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Optimal consumption and investment with
bounded downside risk for power utility
functions

Claudia Kluppelberg and Serguei Pergamenchtchikov

Abstract We investigate optimal consumption and investment problema Black-
Scholes market under uniform restrictions on Value-akRisd Expected Shortfall.
We formulate various utility maximization problems, whizdn be solved explicitly.
We compare the optimal solutions in form of optimal valuetimal control and
optimal wealth to analogous problems under additionalasmifrisk bounds. Our
proofs are partly based on solutions to Hamilton-Jacoliirize equations, and we
prove a corresponding verification theorem.

Key words: Portfolio optimization, Stochastic optimal control, Risknstraints,
Value-at-Risk, Expected Shortfall
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1 Introduction

We consider an investment problem aiming at optimal congiompluring a fixed
investment interval0, T] in addition to an optimal terminal wealth at maturity
Such problems are of prime interest for the institutionaésior, selling asset funds
to their customers, who are entitled to certain paymentndutine duration of an
investment contract and expect a high return at maturitg. diassical approach to
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this problem goes back to Mertdn [10] and involves utilitpétions, more precisely,
the expected utility serves as the functional which has togtinized.

We adapt this classical utility maximization approach tdags industry prac-
tice: investment firms customarily impose limits on the rigkrading portfolios.
These limits are specified in terms of downside risk measaséke popular Value-
at-Risk (VaR) or Expected Shortfall (ES). We briefly commentthese two risk
measures.

As Jorion [}S], p. 379 points out, VaR creates a common denatoirfor the
comparison of different risk activities. Traditionallypgition limits of traders are
set in terms of notional exposure, which may not be directisnparable across
treasuries with different maturities. In contrast, VaRyides a common denomina-
tor to compare various asset classes and business unitpopldarity of VaR as
a risk measure has been endorsed by regulators, in partitudaBasel Commit-
tee on Banking Supervision, which resulted in mandatoryleggpns worldwide.
One of the well-known drawbacks of VaR is due to its definitiera quantile. This
means that only the probability to exceed a VaR bound is densd, the values of
the losses are not taken into account. Artzner effhl. [1] gsep as an alternative
risk measure the Expected Shortfall, defined as the conditexpectation of losses
above VaR.

Our approach combines the classical utility maximizatiathwisk limits in
terms of VaR and ES. This leads to control problems undericéshs on uni-
form versions of VaR or ES, where the risk bound is supposeetin vigour
throughout the duration of the investment. To our knowlesigeh problems have
only been considered in dynamic settings which reducensitally to static prob-
lems. Emmer, Kluppelberg and Korﬂ [4] consider a dynamicketa but maximize
only the expected wealth at maturity under a downside riskbd@t maturity. Basak
and Shapiro|]2] solve the utility optimization problem favraplete markets with
bounded VaR at maturity. Gabih, Gretsch and Wunder(ich¢8esthe utility opti-
mization problem for constant coefficients markets withrmed ES at maturity.

In the present paper we aim now at a truly dynamic portfolioich of a trader
subject to a risk limit specified in terms of VaR or ES. We sk#dlt with Merton’s
consumption and investment problem for a pricing modeladrigy Brownian mo-
tion with cadlag drift and volatility coefficients. Suclyramic optimization prob-
lems for standard financial markets have been solved in Kasaind Shrevd][7]
by martingale methods. In order to obtain the optimal stpata “feedback form”
basic assumption irﬂ[?] on the coefficients is Holder caritinof a certain order
(see e.g. Assumption 8.1, p. 119). In the present paper welassical optimization
methods from stochastic control. This makes it possibl®tmfilate optimal solu-
tions to Merton’s consumption and investment problem irptiit feedback form”
for different power consumption and wealth utility funct® We also weaken the
Holder continuity assumption to cadlag coefficientds$ging weak integrability
conditions.

In a second step we introduce uniform risk limits in terms aRvand ES into
this optimal consumption and investment problem. Our riglasures are specified
to represent the required Capital-at-Risk of the institai investor. The amount
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of required capital increases with the corresponding lesmtijle representing the
security of the investment. This quantile is for any spedifaler an exogeneous
variable, which he/she cannot influence. Additionally fetrader can set a specific
portfolio’s risk limit, which may affect the already exogeusly given risk limit of
the portfolio. A trader, who has been given a fixed CapitaRiak, can now use risk
limits for different portfolios categorizing the riskiresf his/her portfolios in this
way.

It has been observed by Basak and Shad}o [2] that VaR linmikg @pplied at
maturity can actually increase the risk. In contrast to tiiservation, when work-
ing with a power utility function and a uniform risk limit tbughout the investment
horizon, this effect disappears; indeed the optimal gjsater the constrained prob-
lem of Theorenf]5 given ir[ (3.p1) is riskless for sufficientiyall risk bound: For
a HARA utility function, in order to keep within a sufficiegtsmall risk bound, it
is not allowed to invest anything into risky assets at alk, ¢mnsume everything.
This is in contrast to the optimal strategy, when we optirttigdinear utility, which
recommends to invest everything into risky assets and eoasiwothing; se2)
of Theorem Th.3.1

Within the class of admissible control processes we idgstibclasses of con-
trols, which allow for an explicit expression of the optinsalategy. We derive re-
sults based on certain utility maximization strategiesading a power utility func-
tion for both, the consumption process and the terminaltive@he literature to util-
ity maximization is vast; we only mention the books by Kagatand Shrevd]§] 7],
Korn [§] and Merton [[I0]. Usually, utility maximization isdsed on concave util-
ity functions. The assumption of concavity models the idest the infinitesimal
utility decreases with increasing wealth. Within the claspower utility functions
this corresponds to parametegrsc 1. The case/ = 1 corresponds to linear utility
functions, meaning that expected utility reduces to exgrbatealth.

Our paper is organised as follows. In Sectﬂ)n 2 we formulageproblem. In
Section[2]1 the Black-Scholes model for the price processdshe parameter re-
strictions are presented. We also define the necessaryitipgilike consumption
and portfolio processes, also recall the notion of a selfriiing portfolio and a
trading strategy. Secti@.z is devoted to the control ggees; here also the dif-
ferent classes of controls to be considered later are into®dl The cost functions
are defined in Sectioh 2.3 and the risk measures in Selctibr2SectionB all op-
timization problems and their solutions are given. Here #® consequences for
the trader are discussed. All proofs are summarized in @ggtivith a verification
theorem postponed to the Appendix.
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2 Formulating the Problem

2.1 The Model

We consider a Black-Scholes type financial market congjsifroneriskless bond
and severatisky stocks Their respective price§)(t))o<i<t and(§(t))oi7 for
i =1,...,d evolve according to the equations:

dS(t) = r S(t)dt, $(0) =1,
(2.1)
dS(t) = SO Kt)dt + S(t) 3§, 0 ()W (1), §(0) = s > 0.

HereW, = (W, (t),...,Wy(t))" is a standard-dimensional Brownian motiom; € R

is the riskless interest ratep, = (i (t), ..., Uy(t))’ € RY is the vector ofstock-
appreciation ratesand g; = (j; (t))1<j j<q IS the matrix ofstock-volatilities We
assume that the coefficients p; and g; are deterministic functions, which are
right continuous with left limits (cadlag). We also asuthat the matrig; is non-
singular for Lebesgue-almost alk 0.

We denote by#, = o{W,,s<t},t > 0, the filtration generated by the Brownian
motion (augmented by the null sets). Furthermorédenotes the Euclidean norm
for vectors and the corresponding matrix norm for matri€es.(y; )g<;<t Square
integrable over the fixed intervid, T] we define|ly|t = (fy |yt|2dt)2

Fort > 0 let@ € R denote the amount of investment into bond and

B = (¢1(1),.... dg(t)) € R

the amount of investment into risky assets. We recall thisading strategyis an
R+ 1-valued(.Z#, ) o 7-progressively measurable procégs ¢, )o-r and that

d
X = ‘Rso(t)+z ¢;t)S (), t>0,

=1

is called thewealth processMoreover, an(.%)qi-progressively measurable
nonnegative process, o7 Satisfying for the investment horizah> 0

T
/o cdt <o as.

is calledconsumption process
The trading strateg¥(@, ¢;))o<t<7 and the consumption procegs)o;t are
calledself-financingif the wealth process satisfies the following equation

t d ot t
><t=x+/O gq,dso(u)+jzl/o ¢j(u)de(u)—/O cdu, t>0, (22
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wherex > 0 is the initial endowment.
In this paper we work with relative quantities, i.e. with fngctions of the wealth
process, which are invested into bond and stocks; i.e., fueedior j = 1,...,d

(1S (t
___ 4SO,
4SS0 +3%, 6i(OSO
Thenrg = (m(t),..., my(t))’, t > 0, is called theportfolio processand we assume

throughout that it ig.7%,) o<1 -progressively measurable. We assume that for the
fixed investment horizoi > 0

m(t)

i
|\n||%::/0 m[2dt <o as.

We also define with = (1,...,1)’ € RY the quantities
yo=om and =0, ‘(1 —rl), t=>0, (2.3)

where it suffices that these quantities are defined for Lales¢most allt > 0.
Taking these definitions into account we rewrite equafioB)(®r X, as

dX = X (rp +y,6)dt —cdt+XydwW, t>0, X;=x>0. (2.4)

This implies in particular that any optimal investment &gy is equal to
% = o/ ly;, wherey; is the optimal control process for equatign [2.4). We also
require for the investment horizdh> 0

2 T a2
101 = | 1t < oo (25)

Besides the already defined Euclidean norm we shall alscouselitraryq > 1 the
notation|| f ||+ for theg-norm of (f,), i.e.

T 1/q
nﬂqT<A mwm) . (2.6)

2.2 The Control Processes

Now we introduce the set of control proces$gsc;)o<i<7- First we choose the
consumption process; o7 as a proportion of the wealth process; i.e.

G =W%X,

where(wt )oi 7 is @ deterministic non-negative function satisfying
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T
/ Vet < oo,
0

For this consumption we define tientrol procesg = (G )o<t<1 8SG = (Y, 4 %),
where(y;)o<t<7 is a deterministic function taking valuestf such that

T
Iyli2 = /0 e[t < oo 2.7)

The procesgX )o7 is defined by equatior] (2.4), which in this case has the
following form (to emphasize that the wealth process c@oesls to some control
process; we write X¢)

dXS = XS(r — +Y, 6)dt + XSy W, t>0, X5 =x. (2.8)

We denote byz the set of all such control processes
Note that for every; € %, by 1td’s formula, equatior@.B) has solution

X[C — xR VHy.0) &(y), (2.9)

where
t t t
Rt:/ r,du, Vt:/ v,du and (y,60): :/ y, 6,du. (2.10)
0 0 0

Moreover,&'(y) denotes the stochastic exponential defined as

ot 1 ot 2
éi(y)zeXp(/ox/uaWu—E/o IVul du) t>0.

Therefore, for every € % the proces$x® Jo<t<T IS positive and continuous.

We considerZ as a first class of control processes for equa. ion (2.4), fochv
we can solve the control problem explicitly and interpretgolution. This is due
to the fact, as we shall see in Sectipn] 2.4, that because db#ussianity of the
log-process we have explicit representations of the riskauees.

Itis clear that the behaviour of investors in the mo- jel (Aghends on the coeffi-
cients(ry)o<t<T, (K )o<t<T @aNd(G;)o<t<7 Which in our case are nonrandom known
functions and as we will see below (Corolldiy 3) for the "eirdte utility func-
tions” case optimal strategies are deterministic, i.eomglo this class.

A natural generalisation o is the following set of controls.

Definition 1. Let T > 0 be a fixed investment horizon. A stochastic control process
¢ = (G)o<t<T = ((%,G))o<t<T is calledadmissiblef itis (F)oi-progressively
measurable with values iR9 x x [0,00), and equatlor.4) has a unique strong a.s.
positive continuous solutiofX’ Jo<t<T ON [0, T]. We denote by/ the class of all
admissible control processes
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2.3 The Cost Functions

We investigate different cost functions, each leading tdffarént optimal control
problem. We assume that the investor wants to optimize ézgedility of con-
sumption over the time intervé®, T] and wealthX; at the end of the investment
horizon. For initial endowment > 0 and a control process; )g<i<1 in ¥, we in-
troduce thecost function o

36) = [ U@+ k).

whereU andh areutility functions This is a classical approach to the problem; see
Karatzas and ShrevE [7], Chapter 6.

HereE, is the expectation operator conditional)é(fl = x. For both utility func-
tions we choos¥l (z) = 21 andh(z) = 22 for z> 0 with 0< y;, y» < 1, correspond-

ing to the cost function
(/ it + (XS) > 2.11)

Fory < 1 the utility functionU (z) = 2V is concave and is called a power (or HARA)
utility function. We include the case of= 1, which corresponds to simply opti-
mizing expected consumption and terminal wealth. In colatiiam with a downside
risk bound this allows us in principle to dispense with thitytfunction, where in
practise one has to choose the paramethr the context of this paper it also allows
us to separate the effect of the utility function and the liisiit.

2.4 The Downside Risk Measures

As risk measures we use modifications of the Value-at-Rigklag@ Expected Short-
fall as introduced in Emmer, Kluppelberg and Ko[h [4]. Thean be summarized
under the notion of Capital-at-Risk and limit the possibitif excess losses over the
riskless investment. In this sense they reflect a capitakves If the resulting risk
measure is negative (which can happen in certain situgtimasnterpret this as an
additional possibility for investment. For further integgations we refer tqJ4].

To avoid non-relevant cases we consider onty 8 < 1/2.

Definition 2. [Value-at-Risk (VaR)]
Define for initial endowmert > 0, a control process € % and 0< a < 1/2 the
Value-at-Risk (VaR)y

VaR(x,¢,a) :=xd¥ — A, t>0,

where), = A(x, ¢, a) is thea-quantile ofX’, i.e



8 Claudia Kluppelberg and Serguei Pergamenchtchikov
A =inf{A >0: P()([C <A)>a}l.

Corollary 1. In the situation of Definitiorﬂz, for every € % the a-quantileA; is
given by

1
= xexp(R-V (4B~ Iy~ vl ) =0,

where z is thea-quantile of the standard normal distribution, and the athean-

tities are defined if2.3)and ¢.19)

We define thdevel risk functiorfor some coefficient& { < 1 as
&(x) = Ixe telo,T]. (2.12)

We consider only controlg € % for which the Value-at-Risk is bounded by the
level function [2.1R) over the intervéd, T1; i.e. we require

sup VaR (x,6,a)

1. 2.13
0<t<T G (x) = ( )

We have formulated the time-dependent risk bound in the sgin¢as we have
defined the risk measures, which are based on a comparise aofitiimal possi-
ble wealth in terms of a low quantile to the pure bond invesime&he risk bound
now limits the admissible risky strategies to those, whadeaompared to the pure
bond portfolio, represented bf, remains uniformly bounded over the investment
interval.

Our next risk measure is an analogous modification ofEkpected Shortfall
(ES).

Definition 3. [Expected Shortfall (ES)]
Define for initial endowment > 0, a control process € % and 0< a < 1/2

m(X,C,C{):EX(X[Cp(tCS)\t), tZO,

whereAi (X, ¢, a) is thea-quantile ofx’. TheExpected Shortfall (ES§ then defined
as
ES(x¢,a) = xd —m(x,¢,a), t>0.

The following result is an analogon of Corolldy 1.

Corollary 2. In the situation of Definitior[|3, for anyg € 7 the quantity m=
m (X, ¢, a) is given by
M (X G, &) = XFy (|Z4|+[lylly) 0% t>0

3

where where g is the a-quantile of the standard normal distribution and
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fz°° et /20t

F,(2) = z>0.

We shall consider all controlg € %, for which the Expected Shortfall is
bounded by the level functi012) over the intef@gll |, i.e. we require

ES(x¢,a)
_— 1. 2.14
ogstugT & () = ( )

Remark 1(i) The coefficient{ introduces some risk aversion behaviour into the
model. In that sense it acts similarly as a utility functiared. The difference, how-
ever, is that{ has a clear interpretation, and every investor can choaseliager-
stand the influence af with respect to the corresponding risk measures.

(i) If |ly|lt =0forallt € [0,T], then VaR(x,¢,a) = ES(x, ¢, a) = xe¥ (1—e™),
0<t < T.On the other hand, ify||; > 0 fort € [0, T], then

lim VaR(x,¢,a) = lim ES(x, ¢, a) = xe¥.
a—0 a—0

This means that the choice afinfluences the risk boundf (2]13) afid (2.14). Note,
however, thatr is chosen by the regulatory authorities, not by the inve§tbe
investor only chooses the valdgelf { is near O the risk level is rather low, whereas
for { close to 1 therisk level is rather high, indeed in such caseigk bounds may
not be restrictive at all.

3 Problems and Solutions

In the situation of Sectiof] 2 we are interested in the sahstio different optimiza-
tion problems. Throughout we assume a fixed investment tiofiz> 0.

In the following we first present the solution to the uncoaisted problem and
then study the constrained problems. The constraints aterins of risk bounds
with respect to downfall risks like VaR and ES defined by medrssquantile.

3.1 The Unconstrained Problem

We consider two regimes with cost functiofis (2.11) for §;,y, < 1 and fory; =

¥» = 1. We include the case ¢f = y, = 1 for further referencing, although it makes
economically not much sense without a risk constraint. Ththematical treatment
of the two cases is completely different by nature.



10 Claudia Kluppelberg and Serguei Pergamenchtchikov

Problem 1.

maxJ(x,¢).
cev

Theorem 1.Consider Problenf]1 witly; = y, = 1. Assume a riskless interest rate
r, >0forallt € [0,T].
If |8+ > 0, then

maxJ(x,¢) = oo.
cew

If ||6]|]+ = 0, then a solution exists and the optimal value ©£,&) is given by

maxJ(x,¢) = J(x,¢*) = x€fr
cew

corresponding to the optimal contrgl = (y;",0) for all 0 <t < T with arbitrary
deterministic square integrable functigy )7 In this case the optimal wealth
process X" )o<t<T Satisfies the following equation

dX” = Xredt + X7 () dW, X = x. (3.1)

Consider now Problelﬂ 1for4Q w1,y < 1. To formulate the solution we define
functions

T ;
At) =y / el Bdgs and Ayt) = yRel BPUN  o<t<T, (3.2)
t

whereg; = (1—y) tandBi(t) = (g — 1)(r,+ %|6,|%). Moreover, forall 0<t < T
andx > 0 we define the functiog(t,x) > 0 as solution to

A1) g () +Ay(t) g (LX) =X (3.3)
and
p(t,X) = qlAl(t) giql (ta X) + qZAZ(t> 97QZ (ta X) .
Theorem 2. Consider Problenf]1 fo@ < y;,y, < 1. The optimal value of (X, ¢) is
given by
maxJ(x.¢) = Jx.¢*) = 2 g0 (0 ) + 2D gierg ).
cev i 12

where the optimal contraf* = (y*,c*) is forall 0 <t < T of the form

. 0 <T¢ _ p(t),(;([*) (Gtaol(“tnl)) :

(3.4)

The optimal wealth proce$X;")o<t<T is the solution to
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dX* =a"(t,X7)dt -+ (0" (6, X)W, XS = x, (3.5)

where

* 2 no\™
ar(t,x) = rx+p(t,x) |6, — <g(t x)) and B (t,x) = p(t,x) 6.

The following result can be found Example 6.7 on p. 106 in Kzasand Shreve
[E[]; its proof here is based on the martingale method.

Corollary 3. Consider Problerf]1 foy, = y, = y € (0,1) and define

_ -1 1
60 =exp( R+ I3T 101 and a- 1= (3.6)

Then the optimal value of(4, ¢) is given by

T = maxaix.) = Ix.6") =X (g I+ )"

where the optimal contrat* = (y*,c*) isforall 0 <t < T of the form

v = 8 (n? _ (Uto't/);l(ﬂt - rtl)) ;

1-y -y
&) (3.7)
= VX d y .
R S SR /T
The optimal wealth proces$X;*)o<t<T is given by
e ey _ |9t|2
X = X" dt + X - yd\/\4 X5 = X. (3.8)

Remark 2Note that Problenj]1 for different @ y; < 1 and 0< y, < 1 was also
investigated by Karatzas and Shreﬂe [7]. For Holder catirs market coefficients
they find by the martingale method an implicit “feedback foofithe optimal solu-
tion in their Theorem 8.8. In contrast, Theorgm 2 above give®ptimal solution in
“explicit feedback form” for quite general market coeffiets. Our proofis based on
a special version of a verification theorem for stochasttinogd control problems,
which allows for cadlag coefficients.

3.2 Value-at-Risk as Risk Measure

For the Value-at-Risk we consider again the cost funcfiohi(pand, as before, we
consider different regimes forQ y;,y, < 1andy;,y, =1
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Problem 2.

. \Y;
maxJ(x,G) subjectto supM <1
cew o<t<t  G&(X)

To formulate the solution let, be the normabr-quantile for 0< a < 1/2 and
the constanf € (0,1) as in (2.1R). Obviously, foo — 0 we have|zy| — o and,
hence, the quotient irf (2]13) tends t¢{1> 1. This means that the bound can be
restrictive. We define fo6 as in ) the following quantity

Puar = \/(IZaI —[181lr)? = 2In(1 =) = (12| = [|8]I7) - (3.9)

Theorem 3.Consider Problenf]2 fop, = y, = 1. Assume a riskless interest rate
r, > 0forallt € [0,T]. Then for

max0,1 — /2 7llflTy < 7 < 1 (3.10)
the optimal value of k, ¢) is given by

maxJ(x, ¢) = J(x,¢*) = xeParlOlT+Rr (3.11)
14

If ||6]]+ > O, then the optimal contraf* = (y*,v*X*) isforall 0 <t <T of the form

g0o/)t
Y{=p\”}aR% (¢=963R%(ut—rt1)) and ¥=0. (3.12)

The optimal wealth procesX")o<t<T IS given by

ax" =X (r+py ﬁ)dth* g, X = x
tT PR Prar g T '

If ||8]|t = 0, then the optimal value of(#, ¢) is given by

maxJ(x,¢) = J(x,¢*) = x€r, (3.13)
14

corresponding to the optimal contrgl = (y;,0) for 0 <t < T with arbitrary de-
terministic functiony; )o;<7 such that
IYllt < PYar=\/Z& —2IN(1 ) — |zal.

In this case the optimal wealth proce$§" )1 satisfies equatio(B.d)

Remark 3(i) For|z,| > 2||8]|; condition (3.1D) gives a lower bound 0; i.e.
0< { <1 If|z,| < 2||8]]7, then condition|(3.10) translates to

1,923/2*‘217‘“9% < Z <1;
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i.e. we obtain a positive lower bound.

(i) The optimal strategy implies that there will be no comition throughout the
investment horizon. This is due to the fact that the wealttewmect by investment
is so attractive that we continue to invest everything. Nbtg the solution is the
same as the solution to the problem without possible consamp

Now we present a sufficient condition for which the optimatonstrained strat-
egy (3.7){318) is solution for Problefh 2 in the cage= y, = y € (0,1). For this

we introduce the following functions:
& 19
IGyllgr

« T
:—:———————:1feNT:17eﬁbWd,
19y llgT +9y(T)

K(y)

where (V[ )o<7 is the optimal consumption rate introduced 3.7). Byisgtt
1(y) =In(1—K(y)) we define

—q|6lIr|zal +1(y) for 0<y<1/2;
L(y) = R
~q)|6]7 |za| +1(y) — 452|012 for 1/2<y<1.

Theorem 4.Consider Problerf]2 with;, = y, = y € (0,1). Assume ariskless interest
rater, > Oforallt € [0,T] and

1-e <7 <1. (3.14)

Then the optimal solution is given §§.7)-[B.8); i.e. it is equal to the solution of
the unconstrained problem.

Remark 4 Theorem 4 does not hold fgx # y,, since the solution (3.4) does not
belong to7 .

To formulate the result for different (i = 1,2) we introduce the following func-
tionfor0<k <1

G(XaK)::Xleyng\lHq,T+Xy2(1_K)y2/g\2(T)7 X>0) (315)
whereq=(1-y;), G =g, and
g, = e = /oru,
Moreover, forx > 0 we set

K. (X) =arg maxG(x,K). (3.16)

0<k<1
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Note that for 0< y; < 1 and 0< y, < 1 this function is strictly positive for ait > 0;
i.e. 0< Kk, (x) <1.ltis easy to see that in the cage= y, =: y the functionk..(x) is
independent ok and equals to

I8l
16,1+ +6J(T)

Theorem 5.Consider Problerfi2 with < y; < 1and0 < y, < 1. Assume a riskless
interest rate y > Ofor allt € [0,T] and

K(y) (3.17)

0< ¢ <min{K.(X), K(y,)}- (3.18)
Moreover, assume that
max{y,, o} 1
> |1+ 0+. 3.19
|za|_( ¢ Zmeg ) (3.19)

Then the optimal value of4, ¢) is given by

2"3}}(3(& ¢) = I(X%,¢") =x1{NGy flqr +x2(1-{)"2G,(T), (3.20)

where the optimal contraf* = (y*,v*X*) isforall0 <t < T of the form

4°HU)
IG1llgr — 118 lqx

Yy =0 (m'=0) and y =

(3.21)

The optimal wealth proce$X;")o<t<T is given by the deterministic function

1l — 11812
R QT : at _ (4 R
||91||q,T Vi

Remark 5We compare now conditionf (3]18)—(3.19) fer= y, = y € (0,1) with
condition [3.1}#). Making use of the notation |n (3.6) we dbta

, 0<t<T. (3.22)

X =x

~ aLig2 o A
gy(t) = gy(t)eTHth > gy(t)'

Taking this inequality into account we find that in the case p< 1/2
(i.e. 1< g < 2), the functiore=(Y) is bounded above by

gu(T)ealelirizal  gaT)e Aol izal- %2 10IF)

T < —
18y Il +Gp(T) IGllqr +8y(T)

Moreover, condition[(3.39) impliegq| > || 6|+ Therefore, taking into account that
1< g < 2 we obtain
e a8l |zl 01F) < 1.
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Hence, 59T
oi(T
J<(¥) B AR—
eV < — =1-K(y).
91+ +y(T)
Similarly, for 1/2 < y < 1 (i.e.q > 2),
Gd(T)e 28l
g < 9D <1-R().

< Manad |, 20/7+\
= ligllgr +gy(Tm)

So we have shown that-1€+(Y) > K(y), i.e. condition [3.14) is complementary to
conditions [3.18){(3.19).

We present an example for further illustration.

Example 1To clarify conditions [3.18)4(3:19) consider aggin=y, = y € (0,1)
andr, =r > 0. We shall investigate what happens Tor+ . First we calculate

Jo €t 1_ e 1
 Jy ewtdtremT  l4qyr—e T 1iqyr

K«(X) =K(y)

asT — o, whereq = (1—y)~L. Thus, condition|[(3:18) yields foF — o approxi-
mately

0< <

1+ayr
The function [3.75) has the following form

T 1/q
G(x,K) = X'e"T (KYA(T) + (L—Kk)Y)  with A(T):(/ eqyrtdt) .
0

For the partial derivative with respect {owe calculate

: AT (gt
o "=V AT T
Since
max{y;, y»} 1 AT +2(1-0)

1-¢ %'HG(X,Z):ZV(l—Z)A(T)_z(l_Z)VZO(Z) as {—0,

condition [3.1p) impliesz, | > || 6|/ approximately fog — 0. Moreover, the opti-
mal consumption[(3.21) is given by

yar
(-t 7 — (1 )evart

v =

and the optimal wealth procegs (3.22) is
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* e yar(T—t) —yart
thxyqr(e 7-(1-Qe ) 0<t<T.
Conclusion 6 The preceding results allow us to compare the optimal sfiegeof
the unconstrained problems and the constrained problethd/aR bound. We con-
sider ariskless interest rate> O for allt € [0, T].

When simply optimizing expectation, i.¢4 = y» = 1, the VaR constrain puts
a limit to the investment strategy and also influences themywh wealth. On the
other hand, there is no change in the consumption, whichris theoughout the
investment horizon in both cases.

For 0< yi1,¥» < 1 the optimal strategy for the utility maximization problém
volves investment and consumption during the investmeriztio; cf. Theoren{]3.
The influence of a VaR bound is dramatic, when it is valid, agébmmends the
optimal strategy of no investment, but consumption onlyfl'tfeoren[b.

3.3 Expected Shortfall as Risk Measure

The next problems concern bounds on the Expected Shortfall.

Problem 3.
s(x6.a) _,

maxJ(x,¢) subjectto supE
cew o<t G T

To formulate the solution for Problef 3 we define ol 0 and 0<u < 1

Y(p,u) = (6]t pu* + InFy (12| + pu). (3.23)

Moreover, we set

pes = sup{p >0 ¢(p,1) >In(1-7)}, (3.24)

where we define sy} = «. We formulate some properties gf which will help
us to calculategs,

Lemma 1.Let0 < o < 1/2 such thatz, | > 2||6||;. Theny satisfies the following
properties.

(1) For everyp > 0 the functiony(p, u) is strictly decreasing fo® < u < 1.

(2) The functionp(-,1) is strictly decreasing.

(3) For every a< 0 the equationy(p,1) = a has a unique positive solution.
The equationy(p, 1) = In(1— ) has solutiorpg as defined irB.24)
For |z,| > 1 we have
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—2
—In(1-2z,9)-In(1-q)
12| = 116]l+

Now we present the solution of Probl¢n 3, where we start agitirthe situation
of a smalla, where the risk bound is restrictive.

Pes < (3.25)

Theorem 7.Consider Problenf|3 foy; = y, = 1. Assume also that the riskless in-
terestrate f > Ofor allt € [0,T]. Then forevenD < { <landforO<a < 1/2
such that|z,| > 2||8]||; the solutionpig of Y(p,1) =In(1— ) is finite, and the

optimal solution is given b{B.12)after replacingp;, 5 by pic:

Now we consider Problefh 3 with = y, = y € (0, 1). Our next theorem concerns
the case of a loose risk bound, where the solution is the saindlze unconstrained
case.

Theorem 8.Consider ProblerﬂS fop, =y, = y € (0,1). Assume that the riskless
interest rate y > Ofor allt € [0, T]. Assume also that, | > 2||6]||; and

1 (1= K()) €117 Fy 24| +all6llr) < ¢ <1. (3.26)
Then the optimal solutiog* is given by(E)—(@); i.e. itis equal to the solution of
the unconstrained problem.
Now we turn to the general case okOy;, ¥, < 1, the analogon of Theoreﬂ\ 5.

Theorem 9. Consider Problen]3 fod < yl < land0 <y < 1. Assume a riskless
interest rate { > Ofor allt € [0, T]. Takek, (x) as in(B.16) AssumeB.18)and

maxy. ) 1
|za|z<2+ ih %mG(X,ZJneh- @27)

Then the optimal solutiog* is given by(8.21)B.22)
Remark 6 For |z,| > 2||8]|+ we calculate

(t+all6ll7)?
exp(— /51 )dt 2119112
2l 2 a’l el
Fo(l2e| +al6llr) = ———— < exp(—29] 0] — 1)
'f‘za‘ e zd
Recalling from Remarld 5 tha, (t) = @V(t)egE_IHQHt2 we obtain
—9at) g2
~ 2 guT)e =z ol
(L—R(y) eI R, (|24 |+l Bll7) < “——=g=
o 7 gy lgr +9y(T)
=q
7%(” -FI008 < 1_R(y),
= lgllgr +Gy(T)

i.e. condition [3.26) is complementary to conditipn (3.18) O



18 Claudia Kluppelberg and Serguei Pergamenchtchikov

Remark 7(i) It should be noted that the optimal solutidn (3.2L)-8.®r Prob-
lems[? and]3 does not depend on the coeffici¢pti.t and (at)gi Of the

stock price. These parameters only enter irfto {3.18), [{3ah@ (3.2]7). Conse-

quently, in practice it is not necessary to know these patarm@recisely, an upper
bound for|| 8] suffices.

(i) If =0, then conditiond(3.19) anfi (3]27) are trivial, i.e. thérpl solutions
for ProblemdP anfl 3 for & y; < 1 and 0< y, < 1 are given by[(3.21)E(3.p2) for
every 0< a < 1/2 and{ satisfying [3.1B) O

Conclusion 10 The preceding results again allow us to compare the optitraaes

gies of the utility maximization problems and the consteairproblems with ES
bound. The structures of the solutions are the same as foRacwastrain, only
certain values have changed.

4 Proofs

4.1 Proof of Theoren]1

First we considel|8|; > 0. Define forn € N the sequence of strategig§) =
(y™, viWX () for which ("™ = 0 andy(™ = n@. For this strategy[ (29) implies

Jx, ¢y = x0T 50 as n— co.
Let now||6||+ = 0. Then the cost function can be estimated above by
T
J(X,¢) =X (/ eRt\’tthtJreRTVT)
0
T
< xet (/ e Vvt +eVT>
Jo
=xd¥.

Thus, every controt with v =0 matches this upper bound. O

4.2 Proof of Theoren]2

We apply the Verification Theorefn 4.1 to Probi¢jn 1 for the kmtic control dif-
ferential equatio 4). For fixel = (y,c), wherey € R andc € [0, ), the coef-
ficients in model|(A.R) are defined as
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at,x,8) =x(r, +Y6) —c,
b(t,x, &) = x|y|, f(t,x,d)=c", h(x)=x2, 0<y,y<1l.

This implies immediatelyd,. Moreover, by Definitior[]l the coefficients are contin-
uous, hence[ (Al 3) holds for evegye 7.

To checkH, — H; we calculate the Hamilton functiop (4.5) for Probl¢m 1. Weda

H(t,x,z,2) = sup  Ho(t,%,2,%,3),
9 R [0,00)

where
1
Ho(t,X, 215227"9) = (rt + )/91>le + §X2|y|222 + Cyl - CZ]_.

Forz, < 0 we find (recall thaty = (1—y) %)

H(t,%,2;,2,) = Hy(t,X,2,2,3)

1 1 Vi q-1
“ra gy (1)

whered, = 95(t,X,2;,2,) = (Yo(t,X,2,2),6(t,X, 21, 2,)) With

4 n\™
yO(tvvalsz) = @Q and CO(taxszZZ) = Z_j_ . (41)

Now we solve the HIB equatiof (A.6), which has for our problée following
form:

Z(tX) + 1 XZ(t,X) +

éamnaﬁ_kg_< " )%-l:

2z (t,X)]  a \Z(t,X) (4.2)
Z(T,x) = x2.
We make the following ansatz:
20t = 220 gt 1 22 goange @3)
1 Yo

where the functiog is defined in[313). One can now prove directly that this fiorct
satisfies equatior (4.2) using the following propertieg of
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—O1 —02 g —
(—Aut)ag ™™ — Ax(t)ag™) 2 g(t.x) = g(t. ),
: : 9
A (g (t,x) +Ax(t)g 2 (t,x) — Al(t>Q19*Q1*lEg(t,X>

17}
fAz(t)ng*QZ’lEg(t,x) =0
1

zg(t,x) =0.

Al(t)g’ql(t,x) +A2(t)g*q2(t,x) + m ot

This implies that

A

Zt(t,X) = 1 917Q1(tvx) - ﬂglqu(t,x)_ (4-4)

—0L 1-0
Moreover,z,(t,x) = g(t,x) andz(t,x) = —g(t,x)/p(t,x). Equation [4.) implies
the following differential equations for the coefficier{s
{Al(t) =B (OAM) - ", AT)=0,
Ay(t) = —Bo(AL(t), A(T) =52

The solution of this system is given by the functio(3.allrpoints of continuity
of (B;(t))g<t<T- We denote this sef. By our conditions (all coefficients in the
model [2.]1) are cadlag functions) the Lebesgue measufeisfequal toT. Note
that conditions|(2]5) and (4.5) imply that

(4.5)

T .
[ AO]d < e
Jo

fori = 1,2. Moreover, the definition ad(t, x) in (8.3) implies thag(-,-) is continu-
ous on[0, T] x (0,). Invoking (4.4) we obtain property (4.8). Hence conditidp
holds.

Now by (4.]) we find that

H(I,X,ZX(I,X),ZXX(I,X)) = HO('[,X,ZX(I,X),ZXX(I,X),ﬁ*('[,X)),
whered*(t,x) = (y*(t,x),c*(t,x)) with

a1
W(t,x)zwq and c*(t,x):(g(:/vlw) .

HenceH, holds.

Now we check conditiof ;. First note that equatiovm.Q) is identical to equation
@). By Itd’s formula one can show that this equation hasigue strong positive
solution given by
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X = Aut) g H(0,x) &%+ Ay(t) g2 (0,x) &R (4.6)

t 1, t
Et:—./o (ra+518 )du—/0 8/ AW,
This impliesH,.

To check the final conditiohl , note that by definitiond (3.3) anfl (4.6)

with

g(t,X") = g(0,x)e%.
Therefore, taking into account that
X = AT X)) +Ad9 g X)
we obtain fors >t
X: = A(9) g & (t7xt*)e*ql(fs*5t) +A,(s)g % (t7x[*)e*q2(5s*5t),
Hence, fors >t we can find an upper bound of the proce&sX; ) given by

Z(S X*) < Meés Et XS < M )([ ) (e(lfql)(fsfft) +e(17QZ)(€sfft>) ,

min(yy, y5)

SUR 1 (A1 (1) + Ag(t)) (g' 1 (t, x) + g 2(t,x))
min(yy, y») '

Moreover, note that the random variabégs- & andX* are independent. Therefore,
for everym> 1 we calculateg; , is the expectation operator conditionalXh= x)

M*(X) =

Eix sup 27(s, X)) <2™*M(X) (E sup €™mé~%) L E sup emZ(‘fsft)> ,

L t<s<T t<s<T t<s<T

wherem; = m(1—q1) andm, = m(1— qp). Therefore, to check conditioH , it
suffices to show that for evely € R

E sup (&%) < oo, 4.7)

t<s<T

ﬁ 'S 2
Indeed, for every <s<T we set5; ;=€ AN 16U then

2
&8 < HR+HFE0F o

We recall from [2) that 6, Jo<s<T IS @ deterministic function. This implies that
the processé; S)t<S<T is a martingale. Hence applying the maximal inequality for
positives submartlngales (see e.g. Theorem 3 E in [9]) vieiokhat
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E sup 62 <4E&2 = 41 < 4?61

t<s<T

From this inequality?) follows, which implidd,. Therefore, by Theorer@.l
we get Theorerf] 2. 0

4.3 Proof of Theorenj]3

First note that restrictior] (2]13) is equivalent to

. S 7 .
ot Li(6) = In(1-4), (4.8)

where 1
L(¢) = 0~V — 5 IVIZ = |Zal lIyl; (4.9)

with notations as in[(213) and (2]10). Inequality [4.8) anel Cauchy-Schwartz in-
equality imply that

1
Iyl 161+ — §Hy||$ =|Zalllylly = In(1-2)
and, consequently,
IVl < PYur> (4.10)
wherep;,., has been defined ifi (3.4) and satisfies the equation
* 1 * *
HQHTpVaR*E(pVaR)27|ZG|pVaR = In(l—(). (4-11)
Moreover, for every; € % equation[2]9) yields
EXX[C = xdd Yty
For everyy € RY the upper bound (4.]L0) and the Cauchy-Schwartz inequasitgl y

Sup e(yae)t < ep\jaR‘le‘lT .
0<t<T

Therefore, the cost functioll) has an upper bound diyen

J(X,¢) =X (/T RVt Oy, gt + eRTVTJr(yaG)T)
0

]
< x el OllT +Ry ( /O evt\,theVT)

— Xeo\*/aRHGHTWLRT .
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Itis easy to see that the contrgl defined in [3.72) matches this upper bound, i.e.
J(x,¢*) = xeParl8ITRrTo finish the proof we have to check conditign [4.8) for
this control. If|| 8]/ = 0 then by [4.p)

1 1
L(¢") = —§|V||t2_ |Za| [ly*[ls > —§|V||$_ |Za| ly*[IT
1 * *
= _é(pVaR)z_ |Za| pgar = IN(1—=7).

Let now||6||; > 0. Note that condition[(3.10) impligg, | > 2||6||; — pg,5. More-
over, we can represeht(¢*) as

Li(<") = Plagf (16]1/11617)
with 5
(1) = (2116llr — Ppr) > —I7aln, O0<n<1.
Then

OQQTH(C ) = pvaRoglgfgl f(n).

Taking into accountthat fde, | > 2||6||1 — py, this infimum equalg (1) we obtain

together with [(4.7)1)

N L(6") = lag (1) = In(1=0).

This proves Theorefj 3. O

4.4 Proof of Theorenj}4
We have to prove conditiof (4.8) for the stratepy|(3[7)1%3.8
L (¢*) = @ )2 - Vv* — 0
1(¢) = (a— =5 ) I8llf =V — alzal |8
@ 0121 go0 — Vi — 0| =
2 | a- 5 ) 1817 gs2p =V — lzal[|B]lr =1.(v).

Now condition [4.B) follows immediately from the restrimtis on{ and the defini-
tion of 1. (y). O
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4.5 Proof of Theorenj]5

We prove this theorem as theoreﬂn 3. Firstly, we find an uppanédor the cost
functionJ(x, ¢) and, secondly, we show that the optimal contfol (3.20) mextc¢his
bound and satisfies conditioh (4.8). To this end note than {2.9) we find that for
Cew

Ex(XS)Y = XV@y(t)e*MW(Yﬂ)FMHYHE. (4.12)
This implies for¢ € % that the cost functiod (2.1.1) has the form

T - N
I(x,6) =X [ (&) Gy(t) Ryt y)dt + X2 Gy(T) € 2T Ry(T.y),
Jo
where )
hi(t,y) = 0O =172
Holder’s inequality withp = 1/y; andq = (1 y;) ! yields

~ T
J(x,6) < sup h(t,y) (xyl / (e\/tvt)ylﬁl(t)dterVZ@z(T)eV2VT>
0<t<T 0

< sup R(t,y) (% (1— &Y% Gy lqr + ¥EGy(T)& %)
0<t<T

whereh(t,y) = max{h, (t,y), h,(t,y)}. We abbreviate as befo}g; || := (/g eMRdt)?/a.
By settingk = 1 — e~ V7 we obtain that

J < h(t.y)G 4.13
(x,c)_orgtfg (t,y)G(X,K), (4.13)

whereG(-,-) is given in [3.1F). Moreover, conditiop (4.8) implies

Iyl < ¢ (2]~ 6+ 2105 — (7| - [Ollr) = p()  (4.24)

and 0< k < { < 1. lItis easy to see that(k) < p(0) = p) 5 for every 0< k < ¢.

From this inequality follows that for= 1,2 the functionsﬂi tyywitho<y <1
can be bounded above by

- (1- v.>><2>}
h(t.y) < - 0l ———
oztung (LY) < exp{ylosrxr;%)&) <X| Ir 2

(1 —
—expiyo ()01~ H 0200} = Mo (k). (4.15)
wherep; (k) = min(p(k),x) with x; = ¢; |||y for 0 <y < 1 andp;(k) = p(k)
for y = 1. Therefore, from[(4.]3) we obtain the following upper bddor the cost
function
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J(x.¢) < max M;(p;(k))G(x k) < max sup M;(p;(K))G(x,K).

1<i<2 1<i<2 0<k<l
If p(0) <x then

sup M;(pi(K))G(x k) = sup M;(p(k)) G(x.K).

0<k<{ 0<k<{

We calculate this supremum by means of Lenﬂna 2 aithO andb = {. Note that
condition (3.1B) guarantees thak k. (x), which is defined in[(3.36). Therefore, the
functionG(X, -) has positive first derivative and negative secon@od]. Moreover,
from (@.1%) we find the derivative gf(-) as

1

N (AR S T e e

and, therefore,

sup [p(k)| < 1
N T S I
By (8.19) we obtain that
. 1 aInG(x,{)
B AN [ T
Now Lemmdp yields
onax Mi(p(k))G(x,K) = Mi(p({))G(x,{) = G(x,{). (4.16)

Consider now; < p(0). We recall thap(-) is decreasing of0, {] with p({) = 0.
Therefore, there existsQ k; < { such thaip(k;) = x. As G(X,-) is increasing on
[0, ] we obtain

max M;(pi(K))G(x,K) = M;(p(Kj)) G(X,K;) -

0<k<K;
This in combination with[(4.16) yields

sup M;(pi(K))G(x,k) = sup M(p(k))G(x,K) = G(X,{).

0<k<{ Ki<k<{
This implies the following upper bound for the cost function
J(x,6) < G(x,0). (4.17)

Now we find a control to obtain the equality i (417). It isai¢hat we have to take
a consumption such that
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[ gt Vot = (1 e gy
andVy = —In(1—¢). To find this consumption we solve the differential equation
on[0,T]
w_ ¢

Vi€ /g\il(t)v Vo=0.

1Gallgy 7

The solution of this equation is given by

/\ql
Vo (1 Gl
6.3+

and the optimal consumption rate is

Vi =V*= )
t t PTL PTL
||gl||qi,T - Z||91||qi,t

We recall that, > 0, therefore, for every 8t <T

Aq
\/tkg\ﬁlk_ Z—()
1-0alld

The condition 0< { < K(y;) |mpI|es directly that the last upper bound less than
1, i.e. the strategy* defined in | ) belongs t@ . Moreover, from -4) we
see that for the valug; = —In(1— Z) (i.e. k = ¢) the only control process, which
satisfies this condition is |dent|cal zero; iyg.= 0 forall 0<t < T. In this case

ﬁ(t,y*) = 1 for everyt € [0, T] and, therefore](x,¢*) = G(x,{). O

4.6 Proof of Lemmg]L

(1) Recall the following well known inequality for the Gaiess integral
(1-x2)e X2 < x/. e2dt<e X2 x>o0. (4.18)
7 X

We use this to check directly thgt(p,-) is for every fixedp > 0 decreasing for
|z,] > 2||0||+. This implies for0<u<1

opp.u) e (1Zal +pW)?/2
—u =2lelrpu- P ceng <p@6lr —lzal) <0
Jzg|+pu
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(2) Similarly, we can show thap(-,1) is strictly decreasing fojzy| > ||6|+-
(3) From [4.1B) we obtain

o 1
W(p,1) < [6llrp —In / | e Pdt =3 (12| + )~ (2| +p)  (4.19)

Jzg

This implies that limy_,, ¢/(p, 1) = —c0. As (0, 1) = 0 we conclude that the equa-
tion Y(p,1) = ahas a unique root for every< 0. Thuspig is equal to the root of

this equation fom = In(1— ). Now for |z,| > 1 inequalities[(4.18)F(4.1.9) imply
directly the upper bound fquZg as given in 5). O

4.7 Proof of Theorenj]7

Note that Lemmd]1 implies immediately thats < o and@(pgs, 1) = In(1— Q).
Furthermore, inequality (2.114) is equivalent to

S0t L(0) 2 In(1- ). (4.20)

where
Li(6) =(y,0) =V, +In(Fa(|zo [+ [IYlle) -
First note that

L7(¢) = (v, 8)r = V1 +In(Fq (|2 |+ [I¥ll+))
< |Yllr[18llr +In(Fa(|Ze |+ [Iyllr)) = @(lIyliT,1)-

Therefore, for every strategyc % satisfying inequalityO) far=T we obtain

In(1—4) = W(pes 1) < L7(¢) < Y(lyllr,1).

By LemmdJL(2)y(-,1) is decreasing, hendg|| < Pt Therefore, to conclude the

proof we have to showf (4.p0) for the strategyas defined in{(3.12) withy,. . = p¢s.
If |6l =0, then¢* = (y*,0) with every functiory* for which |ly*||; < pgs. There-
fore, if ||0]|+ =0, then

L () =w(ly' [l D) = @y, 1) = In(1- ).
If ||6]]+ > 0, then

. . 6
nf L3¢ = it o (P gt ) = vpEs D) = n(1-0).

0<t<T 0<t<T

This proves Theoreffj 7. 0
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4.8 Proof of Theorenj]8
It suffices to prove conditior] (4.R0) for the stratefy|(3(B)§). We have
t
Li(¢") = ./0 (vy)" 6,du = V" + In (Fg (|24 + 11y lle)

=qll6IIf — V" + In (Fy (12| +all6]]0))
> Wo([16]l) — V7 (4.21)

where .
Wo(u) =qUP +InF, (|z,] + qu) with =1y

Itis clear thaty, is continuously differentiable. Moreover, by inequalfg:1§) we
obtain for 0<u < 0|+

~(Izg|+qu)?/2
dug&u) —2qu-q——— e
f‘za‘+que

< 2qu—dqlz,| — q?u < q(20]r — |zl)-
Since|z, | > 2||6]|1, Yo(u) decreases ifd, || 0||;]. Hence, inequality[(4.21) implies
L(¢) > wo(l10llr) — V5 =all6]1 +Ine T Fy (12| +al16]7)-
Applying condition [3.2) yieldq (4.20). This proves Theo$. O

4.9 Proof of Theorenj]9

We recall thatp(p,1) < 0 for p > 0. Therefore conditior] (4.20) implies
IN(1—-7) < =Vr+g(llyllr,1) < —Vr. (4.22)

As in the proof of Theorerﬂ 5 we sgt=1— e VT and conclude from this inequality
that 0< k < . Moreover, from 2) we obtain also that

In(1—-)—In(1—K) < (llylr,1)-

Since, by Lemm§|1(2)(-,1) is decreasing, we géy|; < p(k), wherep(k) is the
solution of the equation

Y(p,1)=In(1-¢)—In(1—k). (4.23)
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By Lemma|[JL(3) the root of[(4.23) exists for every<Ok < ¢ and is decreasing
in k giving p(k) < p(0) = pts Consequently, we estimate the cost function as in
Sectior{ 4. and obtain

< (o .
Ix6) < max max Mip (k) Gx k), (4.24)

whereG(x, k) is as in [3.2B)M,(-) is defined in [4.1]5) ang, (k) = min(x,, p(k))
forx =1/0|t/(1—y) for0< y < 1 with p;(k) = p(k) for y = 1.
To finish the proof we have to show conditidn (A.1) of Lemfha eorf (4.23) we

find that L
o 1 (dy(p, 1)\
Now from the definition ofy in (8:23) and inequality[ (4.} 8) follows
dy(p,1) e (Iza|+p)%/2
=16lly = =7 < 16lls — |zal-
dp f\zaHp e /2dt
. 9Gx2)
Therefore [3.47) yields (we s (x,{) = —57 )
; 1 Gl(XaZ)
sup |p(k)| < < .
ooep PN S A0zl T8 = M@y v} [01:60x.0)

We apply LemmﬂZ, and the same reasoning as in the proof ofré'hl@ implies
that
max M (p;(k)) G(x, k) < G(x,{)
0<k<{
fori = 1,2. Therefore from the upper bour{d (4.24) follows
J(x,¢) < G(x,{).

The remainder of the proof is the same as for Thedem 5. O

Appendix
A.1 A Technical Lemma

Lemma 2. Let G be some positive two times continuously differergifnction on
[a,b] such that5(x) > 0andG(x) < Oforalla <x<b.Moreover,lep : [a,b] = R
be continuously differentiable with negative derivativeatisfying
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sup [p(K)] < — NSO

< — (A1)
a<k<b max{y;, y>}0]r

Recall the definitions of N+) in (.1%) Then the functions Mp(-))G(-) and
M,(p(-)) G(-) are increasing ina, b.

Proof. For ||8||+ = 0 the result is obvious. Consider nd\@||+ > 0. We prove that
for i = 1,2 the functiond;(x) = InM;(p(X)) + InG(x) are increasing ifa,b]. As
derivative we obtain
: : G(x
li(k) = yp (k) ([|]lr — (1= %)p(K)) + %
Since the derivative of the functioB(-)/G(-) is negative ona,b], G(-)/G() is
decreasing ofg, b], hence _ .
G(x) _ G(b)
Vs
G = Gb)

for x € [a,b]. Therefore, ap > 0 andp < 0 we find

110 > (ING(b)) — |16l |p(K)| >0, a<k<b. 0

A.2 The Verification Theorem

We prove a special form of the verification theorem (see eog|2|T], p. 16).
Consider on the intevdD, T] the stochastic control process given by the It process

dX¢ = a(t,XS, g)dt + b(t,XS,q)dW, t>0, X;=x>0. (A.2)
We assume that the control procestakes values in some sef” C RY x [0, ).
Moreover, assume that the coefficieatandb satisfy the following conditions
(1) for allt € [0, T] the functions(t, -, -) andb(t, -, -) are continuous oD, ») x .%;
(2) for every deterministic vectar € ¢ the stochastic differential equation
dX” = a(t,X’,v)dt + b(t,X’,v)dw, X5 =x>0,
has an unigue strong solution.

Now we introduce admissibles control processes for thet&qu). We set#, =
o{W,,0<u<t}forany O<t <T.

Definition 4. A stochastic control process= (G )o<t<t = (W, G ))o<i<T IS called
admissibleon [0, T| with respect to equatiof (A.2) if it i6%; ) o1 - progressively
measurable with values iRY x [0, ), and equationZ) has a unique strong a.s.
positive continuous solutiofX’) ;- on [0, T] such that
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/OT (la(t, XS, q)| + b?(t, XS, q))dt < o as.. (A.3)

In this context?” is the set of all admissible control processes with respetie
equation [(A.p); cf. Definitior]1.

Moreover, assume thét: [0, T] x (0,0) x .# — [0,00) andh : (0,00) — [0, )
are continuous utility functions. We define the cost functiy

.
Itx,Q) == Ey U F(sXS,¢)ds+h(X$)|, 0<t<T,
' t

whereE; , is the expectation operator conditional ¥h = x. Our goal is to solve
the optimization problem

J*(t,x) := supJ(t,x,q). (A.4)
cev

To this end we introduce the Hamilton function

H(t,X,Zl,Zz) .= Sup Ho(t,X,Zl,Zz,S), (A5)
dex

where
Ho(t,%,2,2,9) = a(t,x,3)z; + %bz(t,x,ﬁ)zz + f(t,x,9).

In order to find the solution tof (4.4) we investigate the HaaritJacobi-Bellman
equation
z(t,x) + H(t,x, 2 (t,x),2,(t,x)) =0, te<][0,T],
(A.6)
Z(T,x) = h(x), x> 0.

Herez denotes the partial derivative afwith respect td, analogous notation ap-
plies to all partial derivatives.
We assume that the following conditions hold:

H;) There exists some function 40, T] x (0,0) — [0,), which satisfies the fol-
lowing conditions.

e Forall0<ts,t; <T there exists &[0, T| ® #(0,») measurable function g, -)

such that .
2
Z(ty,X) — z(t1,x) = z(u,x)du, x> 0. (A.7)
t2
¢ Moreover, we assume that for everyyo, T| the function Zu,-) is continuous
on (0, ) such that for every N> 1

T
lim sup |Zt(U,X)—Zt(U,y)|dU:0, (A8)

€=0J0 xyeKy,|x—yl<e
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where K, = [N~1,N].

e The function z has second partial derivatiyg avhich is continuous of0, T] x
(0,00).

e There exists a sdf C [0,T] of Lebesgue measuse(l") = T such that &,x)
satisfies equatio(AA.§) for allt € " € [0,T] and for all x> O.

H,) There exists a measurable functii : [0,T] x (0,00) — 2 such that
H(t, %, 2(t,X), Z(t, X)) = Ho(t, X Z(t, %), Z(t, X), 87 (t, X))
forallt € I and for all xe (0, ).
H3) There exists a unique a.s. strictly positive strong solutimthe 16 equation
dX” = a’(t,X")dt + b*(t, X)W, t>0, Xj=x, (A.9)

where d(t,x) = a(t,x,9*(t,x)) and b'(t,x) = b(t,x,9*(t,x)). Moreover, the opti-
mal control procesg” = 4*(t,X") for 0 <t <T belongs to/".

H,) There exists som&> 1 suchthatforalld <t <T and x>0

Eix SUp (2(8.X]))° < .

Ct<s<T

Theorem A.1. Assume tha?” £ 0 andH,; —H, hold. Then for all tc [0, T] and for
all x > 0 the solution to the Hamilton-Jacobi-Bellman equatipn jjA@incides with
the optimal value of the cost function, i.ét,x) = J*(t,x) = J*(t,x, ¢*), where the
optimal strategy;* is defined irH, andHs.

Proof. For ¢ € # let X¢ be the associated wealth process with initial valge= x.
Define stopping times

T, = inf{sz t: /sz(u,xlf,cu)é(u,xlf)du > n}/\T.
t

Note that condition[(A]3) implies that, — T asn —  a.s.. By continuity of(-, -)
and of(X)o<t<T We obtain

lim 2(7,, X7 ) = 2T, X¢) = h(Xf) as. (A.10)

n—soo T

Theoren] A.p guarantees that we can invoke 1td’s formuld,&ea conclude from

(%)
2.0 = [ 16X cds+ 201, %) [ 38 XE)

+ Hl(sa XSC,CS))dS— ‘[T” b(U,XS,CU)ZX(U,XLf)d\Nu, (A-ll)
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where
Hi(s,x,8) = Hy(t, X, Z(,X),Z4(t,X), 3).
ConditionH, implies

Tn
20> By [ 18 XSG a5+ (T XE).
t n

Moreover, by monotone convergence for the first term andi®atemma for the
second, and by observinlg (A]10) we obtain

Tn
lim Etyx/t (XS, ) ds + im Ey (1, %)

3
n—oo L

T
ZELX/t F($ XS, ¢)ds + Exh(X$) :=J(t,x, ), 0<t<T. (A12)

Thereforez(t,x) > J*(t,x) forall 0 <t < T.
Similarly, replacingg in (A.11) by ¢* as defined byd, — H we obtain

‘Tn
Z(t,x) = E x /t f(s,XS,¢)ds+ Et,xz(rn,XT*n).

Condition H, implies that the sequendg(T,, X} ))ner is uniformly integrable.
n

Therefore, by[(A.1J0),
lim By 2(1h, X; ) = Egx lim 2(10, X7 ) = By xh(X7),

Ik Ik

and we obtain
H Tn * % i *
z(t,x) = nlggoEt,x/t f(s, X5, 6)ds+ lim B, 2(1h, X7 )

T
— B, (/ f(s, X, C)ds+ h(x;))
Jt
= J(t,x,¢%).
Together with [[A.1P) we arrive a&t,x) = J*(t,x). This proves Theoren A.1. O

Remark 8 Note thatin contrast to the usual verification theorem (sg€leuzi ],
Theorem 1.4) we do not assume that equa@ (A.6) has acolidr allt € [0,T],
but only for almost alt € [0, T]. This provides the possibility to consider market
models as in[(2} 1) with discontinuous functional coeffitseMoreover, in the usual
verification theorem the functiof(t,x, ) is bounded with respect t € ¢ or
integrable with all moments finite. This is an essentialatéhce of our situation as
for the optimal consumption probleffnis not bounded ove$ € . and we do not
assume that is integrable. O
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A.3 A Special Version of b's Formula

We prove Itd’s formula for functions satisfyirtd,, an extension, which to the best
of our knowledge can not be found in the literature. Considertd equation

dEt:atdt+b[Ma

where the stochastic processes: (a)ot-t andb = (bt)o< -1 are measurable,
adapted and satisfy for the investment horiZox 0

)
| (al+Bd <o as. (A.13)
0

Theorem A.2.Let f : [0,T] x (0,00) — [0, ) satisfyH;. Assume that the process
& is a.s. positive 00 <t < T. Then(f(t, & ))o<t<T IS the solution to

df(tvft) = (ft(tvft)+ fx(tvft)at +%fxx(t7£t))bt2dt+ fx(tvft)b[d\M' (A14)

Remark 9Note that in contrast to the usual Itd formula we do not asstivatf has
a continuous derivative with respecttand continuous derivatives with respeckto
on the whole ofR. For example, the functiorm.S) for =y, = y € (0,1) factorises
into z(t,x) = Z(t)x¥, i.e. is not continuosly differentiable with respectx®on R.
O

Proof. First we prove[(A.14) for bounded processesndb, i.e. we assume that for
some constarit > 0
sup (Ja/+ ) <L as. (A.15)
0<t<T
Let (t) ;<< be a partition of 0, T], more precisely, tak = kT/n, and consider
the telescopic sums

n

f(vaT) - f(ov EO) = Z (f(tkvftk) - f(tk*lvftk))

k=1

M>s

(f(te1, &) — Flte-1,&, )
K=1

2

n o 2n

+

1
Taking condition[(A.Jf) into account we can represent the $izsn as
n tk T
20 = z / fi(u, &, )du = / fi(u, &) du—+ryp,
k=1 "tk-1 0

where
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n ty
=Y [ (R(WE) - f(ug)d

k=1 Yt-1
Now we prove that, , P 0.asn — . To this end we introduce the stopping time,
y=inf{t>0:&+&>N}AT, N>0. (A.16)
As the procesg is continuous and a.s. positive,

lim P(ty <T) =0, (A.17)

N—c0

and, hencery P TasN - w. Moreover, the modulus of continuity of the process
& satisfies

Ay (&,[0,T]) == sup  |&-& B0, £-0. (A.18)

t—s|<e,ste[0,T]

Note now that conditior{ (A]8) implies that for evely> 1

T
F*(n,N) ::/ sup [f (u,x) — f(u,y)Jdu—0 as n—0,
0 xyeKy,[x=yl<n

whereKy, = [N~1,N]. This implies that for everg > 0 there existg); > 0 such that
F*(ns,N) < d. Moreover, taking into account that fer= T /n the random variable
Iy n is bounded on they-set

{4,(&[0,T]) <ns}n{ty =T}
by [ry | <F*(ns,N) < &, we obtain that

P(Irynl > 8) < P(4:(&,[0,T]) > ng) + Pty <T).

Relations[[(A-1]7) and(A-18) implyy , - 0 asn — «. Now define
T 1 /T 5
Fon = Z2,n 7/ fx(tvfodft - E / fxx(ta Et) bt dt.
0 Jo
We show that, , P oasn— . A Taylor expansion gives
Z2,n =

ot
Tt 18 JAE +3 Y Tl &, ) /t b2du
k-1

1
2

M s

k

+

I\)ll—‘ &M:

1
1 no_
5 Zf (D& )2, (A.19)

M=

1:xx(tk 1)Etk 1 ak

k=1
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Whereak = (Aftk)zf ttk bzdu fk - fxx(tk 1aEtk) xx(tk 1aEtk 1) and
Etk =&, +64¢, with 6 € [0,1]. Now taking into account that as— oo

Z tk 175tk 1 Aétk _>/ t Et dét

n

tk
z fxx(tkflvftkfl)‘[ bﬁdU§A fxx(taa)bf_dt
1

k=1 k—

it suffices to show that the last two terms [n_(4.19) tend tazerprobability. To
this end we represent the first sum as

n

Z fxx(tkflv Etkfl)ak = Mn + Rna

k=1

n ) tk Ty
Mn = Z fxx(tkfla Etkfl)rlk with Nk = ( qu\NU)Z - bgdua
k=1 tk-1 a1

n ) i tye
Ri= 3 fulbend, )oK with ai=(8§)7= (] budw,)”.
k=1 k—1

First we estimate the martingale part in this represemtatinte that on the set
{1y = T} the martingale part coincides with the bounded martingale

n
Mn = z fxx(tkfl’Etkfl/\rN)nk'
k=1

Taking into account that

|fxx(tk71a Etk—l/\TN)| < sup |fxx(t7y)| =M
te[0,T],ye[N~1N]

we obtain

4
n
EMI‘21 =E Z fxx tk l7Etk l/\TN E Z < u)
1
§3HMEZ@WV:3UMﬁﬂa—%Q n— o,
k=1
In the last inequality we used the boufid (4.15) foWe conclude

Mn >0, n—o. (A.20)
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Using the convergencg (A]18) also fdt) = J; bydW, and the upper bound (A115)
for awe obtain

"tk 2 ity "tk
log| < aydu) +2 |ay|du budW,
Mg M1 T

< Lz(Atk)z + ZLAS(I ) [Oa T])Atka

wheree = At, =T /n. This yields lim,_,,, 57, |ay| =0 a.s. We use analogous argu-

ments as for(A.30) to show th& > 0. Taking also into account thgf)_, (A&, )2
is bounded in probability, i.e.

lim P<§(Aftk)2 > m) =0,
m=e \ k=1

it is easy to see that the last sum|in (4.19) tends to zero ibaisility. This proves
Ito’s formula {A.14) for bounded coefficients,) and(b).

To prove Ito’s formula under conditiof (AJ13) we introduce E € N the sequence
of processe$& ) o7 by

d&- =ardt+braw, &5 = &o,
whereal := 3 X{|a|<L} andbl- 1= Bt X (| <L} - FOr each of these processes we already
proved [A.1k). Therefore we can write
T T
(T8 = 10.8)+ [ Ardt+ [ BLaw, (a.21)
0 0

whereA = f,(t,&") + f,(t,&5)ak + f(t, &) (bF)?/2 andBl = f,(t,&")b-. Note
that ) implies immediately
_ T
lim [ (JaF —a|+(b-—b)?)dt=0 as.
L= Jg
Taking this into account we show that

sup |EE - & 50, L. (A.22)
0<t<T

Indeed, from the definitions & and&' we obtain that

T t
sup (&~ &1 < [ [ab —aldt+ sup | [ (6 b awy].
0<t<T 0 0<t<T'~/0

Thus for {A.2}) it suffices to show that the last term in thisgoality tends to zero
asL — . By Lemma 4.6, p. 102 in Liptser and Shiryaﬂ/ [9]) we obtaindeery
£>0
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t T
P( sup /(b#—baow‘ > 5) < %+P(/ (bt — by)2clt > e) |
0<t<T |0 o 0
This implies [A.2P). Taking now the limit in[(A-21) fok to infinity we obtain
(A.19). O
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