Connes-Moscovici characteristic map is a Lie algebra morphism - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year :

Connes-Moscovici characteristic map is a Lie algebra morphism

Abstract

Let $H$ be a Hopf algebra with a modular pair in involution $(\Character,1)$. Let $A$ be a (module) algebra over $H$ equipped with a non-degenerated $\Character$-invariant $1$-trace $\tau$. We show that Connes-Moscovici characteristic map $\varphi_\tau:HC^*_{(\Character,1)}(H)\rightarrow HC^*_\lambda(A)$ is a morphism of graded Lie algebras. We also have a morphism $\Phi$ of Batalin-Vilkovisky algebras from the cotorsion product of $H$, $\text{Cotor}_H^*({\Bbbk},{\Bbbk})$, to the Hochschild cohomology of $A$, $HH^*(A,A)$. Let $K$ be both a Hopf algebra and a symmetric Frobenius algebra. Suppose that the square of its antipode is an inner automorphism by a group-like element. Then this morphism of Batalin-Vilkovisky algebras $\Phi:\text{Cotor}_{K^\vee}^*(\mathbb{F},\mathbb{F})\cong \text{Ext}_{K}(\mathbb{F},\mathbb{F}) \hookrightarrow HH^*(K,K)$ is injective.
Fichier principal
Vignette du fichier
Ext_Hochschild.pdf (399.73 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00454042 , version 1 (07-02-2010)
hal-00454042 , version 2 (10-02-2010)
hal-00454042 , version 3 (17-06-2010)

Identifiers

Cite

Luc Menichi. Connes-Moscovici characteristic map is a Lie algebra morphism. 2010. ⟨hal-00454042v3⟩
155 View
199 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More