cause catastrophic consequences such as, for example, the recent crisis in the "Société Générale".

To avoid such situations the Basel Committee on Banking Supervision in 1995 suggested some measures for the assessment of market risks. It is widely accepted that the Value-at-Risk (VaR) is a useful summary risk measure (see, Jorion [START_REF] Jorion | Value at Risk[END_REF] or Dowd [START_REF] Dowd | Beyond Value at Risk: the New Science of Risk Management[END_REF]). We recall that the VaR is the maximum expected loss over a given horizon period at a given confidence level. Alternatively, the Expected Shortfall (ES) or Tail Condition Expectation (TCE) measures also the expected loss given the confidence level is violated.

In order to satisfy the Basel commitee requirements, portfolios have to control the level of VaR or (the more restrictive) ES throughout the investment horizon. This leads to stochastic control problems under restrictions on such risk measures.

Our goal in this paper is the optimal choice of a dynamic portfolio subject to a risk and limit specified in terms of VaR or ES uniformly over horizon time interval [0, T ].

In Klüppelberg and Pergamenshchikov in [START_REF] Klüppelberg | Optimal consumption and investment with bounded downside risk for power utility functions[END_REF] we considered the optimal investment/consumption problem with uniform risk limits throughout the investment horizon for power utility functions. In that paper also some interpretation of VaR and ES besides an account of the relevant literature can be found. Our results in [START_REF] Klüppelberg | Optimal consumption and investment with bounded downside risk for power utility functions[END_REF] have interesting interpretations. We have, for instance, shown that for power utility functions with exponents less than one, the optimal constrained strategies are riskless for sufficiently small risk bounds: they recommend consumption only. On the contrary, for the (utility bound) of a linear utility function the optimal constrained strategies recommend to invest everything into risky assets and consume nothing.

In this paper we investigate the optimal investment/consumption problem for logarithmitic utility functions again under constraints on uniform versions of VaR and ES over the whole investment horizon [0, T ]. Using optimization methods in Hilbert functional spaces, we find all optimal solutions in explicit form. It turns out that the optimal constrained strategies are the unconstrained ones multiplied by some coefficient which is less then one and depends on the specific constraints.

Consequently, we can make the main recommendation: To control the market risk throughout the investment horizon [0, T ] restrict the optimal unconstrained portfolio allocation by specific multipliers (given in explicit form in (3.6) for the VaR constraint and in (3.26) for the ES constraint).

Our paper is organised as follows. In Section 2 we formulate the problem. We define the Black-Scholes model for the price processes and present the wealth process in terms of an SDE. We define the cost function for the logarithmic utility function and present the admissible control processes. We also present the unconstrained consumption and investment problem of utility maximization for logarithmic utility. In Sections 3 and 3.2 we consider the constrained problems. Section 3 is devoted to a risk bound in terms of Value-at-Risk, whereas Section 4.1 discusses the consequences of a risk bound in terms of Expected Shortfall. Auxiliary results and proofs are postponed to Section 4. We start there with material needed for the proofs of both regimes, the Value-at-Risk and the ES risk bounds. In Section 4.1 all proofs of Section 3 can be found, and in Section 4.1 all proofs of Section 4.1. Some technical lemmas postponed to the Appendix, again divided in two parts for the Value-at-Risk regime and the ES regime.

Formulating the problem 2.1 The model and first results

the equations:

     dS 0 (t) = r t S 0 (t) dt , S 0 (0) = 1 , dS i (t) = S i (t) µ i (t) dt + S i (t) d j=1 σ ij (t) dW j (t) , S i (0) > 0 .
(2.1)

Here W t = (W 1 (t), . . . , W d (t)) ′ is a standard d-dimensional Wiener process in R d ; r t ∈ R is the riskless interest rate; µ t = (µ 1 (t), . . . , µ d (t))
′ is the vector of stockappreciation rates and σ t = (σ ij (t)) 1≤i,j≤d is the matrix of stock-volatilities. We assume that the coefficients (r t ) 0≤t≤T , (µ t ) 0≤t≤T and (σ t ) 0≤t≤T are deterministic cadlag functions. We also assume that the matrix σ t is non degenerated for all 0 ≤ t ≤ T . We denote by F t = σ{W s , s ≤ t}, t ≥ 0, the filtration generated by the Brownian motion (augmented by the null sets). Furthermore, | • | denotes the Euclidean norm for vectors and the corresponding matrix norm for matrices and prime denotes the transposed. For (y t ) 0≤t≤T square integrable over the fixed interval [0, T ] we define

y T = ( T 0 |y t | 2 dt) 1/2
. The portfolio process(π t = (π 1 (t), . . . , π d (t)) ′ ) 0≤t≤T represents the fractions of the wealth process invested into the stocks. The consumption rate is denoted by (v t ) 0≤t≤T .

Then (see [START_REF] Klüppelberg | Optimal consumption and investment with bounded downside risk for power utility functions[END_REF] for details) the wealth process (X t ) 0≤t≤T is the solution to the SDE

dX t = X t (r t + y ′ t θ t -v t ) dt + X t y ′ t dW t , X 0 = x > 0 , (2.2) 
where θ t = σ -1 t (µ t -r t 1) with 1 = (1, . . . , 1) ′ ∈ R d , and we assume that

T 0 |θ t | 2 dt < ∞ .
The control variables are y t = σ ′ t π t ∈ R d and v t ≥ 0. More precisely, we define the (F t ) 0≤t≤T -progressively measurable control process as ν = (y t , v t ) t≥0 , which satisfies

T 0 | y t | 2 dt < ∞ and T 0 v t dt < ∞ a.s.. (2.3) 
In this paper we consider logarithmitic utility functions. Consequently, we assume throughout that

T 0 (ln v t ) -dt < ∞ a.s., (2.4) 
where (a) -=min(a, 0).

To emphasize that the wealth process (2.2) corresponds to some control process ν we write X ν . Now we describe the set of control processes.

Definition 2.1 A stochastic control process

ν = (ν t ) 0≤t≤T = ((y t , v t )) 0≤t≤T is called admissible, if it is (F t ) 0≤t≤T -progressively measurable with values in R d × R + , satis- fying integrability conditions (2.3)-(2.4) such that the SDE (2.
2) has a unique strong and a.s. positive continuous solution (X ν t ) 0≤t≤T for which

E T 0 (ln(v t X ν t )) -dt + (ln X ν T ) -< ∞ .
We denote by V the class of all admissible control processes.

For ν ∈ V we define the cost function

J(x, ν) := E x T 0 ln v t X ν t dt + ln X ν T .
(2.5)

Here E x is the expectation operator conditional on X ν 0 = x. We recall a well-known result, henceforth called the unconstrained problem:

max ν∈V J(x, ν) .
(2.6)

To formulate the solution we set

ω(t) = T -t + 1 and r t = r t + |θ t | 2 2 , 0 ≤ t ≤ T .
Theorem 2.2 (Karatzas and Shreve [9], Example 6.6, p. 104)

The optimal value of J(x, ν) is given by

max ν∈V J(x, ν) = J(x, ν * ) = (T + 1) ln x T + 1 + T 0 ω(t) r t dt .
The optimal control process ν * = (y * t , v * t ) 0≤t≤T ∈ V is of the form

y * t = θ t and v * t = 1 ω(t) , (2.7) 
where the optimal wealth process (X * t ) 0≤t≤T is given as the solution to

dX * t = X * t r t + |θ t | 2 -v * t dt + X * t θ ′ t dW t , X * 0 = x , (2.8) 
which is

X * t = x T + 1 -t T + 1 exp t 0 r u du + t 0 θ ′ u dW u .
Note that the optimal solution (2.7) of problem (2.6) is deterministic, and we denote in the following by U the set of deterministic functions ν = (y t , v t ) 0≤t≤T satisfying conditions (2.3) and (2.4).

For the above result we can state that

max ν∈V J(x, ν) = max ν∈U J(x, ν) .
Intuitively, it is clear that to construct financial portfolios in the market model (2.1) the investor can invoke only information given by the coefficients (r t ) 0≤t≤T , (µ t ) 0≤t≤T and (σ t ) 0≤t≤T which are deterministic functions.

Then for ν ∈ U, by Itô's formula, equation (2.2) has solution

X ν t = x E t (y) e R t -V t +(y,θ) t , with R t = t 0 r u du, V t = t 0 v u du, (y, θ) t =
t 0 y ′ u θ u du and the stochastic exponential

E t (y) = exp t 0 y ′ u dW u - 1 2 t 0 |y u | 2 du .
Therefore, for ν ∈ U the process (X ν t ) 0≤t≤T is positive, continuous and satisfies sup

0≤t≤T E | ln X ν t | < ∞ .
This implies that U ⊂ V. Moreover, for ν ∈ U we can calculate the cost function (2.5) explicitly as

J(x, ν) = (T + 1) ln x + T 0 ω(t) r t + y ′ t θ t - 1 2 |y t | 2 dt + T 0 (ln v t -V t )dt -V T .
(2.9)

3 Optimization with constraints: main results

Value-at-Risk constraints

As in Klüppelberg and Pergamenchtchikov [START_REF] Klüppelberg | Optimal consumption and investment with bounded downside risk for power utility functions[END_REF] we use as risk measures the modifications of Value-at-Risk and Expected Shortfall introduced in Emmer, Klüppelberg and Korn [START_REF] Emmer | Optimal portfolios with bounded Capital-at-Risk[END_REF], which reflect the capital reserve. For simplicity, in order to avoid non-relevant cases, we consider only 0 < α < 1/2.

Definition 3.1 [Value-at-Risk (VaR)]

For a control process ν and 0 < α ≤ 1/2 define the Value-at-Risk (VaR) by

VaR t (ν, α) := x e R t -Q t , t ≥ 0 ,
where for t ≥ 0 the quantity Q t = inf{z ≥ 0 : P X ν t ≤ z ≥ α} is the α-quantile of X ν t . Note that for every ν ∈ U we find

Q t = x exp R t -V t + (y, θ) t - 1 2 y 2 t -|q α | y t , (3.1) 
where q α is the α-quantile of the standard normal distribution. We define the level risk function for some coefficient 0 < ζ < 1 as

ζ t = ζ x e R t , t ∈ [0, T ] . (3.2) 
The coefficient ζ ∈ (0, 1) introduces some risk aversion behaviour into the model. In that sense it acts similarly as a utility function does. However, ζ has a clear interpretation, and every investor can choose and understand the influence of the risk bound ζ as a proportion of the riskless bond investment.

We consider the maximization problem for the cost function (2.9) over strategies ν ∈ U for which the Value-at-Risk is bounded by the level function (3.2) over the interval [0, T ], i.e.

max ν∈U J(x, ν) subject to sup 0≤t≤T VaR t (ν, α) ζ t ≤ 1 . (3.3)
To formulate the solution of this problem we define

G(u, λ) := T 0 (ω(t) + λ) 2 (λ|q α | + u(ω(t) + λ)) 2 |θ t | 2 dt , u ≥ 0 , λ ≥ 0 . (3.4) 
Moreover, for fixed λ > 0 we denote by

ρ(λ) = inf{u ≥ 0 : G(u, λ) ≤ 1} , (3.5) 
if it exists, and set ρ(λ) = +∞ otherwise. For a proof of the following lemma see A.1.

Lemma 3.2 Assume that |q

α | > θ T > 0 and 0 ≤ λ ≤ λ max = k 1 + k 2 q 2 α -θ 2 T + k 2 1 q 2 α -θ 2 T ,
where

k 1 = √ ωθ 2 T and k 2 = ωθ 2 T .
Then the equation G(•, λ) = 1 has the unique positive solution ρ(λ). Moreover, ρ(λ) < ∞ for all 0 ≤ λ ≤ λ max , and ρ(λ max ) = 0. Now for λ ≥ 0 fixed and 0 ≤ t ≤ T we define the weight function

τ λ (t) = ρ(λ)(ω(t) + λ) λ|q α | + ρ(λ)(ω(t) + λ) . (3.6) 
Here we set

τ λ (•) ≡ 1 for ρ(λ) = +∞. It is clear, that for every fixed λ ≥ 0, 0 ≤ τ λ (T ) ≤ τ λ (t) ≤ 1 , 0 ≤ t ≤ T . (3.7)
To take the VaR constraint into account we define

Φ(λ) = |q α | τ λ θ T + 1 2 τ λ θ 2 T - √ τ λ θ 2 T .
Denote by Φ -1 the inverse of Φ, provided it exists. A proof of the following lemma is given in A.1.

Lemma 3.3

Assume that θ T > 0 and

0 < ζ < 1 -e -|q α | θ T + θ 2 T /2 . (3.8)
Then for all 0 ≤ a ≤ln(1 -ζ) the inverse Φ -1 (a) exists. Moreover,

0 ≤ Φ -1 (a) < λ max for 0 < a ≤ -ln(1 -ζ) and Φ -1 (0) = λ max . Now set φ(κ) := Φ -1 ln 1 -κ 1 -ζ , 0 ≤ κ ≤ ζ , (3.9) 
and define the investment strategy

y κ t := θ t τ φ(κ) (t) , 0 ≤ t ≤ T . (3.10)
To introduce the optimal consumption rate we define

v κ t = κ T -tκ (3.11) 
and recall that for

κ = κ 0 = T T + 1
the function v κ t coincides with the optimal unconstrained consumption rate 1/ω(t) as defined in (2.7).

It remains to fix the parameter κ. To this end we introduce the cost function

Γ(κ) = ln(1 -κ) + T ln κ + T 0 ω(t) |θ t | 2 τ φ(κ) (t) - 1 2 τ 2 φ(κ) (t) dt . (3.12)
To choose the parameter κ we maximize Γ:

γ = γ(ζ) = argmax 0≤κ≤ζ Γ(κ) . (3.13) 
With this notation we can formulate the main result of this section.

Theorem 3.4

Assume that θ T > 0. Then for all ζ > 0 satisfying (3.8) and for all 0 < α < 1/2 for which

|q α | ≥ 2 (T + 1) θ T , (3.14) 
the optimal value of J(x, ν) for problem (3.3) is given by

J(x, ν * ) = A(x) + Γ (γ(ζ)) , (3.15) 
where

A(x) = (T + 1) ln x + T 0 ω(t)r t dt -T ln T (3.16)
and and the optimal control

ν * = (y * t , v * t ) 0≤t≤T is of the form y * t = y γ t and v * t = v γ t .
(3.17)

The optimal wealth process is the solution of the SDE

dX * t = X * t (r t -v * t + (y * t ) ′ θ t ) dt + X * t (y * t ) ′ dW t , X * 0 = x , given by X * t = x E t (y * ) T -γ(ζ)t T e R t -V t +(y * , θ) t , 0 ≤ t ≤ T .
The following corollary is a consequence of (2.9).

Corollary 3.5

If θ T = 0, then for all 0 < ζ < 1 and for all 0 < α < 1/2

y * t = 0 and v * t = v γ t with γ = argmax 0≤κ≤ζ (ln(1 -κ) + T ln κ) = min(κ 0 , ζ).
Moreover, the optimal wealth process is the deterministic function

X * t = x T -min(κ 0 , ζ) t T e R t , 0 ≤ t ≤ T .
In the next corollary we give some sufficient condition, for which the investment process equals zero (the optimal strategy is riskless). This is the first marginal case.

Corollary 3.6

Assume that θ T > 0 and that (3.8) and (3.14) hold. Define

|θ| ∞ = sup 0≤t≤T |θ t | < ∞ . If 0 < ζ < κ 0 and |q α | ≥ (1 + T ) θ T 1 + ζ(T + 1)|θ| 2 ∞ (1 -ζ)T -ζ , (3.18 
)

then γ = ζ and the optimal solution ν * = (y * t , v * t ) 0≤t≤T is of the form y * t = 0 and v * t = v ζ t .
Moreover, the optimal wealth process is the deterministic function

X * t = x T -ζt T e R t , 0 ≤ t ≤ T .
Below we give some sufficient conditions, for which the solution of optimization problem (3.3) coincides with the unconstrained solution (2.7). This is the second marginal case.

Theorem 3.7 Assume that

ζ > 1 - 1 T e -|q α | θ T + θ 2 T /2 . (3.19)
Then for all 0 < α < 1/2 for which |q α | ≥ θ T , the solution of the optimization problem (3.3) is given by (2.7)-(2.8).

Expected Shortfall Constraints

Our next risk measure is an analogous modification of the Expected Shortfall (ES).

Definition 3.8 [Expected Shortfall (ES)]

For a control process ν and

0 < α ≤ 1/2 define m t (ν, α) = E x X ν t | X ν t ≤ Q t , t ≥ 0 ,
where Q t is the α-quantile of X ν t given by (3.1). The Expected Shortfall (ES) is then defined as

ES t (ν, α) = xe R t -m t (ν, α) , t ≥ 0 .
Again for ν ∈ U we find

m t (ν, α) = x F α (|q α | + y t ) e R t -V t +(y,θ) t ,
where

F α (z) = 1 ∞ |q α | e -t 2 /2 dt ∞ z e -t 2 /2 dt . (3.20) 
We consider the maximization problem for the cost function (2.5) over strategies ν ∈ U for which the Expected Shortfall is bounded by the level function (3.2) over the interval [0, T ], i.e. max ν∈U J(x, ν) subject to sup

0 ≤ t ≤ T ES t (ν, α) ζ t ≤ 1 . (3.21)
We proceed similarly as for the VaR-coinstraint problem (3.3). Define

G 1 (u, λ) := T 0 (ω(t) + λ) 2 (λ ι α (u) + u(ω(t) + λ)) 2 |θ t | 2 dt , u ≥ 0, λ ≥ 0 . (3.22) where ι α (u) = 1 ̟(u + |q α |) -u with ̟(y) = e y 2 2 ∞ y e -t 2 2 dt . (3.23)
It is well-known and easy to prove that

1 y - 1 y 3 ≤ ̟(y) ≤ 1 y , y > 0 . (3.24)
This means that ι α (u) ≥ |q α | for all u ≥ 0, which implies for every fixed λ ≥ 0 that G 1 (u, λ) ≤ G(u, λ) for all u ≥ 0. Moreover, similarly to (3.5) we define

ρ 1 (λ) = inf{u ≥ 0 : G 1 (u, λ) ≤ 1} . (3.25)
Since H has similar behaviour as G, the following lemma is a modification of Lemma 3.2. Its proof is analogous to the proof of Lemma 3.2. and Lemma 3.9 Assume that |q α | > θ T > 0 and

0 ≤ λ ≤ λ ′ max = k 1 + k 2 ψ 2 α (0) -θ 2 T + k 2 1 ψ 2 α (0) -θ 2 T ,
where k 1 and k 2 are given in Lemma 3.2. Then the equation G 1 (•, λ) = 1 has the unique positive solution ρ 1 (λ). Moreover, ρ 1 (λ) < ∞ for 0 ≤ λ ≤ λ ′ max and ρ 1 (λ ′ max ) = 0. Now for λ ≥ 0 fixed and 0 ≤ t ≤ T we define the weight function

ς λ (t) = ρ 1 (λ) (ω(t) + λ) λ ι α (ρ 1 (λ)) + ρ 1 (λ) (ω(t) + λ) , (3.26) 
and we set ς λ (•) ≡ 1 for ρ 1 (λ) = +∞. Note that for every fixed λ ≥ 0,

0 ≤ ς λ (T ) ≤ ς λ (t) ≤ 1 , 0 ≤ t ≤ T . (3.27)
To take the ES constraint into account we define

Φ 1 (λ) = - √ ς λ θ 2 T -ln F α (|q α | + ς λ θ T ) . (3.28) 
Denote by Φ -1 1 the inverse of Φ 1 provided it exists. The proof of the next lemma is given in Section A.2. Lemma 3.10 Assume that θ T > 0 and

0 < ζ < 1 -F α (|q α | + θ T ) e θ 2
T .

(3.29)

Then for all 0 ≤ a ≤ -ln(1 -ζ) the inverse Φ -1 1 exists and 0 ≤ Φ -1 1 (a) < λ max for 0 < a ≤ -ln(1 -ζ) and Φ -1 1 (0) = λ ′ max . Now, similarly to (3.5) we set φ 1 (κ) = Φ -1 1 ln 1 -κ 1 -ζ , 0 ≤ κ ≤ ζ , (3.30) 
and define the investment strategy

y 1,κ t = θ t ς φ 1 (κ) (t) , 0 ≤ t ≤ T . (3.31)
We introduce the cost function

Γ 1 (κ) = ln(1 -κ) + T ln κ + T 0 ω(t) |θ t | 2 ς φ 1 (κ) (t) - 1 2 ς 2 φ 1 (κ) (t) dt . (3.32)
To fix the parameter κ we maximize Γ 1 :

γ 1 = γ 1 (ζ) = argmax 0≤κ≤ζ Γ 1 (κ) . ( 3 

.33)

With this notation we can formulate the main result of this section.

Theorem 3.11 Assume that θ T > 0. Then for all ζ > 0 satisfying (3.29) and for all

0 < α < 1/2 satisfying |q α | ≥ max(1, 2(T + 1) θ T ) (3.34)
the optimal value of J(x, ν) for the optimization problem (3.21) is given by

J(x, ν * ) = A(x) + Γ 1 (γ 1 (ζ)) ,
where the function A is defined in (3.16) and the optimal control ν * = (y * t , v * t ) 0≤t≤T is of the form (recall the definition of v κ t in (3.11))

y * t = y 1,γ 1 t and v * t = v γ 1 t . (3.35)
The optimal wealth process is the solution to the SDE

dX * t = X * t (r t -v * t + (y * t ) ′ θ t ) dt + X * t (y * t ) ′ dW t , X * 0 = x ,
given by

X * t = x E t (y * ) T -γ 1 (ζ)t T e R t -V t +(y * , θ) t , 0 ≤ t ≤ T .
Corollary 3.12 If θ T = 0, then the optimal solution of problem (3.21) is given in Corollary 3.5.

Similarly to the optimization problem with VaR constraint we observe two marginal cases. Note that the following corollary is again a consequence of (2.9). 

Theorem 3.14 Assume that

θ 2 T /2? NO!!! ζ > 1 - 1 T + 1 F α (|q α | + θ T ) e θ 2 T . ( 3 

.36)

Then for all 0 < α < 1/2 for which |q α | > max(1, θ T ) the solution of problem (3.21) is given by (2.7)-(2.8).

Conclusion

If we compare the optimal solutions (3.17 

Auxiliary results and proofs

In this section we consider maximization problems with constraints for the two terms of (2.9):

I(V ) := T 0 (ln v t -V t )dt and H(y) := T 0 ω(t) y ′ t θ t - 1 2 |y t | 2 dt . (4.1)
We start with a result concerning the optimization of I(•), which will be needed to prove results from both Sections 3.1 and 3.2.

Let W[0, T ] be the set of differentiable functions f : [0, T ] → R having positive cadlag derivative ḟ satisfying condition (2.4). For b > 0 we define 

W 0,b [0, T ] = {f ∈ W[0, T ] : f (0) = 0 and f (T ) = b} . ( 4 
I(f ) . (4.3)
The optimal value of I is given by

I * (b) = max f ∈W 0,b [0,T ] I(f ) = I(f * ) = -T ln T -T ln e b e b -1 , (4.4) 
with optimal solution

f * (t) = ln T e b T e b -t(e b -1) , 0 ≤ t ≤ T . (4.5) 
Proof. Firstly, we consider the optimization problem (4.3) in the space C 2 [0, T ] of two times continuously differentiable functions on [0, T ]:

max f ∈W 0,b [0,T ]∩C 2 [0,T ] I(f ) ,
By variational calculus methods we find that it has solution (4.4); i.e.

max f ∈W 0,b [0,T ]∩C 2 [0,T ] I(f ) = I(f * ) ,
where the optimal solution f * is given in (4.5). Take now f ∈ W 0,b [0, T ] and suppose first that its derivative

ḟmin = inf 0≤t≤T ḟ (t) > 0 .
Let Υ be a positive two times differentiable function on [-1, 1] such that 1 -1 Υ(z) dz = 1, and set Υ(z) := 0 for |z| ≥ 1. We can take, for example,

Υ(z) =      1 1 -1 exp -1 1-υ 2 dυ exp -1 1-z 2 if |z| ≤ 1 , 0 if |z| > 1 .
By setting ḟ (t) = ḟ (0) for all t ≤ 0 and ḟ (t) = ḟ (T ) for all t ≥ T , we define an approximating sequence of functions by

υ n (t) = n R Υ(n(u -t)) ḟ (u) du . It is clear that (υ n ) n≥1 ∈ C 2 [0, T ].
Moreover, we recall that ḟ is cadlag, which implies that it is bounded on [0, T ]; i.e.

sup 0≤t≤T ḟ (t) := ḟmax < ∞ ,
and its discontinuity set has Lebesgue measure zero. Therefore, the sequence (υ n ) n≥1 is bounded; more preceisly, 

0 < ḟmin ≤ υ n (t) ≤ ḟmax < ∞ , 0 ≤ t ≤ T , (4.6 

This implies that

I(f ) ≤ I * (b) ,
where I * (b) is defined in (4.4). Consider now the case, where inf 0≤t≤T ḟ (t) = 0. For 0 < δ < 1 we consider the approximation sequence of functions

f δ (t) = max(δ , ḟ (t)) and f δ (t) = t 0 f δ (u) du , 0 ≤ t ≤ T .

It is clear that

f δ ∈ Γ b δ for b δ = T 0 f δ (t) dt. Therefore, I(f δ ) ≤ I * (b δ ).
Moreover, in view of the convergence lim δ→0 T 0 f δ (t) -ḟ (t) dt = 0 and we get lim sup δ→0 I(f δ ) ≤ I * (b). Moreover, note that

|I(f δ ) -I(f )| ≤ A δ (ln δ -ln ḟ (t)) dt + T A δ δ -ḟ (t) dt ≤ A δ (ln ḟ (t)) -dt + δ T Λ(A δ ) ,
where A δ = {t ∈ [0, T ] : 0 ≤ ḟ (t) ≤ δ} and Λ(A δ ) is the Lebesgue measuere of A δ . Moreover, by the definition of the W[0, T ] in (4.2) the Lebesgue measure of the set {t ∈ [0, T ] : ḟ (t) = 0} equals to zero and T 0 (ln ḟt ) -dt < ∞. This implies that lim δ→0 Λ(A δ ) = 0 and hence

lim δ→0 I(f δ ) = I(f ) , i.e. I(f ) ≤ I * (b). 2
In order to deal with H as defined in (4.1) we need some preliminary result. As usual, we denote by L 2 [0, T ] the Hilbert space of functions y satisfying the square integrability condition in (2.3).

Define for y ∈ L 2 [0, T ] with y T > 0

y t = y t / y T and l y (h) = y + h T -y T -(y, h) T . (4.7) 
We shall need the following lemma. Proof. Obviously, if h ≡ ay for some a ∈ R, then l y (h) = (|1 + a| -1 -a) y T ≥ 0.

Let now h ≡ ay for all a ∈ R. Then

l y (h) = 2(y , h) T + h 2 T y + h T + y T -(y, h) T = h 2 T -(y, h) T ((y, h) T + l y (h)) y + h T + y T .
It is easy to show directly that for all h y + h T + y T + (y, h) T ≥ 0 with equality if and only if h ≡ ay for some a ≤ -1.

Therefore, if h ≡ ay, we obtain

l y (h) = h 2 T -(y , h) 2 T y + h T + y T + (y, h) T ≥ 0 . 2 

Results and proofs of Section 3.1

We introduce the constraint K : L 2 [0, T ] → R as

K(y) := 1 2 y 2 T + |q α | y T -(y, θ) T (4.8)
For 0 < a ≤ln(1 -ζ) we consider the following optimization problems

max y∈L 2 [0,T ]
H(y) subject to K(y) = a (4.9)

Proposition 4.3 Assume that the conditions of Lemma 3.3 hold. Then the optimization problem (4.9) has the unique solution y * = y a = θ t τ λ a (t) with λ a = Φ -1 (a).

Proof. According to Lagrange's method we consider the following unconstrained problem max

y∈L 2 [0,T ] Ψ(y, λ) , (4.10) 
where Ψ(y, λ) = H(y) -λK(y) and λ ∈ R is the Lagrange multiplier. Now it suffices to find some λ ∈ R for which the problem (4.10) has a solution, which satisfies the constraint in (4.9). To this end we represent Ψ as

Ψ(y, λ) = T 0 (ω(t) + λ) y ′ t θ t - 1 2 |y t | 2 dt -λ |q α | y T .
It is easy to see that for λ < 0 the maximum in (4.10) equals +∞; i.e. the problem (4.9) has no solution. Therefore, we assume that λ ≥ 0. First we calculate the Fréchet derivative; i.e. the linear operator D y (•, λ) :

L 2 [0, T ] → R defined for h ∈ L 2 [0, T ] as D y (h, λ) = lim δ→0 Ψ(y + δh, λ) -Ψ(y, λ) δ .
For y T > 0 we obtain

D y (h, λ) = T 0 (d y (t, λ)) ′ h t dt with d y (t, λ) = (ω(t) + λ)(θ t -y t ) -λ|q α | y t .
If y T = 0, then .11) and

D y (h, λ) = T 0 (ω(t) + λ) θ ′ t h t dt -λ|q α | h T .

Define now

∆ y (h, λ) = Ψ(y + h, λ) -Ψ(y, λ) -D y (h, λ) . ( 4 
We have to show that ∆ y (h, λ ≤ 0 for all y, h ∈ L 2 [0, T ]. Indeed, if y T = 0 then

∆ y (h, λ) = - 1 2 T 0 (ω(t) + λ) |h t | 2 dt ≤ 0 . If y T > 0, then ∆ y (h, λ) = - 1 2 T 0 (ω(t) + λ) |h t | 2 dt -λ |q α | l y (h) ≤ 0 ,
by Lemma 4.2 for all λ ≥ 0 and for all y, h ∈ L 2 [0, T ].

To find the solution of the optimization problem (4.10) we have to find

y ∈ L 2 [0, T ] such that D y (h, λ) = 0 for all h ∈ L 2 [0, T ] . (4.12)
First notice that for θ T > 0, the solution of (4.12) can not be zero, since for y = 0 we obtain D y (h, λ) < 0 for h = -θ. Consequently, we have to find an optimal solution to (4.12) for y satisfying y T > 0. This means we have to find a non-zero

y ∈ L 2 [0, T ] such that d y (t, λ) = 0 .
One can show directly that for 0 ≤ λ ≤ λ max the unique solution of this equation is given by

y λ t := θ t τ λ (t) , (4.13) 
where τ λ (t) is defined in (3.6). It remains to choose the Lagrage multiplier λ so that it satisfies the constraint in (4.9). To this end note that

K(y λ ) = Φ(λ) .
Under the conditions of Lemma 3.3 the inverse of Φ exists. Thus the function y λ a ≡ 0 with λ a = Φ -1 (a) is the solution of the problem (4.9). 2

We are now ready to proof the main results in Section 3.1. The auxiliary lemmas are proved in A.1.

Proof of Theorem 3.4.

In view of the representation of the cost function J(x, ν) in the form (2.9), we start to maximize J(x, ν) by maximizing I over all functions V . To ??? this end we fix the last value of the consumption process, by setting κ = 1 -e -V T . By Lemma 4.1 we find that

I(V ) ≤ I(V κ ) = -T ln T + T ln κ ,
where

V κ t = t 0 v κ (t)dt = ln T T -κt , 0 ≤ t ≤ T . (4.14) Define now L t (ν) = (y, θ) t - 1 2 y 2 t -V t -|q α | y t , 0 ≤ t ≤ T ,
and note that condition (3.3) is equivalent to

inf 0≤t≤T L t (ν) ≥ ln (1 -ζ) . (4.15)
Firstly, we consider the bound in (4.15) only at time t = T :

L T (ν) ≥ ln (1 -ζ) .
Recall definition (4.8) of K and choose the function V as V κ as in (4.14). Then we can rewrite the bound for L T (ν) as a bound for K and obtain

K(y) ≤ ln 1 -κ 1 -ζ , 0 ≤ κ ≤ ζ .
To find the optimal investment strategy we need to solve the optimization problem (4.9)

for 0 ≤ a ≤ ln((1 -κ)/(1 -ζ)). By Proposition 4.3 for 0 < a ≤ -ln(1 -ζ) max y∈L 2 [0,T ] , K(y)=a H(y) = H( y a ) := C(a) , (4.16) 
where the solution y a is defined in Proposition 4.3. Note that the definitions of the functions H and y a imply

C(a) = T 0 ω(t) τ λ a (t) - 1 2 τ 2 λ a (t) |θ t | 2 dt with λ a = Φ -1 (a) .
To consider the optimization problem (4.9) for a = 0 we observe that

K(y) ≥ y T (|q α | -θ T ) + 1 2 y 2 T ≥ 0 ,
provided that |q α | > θ T (which follows from (3.14)). Thus, there exists only one function for which K(y) = 0, namely y ≡ 0. Furthermore, by Lemma 3.2 ρ(λ max ) = 0 and, therefore, definition (3.6) implies

τ λ max (•) ≡ 0 , y λ max ≡ 0 and Φ(λ max ) = 0 . (4.17) 
This means that λ max = Φ -1 (0) and y Φ -1 (0) = 0; i.e. y λ a with λ a = Φ -1 (a) is the solution of the optimization problem (4.9) for all 0 ≤ a ≤ln(1 -ζ). Now we calculate the derivative of C(a): 

d da C(a) = λa T 0 ω(t) 1 -τ λ a (t) |θ t | 2 ∂τ λ (t) ∂λ | λ=λ a dt , Since λa = 1/ Φ(λ a ), by Lemma A.1, the derivative of C(a) is positive. Therefore, max 0≤a≤ln((1-κ)/(1-ζ)) C(a) = C ln 1 -κ 1 -ζ ,
κ = ( y κ t , v κ t ) 0≤t≤T . Thus for ν ∈ U with V T = -ln(1 -κ) we have J(x, ν) ≤ J(x, ν κ ) = A(x) + Γ(κ) .
It is clear that (3.13) gives the optimal value for the parameter κ.

To finish the proof we have to verify condition (4.15) for the strategy ν * defined in (3.17). Indeed, we have

L t (ν * ) = (y * , θ) t - 1 2 y * 2 t -|q α | y * t - t 0 v * s ds =: - t 0 g(u) du - t 0 v * s ds ,
where

g(t) = τ * t |θ t | 2 |q α | χ(t) -1 + τ * t 2 and χ(t) = τ * t 2 t 0 (τ * s ) 2 |θ s | 2 ds .
We recall φ(κ) from (3.9) and κ 1 from (3.13), then

τ * t = τ υ 1 (t) with υ 1 = φ(γ) . Definition (3.6) implies χ(t) ≥ τ υ 1 (T ) 2τ υ 1 (0) θ T ≥ 1 + υ 1 2 θ T (1 + T + υ 1 ) ≥ 1 2 θ T (1 + T ) .
Therefore, condition (3.14) guarantees that g(t) ≥ 0 for t ≥ 0, which implies

L t (ν * ) ≥ L T (ν * ) = ln(1 -ζ) .
This concludes the proof of Theorem 3.4. 2

Proof of Corollary 3.6. Consider now the optimization problem (3.13). To solve it we have to find the derivative of the integral in (3.12)

E(κ) := T 0 ω(t) |θ t | 2 τ φ(κ) (t) - 1 2 τ 2 φ(κ) (t) dt .
Indeed, we have with φ(κ) as in (3.9),

Ė(κ) = T 0 ω(t)|θ t | 2 1 -τ φ(κ) (t) ∂ ∂κ τ φ(κ) (t) dt . Defining τ 1 (t, φ(κ)) := ∂τ λ (t) ∂λ | λ=φ(κ) we obtain ∂ ∂κ τ φ(κ) (t) = τ 1 (t, φ(κ)) d dκ φ(κ) . (4.18) 
Therefore,

Ė(κ) = - 1 1 -κ B(φ(κ))
with

B(λ) = T 0 ω(t)|θ t | 2 (1 -τ λ (t)) τ 1 (t, λ) dt Φ(λ) . Define τ (t, λ) := |q α |τ λ (t)/ τ λ θ T .
Then, in view of Lemma A.1, we have τ 1 (t, λ) ≤ 0 and, therefore, taking representation (A.1) into account we obtain

B(λ) = T 0 ω(t)|θ t | 2 (1 -τ (t, λ)) |τ 1 (t, λ)| dt T 0 τ (t, λ) |τ 1 (t, λ)| dt .
Moreover, using the lower bound (A.2) we estimate

B(λ) < (1 + T ) 2 |θ| 2 ∞ θ T |q α | -(T + 1) θ T =: B max . (4.19) Condition (3 
.18) for 0 < ζ < κ 0 implies that

B max ≤ 1 ζ -1 T -1 .
Thus for 0 ≤ κ ≤ ζ < κ 0 we obtain

Γ(κ) > T κ - 1 1 -κ (1 + B max ) ≥ T ζ - 1 1 -ζ (1 + B max ) ≥ 0 .
This implies γ = ζ and, therefore, a(γ) := ln((1 -γ)/(1 -ζ) = 0, which implies also by Lemma 3.3 that φ(a(γ)) = λ max . Therefore, we conclude from (4.17) that y * t = τ λ max (t)θ t = 0 for all 0 ≤ t ≤ T . 2 Proof of Theorem 3.7. It suffices to verify condition (4.15) for the strategy

ν * = (y * t , v * t ) 0≤t≤T with y * t = θ t and v * t = 1/ω(t) for t ∈ [0, T ]. It is easy to show that condition (3.19) implies that L T (ν * ) ≥ ln(1 -ζ). Moreover, for 0 ≤ t ≤ T we can represent L t (ν * ) as L t (ν * ) = - t 0 g * s ds - t 0 v * s ds ,
where

g * t = |q α | θ t -1 |θ t | 2 2 ≥ |q α | θ T -1 |θ t | 2 2 ≥ 0
since we have assumed that |q α | ≥ θ T . Therefore, L t (ν * ) is decreasing in t; i.e. L t (ν * ) ≥ L T (ν * ) for all 0 ≤ t ≤ T . This implies the assertion of Theorem 3.7. Proof. As in the proof of Proposition 4.3 we use Lagrange's method. We consider the unconstrained problem max

y∈L 2 [0,T ] Ψ 1 (y, λ) , (4.22) 
where Ψ 1 (y, λ) = H(y) -λK 1 (y) and λ ≥ 0 is the Lagrange multiplier. Taking into account the defining f α in (4.20), we obtain the representation

Ψ 1 (y, λ) = T 0 (ω(t) + λ ) θ ′ t y t - ω(t) 2 |y t | 2 dt + λ f α ( y T ) .
Its Fréchet derivative is given by

D 1,y (h, λ) = lim δ→0 Ψ 1 (y + δh, λ) -Ψ 1 (y, λ) δ .
It is easy to show directly that for y T > 0

D 1,y (h, λ) = T 0 (d 1,y (t, λ)) ′ h t dt , where d 1,y (t, λ) = (ω(t) + λ)θ t -ω(t) y t + λ ḟα ( y T ) y t ,
and ḟα (•) denotes the derivative of f α (•).

If y T = 0, then

D 1,y (h, λ) = T 0 (ω(t) + λ) θ ′ t h t dt + λ ḟα (0) h T .
We set now

∆ 1,y (h, λ) = Ψ 1 (y + h, λ) -Ψ 1 (y, λ) -D 1,y (h, λ) , (4.23) 
and show that ∆ 1,y (h, λ) ≤ 0 for all y, h ∈ L 2 [0, T ]. Indeed, if y T = 0, then

∆ 1,y (h, λ) = - 1 2 T 0 ω(t) |h t | 2 dt ≤ 0 .
Let now y T > 0 and y = y/ y T . Then

∆ 1,y (h, λ) = - 1 2 T 0 ω(t) |h t | 2 dt + λ δ 1,y (h) ,
where

δ 1,y (h) = f α ( y + h T ) -f α ( y T ) -ḟα ( y T ) (y, h) T .
Moreover, by Taylor's formula and denoting by fα the second derivative of f α , we get

δ 1,y (h) = ḟα ( y T ) l y (h) + 1 2 fα (ϑ) ( y + h T -y T ) 2 ,
where l y (•) is defined in (4.7) and

min( y T , y + h T ) ≤ ϑ ≤ max( y T , y + h T ) .
Recalling the definition of ̟ in (3.23), the derivatives of f α are given by

ḟα (x) = - 1 ̟(x 1 )
and fα (x) = - Notice that for θ T > 0 the solution (4.25) can not be zero, since for y = 0 we obtain D 1,y (h, λ) < 0 for h = -θ. Therefore, we have to solve equation (4.25) for y with y T > 0, equivalently, we have to find a non-zero function in L 2 [0, T ] satisfying

1 -x 1 ̟(x 1 ) ̟ 2 (x 1 ) . ( 4 
d 1,y (t, λ) = 0 .
One can show directly that for 0 ≤ λ ≤ λ * max the solution of this equation is given by

y 1,λ t = ς λ (t)θ t , (4.26) 
where ς λ (t) is defined in (3.26). Now we have to choose the parameter λ to satisfy the constraint in (4.21). Note that

K 1 (y 1,λ ) = Φ 1 (λ) .
Under the conditions of Lemma 3.10 the inverse of Φ 1 exists. Therefore, the function y λ a ≡ 0 with λ a = Φ -1 1 (a) is the solution of the optimization problem (4.21). 2

To choose the parameter 0 ≤ a ≤ ln((1 -κ)/(1 -ζ) we calculate the derivative of

C(Φ -1 1 (a)) as d da C(Φ -1 1 (a)) = d da Φ 1 -1 (a) T 0 ω(t)|θ t | 2 1 -ς Φ -1 1 (a) (t) partial ∂λ ς λ (t)| λ=Φ -1 1 (a) , dt .
We recall that

d da Φ -1 1 (a) = 1 Φ1 (Φ -1 1 (a)) with Ψ 1 (a) = d da Φ 1 (a) .
Therefore, by Lemma A.2, the derivative of d da C(Φ -1 1 (a)) > 0, which implies that

max 0 ≤a≤ln((1-κ)/(1-ζ) C(Φ -1 1 (a)) = C(Φ -1 1 ln 1 -κ 1 -ζ .
So in (4.29) we take a = ln((1 -κ)/(1 -ζ).

Recalling the notation y

κ = ς Φ 1 (κ) (t) from (3.31) we set ν κ = ( y κ t , v κ t ) 0≤t≤T . Then, for ν ∈ U with V T = -ln(1 -κ), J(x, ν) ≤ J(x, ν κ ) = A(x) + Γ 1 (κ) .
It is clear that (3.33) gives the optimal value for the parameter κ.

To finish the proof we have to verify condition (4.28) for the strategy ν * as defined in (3.35). To this end, with φ

(κ) = Φ -1 1 ln((1 -κ)/(1 -ζ)) , we set ς * t = ς φ 1 (t) , φ 1 = φ 1 (γ 1 ) and γ * (t) = ς * t 2 ς * θ t .
With this notation we can represent the function L t (ν * ) in the following integral form

L t (ν * ) = - t 0 g * (u) du - t 0 v * s ds , where g * (t) = ς * t |θ t | 2 β t γ * (t) 2 -1 with β t = -ḟα ( ς * θ t ) .
Note that definition (3.26) and the inequalities (3.27) imply

γ * (t) ≥ ς φ 1 (T ) 2ς φ 1 (0) θ t ≥ 1 + φ 1 2 θ t (1 + T + φ 1 ) ≥ 1 2 θ T (1 + T ) .
Moreover, from the right inequality in (3.24) we obtain

β t = 1 ̟ ( ς * θ t ) ≥ |q α | + ς * θ t ≥ |q α | .
Therefore, condition (3.14) implies that g * (t) ≥ 0, i.e.

L * t (ν * ) ≥ L * T (ν * ) = ln(1 -ζ) .
and This concludes the proof of Theorem 3.11. 2

Proof of Corollary 3.13. Consider now the optimization problem (3.33). To solve this we have to calculate the derivative of E in (3.32). We obtain

d dκ E(κ) = T 0 ω(t)|θ t | 2 (1 -ς(t)) ∂ ∂κ ς(t, κ) dt .
We recall from (3.30) that φ 1 (κ) = Φ -1 1 (ln 1-κ 1-ζ ) and define the partial derivative

ς 1 (t, λ) = ∂ ∂λ ς λ (t). Then ∂ ∂κ ς(t, κ) = ς 1 (t, φ 1 (κ)) d dκ φ 1 (κ) . (4.30) Therefore, d dκ E(κ) = - 1 1 -κ B(Φ -1 1 (κ)) with B(λ) = T 0 ω(t)|θ t | 2 (1 -ς λ (t)) ς 1 (t, λ) dt Φ(λ) .
By Lemma A.2, ς 1 (t, λ) ≤ 0, therefore, taking representation (A.6) into account, we obtain 

B(λ) = T 0 ω(t)|θ t | 2 (1 -ς λ (t)) |ς 1 (t, λ)| dt T 0 η(t,
T (ν * ) ≥ ln(1 -ζ) .
Moreover, for 0 ≤ t ≤ T we can represent the function L t (ν * ) as

L t (ν * ) = θ 2 t + f α ( θ t ) -V * t = - t 0 l * s ds - t 0 v * s ds , where l * t = 1 ̟(|q α | + θ t ) -1 |θ t | 2 .
Therefore, by the right inequality in (3.24) we obtain

l * t ≥ (|q α | + θ t -1) |θ t | 2 ≥ (|q α | -1) |θ t | 2
and by condition (3.34) we get l * t > 0 for 0 ≤ t ≤ T , therefore,

L t (ν * ) is decreasing in t, i.e. for 0 < t ≤ T L t (ν * ) ≥ L T (ν * ) ≥ ln(1 -ζ) .
This concludes the proof of Theorem 3.14. Next we prove some properties of Φ and τ φ(κ) .

Lemma A. [START_REF] Artzner | Coherent measures of risk[END_REF] The function τ λ (t) is continuously differentiable in λ for 0 ≤ λ ≤ λ max with partial derivative

τ 1 (t, λ) = ∂ ∂λ τ λ (t) < 0 , 0 ≤ t ≤ T .
Moreover, under the condition (3.14) the derivative Φ(λ) < 0 for 0 ≤ λ ≤ λ max .

Proof. First note that The definition of G in (3.4) implies that We calculate now the derivative of Φ as To estimate this term from below note that by the inequlities (3.7)

Φ(λ) = T 0 τ (t,
τ (t, λ) τ λ θ T ≥ τ (T, λ) τ (0, λ) θ T ≥ 1 (T + 1) θ T .
Therefore,

τ (t, λ) ≥ |q α | (T + 1) θ T -1 (A.2)
and by the condition (3.14) τ (t, λ) > 0 for 0 ≤ t ≤ T and 0 ≤ λ ≤ λ max , i.e. Φ(λ) < 0. 2

Proof of Lemma 3.3. Taking into account that τ 0 (•) ≡ 1 we get

Φ(0) = |q α | θ T - 1 2 θ 2 T .
Moreover, condition (3.8) implies Φ(0) >ln(1 -ζ). Therefore, in view of (4.17) and Lemma A.1 we get that the inverse Φ -1 (a) exists for 0 < a ≤ln(1 -ζ) with 0 ≤ Φ -1 (a) < λ max and Φ -1 (0) = λ max . 2

A.2 Results for Section 3.2

We present some properties of Φ 1 (λ) and ς φ(κ) .

Lemma A. [START_REF] Basak | Value at Risk based risk management: optimal policies and asset prices[END_REF] The function ς λ (t) is continuously differentiable in λ for all 0 ≤ λ ≤ λ * max with partial derivative

ς 1 (t, λ) = ∂ ∂λ ς λ (t) < 0 , ≤ t ≤ T .
Moreover, under condition (3.14) the derivative Φ1 (λ) < 0 for 0 ≤ λ ≤ λ * max . Proof. First note that Moreover, Φ 1 (λ ′ max ) = 0 since ρ 1 (λ ′ max ) = 0. This means that φ * (0) = λ * max . In view of Lemma A.2 Φ 1 (•) is strictly decraesing on [0, λ ′ max ]. Therefore, Φ -1 1 exists for all 0 < a ≤ln(1 -ζ) such that 0 ≤ φ 1 (a) < λ ′ max with φ 1 (λ ′ max ) = 0. 2

Corollary 3 .

 3 13 Assume that θ T > 0 and that (3.29) and (3.34) hold. Then γ 1 = ζ and the assertions of Corollary 3.6 hold with κ 1 replaced by κ 1 .

  ) and(3.35) with the unconstrained optimal strategy (2.7), then the risk bounds forces investors to restrict their investment into the risk assets by multiplying the unconstrained optimal strategy by the coefficients given in (3.10) and (3.13) for VaR constraints and (3.30) and (3.33) for ES constraints. The impact of the risk measure constraints enter into the portfolio process through the risk level ζ and the confidence level α.

. 2 ) 4 . 1

 241 Lemma Consider the optimization problemmax f ∈W 0,b [0,T ]

  ) and υ n → ḟ as n → ∞ for Lebesgue almost all t ∈ [0, T ]. Therefore, by the Lebesgue convergence theorem we obtain lim n→∞ T 0 |υ n (t) -ḟ (t)| dt = 0 . Moreover, inequalities (4.6) imply | ln υ n | ≤ ln max( ḟmax , 1) + | ln min( ḟmin , 1) | .

Therefore, f n (t) = t 0

 0 υ n (u) du belongs to Γ b n ∩ C 2 [0, T ] for b n := T 0 υ n (u) du. It is clear that lim n→∞ I(f n ) = I(f ) and lim n→∞ b n = b .

Lemma 4 . 2

 42 Assume that y ∈ L 2 [0, T ] and y T > 0. Then for every h ∈ L 2 [0, T ] the function l y (h) ≥ 0.

  and and we choose a = ln((1 -κ)/(1 -ζ) in (4.16). Now recall the definitions (3.10) and (3.11) and set ν

2

 2 
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 22344 Results and proofs of Section 3.Next we introduce the constraintK 1 (y) := -(y, θ) T -f α ( y T ) (4.20) with f α (x) := ln F α (|q α | + x) and F α introduced in (3.20). For 0 < a ≤ln(1 -ζ)we consider the following optimization problemsmax y∈L 2 [0,T ] H(y) subject to K 1 (y) = a . (4.21)The following result is the analog of Proposition 4.Proposition Assume that the conditions of Lemma 3.10 hold. Then the optimization problem (4.21) has the unique solution y * t = y 1,a t = θ t ς λ 1,a (t) with λ 1,a = Φ -1 1 (a).

  .24) right inequality in (3.24) and Lemma 4.2 imply that ∆ 1,y (h, λ) ≤ 0 for all λ ≥ 0 and y, h ∈ L 2 [0, T ]. solution of the optimization problem (4.22) is given by y ∈ L 2 [0, T ] such that D 1,y (h, λ) = 0 for all h ∈ L 2 [0, T ] . (4.25)

1 Proof of Lemma 3 . 2 .

 132 Since G(u, λ) is for fixed λ decreasing to 0 in u, equation G(u, λ) = 1 has a positive solution if and only if G(0, λ) ≥ 1. But this is equivalent to k 2 + 2λk 1 -λ 2 (|q α | 2 -θ| T 2 ) ≥ 0, which gives the upper bound for λ. Moreover, taking into account that G(0, λ max ) = 1 we obtain through the definition (3.5) ρ(λ max ) = 0 2

τ 1 ( 2 .

 12 t, λ) = -|q α | (ρ(λ)ω(t) -λ ρ(λ)(ω(t) + λ)) (λ|q α | + ρ(λ)(ω(t) + λ))By the definition of ρ(λ) in (3.5) we get G(ρ(λ), λ) = 1 for 0 ≤ λ ≤ λ max . Therefore,ρ(λ) = -G 2 (ρ(λ), λ) G 1 (ρ(λ), λ) with G 1 (u, λ) = ∂G(u, λ) ∂u and G 2 (u, λ) = ∂G(u, λ) ∂λ .

G 1 (u, λ) = - 2 T 0 (

 120 ω(t) + λ) 3 (λ|q α | + u(ω(t) + λ)) 3 |θ t | 2 dt and G 2 (u, λ) = -2|q α | T 0 ω(t)(ω(t) + λ) (λ|q α | + u(ω(t) + λ)) 3 |θ t | 2 dt .and Therefore, for all 0 ≤ λ ≤ λ max and 0 ≤ t ≤ T ρ(λ) < 0 and τ 1 (t, λ) < 0 .

ς 1 2 ω 2

 122 (t, λ) = -b(t, λ) c α (λ) (b(t, λ) + c α (λ)) (t) λ(ω(t) + λ) -ρ1 (λ) Ω α (ρ 1 (λ)) (A.3)and Let us calculate now the derivative of Φ 1 . We obtaind dλ Φ 1 (λ) = T 0 η(t, λ) ς 1 (t, λ)dt , (A.6)whereη(t, λ) = -ḟα ( y λ T ) ς λ (t) y λ T -1 = 1 ̟ (|q α | + y λ T ) ς λ (t) y λ T -1 .with y λ T = ς λ θ T . In view of the inequlities (3.27) we obtainς λ (t) y λ T = ς λ (t) ς λ θ T ≥ ς λ (T ) ς λ (0) θ T ≥ 1 (T + 1) θ T .Therefore, by the right inequality in (3.24) and the condition (3.14)η(t, λ) ≥ |q α | + y λ T (T + 1) θ T -1 ≥ |q α | (T + 1) θ T -1 > 0 (A.7) for 0 ≤ t ≤ T and 0 ≤ λ ≤ λ * max . Proof of Lemma 3.10. Similarly to the proof of Lemma 3.3 we observe that condition (3.29) implies Φ 1 (0) = -θ Tln F α (|q α | + θ T ) >ln(1 -ζ) .

  λ) τ 1 (t, λ) |θ t | 2 dt , (A.1) where τ (t, λ) = |q α |τ (t, λ) τ λ θ T -1 + τ (t, λ) .

Second author: This work was supported by the European Science Foundation through the AMaMeF programme.

and Proof of Theorem 3.11. Define L t (ν) = (y, θ) t -V t + f α ( y t ) , 0 ≤ t ≤ T , (4.27) with f α defined in (3.28). First note that the risk bound in the optimization problem (3.21) is equivalent to

As in the proof of Theorem 3.4 we start with the constraint at time t = T :

Taking the definition of K 1 in (4.20) into account and choosing V = V κ as in (4.14) we rewrite this inequality as

To find the optimal strategy we use the optimization problem (4.21), extending the range of a to 0 ≤ a ≤ ln((1 -κ)/(1 -ζ). In Proposition 4.4 we established that for each

where y 1,λ is defined in (4.26) and

To study the optimization problem (4.21) for a = 0 note that

and by the right inequality in (3.24) we obtain for |q α | > θ T (which follows from condition (3.14))

Therefore, k min (x) > k min (0) = 0 for all x > 0 and k min (x) = 0 if and only if x = 0. This means that only y ≡ 0 satisfies K 1 (y) = 0. Moreover, in view of Lemma 3.9 and Lemma 3.10, as in the proof of Theorem 3.4, we obtain y 0 = 0. Therefore, the function where

) .

Note that we can represent the numerator as

with y = |q α | + ρ 1 . Therefore, the left inequality in (3.24) implies

and by condition (3.34) we obtain

Let us now calculate ρ1 . To this end note that definition (3.25) implies

The definition of H in (3.22) implies that

and

Taking into account that

we obtain from the right inequality in (3.24) ψα (x) + 1 ≥ 0 for all x ≥ 0 .

Therefore, for all 0 ≤ λ ≤ λ ′ max and 0 ≤ t ≤ T ρ1 (λ) < 0 and ς 1 (t, λ) < 0 .
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