Formes de Whitney et primitives relatives de formes différentielles sous-analytiques - Archive ouverte HAL
Article Dans Une Revue Asian Journal of Mathematics Année : 2011

Formes de Whitney et primitives relatives de formes différentielles sous-analytiques

Résumé

Let $X$ be a real-analytic manifold and $g\colon X\to{\mathbf R}^n$ a proper triangulable subanalytic map. Given a subanalytic $r$-form $\omega$ on $X$ whose pull-back to every non singular fiber of $g$ is exact, we show tha $\omega$ has a relative primitive: there is a subanalytic $(r-1)$-form $\Omega$ such that $dg\Lambda (\omega-d\Omega)=0$. The proof uses a subanalytic triangulation to translate the problem in terms of "relative Whitney forms" associated to prisms. Using the combinatorics of Whitney forms, we show that the result ultimately follows from the subanaliticity of solutions of a special linear partial differential equation. The work was inspired by a question of François Treves.
Fichier principal
Vignette du fichier
Holder50.pdf (407.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00454060 , version 1 (07-02-2010)

Licence

Identifiants

Citer

Jean-Paul Brasselet, Bernard Teissier. Formes de Whitney et primitives relatives de formes différentielles sous-analytiques. Asian Journal of Mathematics, 2011, 15 (2), pp.273-319. ⟨hal-00454060⟩
217 Consultations
200 Téléchargements

Altmetric

Partager

More