Connes-Moscovici characteristic map is a Lie algebra morphism

Luc Menichi

To cite this version:

Luc Menichi. Connes-Moscovici characteristic map is a Lie algebra morphism. 2010. hal-00454042v1

HAL Id: hal-00454042
 https://hal.science/hal-00454042v1

Preprint submitted on 7 Feb 2010 (v1), last revised 17 Jun 2010 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CONNES-MOSCOVICI CHARACTERISTIC MAP IS A LIE ALGEBRA MORPHISM

LUC MENICHI

Abstract

Let H be a Hopf algebra with a modular pair in involution ($\delta, 1$). Let A be a (module) algebra over H equipped with a non-degenerated δ-invariant 1 -trace τ. We show that ConnesMoscovici characteristic map $\varphi_{\tau}: H C_{(\delta, 1)}^{*}(H) \rightarrow H C_{\lambda}^{*}(A)$ is a morphism of graded Lie algebras. We also have a morphism Φ of Batalin-Vilkovisky algebras from the cotorsion product of H, $\operatorname{Cotor}_{H}^{*}(\mathbb{k}, \mathbb{k})$, to the Hochschild cohomology of $A, H H^{*}(A, A)$. Let K be both a Hopf algebra equipped with a modular pair in involution $(1, u)$ and a symmetric Frobenius algebra. Then this morphism of Batalin-Vilkovisky algebras Φ : Cotor $_{K}^{*} \vee(\mathbb{F}, \mathbb{F}) \cong$ $\operatorname{Ext}_{K}(\mathbb{F}, \mathbb{F}) \hookrightarrow H H^{*}(K, K)$ is injective.

1. Introduction

Let \mathbb{k} be any commutative ring and \mathbb{F} be any field. It is well known that the Hochschild cohomology of an algebra $A, H H^{*}(A, A)$, is a Gerstenhaber algebra. It is also well known that the homology of a double pointed loop space, $H_{*}\left(\Omega^{2} X\right)$, is also a Gerstenhaber algebra [4]. Let H be a bialgebra. It is not well known (See 19 for a recent paper rediscovering it) that the Cotorsion product of $H, \operatorname{Cotor}_{H}^{*}(\mathbb{k}, \mathbb{k})$ has a Gerstenhaber algebra structure (this results from [13, p. 65])crochet en degre un. But it should. Indeed, by Adams cobar equivalence, there is an isomorphism $\operatorname{Cotor}_{S_{*}(\Omega X)}^{*}(\mathbb{k}, \mathbb{k}) \cong H_{*}\left(\Omega^{2} X\right)$ between the two Gerstenhaber algebras (See the proof of Corollary 25 for details).

The first goal of this paper is to study (Section (4) this Gerstenhaber algebra $\operatorname{Cotor}_{H}^{*}(\mathbb{k}, \mathbb{k})$. In particular, generalizing a result of Farinati and Solotar [10], we show (Theorem [5)) that the exterior product $\operatorname{Ext}_{H}^{*}(\mathbb{k}, \mathbb{k})$ is a sub Gerstenhaber algebra of the Hochschild cohomology of $H, H H^{*}(H, H)$.

In Section 5, we turn our attention to a particular case of Gerstenhaber algebras: the Batalin-Vilkovisky algebras. In [33], we introduced

[^0]the notion of cyclic operad with multiplication (Definition 33) and we show (Theorem 34) that every cyclic operad with multiplication \mathcal{O} gives a cocyclic module such that
-the homology of the associated cochain complex $H\left(\mathcal{C}^{*}(\mathcal{O})\right)$ is a Batalin-Vilkovisky algebra and
-the negative cyclic cohomology of $\mathcal{C}^{*}(\mathcal{O}), H C_{-}^{*}(\mathcal{O})$, has a Lie bracket of degre -2 .

Let M be a simply-connected closed manifold. In [2], Chas and Sullivan showed that $\mathbb{H}_{*}(L M)$, the free loop space homology of M, is a Batalin-Vilkovisky algebra and that the S^{1}-equivariant homology $H_{*}^{S^{1}}(L M)$ has a Lie bracket. The singular cochains of $M, S^{*}(M)$ is a (derived) symmetric Frobenius algebra. Motivated by Chas-Sullivan string topology, in [33], as first application of Theorem 34, we obtained that the Hochschild cohomology of a symmetric Frobenius algebra $A, H H^{*}(A, A)$, is a Batalin-Vilkovisky algebra and that the negative cyclic cohomology of $A, H C_{-}^{*}(A)$ has a Lie bracket of degre -2 . It is expected that there is an isomorphism of Batalin-Vilkovisky algebras $H H^{*}\left(S^{*}(M), S^{*}(M)\right) \cong \mathbb{H}_{*}(L M)$ and an isomorphism of Lie algebras $H C_{-}^{*}\left(S^{*}(M)\right) \cong H_{*}^{S^{1}}(L M)$.

In [15], Getzler showed that the Gerstenhaber algebra $H_{*}\left(\Omega^{2} X\right)$ is in fact a Batalin-Vilkovisky algebra. Therefore as second application of Theorem 34, in [33], we showed that the Cotorsion product of a Hopf algebra H with an involutive antipode or more generally with a modular pair in involution $(\delta, 1)$, $\operatorname{Cotor}_{H}^{*}(\mathbb{k}, \mathbb{k})$, is a Batalin-Vilkovisky algebra. In this paper, we give the dual result (Theorem 47) which we believe is far more clear: Let K be a Hopf algebra such that the square of its antipode is an inner automorphism by a group-like element. Then $\operatorname{Ext}_{H}^{*}(\mathbb{k}, \mathbb{k})$ is a Batalin-Vilkovisky algebra.

In [33], we also had that the negative cyclic cohomology of $H, H C_{-(\delta, 1)}^{*}(H)$ has a Lie bracket of degre -2 . But Connes and Moscovici never use negative cyclic cohomology: they use the (ordinary) cyclic cohomology. Therefore, in this paper, we show (Corollary 43) that ConnesMoscovici (ordinary) cyclic cohomology of $H, H C_{(\delta, 1)}^{*}(H)$, has also a Lie bracket (of degree -1 this time) and we show (Theorem 51 and its variant Theorem 50) that Connes-Moscovici characteristic map $\chi_{\tau}: H C_{(\delta, 1)}^{*}(H) \rightarrow H C_{\lambda}^{*}(A)$ is compatible with the Lie brackets of degre -1 . Here A is a symmetric Frobenius algebra equipped an action of the Hopf algebra H compatible with the product and the trace.

In fact, we show that Connes-Moscovici characteristic map is induced by a morphism of cyclic operads with multiplication from the cobar construction of $H, \Omega H$, to the Hochschild cochain complex of A,
$\mathcal{C}^{*}(A, A)$. And we show that the (ordinary) cyclic cohomology of every cyclic operad with multiplication has naturally a Lie bracket of degre -1 (Theorem 35). As a consequence of Theorem 34, we also obtain a morphism of Batalin-Vilkovisky algebras $H^{*}(\Phi): \operatorname{Cotor}_{H}^{*}(\mathbb{k}, \mathbb{k}) \rightarrow$ $H H^{*}(A, A)$ (Theorem 51).

Note that this morphism $H^{*}(\Phi)$ is the algebraic counterpart of our very recent morphism of Batalin-Vilkovisky algebras [34, Theorem 3]

$$
\operatorname{Cotor}_{S_{*}(G)}(\mathbb{k}, \mathbb{k}) \cong H_{*}\left(\Omega^{2} B G\right) \rightarrow \mathbb{H}_{*}(L M) \cong H H^{*}\left(S^{*}(M), S^{*}(M)\right)
$$

between the Batalin-Vilkovisky algebra on the homology of double loop space given by by Getzler [15], and the Batalin-Vilkovisky algebra on the free loop space homology of a manifold given by Chas and Sullivan. Here G is a topological group acting on M.

In the last section, we specialize to the case where the symmetric Frobenius algebra A is the Hopf algebra H itself. And we show that the inclusion of Gerstenhaber algebras $\operatorname{Ext}_{H}^{*}(\mathbb{F}, \mathbb{F}) \hookrightarrow H H^{*}(H, H)$, given by Theorem 15, is often an inclusion of Batalin-Vilkovisky algebras (Theorem 60).

2. Hochschild complex and (Co)bar construction

We work over an arbitrary commutative ring \mathbb{k}, except for Conjectures 22-24 in Section 4, for Proposition 44 to Corollary 46 (almost all Section (6) and for all Section \&, where we use an arbitrary field \mathbb{F} as coefficient.

Let A be an algebra and M be a A-bimodule. The Hochschild chain complex $\mathcal{C}_{*}(A, M)$ is the chain complex $\mathcal{C}_{n}(A, M)=M \otimes A^{n}$ with differential $d: \mathcal{C}_{n}(A, M) \rightarrow \mathcal{C}_{n-1}(A, M)$ given by

$$
\begin{aligned}
& d\left(m \otimes a_{1} \otimes \cdots \otimes a_{n}\right)=m a_{1} \otimes a_{2} \otimes \cdots \otimes a_{n} \\
+ & \sum_{i=1}^{n-1}(-1)^{i} m \otimes a_{1} \otimes \cdots \otimes a_{i} a_{i+1} \otimes \cdots \otimes a_{n}+(-1)^{n} a_{n} m \otimes a_{1} \otimes \cdots \otimes a_{n-1} .
\end{aligned}
$$

By definition, the Hochschild homology of A with coefficients in M, $H H_{*}(A, M)$ is the homology of $\mathcal{C}_{*}(A, M)$. The Hochschild cochain complex $\mathcal{C}^{*}(A, M)$ is the cochain complex $\mathcal{C}^{n}(A, M)=\operatorname{Hom}\left(A^{n}, M\right)$ with differential $d: \mathcal{C}^{n}(A, M) \rightarrow \mathcal{C}^{n+1}(A, M)$ given by

$$
\begin{aligned}
& d(f)\left(a_{0} \otimes \cdots \otimes a_{n}\right)=a_{0} f\left(a_{1} \otimes \cdots \otimes a_{n}\right) \\
+ & \sum_{i=1}^{n}(-1)^{i} f\left(a_{0} \otimes \cdots \otimes a_{i-1} a_{i} \otimes \cdots \otimes a_{n}\right)+(-1)^{n+1} f\left(a_{0} \otimes \cdots \otimes a_{n-1}\right) a_{n} .
\end{aligned}
$$

By definition, the Hochschild cohomology of A with coefficients in M, $H H^{*}(A, M)$ is the homology of $\mathcal{C}^{*}(A, M)$. Suppose that A has an augmentation $\varepsilon: A \rightarrow \mathbb{k}$. Then \mathbb{k} is a A-bimodule. The (reduced) Bar construction $B(A)$ is just then the Hochschild chain complex $\mathcal{C}_{*}(A, \mathbb{k})$ and $\operatorname{Ext}_{A}^{*}(\mathbb{k}, \mathbb{k})=H H^{*}(A, \mathbb{k})$.

Dually, let C be a coalgebra with diagonal $\Delta_{C}: C \rightarrow C \otimes C$. Let N be a C-bicomodule with left C-coaction $\Delta_{N}^{l}: N \rightarrow C \otimes N$. and right C-coaction $\Delta_{N}^{r}: N \rightarrow N \otimes C$. The Hochschild cochain complex $\mathcal{C}_{\text {coalg }}^{*}(C, N)\left(\left[13\right.\right.$, p. 57] or [1], 30.3]) is the cochain complex $\mathcal{C}^{n}(C, N)=$ $\operatorname{Hom}\left(N, C^{n}\right)$ with differential $d: \mathcal{C}^{n}(C, N) \rightarrow \mathcal{C}^{n+1}(C, N)$ given by
$d(\varphi)=(C \otimes \varphi) \circ \Delta_{N}^{l}+\sum_{i=1}^{n}(-1)^{i}\left(C^{\otimes i-1} \otimes \Delta_{C} \otimes C^{\otimes n-i}\right) \circ \varphi+(-1)^{n+1}(\varphi \otimes C) \circ \Delta_{N}^{r}$.
The Hochschild coalgebra cohomology $H H_{\text {coalg }}^{*}(C, N)$ is the homology of $\mathcal{C}_{\text {coalg }}^{*}(C, N)$. Suppose that C has a coaugmentation $\eta: \mathbb{k} \rightarrow C$. Then \mathbb{k} is a C-bicomodule. The (reduced) cobar construction $\Omega(C)$ 21, p. 432] is just $\mathcal{C}_{\text {coalg }}^{*}(C, \mathbb{k})$ and $\operatorname{Cotor}_{C}^{*}(\mathbb{k}, \mathbb{k})=H H_{\text {coalg }}^{*}(C, \mathbb{k})$.

3. Operads with multiplication

A Gerstenhaber algebra is a commutative graded algebra $A=\left\{A^{i}\right\}_{i \in \mathbb{Z}}$ equipped with a bracket of degre -1

$$
\{-,-\}: A^{i} \otimes A^{j} \rightarrow A^{i+j-1}, \quad x \otimes y \mapsto\{x, y\}
$$

such that the product and the Lie bracket satisfy the Poisson rule: for any $c \in A^{k}$ the adjunction map $\{-, c\}: A^{i} \rightarrow A^{i+k-1}, \quad a \mapsto$ $\{a, c\}$ is a $(k-1)$-derivation: ie. for $a, b, c \in A,\{a b, c\}=\{a, c\} b+$ $(-1)^{|a|(|c|-1)} a\{b, c\}$.

In this paper, every Gerstenhaber algebra comes from a (linear) operad with multiplication using the following general theorem:

Theorem 1. [13, 14, 32 a) Each operad with multiplication O is a cosimplicial module (See 5). Denote by $\mathcal{C}^{*}(O)$ the associated cochain complex.
b) Its homology $H\left(\mathcal{C}^{*}(O)\right)$ is a Gerstenhaber algebra.

Let us first recall what is a (linear) operad and a (linear) operad with multiplication.

In this paper, operad means non- \sum-operad in the category of \mathbb{k} modules. That is: a sequence of modules $\{O(n)\}_{n \geq 0}$, an identity element $i d \in O(1)$ and structure maps
$\gamma: O(n) \otimes O\left(i_{1}\right) \otimes \cdots \otimes O\left(i_{n}\right) \rightarrow O\left(i_{1}+\cdots+i_{n}\right)$
$f \otimes g_{1} \otimes \cdots \otimes g_{n} \mapsto \gamma\left(f ; g_{1}, \ldots, g_{n}\right)$

CONNES-MOSCOVICI CHARACTERISTIC MAP IS A LIE ALGEBRA MORPHISM

satisfying associativity and unit [29].
Hereafter we use mainly the composition operations $\circ_{i}: O(m) \otimes$ $O(n) \rightarrow O(m+n-1), f \otimes g \mapsto f \circ_{i} g$ defined for $m \in \mathbb{N}^{*}, n \in \mathbb{N}$ and $1 \leq i \leq m$ by $f \circ_{i} g:=\gamma(f ; i d, \ldots, g, i d, \ldots, i d)$ where g is the i-th element after the semicolon.

Example 2. Let $(\mathcal{C}, \otimes, \mathbb{k})$ be a monoidal category. Suppose that \mathcal{C} is enriched over the category of \mathbb{k}-modules [28, I.8] and that

$$
\otimes: \operatorname{Hom}_{\mathcal{C}}\left(V_{1}, W_{1}\right) \times \operatorname{Hom}_{\mathcal{C}}\left(V_{2}, W_{2}\right) \rightarrow \operatorname{Hom}_{\mathcal{C}}\left(V_{1} \otimes V_{2}, W_{1} \otimes W_{2}\right),
$$

mapping $\left(g_{1}, g_{2}\right)$ to $g_{1} \otimes g_{2}$, is \mathbb{k}-bilinear Let V be a object of \mathcal{C}. The endomorphism operad of V in \mathcal{C} [29, p. 43] is the operad $\mathcal{E} n d_{\mathcal{C}}(V)$ defined by

$$
\mathcal{E} n d_{\mathcal{C}}(V)(n):=\operatorname{Hom}_{\mathcal{C}}\left(V^{\otimes n}, V\right)
$$

The structure maps γ
$\operatorname{Hom}_{\mathcal{C}}\left(V^{\otimes n}, V\right) \otimes \operatorname{Hom}_{\mathcal{C}}\left(V^{\otimes i_{1}}, V\right) \otimes \cdots \otimes \operatorname{Hom}_{\mathcal{C}}\left(V^{\otimes i_{n}}, V\right) \rightarrow \operatorname{Hom}_{\mathcal{C}}\left(V^{\otimes i_{1}+\cdots+i_{n}}, V\right)$ are given by $\gamma\left(f ; g_{1}, \ldots, g_{n}\right)=f \circ\left(g_{1} \otimes \cdots \otimes g_{n}\right)$. The identity element of $\mathcal{E} n d_{\mathcal{C}}(V)$ is the identity map $i d_{V}: V \rightarrow V$.

Example 3. The coendomorphism operad of V in \mathcal{C}, denoted $\mathcal{C o E n d} d_{\mathcal{C}}(V)$, is by definition the endomorphism operad of V in the opposite category $\mathcal{C}^{o p}, \mathcal{E} d_{\mathcal{C}^{o p}}(V)$. Explicitly [29, p. 43-4] $\operatorname{CoE}^{\operatorname{E}} n d_{\mathcal{C}}(V)$ is the operad given by

$$
\mathcal{C o E}^{\operatorname{E}} n d_{\mathcal{C}}(V)(n):=\operatorname{Hom}_{\mathcal{C}}\left(V, V^{\otimes n}\right)
$$

The structure maps γ
$\operatorname{Hom}_{\mathcal{C}}\left(V, V^{\otimes n}\right) \otimes \operatorname{Hom}_{\mathcal{C}}\left(V, V^{\otimes i_{1}}\right) \otimes \cdots \otimes \operatorname{Hom}_{\mathcal{C}}\left(V, V^{\otimes i_{n}}\right) \rightarrow \operatorname{Hom}_{\mathcal{C}}\left(V, V^{\otimes i_{1}+\cdots+i_{n}}\right)$
are given by $\gamma\left(f ; g_{1}, \ldots, g_{n}\right)=\left(g_{1} \otimes \cdots \otimes g_{n}\right) \circ f$. The identity element of $\mathcal{E} n d_{\mathcal{C}}(V)$ is again $i d$.

Definition 4. An operad with multiplication is an operad equipped with an element $\mu \in O(2)$ called the multiplication and an element $e \in O(0)$ such that $\mu \circ_{1} \mu=\mu \circ_{2} \mu$ and $\mu \circ_{1} e=i d=\mu \circ_{2} e$.
 operad O is an operad with multiplication if and only if O is equipped with a morphism of operads $\underline{A s s} \rightarrow O$.

Sketch of proof of [1 . a) The coface maps $\delta_{i}: O(n) \rightarrow O(n+1)$ and codegeneracy maps $\sigma_{i}: O(n) \rightarrow O(n-1)$ are defined [32 by (5)
$\delta_{0} f=\mu \circ_{2} f, \delta_{i} f=f \circ_{i} \mu, \delta_{n+1} f=\mu \circ_{1} f, \sigma_{i-1} f=f \circ_{i} e$ for $1 \leq i \leq n$.
b) The associated cochain complex $\mathcal{C}^{*}(O)$ is the cochain complex whose differential d is given by

$$
d:=\sum_{i=0}^{n+1}(-1)^{i} \delta_{i}: O(n) \rightarrow O(n+1)
$$

The linear maps $\cup: O(m) \otimes O(n) \rightarrow O(m+n)$ defined by

$$
\begin{equation*}
f \cup g:=\left(\mu \circ_{1} f\right) \circ_{m+1} g=\left(\mu \circ_{2} g\right) \circ_{1} f \tag{6}
\end{equation*}
$$

gives $\mathcal{C}^{*}(O)$ a structure of differential graded algebra. The linear maps of degree -1

$$
\overline{\mathrm{o}},\{-,-\}: O(m) \otimes O(n) \rightarrow O(m+n-1)
$$

are defined by

$$
\begin{equation*}
f \bar{\circ} g:=(-1)^{(m-1)(n-1)} \sum_{i=1}^{m}(-1)^{(n-1)(i-1)} f \circ_{i} g \tag{7}
\end{equation*}
$$

and

$$
\{f, g\}:=f \bar{\circ} g-(-1)^{(m-1)(n-1)} g \bar{\circ} f .
$$

The bracket $\{-,-\}$ defines a structure of differential graded Lie algebra of degree -1 on $\mathcal{C}^{*}(O)$. After passing to cohomology, the cup product \cup and the bracket $\{-,-\}$ satisfy the Poisson rule.

As pointed by Turchin in [45], the Gerstenhaber algebra $H\left(\mathcal{C}^{*}(\mathcal{O})\right.$ has Dyer-Lashof operations. In particular [13, p. 63], if n is even or if $2=0$ in \mathbb{k}, a Steenrod or Dyer-lashof (non additive) operation $S q^{n-1}: H^{n}\left(\mathcal{C}^{*}(\mathcal{O}) \rightarrow H^{2 n-1}\left(\mathcal{C}^{*}(\mathcal{O})\right.\right.$ is defined by $S q^{n-1}(f)=f \sigma f$ for $f \in \mathcal{O}(n)$.
Remark 8. Let \mathcal{O} be an operad. Then $\mathcal{O}(1)$ equipped with $\circ_{1}: \mathcal{O}(1) \otimes$ $\mathcal{O}(1) \rightarrow \mathcal{O}(1)$ and $i d: \mathbb{k} \rightarrow \mathcal{O}(1)$ is an algebra. By (7), the Lie algebra $\mathcal{C}^{1}(O)$ is just $\mathcal{O}(1)$ equipped with the Lie bracket given by $\{f, g\}:=f \circ_{1} g-g \circ_{1} f$.
Example 9. Let A be a monoid in \mathcal{C}, i. e. an object of \mathcal{C} equipped with an associative multiplication $\mu: A \otimes A \rightarrow A$ and an unit $e: \mathbb{k} \rightarrow A$. Then the endomorphism operad $\mathcal{E} n d_{\mathcal{C}}(A)$ of A equipped with $\mu \in$ $\operatorname{Hom}_{\mathcal{C}}\left(A^{\otimes 2}, A\right)=\mathcal{E} n d_{\mathcal{C}}(A)(2)$ and $e \in \operatorname{Hom}_{\mathcal{C}}\left(A^{\otimes 0}, A\right)=\mathcal{E} n d_{\mathcal{C}}(A)(0)$ is an operad with multiplication. The associated cosimplicial module is the cosimplicial module $\left\{\operatorname{Hom}_{\mathcal{C}}\left(A^{\otimes n}, A\right)\right\}_{n \in \mathbb{N}}$. The coface maps $\delta_{i}: \operatorname{Hom}_{\mathcal{C}}\left(A^{\otimes n}, A\right) \rightarrow \operatorname{Hom}_{\mathcal{C}}\left(A^{\otimes n+1}, A\right)$ and the codegeneracy map $\sigma_{i}: \operatorname{Hom}_{\mathcal{C}}\left(A^{\otimes n}, A\right) \rightarrow \operatorname{Hom}_{\mathcal{C}}\left(A^{\otimes n-1}, A\right)$ are given by [33, (2.5)] (10)
$\delta_{0} f=\mu \circ(i d \otimes f), \delta_{i} f=f \circ\left(i d^{\otimes i-1} \otimes \mu \otimes i d^{\otimes n-i}\right), \delta_{n+1} f=\mu \circ(f \otimes i d)$,
and $\sigma_{i-1} f=f \circ\left(i d^{\otimes i-1} \otimes e \otimes i d^{\otimes n-i}\right)$ for $1 \leq i \leq n$.
If \mathcal{C} is the category of \mathbb{k}-modules, A is an algebra and the cochain complex $\mathcal{C}^{*}\left(\mathcal{E} n d_{\mathcal{C}}(A)\right)$ associated to this cosimplicial module is the Hochschild cochain complex of A, denoted $\mathcal{C}^{*}(A, A)$. This is why Turchin in his work on knots [43, 44] always call the cochain complex associated to a linear operad with multiplication, the Hochschild cochain complex of the operad with multiplication.

Property 11. Let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a monoidal functor (in the sense of [28, p. 255]) between two monoidal categories. Let $\psi: F(V) \otimes F(W) \rightarrow$ $F(V \otimes W)$ be the associated associative unital natural transformation. Suppose that $F: \operatorname{Hom}_{\mathcal{C}}(V, W) \rightarrow \operatorname{Hom}_{\mathcal{D}}(F(V), F(W))$ is \mathbb{k}-linear. Let A be a monoid in \mathcal{C}. Then $F(A)$ is a monoid in \mathcal{D} and the map Γ from $\mathcal{E} n d_{\mathcal{C}}(A)$ to $\mathcal{E} n d_{\mathcal{D}}(F(A))$, mapping $f: A^{\otimes n} \rightarrow A$ to the composite $F(f) \circ \psi: F(A)^{\otimes n} \rightarrow F(A)$, is a morphism of operads with multiplication.

Example 12. Dually, let C be a comonoid in \mathcal{C}, i. e. an object of \mathcal{C} equipped with a coassociative diagonal $\Delta: C \rightarrow C \otimes C$ and a counit $\varepsilon: C \rightarrow \mathbb{k}$. Since C is a monoid in $\mathcal{C}^{o p}$, the coendomorphism operad of $C, \operatorname{CoE}^{\operatorname{E}} n d_{\mathcal{C}}(C)$ equipped with $\Delta \in \operatorname{Hom}_{\mathcal{C}}\left(C, C^{\otimes 2}\right)=$ $\mathcal{C o E} n d_{\mathcal{C}}(C)(2)$ and $\varepsilon \in \operatorname{Hom}_{\mathcal{C}}\left(C, C^{\otimes 0}\right)=\operatorname{CoEnd}_{\mathcal{C}}(C)(0)$ is also an operad with multiplication. The associated cosimplicial module is the cosimplicial module $\left\{\operatorname{Hom}_{\mathcal{C}}\left(C, C^{\otimes n}\right)\right\}_{n \in \mathbb{N}}$. The coface maps δ_{i} : $\operatorname{Hom}_{\mathcal{C}}\left(C, C^{\otimes n}\right) \rightarrow \operatorname{Hom}_{\mathcal{C}}\left(C, C^{\otimes n+1}\right)$ and the codegeneracy map σ_{i} : $\operatorname{Hom}_{\mathcal{C}}\left(C, C^{\otimes n}\right) \rightarrow \operatorname{Hom}_{\mathcal{C}}\left(C, C^{\otimes n-1}\right)$ are given by
$\delta_{0} f=(i d \otimes f) \circ \Delta, \delta_{i} f=\left(i d^{\otimes i-1} \otimes \Delta \otimes i d^{\otimes n-i}\right) \circ f, \delta_{n+1} f=(f \otimes i d) \circ \Delta$, and $\sigma_{i-1} f=\left(i d^{\otimes i-1} \otimes \varepsilon \otimes i d^{\otimes n-i}\right) \circ f$ for $1 \leq i \leq n$.

If \mathcal{C} is the category of \mathbb{k}-modules, C is a coalgebra and the cochain complex $\mathcal{C}^{*}\left(\mathcal{C o E n d} \mathcal{C}^{(C)}\right)$ associated to this cosimplicial module is the Hochschild cochain complex of the coalgebra C, denoted $\mathcal{C}_{\text {coalg }}^{*}(C, C)$.

More generally, let A be \mathbb{k}-algebra. Let \mathcal{C} be the category of A bimodules. Let C be a A-coring, i. e. a comonoid in \mathcal{C} ([20, 4.2] or [1, 17.1]). The cochain complex $\mathcal{C}^{*}\left(\mathcal{C o E} n d_{\mathcal{C}}(C)\right)$ associated to this cosimplicial module is the Cartier cochain complex of C with coefficients in C, denoted $C_{C a}(C, C)$. Therefore, without any calculations, we have obtained that $C_{C a}(C, C)$ is an operad with multiplication (1), 30.8]. This is again an example of our leitmotiv in this paper:
"Every operad with multiplication should be the endomorphism operad of a monoid in a appropriate monoidal category \mathcal{C} ".

4. Gerstenhaber algebra structure on $\operatorname{Ext}_{A}^{*}(\mathbb{k}, \mathbb{k})$

Let C be a bialgebra. The Cobar construction of C is the cosimplicial module associated to a specific linear operad with multiplication [13, p. 65]. Therefore its cohomology $\operatorname{Cotor}_{C}^{*}(\mathbb{k}, \mathbb{k})$ has a Gerstenhaber algebra structure. In the following, we show that this operad with multiplication is just the endomorphism operad of a monoid in an appropriate monoidal category and we show:

Theorem 14. Let C be a bialgebra. Then $\operatorname{Cotor}_{C}^{*}(\mathbb{k}, \mathbb{k})$ is a sub Gerstenhaber algebra of the Hochschild cohomology of the coalgebra C, $H H_{\text {coalg }}^{*}(C, C)$.

By Property 16, this Lie bracket of degre -1 on the cotorsion product of a bialgebra is an extension of the well-known Lie bracket on the primitive elements of a bialgebra. Dually, we prove

Theorem 15. Let A be a bialgebra. Then Ext $t_{A}^{*}(\mathbb{k}, \mathbb{k})$ is a sub Gerstenhaber algebra of the Hochschild cohomology of the algebra A, $H H^{*}(A, A)$.

When A is a Hopf algebra, this theorem was proved by Farinati and Solotar [10]. But as we would like to emphasize, antipodes are not needed for the Gerstenhaber algebra structure. As we explain in Theorem 47, antipodes are needed only to have a Batalin-Vilkovisky algebra structure.

By Property [9], this inclusion of Gerstenhaber algebras is in degre 1 the inclusion of the Lie algebra of "differentiations" into the Lie algebra of derivations, well known in algebraic groups.

In Proposition 21, we prove that when the bialgebra C is \mathbb{k}-free of finite type, Theorem 15 is the dual of Theorem 14. This duality will be later extended in Corollary 46.

In Conjectures 22 and 24, we explain that if the bialgebra A is braided, the Lie bracket of degre -1 given by Theorem 15 on $\operatorname{Ext}_{A}^{*}(\mathbb{F}, \mathbb{F})$ should vanish and be replaced by a Lie bracket of degre -2 . This is related to a conjecture of Kontsevich.

In Corollary 25, we explain that the homology of a double loop space $H_{*}\left(\Omega^{2} X\right)$ is always a sub Gerstenhaber algebra of Hochschild cohomology if X is 2 -connected.

Proof of Theorem 14. The category of left C-modules, C-mod, is a monoidal category. Let M be a comonoid in this monoidal category, i. e. M is a C-module coalgebra [21, Definition IX.2.1]. The coendomorphism operad associated to M is the operad $\left\{\operatorname{Hom}_{C-\text { mod }}\left(M, M^{\otimes n}\right)\right\}_{n \in \mathbb{N}}$ with multiplication $\Delta: M \rightarrow M \otimes M \in \operatorname{Hom}_{C-\bmod }\left(M, M^{\otimes 2}\right)$ and $\varepsilon:$ $M \rightarrow \mathbb{k} \in \operatorname{Hom}_{C-\bmod }\left(M, M^{\otimes 0}\right)$. The inclusion maps $i_{C}: \operatorname{Hom}_{C-\text { mod }}\left(M, M^{\otimes n}\right) \hookrightarrow$
$\operatorname{Hom}_{\mathrm{k}-\bmod }\left(M, M^{\otimes n}\right)$ defines obviously a morphism of linear operads with multiplication.

The underlying coalgebra C is an example of C-module coalgebra. Therefore we can take in particular $M=C$. The linear morphism ev: $\operatorname{Hom}_{C-\bmod }\left(C, C^{\otimes n}\right) \xrightarrow{\cong} C^{\otimes n}$, mapping $f: C \rightarrow C^{\otimes n}$ to $f(1)$ is an isomorphism. The inverse is the linear map ext : $C^{\otimes n} \xlongequal{\cong} \operatorname{Hom}_{C-\bmod }\left(C, C^{\otimes n}\right)$, mapping $c_{1} \otimes \cdots \otimes c_{n}$ to $f: C \rightarrow C^{\otimes n}$ defined by $f(c)=c^{(1)} c_{1} \otimes \cdots \otimes$ $c^{(n)} c_{n}$. Here we have denoted by $c^{(1)} \otimes \cdots \otimes c^{(n)}$ the iterated diagonal of c, $\Delta^{n-1}(c)$. Consider the associated cosimplicial set $\left\{\operatorname{Hom}_{C-\bmod }\left(C, C^{\otimes n}\right)\right\}_{n \in \mathbb{N}}$. The coface maps δ_{i} and codegeneracy maps σ_{i} are given by equations (13). Therefore for $1 \leq i \leq n$,

$$
\begin{aligned}
& e v \circ \delta_{0} \circ \operatorname{ext}\left(c_{1} \otimes \cdots \otimes c_{n}\right)=1 \otimes c_{1} \otimes \cdots \otimes c_{n}, \\
& \operatorname{ev} \circ \delta_{i} \circ \operatorname{ext}\left(c_{1} \otimes \cdots \otimes c_{n}\right)=c_{1} \otimes \cdots \otimes \Delta\left(c_{i}\right) \otimes \cdots \otimes c_{n}, \\
& \operatorname{ev} \circ \delta_{n+1} \circ \operatorname{ext}\left(c_{1} \otimes \cdots \otimes c_{n}\right)=c_{1} \otimes \cdots \otimes c_{n} \otimes 1 \text { and } \\
& \operatorname{ev} \circ \sigma_{i-1} \circ \operatorname{ext}\left(c_{1} \otimes \cdots \otimes c_{n}\right)=c_{1} \otimes \cdots \otimes \varepsilon\left(c_{i}\right) \otimes \cdots \otimes c_{n} .
\end{aligned}
$$

So ext : $C^{\otimes n} \stackrel{\cong}{\rightrightarrows} \operatorname{Hom}_{C-\text { mod }}\left(C, C^{\otimes n}\right)$ is an isomorphism of cosimplicial modules between the Cobar construction of $C, \Omega C$, and the cosimplicial module associated to the operad with multiplication $\operatorname{CoE} n d_{C-\text { mod }}(C)$. Therefore $\operatorname{Cotor}_{C}^{*}(\mathbb{k}, \mathbb{k}):=H^{*}(\Omega C)$ is a Gerstenhaber algebra. The composite

$$
C^{\otimes n} \xrightarrow{e x t} \operatorname{Hom}_{C-m o d}\left(C, C^{\otimes n}\right) \subset \operatorname{Hom}_{\mathfrak{k}-\bmod }\left(C, C^{\otimes n}\right)
$$

admits the morphism of differential graded algebras

$$
\mathcal{C}^{*}(C, \eta): \mathcal{C}_{\text {coalg }}^{*}(C, C): \rightarrow \mathcal{C}_{\text {coalg }}^{*}(C, \mathbb{k})=\Omega C
$$

mapping $f: C \rightarrow C^{\otimes n}$ to $f(1)$ as retract. Passing to cohomology, we obtain an injective morphism of Gerstenhaber algebras

$$
\operatorname{Cotor}_{C}^{*}(\mathbb{k}, \mathbb{k}) \hookrightarrow H H_{\text {coalg }}^{*}(C, C)
$$

which admits the morphism of graded algebras

$$
H H^{*}(C, \eta): H H_{\text {coalg }}^{*}(C, C) \rightarrow \operatorname{Cotor}_{C}^{*}(\mathbb{k}, \mathbb{k})
$$

as retract.
Property 16. The Lie algebra structure on $\operatorname{Cotor}_{C}^{1}(\mathbb{k}, \mathbb{k})$ given by Theorem 14 coincides with the Lie algebra of primitive elements $P(C)$ of the bialgebra C.

Proof. Consider the isomorphisms ext and ev given in the proof of Theorem 14. We have:

$$
\begin{align*}
& e v \circ \circ_{i} \circ(e x t \otimes e x t)\left(a_{1} \otimes \cdots \otimes a_{m} \otimes b_{1} \otimes \cdots \otimes b_{n}\right)= \tag{17}\\
& \quad a_{1} \otimes \cdots \otimes a_{i-1} \otimes a_{i}^{(1)} b_{1} \otimes \cdots \otimes a_{i}^{(n)} b_{n} \otimes a_{i+1} \otimes \cdots \otimes a_{m} .
\end{align*}
$$

$e v\left(i d_{C}\right)=1_{C} \in C, e v(\varepsilon)=1_{\mathbb{k}} \in \mathbb{k}$ and $e v(\Delta)=1_{C} \otimes 1_{C} \in C \otimes C$. Therefore ev : $\operatorname{Hom}_{C-\text { mod }}\left(C, C^{\otimes n}\right) \xrightarrow{\cong} C^{\otimes n}$ is an isomorphism of linear operads with multiplication between $\operatorname{CoE}_{\text {o }} d_{C-\text { mod }}(C)$ and the operad with multiplication \mathcal{O} of [33, Proof of Corollary 2.9], first considered by Gerstenhaber and Schack [13, p. 65] (See also [32, Example 3.5]). In particular $\circ_{1}: \mathcal{O}(1) \otimes \mathcal{O}(1) \rightarrow \mathcal{O}(1)$ is the multiplication of C, μ : $C \otimes C \rightarrow C$. Therefore, by (8), the Lie algebra $\operatorname{Cotor}_{C}^{1}(\mathbb{k}, \mathbb{k})$ coincides with the Lie algebra of primitive elements of C, denoted $P(C)$.

In order to check that the Gerstenhaber algebra structure given by Theorem 15 coincides with the Gerstenhaber algebra structure on $\operatorname{Ext}_{A}^{*}(\mathbb{k}, \mathbb{k})$ given by Farinati and Solotar [10], we give the proof of Theorem 15.

Property 18. Let C be a coalgebra. Let $\varepsilon: C \rightarrow \mathbb{k}$ be its counit. Let N be a left C-comodule. Then the linear morphism

$$
\text { proj : } \operatorname{Hom}_{C-\text { comod }}(N, C) \stackrel{\cong}{\rightrightarrows} N^{\vee}, \quad F \mapsto \varepsilon \circ F,
$$

is an isomorphism. Its inverse is the linear map lift: $N^{\vee} \xlongequal{\leftrightharpoons} \operatorname{Hom}_{C-\text { comod }}(N, C)$
mapping $f: N \rightarrow \mathbb{k}$ to the composite $N \xrightarrow{\Delta_{N}} C \otimes N \xrightarrow{C \otimes f} C \otimes \mathbb{k}=C$.
Proof of Theorem 15. The category of left A-comodules, A-comod, is a monoidal category. Let M be a monoid in this monoidal category, i. e. M is a A-comodule algebra [21, Definition III.7.1]. The endomorphism operad associated to M is the operad $\left\{\operatorname{Hom}_{A-\text { comod }}\left(M^{\otimes n}, M\right)\right\}_{n \in \mathbb{N}}$ with multiplication $\mu: M \otimes M \rightarrow M \in \operatorname{Hom}_{A-c o m o d}\left(M^{\otimes 2}, M\right)$ and $\eta: \mathbb{k} \rightarrow$ $M \in \operatorname{Hom}_{A-\text { comod }}\left(M^{\otimes 0}, M\right)$. The coaction of A on $M^{\otimes n}, \Delta_{M^{\otimes n}}$, is the composite $M^{\otimes n} \xrightarrow{\Delta_{M}^{\otimes n}}(A \otimes M)^{\otimes n} \xrightarrow{\tau} A^{\otimes n} \otimes M^{\otimes n} \xrightarrow{\mu_{A} \otimes M^{\otimes n}} A \otimes M^{\otimes n}$ where τ is the exchange isomorphism. Explicitly $\Delta_{M^{\otimes n}}\left(a_{1} \otimes \cdots \otimes a_{n}\right)=$ $a_{1}^{(1)} \ldots a_{n}^{(1)} \otimes\left(a_{1}^{(2)} \otimes \cdots \otimes a_{n}^{(2)}\right)$ where $\Delta_{M} a_{i}=a_{i}^{(1)} \otimes a_{i}^{(2)}$.

We now take $M=A$. Using Property 18 with $C=A$ and $N=A^{\otimes n}$, we obtain that

$$
\text { proj : } \operatorname{Hom}_{A-\text { comod }}\left(A^{\otimes n}, A\right) \stackrel{\cong}{\rightrightarrows}\left(A^{\otimes n}\right)^{\vee}, \quad F \mapsto \varepsilon \circ F,
$$

is an isomorphism. Its inverse is the linear map lift : $\left(A^{\otimes n}\right)^{\vee} \xrightarrow{\cong}$ $\operatorname{Hom}_{A-\text { comod }}\left(A^{\otimes n}, A\right)$ mapping $f: A^{\otimes n} \rightarrow \mathbb{k}$ to $F: A^{\otimes n} \rightarrow A$ defined by $F\left(a_{1} \otimes \cdots \otimes a_{n}\right)=a_{1}^{(1)} \ldots a_{n}^{(1)} f\left(a_{1}^{(2)} \otimes \cdots \otimes a_{n}^{(2)}\right)$.

Therefore the composite

$$
\left(A^{\otimes n}\right)^{\vee} \xrightarrow{\text { lift }} \operatorname{Hom}_{A-\text { comod }}\left(A^{\otimes n}, A\right) \subset \operatorname{Hom}_{\mathrm{k}-\text { mod }}\left(A^{\otimes n}, A\right)
$$

coincides with the section of $\mathcal{C}^{*}(A, \varepsilon): \mathcal{C}^{*}(A, A) \rightarrow B A^{\vee}$ defined by Farinati and Solotar [10, p. 2862].

Consider the associated cosimplicial set $\left\{\operatorname{Hom}_{A \text {-comod }}\left(A^{\otimes n}, A\right)\right\}_{n \in \mathbb{N}}$. The coface maps δ_{i} and codegeneracy maps σ_{i} are given by equations (10). Therefore for $1 \leq i \leq n$,

$$
\begin{aligned}
& \text { proj } \circ \delta_{0} \circ \operatorname{lift}(f)\left(a_{1} \otimes \cdots \otimes a_{n+1}\right)=\varepsilon\left(a_{1}\right) f\left(a_{2} \otimes \cdots \otimes a_{n+1}\right), \\
& \text { proj} \circ \delta_{i} \circ \operatorname{lift}(f)\left(a_{1} \otimes \cdots \otimes a_{n+1}\right)=f\left(a_{1} \otimes \cdots \otimes a_{i} a_{i+1} \otimes \cdots \otimes a_{n+1}\right), \\
& \text { proj} \circ \delta_{n+1} \circ \operatorname{lift}(f)\left(a_{1} \otimes \cdots \otimes a_{n+1}\right)=f\left(a_{1} \otimes \cdots \otimes a_{n}\right) \varepsilon\left(a_{n+1}\right) \text { and } \\
& \text { proj } \circ \sigma_{i-1} \circ \operatorname{lift}(f)\left(a_{1} \otimes \cdots \otimes a_{n-1}\right)=f\left(a_{1} \otimes \cdots \otimes a_{i-1} \otimes 1_{A} \otimes a_{i} \otimes\right.
\end{aligned}
$$

$$
\left.\cdots \otimes a_{n}\right)
$$

So lift : $\left(A^{\otimes n}\right)^{\vee} \xlongequal{\cong} \operatorname{Hom}_{A-\text { comod }}\left(A^{\otimes n}, A\right)$ is an isomorphism of cosimplicial modules between the dual of the bar construction of $A, B A^{\vee}$, and the cosimplicial module associated to the operad with multiplication $\mathcal{E} n d_{A-\text { comod }}(A)$. Therefore $\operatorname{Ext}_{A}^{*}(\mathbb{k}, \mathbb{k}):=H^{*}\left(B A^{\vee}\right)$ is a Gerstenhaber algebra.

Let A be an algebra and M be a A-bimodule. The cocycles of degre 1 of the Hochschild complex $\mathcal{C}^{*}(A, M)$ are exactly the module of derivations $\operatorname{Der}(A, M)$. A linear map $f: A \rightarrow M$ is a derivation if and only if $\forall a, b \in A, f(a b)=f(a) b+a f(b)$. The boundaries of degre 1 of $\mathcal{C}^{*}(A, M)$ are the inner derivations, i. e. the linear maps $f: A \rightarrow M, a \mapsto a m-m a$, where m is a given element of M. The degre 1 component of Hochschild cohomology, $H H^{1}(A, M)$, can be identified with the quotient $\operatorname{Der}(A, M) /\{$ inner derivations\} [26, 1.5.2]. In particular, suppose that A has an augmentation $\varepsilon: A \rightarrow \mathbb{k}$. Then $\operatorname{Ext}_{A}^{1}(\mathbb{k}, \mathbb{k})=H H^{1}(A, \mathbb{k})=\operatorname{Der}(A, \mathbb{k})$.

Property 19. Let A be a bialgebra. The inclusion of Lie algebra $\operatorname{Ext}_{A}^{1}(\mathbb{k}, \mathbb{k}) \hookrightarrow$ $H H^{1}(A, A)$ given by Theorem 15 can be identified with the following composite of Lie algebra morphisms

$$
\operatorname{Der}(A, \mathbb{k}) \stackrel{i}{\hookrightarrow} \operatorname{Der}(A, A) \xrightarrow{q} \operatorname{Der}(A, A) /\{\text { innerderivations }\} .
$$

Here q is the obvious quotient map and i is the inclusion of the Lie algebra of "differentiations" of A into the Lie algebra of derivations of A given by [17, p. 36].

Let G be an affine algebraic group. Then the algebra of polynomial functions on $G, \mathcal{P}(G)$, is a commutative Hopf algebra. By definition [17, p. 36], the Lie algebra of G is $\operatorname{Ext}_{\mathcal{P}(G)}^{1}(\mathbb{k}, \mathbb{k})=\operatorname{Der}(\mathcal{P}(G), \mathbb{k})$.

Let G be a Lie group. The algebra of smooth maps on $G, C^{\infty}(G)$, is a module algebra over the group ring $\mathbb{R}[G]$, but is not a bialgebra (except when G is finite and discrete). However there is still an analogue of the inclusion i : the composite

$$
T_{e}(G) \underset{\text { lift }}{\cong} \underset{\leftrightarrows}{\operatorname{Hom}_{\text {mod }-\mathbb{R}[G]}\left(C^{\infty}(G), C^{\infty}(G)\right) \cap \operatorname{Der}\left(C^{\infty}(G)\right) \subset \operatorname{Der}\left(C^{\infty}(G)\right) . . ~ . ~}
$$

Here lift is the isomorphism between the tangent space and the right invariant vector fields on G.

Proof. Consider the inverse isomorphisms proj: $\operatorname{Hom}_{A-c o m o d}\left(A^{n}, A\right) \xrightarrow{\cong}$ $\left(A^{\otimes n}\right)^{\vee}$ and lift : $\left(A^{\otimes n}\right)^{\vee} \xlongequal{\cong} \operatorname{Hom}_{A-\text { comod }}\left(A^{n}, A\right)$ given in the proof of Theorem 15. Let \mathcal{O} denote the linear operad with multiplication such that proj: $\mathcal{E} n d_{A-c o m o d}(A) \xrightarrow{\cong} \mathcal{O}$ is an isomorphism of linear operads with multiplication. Explicitly, for $f \in \mathcal{O}(m)=\left(A^{\otimes m}\right)^{\vee}$ and $g \in$ $\mathcal{O}(n)=\left(A^{\otimes n}\right)^{\vee}, f \circ_{i} g$ is given by

$$
\begin{aligned}
& \quad f \circ_{i} g\left(a_{1} \otimes \cdots \otimes a_{m+n-1}\right)= \\
& f\left(a_{1} \otimes \cdots \otimes a_{i-1} \otimes a_{i}^{(1)} \ldots a_{i+n-1}^{(1)} g\left(a_{i}^{(2)} \otimes \ldots a_{i+n-1}^{(2)}\right) \otimes a_{i+n} \otimes \cdots \otimes a_{m+n-1}\right.
\end{aligned}
$$

where $\Delta a_{j}=a_{j}^{(1]} \otimes a_{j}^{(2)}$. The identity element of \mathcal{O} is the counit of $A, \varepsilon \in A^{\vee}=\mathcal{O}(1)$. The multiplication of \mathcal{O} is the composite $\varepsilon \circ \mu \in$ $(A \otimes A)^{\vee}=\mathcal{O}(2)$ and the unit is $i d_{\mathfrak{k}} \in\left(A^{\otimes 0}\right)^{\vee}=\mathcal{O}(0)$. In particular, $\circ_{1}: \mathcal{O}(1) \otimes \mathcal{O}(1) \rightarrow \mathcal{O}(1)$ is the multiplication of $A^{\vee}, \mu_{A^{\vee}}: A^{\vee} \otimes A^{\vee} \rightarrow$ A^{\vee} obtained by dualizing the diagonal of A. Therefore, by (8), the Lie algebra $\mathcal{C}^{1}(\mathcal{O})$ is just the Lie algebra associated to the associative algebra A^{\vee}. The composite $\mathcal{O} \xrightarrow{\text { lift }} \underset{\cong}{\xrightarrow{\text { E }}} n d_{A-\text { comod }}(A) \subset \mathcal{E} n d_{\mathbb{k}-\text { mod }}(A)$ is an injective morphism of linear operads with multiplication. Therefore this composite $\mathcal{C}^{*}(\mathcal{O}) \xrightarrow{\text { lift }} \mathcal{C}^{*}\left(\mathcal{E} n d_{A-\operatorname{comod}}(A)\right) \subset \mathcal{C}^{*}\left(\mathcal{E} n d_{\mathrm{k}-\bmod }(A)\right)$ is an injective morphism of differential graded Lie algebras. In degre 1, this composite $\mathcal{O}(1) \hookrightarrow \mathcal{E} n d_{\mathfrak{k}-\bmod }(A)(1)=\operatorname{Hom}_{\mathfrak{k}-\text { mod }}(A, A)$ is the injective morphism of (associative) algebras, mapping $f: A \rightarrow \mathbb{k}$ to $(A \otimes f) \circ \Delta_{A}$, given by [17, I.Proposition 2.1]. Restricted at the cycles in degre 1, this composite gives the injective morphism of Lie algebras $\operatorname{Der}(A, \mathbb{k}) \stackrel{i}{\hookrightarrow}$ $\operatorname{Der}(A, A)$ considered in [17, p. 36].

Let us prove that Theorem 15 is the dual of Theorem 14.
Lemma 20. Let C be a coalgebra with coaugmentation $\eta: \mathbb{k} \rightarrow C$. Let $A=C^{\vee}$ be the dual algebra with augmentation $\varepsilon: A \rightarrow \mathbb{k}$. Then
i) the linear map $\left.\Gamma: \mathcal{C o E n d}_{\mathbb{k}-\text { mod }}(C)\right) \rightarrow{\mathcal{E} n d_{\mathbb{k}-\text { mod }}(A) \text {, mapping }}$ $f: C \rightarrow C^{\otimes n}$ to the composite $A^{\otimes n} \rightarrow\left(C^{\otimes n}\right)^{\vee} \xrightarrow{f^{\vee}} A$, is a morphism of linear operads with multiplication,
ii) the linear map $\phi: \Omega C \rightarrow(B A)^{\vee}$, such that $\phi\left(c_{1} \otimes \cdots \otimes c_{n}\right)$ is the form on $A^{\otimes n}$, mapping $\varphi_{1} \otimes \cdots \otimes \varphi_{n}$ to the product $\varphi_{1}\left(c_{1}\right) \ldots \varphi_{n}\left(c_{n}\right)$, is a morphism of differential graded algebras.

CONNES-MOSCOVICI CHARACTERISTIC MAP IS A LIE ALGEBRA MORPHISM

iii) We have the commutative diagram of differential graded algebras

If C is \mathbb{k}-free of finite type then both Γ and ϕ are isomorphisms.
Proof. Let $\psi: V^{\vee} \otimes W^{\vee} \rightarrow(V \otimes W)^{\vee}$ be the linear map, mapping the tensor product $\varphi_{1} \otimes \varphi_{2}$ of a form on V and of a form on W, to the form on $V \otimes W$, also denoted $\varphi_{1} \otimes \varphi_{2}$, mapping $v \otimes w$ to the product $\varphi_{1}(v) \varphi_{2}(w)$. The functor ${ }^{\vee}$ from the opposite category of \mathbb{k} modules to the category of \mathbb{k}-modules, mapping a \mathbb{k}-module V, to its dual $V^{\vee}:=\operatorname{Hom}(V, \mathbb{k})$ is a monoidal functor. Therefore by applying Property [11, we obtain i). ii) is well-known and iii) is easy to check.

Note that in [12], together with Felix and Thomas, we gave a different proof that $H^{*}(\bar{\Gamma}): H H_{\text {coalg }}^{*}(C, C) \rightarrow H H^{*}(A, A)$ is a morphism of Gerstenhaber algebras.

Proposition 21. Let C be a bialgebra \mathbb{k}-free of finite type. Let A be the dual bialgebra. Then the inclusions of Gerstenhaber algebras given by Theorems 14 and 15 fit into the commutative diagram of Gerstenhaber algebras.

$$
\begin{array}{cc}
\operatorname{Cotor}_{C}^{*}(\mathbb{k}, \mathbb{k}) & \longrightarrow H H_{\text {coalg }}^{*}(C, C) \\
H^{*}(\phi) \mid \cong & \cong H^{*}(\Gamma) \\
E x t_{A}^{*}(\mathbb{k}, \mathbb{k}) \longrightarrow H H^{*}(A, A)
\end{array}
$$

Proof. Since C is an algebra \mathbb{k}-free of finite type, the dualizing functor ${ }^{\vee}$, defined in the proof of Lemma 20, restrict to a functor F from the opposite category of left C-modules to the category of left A-comodules. If M and N are left C-modules, $\psi: M^{\vee} \otimes N^{\vee} \rightarrow(M \otimes N)^{\vee}$ is a morphism of left A-comodules. Therefore by Property 11, we obtain the morphism of linear operads with multiplication $\left.\Gamma_{F}: \mathcal{C} \mathcal{E}^{\operatorname{E}} n_{C-\bmod }(C)\right) \rightarrow$ $\mathcal{E} n d_{A-\text { comod }}(A)$. Consider the two commutatives squares

The left square commutes by definition of Γ_{F} since the two horizontal maps i_{C} and i_{A} are just the inclusions. Part iii) of Lemma 20 says that the right square commutes. The composite $\mathcal{C o E} \operatorname{Cd}_{C-\text { mod }}(C) \stackrel{i C}{\hookrightarrow}$ $\mathcal{C o E} n d_{\mathrm{k}-\text { mod }}(C) \xrightarrow{\mathcal{C}_{\text {coalg }}^{*}(C, \eta)} \Omega C$ is the isomorphism $e v$ considered in the proof of Theorem 14. The composite $\mathcal{E} n d_{A-\operatorname{comod}}(A) \xrightarrow{i_{A}} \mathcal{E} n d_{\mathbb{k}-\bmod }(A) \xrightarrow{\mathcal{C}^{*}(A, \varepsilon)}$ $(B A)^{\vee}$ is the isomorphism proj considered in the proof of Theorem 15. Therefore, we have the commutative square of linear operads with multiplication

Applying homology, we obtain the Proposition.
Let H be a finite dimensional Hopf algebra. Let $D(H)$ be the Drinfeld double of H. Then Taillefer [42] proved that the GerstenhaberSchack cohomology of $H, H_{G S}(H, H)$ is isomorphic as graded algebras to $\operatorname{Ext}_{D(H)^{o p}}(\mathbb{F}, \mathbb{F})$. Since $D(H)$ is a Hopf algebra, by Theorem 15, Farinati and Solotar [10] have obtained a Gerstenhaber algebra structure on $\operatorname{Ext}_{D(H)^{o p}}(\mathbb{F}, \mathbb{F})=H_{G S}(H, H)$. But Taillefer using a braiding [122, Beginning of Section 5] shows that the Lie bracket in this Gerstenhaber algebra structure is trivial. The Drinfeld double $D(H)$ is a braided Hopf algebra. Therefore, following the proof of Taillefer, it should be easy to prove

Conjecture 22. Let A be braided bialgebra. Then the Lie algebra of the Gerstenhaber algebra Ext $A_{A}^{*}(\mathbb{F}, \mathbb{F})$ given by Theorem 15 is trivial.

Proof when A is a cocommutative Hopf algebra. Let A be a cocommutative Hopf algebra. Since A is cocommutative, the antipode S is involutive. Therefore by Theorem 47, $\operatorname{Ext}_{A}^{*}(\mathbb{F}, \mathbb{F})$ is a Batalin-Vilkovisky algebra. By [23, Theorem 4.1], the operator B of this Batalin-Vilkovisky algebra is trivial. Therefore by (28), the Lie bracket is null.

In [38], Shoikhet mentions the following conjecture of Kontsevich.
Conjecture 23. (Kontsevich) Let H be a bialgebra. Then $H_{G S}(H, H)$ is a 3-algebra, i. e. [29, Theorem p. 26-7] an algebra over the homology of the little 3 -cubes operad, \mathcal{C}_{3}.

Shoikhet [38, Corollary 0.3] has announced that the proof of this conjecture when H is a Hopf algebra. We formulate the following related conjecture:

Conjecture 24. Let A be braided bialgebra. Then $\operatorname{Ext}_{A}^{*}(\mathbb{F}, \mathbb{F})$ is a 3algebra.

If A is cocommutative, again this Lie algebra bracket (of degre -2 this time) should vanish: modulo p, only the Steenrod or Dyer-Lashoff operations on $\operatorname{Ext}_{A}^{*}(\mathbb{F}, \mathbb{F})$ [31, Theorem 11.8] should be non trivial.

As an algebraic topologist, we find the following Corollary of Theorem 14, highly interesting.

Corollary 25. Let X be a 2-connected pointed topological space. Denote by $\Omega_{M} X$ the pointed Moore loops on X. Then the homology of the double loop spaces on $X, H_{*}\left(\Omega^{2} X\right)$, equipped with the Pontryagin product, is a sub Gerstenhaber algebra of $H H_{\text {coalg }}^{*}\left(S_{*}\left(\Omega_{M} X\right), S_{*}\left(\Omega_{M} X\right)\right)$, the Hochschild cohomology of the coalgebra $S_{*}\left(\Omega_{M} X\right)$.
Proof. The bialgebra C in Theorem 14 can be differential graded. Since $\Omega_{M} X$ is a topological monoid, the (reduced normalized) singular chains on $\Omega_{M} X$ form a differential graded bialgebra $C=S_{*}\left(\Omega_{M} X\right)$. Therefore, by Theorem 14, $\operatorname{Cotor}_{S_{*}\left(\Omega_{M} X\right)}(\mathbb{k}, \mathbb{k})$ is a sub Gerstenhaber algebra of $H H_{\text {coalg }}^{*}\left(S_{*}\left(\Omega_{M} X\right), S_{*}\left(\Omega_{M} X\right)\right)$. By Adams cobar equivalence, there is an isomorphism of graded algebras $\operatorname{Cotor}_{S_{*}\left(\Omega_{M} X\right)}(\mathbb{k}, \mathbb{k}) \cong H_{*}\left(\Omega_{M} \Omega_{M} X\right)$. The inclusion of the (ordinary) pointed loops into the Moore loops $\Omega X \stackrel{\approx}{\leftrightarrows} \Omega_{M} X$ is a both a homotopy equivalence [48, p. 112-3] and a morphism of H-spaces. So as graded algebras, $H_{*}\left(\Omega_{M} \Omega_{M} X\right)$ is isomorphic to $H_{*}\left(\Omega^{2} X\right)$.

Corollary 25 gives in particular a Gerstenhaber algebra structure on $H_{*}\left(\Omega^{2} X\right)$ extending the Pontryagin product. Of course, we believe that this Gerstenhaber algebra structure coincides with the usual one given by Cohen in [4]:
Conjecture 26. Let X be a 2-connected pointed topological space. There is an isomorphism of Gerstenhaber algebras between the Gerstenhaber algebra $\operatorname{Cotor}_{S_{*}\left(\Omega_{M} X\right)}(\mathbb{k}, \mathbb{k})$ given by Theorem 14 and the Gerstenhaber algebra $H_{*}\left(\Omega^{2} X\right)$ given by Cohen in [4].

Recall that the Gerstenhaber algebra on $H_{*}\left(\Omega^{2} X\right)$ is usually defined as follows: the little 2 -cube operad \mathcal{C}_{2} acts on the double loop space, $\Omega^{2} X$. So its homology $H_{*}\left(\Omega^{2} X\right)$ is an algebra over the homology of \mathcal{C}_{2}, i. e. is a Gerstenhaber algebra by Cohen [日].

5. Batalin-Vilkovisky algebras

27. A Batalin-Vilkovisky algebra is a Gerstenhaber algebra A equipped with a degree -1 linear map $B: A^{i} \rightarrow A^{i-1}$ such that $B \circ B=0$ and

$$
\begin{equation*}
\{a, b\}=(-1)^{|a|}\left(B(a \cup b)-(B a) \cup b-(-1)^{|a|} a \cup(B b)\right) \tag{28}
\end{equation*}
$$

for a and $b \in A$.
Definition 29. A cyclic operad is a non- Σ-operad \mathcal{O} equipped with linear maps $\tau_{n}: O(n) \rightarrow O(n)$ for $n \in \mathbb{N}$ such that

$$
\begin{equation*}
\forall n \in \mathbb{N}, \quad \tau_{n}^{n+1}=i d_{O(n)}, \tag{30}
\end{equation*}
$$

$$
\begin{gather*}
\forall m \geq 1, n \geq 1, \quad \tau_{m+n-1}\left(f \circ_{1} g\right)=\tau_{n} g \circ_{n} \tau_{m} f \tag{31}\\
\forall m \geq 2, n \geq 0,2 \leq i \leq m, \quad \tau_{m+n-1}\left(f \circ_{i} g\right)=\tau_{m} f \circ_{i-1} g \tag{32}
\end{gather*}
$$

for each $f \in O(m)$ and $g \in O(n)$. In particular, we have $\tau_{1} i d=i d$.
Definition 33. [33] A cyclic operad with multiplication is an operad which is both an operad with multiplication and a cyclic operad such that

$$
\tau_{2} \mu=\mu .
$$

Theorem 34. [33] If \mathcal{O} is a cyclic operad with a multiplication then
a) the structure of cosimplicial module on \mathcal{O} extends to a structure of cocyclic module and
b) the Connes coboundary map B on $\mathcal{C}^{*}(\mathcal{O})$ induces a natural structure of Batalin-Vilkovisky algebra on the Gerstenhaber algebra $H^{*}\left(\mathcal{C}^{*}(\mathcal{O})\right)$.

Theorem 35. Let \mathcal{O} be a linear cyclic operad with multiplication. Consider the associated cocyclic module. Then the cyclic cochains $\mathcal{C}_{\lambda}(\mathcal{O})$ forms a subcomplex of $\mathcal{C}^{*}(\mathcal{O})$, stable under the Lie bracket od degre -1. In particular, the cyclic cohomology $H C_{\lambda}^{*}\left(\mathcal{C}^{*}(\mathcal{O})\right)$ has naturally a graded Lie algebra structure of degre -1 .

Proof. Let \mathcal{O} be a linear cyclic operad. Let $f \in \mathcal{C}_{\lambda}^{m}(\mathcal{O})$ and $g \in \mathcal{C}_{\lambda}^{n}(\mathcal{O})$. Using (31), (32) and the change of variable $i^{\prime}=i-1$ for the first equation and using $\tau_{m}(f)=(-1)^{m} f$ and $\tau_{m}(g)=(-1)^{n} g$ for the second equation, we have

$$
\begin{aligned}
& \tau_{m+n-1}(f \bar{\circ} g)=(-1)^{(m-1)(n-1)}\left(\tau_{n} g \circ_{n} \tau_{m} f+\sum_{i^{\prime}=1}^{m-1}(-1)^{(n-1) i^{\prime}} \tau_{m} f \circ_{i^{\prime}} g\right) \\
= & \left.(-1)^{(m-1)(n-1)}\left((-1)^{m+n} g \circ_{n} f+(-1)^{m+n-1} \sum_{i=1}^{m-1}(-1)^{(n-1)(i-1)} f \circ_{i} g\right)\right) .
\end{aligned}
$$

By symmetry

$$
(-1)^{(m-1)(n-1)} \tau_{m+n-1}(g \bar{\circ} f)=(-1)^{m+n} f \circ_{m} g+(-1)^{m+n-1} \sum_{i=1}^{n-1}(-1)^{(m-1)(i-1)} g \circ_{i} f .
$$

Therefore $\tau_{m+n-1}\{f, g\}=(-1)^{m+n-1}\{f, g\}$.

Suppose now that \mathcal{O} has an associative multiplication μ such that $\tau_{2} \mu=\mu$. Since $\mu \in \mathcal{C}_{\lambda}^{2}(\mathcal{O})$, we have just proved above that for any $g \in \mathcal{C}_{\lambda}^{n}(\mathcal{O})$, the differential of $g, d(g)=\{\mu, g\} \in \mathcal{C}_{\lambda}(\mathcal{O})$.

Remark 36. Let \mathcal{O} be a cyclic operad. Then $\tau_{1}: \mathcal{O}(1) \rightarrow \mathcal{O}(1)$ is an involutive morphism of anti-algebras. And $\mathcal{C}_{\lambda}^{1}(\mathcal{O})=\operatorname{Ker}\left(\tau_{1}+I d\right.$: $\mathcal{O}(1) \rightarrow \mathcal{O}(1))$ is a sub Lie algebra of the Lie algebra associated to associative algebra $\mathcal{O}(1)$ (Compare with Remark (8).

Remark 37. In [33, Corollary 1.5], motivated by applications to string topology [2], we proved that the negative cyclic cohomology of a cyclic operad \mathcal{O} with multiplication, $H C_{-}^{*}\left(\mathcal{C}^{*}(\mathcal{O})\right)$, has a Lie bracket of degre -2 .

Remark 38. The (ordinary) cyclic cohomology of $\mathcal{O}, H C^{*}\left(\mathcal{C}^{*}(\mathcal{O})\right.$), has also a Lie bracket of degre -1 . This was stated only in the case of the cyclic cohomology of the group ring $\mathbb{k}[G]$ of a finite group G [3, Theorem 67 a)]. But the proof of [3, Theorem 67 a)] works for any cyclic operad with multiplication.

Remark 39. The proof of Theorem 35 is a lot more simple than the proofs of remarks 37 and 38. Indeed, the proofs of remarks 37 and 38 use that $H^{*}\left(\mathcal{C}^{*}(\mathcal{O})\right)$ is a Batalin-Vilkovisky algebra (Theorem 34). On the contrary, in the proof of Theorem 35, we don't even use that $H^{*}\left(\mathcal{C}^{*}(\mathcal{O})\right)$ is a Gerstenhaber algebra: we use only the Lie algebra on $\mathcal{C}^{*}(\mathcal{O})$.

If our ground ring \mathbb{k} contains \mathbb{Q}, there is a natural isomorphim (26, p. 72$]$

$$
H C_{\lambda}^{n}\left(\mathcal{C}^{*}(\mathcal{O})\right) \stackrel{\cong}{\leftrightarrows} H C^{n}\left(\mathcal{C}^{*}(\mathcal{O})\right) .
$$

This isomorphism obviously should be compatible with the brackets.
Recall the following well-known result in string topology.
Corollary 40. (46], [33, Theorem 1.6]) Let A be a symmetric Frobenius algebra (Definition 59). Then its Hochschild cohomology $H^{*}(A, A)$ is a Batalin-Vilkovisky algebra.

We need to sketch our proof given in [33].
Proof. Let $\Theta: A \xlongequal{\cong} A^{\vee}$ be an isomorphism of A-bimodules given by the symmetric Frobenius algebra structure on A. Then $\mathcal{C}^{*}(A, \Theta)$: $\mathcal{C}^{*}(A, A) \stackrel{\cong}{\rightrightarrows} \mathcal{C}^{*}\left(A, A^{\vee}\right)$ is an isomorphism of cosimplicial modules. Let $A d: \mathcal{C}^{*}\left(A, A^{\vee}\right) \xrightarrow{\cong} \mathcal{C}_{*}(A, A)^{\vee}$ be the adjunction map [33, (4.1)] which associates to any $g \in \operatorname{Hom}\left(A^{n}, A^{\vee}\right)$, the linear map $\operatorname{Ad}(g): A \otimes$ $A^{\otimes n} \rightarrow \mathbb{k}$ given by $\operatorname{Ad}(g)\left(a_{0} \otimes \cdots \otimes a_{n}\right)=g\left(a_{1}, \ldots, a_{n}\right)\left(a_{0}\right)$. Then
$A d: \mathcal{C}^{*}\left(A, A^{\vee}\right) \xrightarrow{\cong} \mathcal{C}_{*}(A, A)^{\vee}$ is an isomorphism of cosimplicial modules. By [33, Proof of Theorem 1.6]

$$
\mathcal{C}^{*}(A, A) \stackrel{\mathcal{C}^{*}(A, \Theta)}{\cong} \mathcal{C}^{*}\left(A, A^{\vee}\right) \xrightarrow[\cong]{\underset{\cong}{\rightleftarrows}} \mathcal{C}_{*}(A, A)^{\vee}
$$

equipped with the $\tau_{n}[33,(4.2)]$ is a cyclic operad with multiplication. Using Theorem 34, $H H^{*}(A, A) \xrightarrow{\cong} H H^{*}\left(A, A^{\vee}\right)$ is a Batalin-Vilkovisky algebra.

If instead of using Theorem 34, we apply Theorem 35 in the previous proof, we obtain the following Corollary:
Corollary 41. Let A be a symmetric Frobenius algebra. Then its cyclic cohomology $H C_{\lambda}^{*}(A)$ (in the sense of [26, 2.4.2]), is a graded Lie algebra of degree -1 .

We wonder if this Corollary is not a particular simple case of 16, Proposition 2.11]?

In [33], our main objective was the following result
Corollary 42. [33, Theorem 1.1] Let H be a Hopf algebra endowed with a modular pair in involution $(\delta, 1)$ (Definition 45). Then the ConnesMoscovici cocyclic on the Cobar construction on H, defines a BatalinVilkovisky algebra structure on $\operatorname{Cotor}_{H}^{*}(\mathbb{k}, \mathbb{k})$.
Proof. A computation [33, Section 5] shows that the operad with multiplication $\mathcal{C o E} \operatorname{Cd}_{H-\bmod }(H) \cong \Omega H$ considered in the proof of Theorem 14 equipped with the τ_{n} defined by Connes and Moscovici, is cyclic. Therefore, by Theorem 34, its homology $\operatorname{Cotor}_{H}^{*}(\mathbb{k}, \mathbb{k})$ is a Batalin-Vilkovisky algebra.

If instead of using Theorem 34, we apply Theorem 35 in the previous proof, we obtain the following Corollary:
Corollary 43. Let H be a Hopf algebra endowed with a modular pair in involution $(\delta, 1)$ (Definition (4)). Then its cyclic cohomology, $H C_{(\delta, 1)}^{*}(H)$, is a graded Lie algebra of degree -1 .

6. Batalin-Vilkovisky algebra structure on $\operatorname{Ext}_{H}^{*}(\mathbb{k}, \mathbb{k})$

Everybody is more familiar with an algebra A than with a coalgebra C. And therefore, one usually prefers the Exterior product $\operatorname{Ext}_{A}^{*}(\mathbb{k}, \mathbb{k})$ instead of the Cotorsion product Cotor $_{C}^{*}(\mathbb{k}, \mathbb{k})$. The goal of this section is to give the duals of Corollaries 42 and 43, Theorem 47 below. Taillefer [41], Khalkhali and Rangipour [23] developped a theory dual to Connes-Moscovici cyclic cohomology of Hopf algebras. First, we are going to explain this duality.

Proposition 44. Let K be a finite dimensional Hopf algebra with a modular pair in involution (δ, σ) in the sense of Khalkhali-Rangipour 23, (1)]. Then i) its dual K^{\vee} is a Hopf algebra equipped with a modular pair in involution $\left(e v_{\sigma}, \delta\right)$ in the sense of Connes-Moscovici where $e v_{\sigma}: K^{\vee} \rightarrow \mathbb{F}$ is defined by $e v_{\sigma}(\varphi)=\varphi(\sigma)$.

Let $\psi_{n}:\left(K^{\vee}\right)^{\otimes n} \xlongequal{\cong}\left(K^{\otimes n}\right)^{\vee}$ be the linear map mapping the tensor product $\varphi_{1} \otimes \cdots \otimes \varphi_{n}$ of n forms on K to the form on $K^{\otimes n}$, also denoted $\varphi_{1} \otimes \cdots \otimes \varphi_{n}$, mapping $k_{1} \otimes \cdots \otimes k_{n}$ to the product $\varphi_{1}\left(k_{1}\right) \ldots \varphi_{n}\left(k_{n}\right)$. Then ii) ψ_{*} is an isomorphism of cocyclic modules between the cocyclic modules $\Omega\left(K^{\vee}\right)_{\left(e v_{\sigma}, \delta\right)}$ introduced by ConnesMoscovici and the dual of the cyclic module $B(K)^{(\delta, \sigma)}$ introduced by Khalkhali-Rangipour [23, Theorem 2.1] and Taillefer [1].
iii) In particular, ψ_{*} induces an isomorphism between Connes-Moscovici cyclic cohomology of $K^{\vee}, H C_{\left(e v_{\sigma}, \delta\right)}^{*}\left(K^{\vee}\right)$ and the dual of Khalkhali-Rangipour-Taillefer cyclic homology of $K, \widetilde{H C}_{*}^{(\delta, \sigma)}(K)^{\vee}$.

The cocyclic module $\Omega(H)_{(\delta, \sigma)}$ is denoted $H_{(\delta, \sigma)}^{\natural}$ in [6, Theorem 1]. The cyclic module $B(K)^{(\delta, \sigma)}$ is denoted $\widetilde{K}^{(\delta, \sigma)}$ in [23, Theorem 2.1] and $C_{*}^{(\sigma, \varepsilon, \delta)}(K)$ in 41, 2.1].

Proof. i) An element σ is a group like element of K by definition if and only if $\Delta \sigma=\sigma \otimes \sigma$ and $\varepsilon(\sigma)=1$. This means that the linear map that we denoted again $\sigma: \mathbb{F} \rightarrow K$, mapping 1 to σ is a morphism of coalgebras. Therefore its dual $e v_{\sigma}=\sigma^{\vee}: K^{\vee} \rightarrow \mathbb{F}$ is a morphism of algebras, i. e. a character of K^{\vee}. Let $\delta: K \rightarrow \mathbb{F}$ be a character of K, i. e. a morphism of algebras. Its dual $\delta^{\vee}: \mathbb{F} \rightarrow K^{\vee}$, mapping 1 to δ, is a morphism of coalgebras, i.e δ is a group like element of K^{\vee}. By definition, $e v_{\sigma}(\delta)=\delta(\sigma)$. Therefore (δ, σ) is a modular pair on K if and only if $\left(e v_{\sigma}, \delta\right)$ is a modular pair in K^{\vee}.
Let (δ, σ) be a modular pair on H. The twisted antipode \widetilde{S} associated to (δ, σ) (in the sense of Connes-Moscovici) is by definition the convolution product $(\eta \circ \delta) \star S$ in $\operatorname{Hom}(H, H)$. Explicitly, for $h \in H, \widetilde{S}(h)=\delta\left(h^{1}\right) S\left(h^{2}\right)$, where $\Delta h=h^{1} \otimes h^{2}$. Consider the map $\tau_{n}: H^{\otimes n} \rightarrow H^{\otimes n}$ defined by

$$
\tau_{n}\left(h_{1} \otimes \cdots \otimes h_{n}\right):=\mu_{H^{\otimes n}}\left(\Delta^{n-1} \widetilde{S}\left(h_{1}\right) \otimes\left(h_{2} \otimes \cdots \otimes h_{n} \otimes \sigma\right)\right)
$$

Here $\mu_{H^{\otimes n}}: H^{\otimes n} \otimes H^{\otimes n} \rightarrow H^{\otimes n}$ is the product in $H^{\otimes n}$ and Δ^{n-1} : $H \rightarrow H^{\otimes n}$ is the iterated diagonal on H. In particular, $\tau_{1}(h)=\widetilde{S}(h) \sigma$.

Definition 45. The couple (δ, σ) is a modular pair in involution in the sense of Connes-Moscovici if and only if $\tau_{1}^{2}=i d_{H}$, i. e. $\forall h \in H$, $\widetilde{S}^{2}(h)=\sigma h \sigma^{-1}$.

Let $(\Omega H)_{(\delta, \sigma)}$ be the usual cosimplicial module defining the Cobar construction, except that $\delta_{n+1}: H^{\otimes n} \rightarrow H^{\otimes n+1}$ is given by [6, (2.9)] $\delta_{n+1}\left(h_{1} \otimes \cdots \otimes h_{n}\right)=h_{1} \otimes \cdots \otimes h_{n} \otimes \sigma$. Connes and Moscovici have shown that if $\tau_{1}^{2}=i d_{H}$, then $(\Omega H)_{(\delta, \sigma)}$ (equipped with the τ_{n}) is a cocyclic module.

Let (δ, σ) be a modular pair on K. Let $t_{n}: K^{\otimes n} \rightarrow K^{\otimes n}$ defined by ([23, Theorem 2.1] or 41, 2.1] which generalizes [26, (7.3.3.1)])

$$
t_{n}\left(k_{1} \otimes \cdots \otimes k_{n}\right)=\sigma S\left(k_{1}^{(1)} \cdots k_{n}^{(1)}\right) \otimes k_{1}^{(2)} \otimes \cdots \otimes k_{n-1}^{(2)} \delta\left(k_{n}^{(2)}\right)
$$

where $\Delta\left(k_{i}\right)=k_{i}^{(1)} \otimes k_{i}^{(2)}$. In particular, t_{1} is equal to $\sigma(S \star \eta \circ \delta)$, the left multiplication by σ of the convolution product \star of S and $\eta \circ \delta$. By definition, the couple (δ, σ) is a modular pair in involution in the sense of Khalkhali-Rangipour [23, (1)] if and only if $t_{1}^{2}=i d_{K}$.

Therefore to prove part i) of this Proposition, it suffices to show that $\tau_{1}=t_{1}^{\vee}$. This will be proved in the proof of ii) below.
(Denote by $K^{o p, c o p}$ the Hopf algebra with the opposite multiplication, the opposite diagonal and the same antipode [8, Remark 4.2.10], since the convolution product \star on $\operatorname{Hom}\left(K^{o p, c o p}, K^{o p, c o p}\right)$ is the opposite of the convolution product \star on $\operatorname{Hom}(K, K)$, note that a modular pair in involution for K in the sense of Khalkhali-Rangipour is the same as a modular pair in involution for $K^{o p, c o p}$ in the sense of Connes-Moscovici.)
ii) Let $B(K)^{(\delta, \sigma)}$ be the usual simplicial module defining the Bar construction except that $d_{n+1}: K^{\otimes n+1} \rightarrow K^{\otimes n}$ is given by ([23), Theorem 2.1] or [41, 2.1]) $d_{n+1}\left(k_{1} \otimes \cdots \otimes k_{n+1}\right)=k_{1} \otimes \cdots \otimes k_{n} \delta\left(k_{n+1}\right)$. It is well known [21, Lemma XVIII.7.3] that ψ_{*} is an isomorphism of cosimplicial modules from the usual Cobar construction on $K^{\vee}, \Omega\left(K^{\vee}\right)_{\left(e v_{\sigma}, \varepsilon\right)}$, to the dual of the usual Bar construction on $K,\left(B(K)^{(\varepsilon, \sigma)}\right)^{\vee}$. Obviously, $\psi_{n+1} \circ \delta_{n+1}=d_{n+1}^{\vee} \circ \psi_{n}$. Therefore $\psi_{*}: \Omega\left(K^{\vee}\right)_{\left(e v_{\sigma}, \delta\right)} \xlongequal{\cong}\left(B(K)^{(\delta, \sigma)}\right)^{\vee}$ is an isomorphism of cosimplicial modules even if $\delta \neq \varepsilon$.

Denote by $\sigma S: K \rightarrow K$ the linear map defined by $(\sigma S)(k)=\sigma S(k)$, $k \in K$. The transposition map $\operatorname{Hom}(K, K) \rightarrow \operatorname{Hom}\left(K^{\vee}, K^{\vee}\right)$, mapping a linear map $f: K \rightarrow K$ to its dual $f^{\vee}: K^{\vee} \rightarrow K^{\vee}$ is a morphism of algebras with respect to the convolution products \star. Since σS can be written as the convolution product $(\sigma \circ \varepsilon) \star S$ of the composite $K \xrightarrow{\varepsilon}$ $\mathbb{F} \xrightarrow{\sigma} K$ and of the antipode S, its dual $(\sigma S)^{\vee}$ is equal to $\left(\varepsilon^{\vee} \circ \sigma^{\vee}\right) \star S^{\vee}=$ $\left(\varepsilon \circ e v_{\sigma}\right) \star S^{\vee}$ which is the twisted antipode \widetilde{S} on K^{\vee} associated to the modular pair $\left(e v_{\sigma}, \delta\right)$.

The cyclic operator $t_{n}: K^{\otimes n} \rightarrow K^{\otimes n}$ can be written as the composite
$K^{\otimes n} \xrightarrow{\Delta_{M}^{\otimes n}} K^{\otimes n} \otimes K^{\otimes n} \xrightarrow{\mu^{(n-1)} \otimes K^{\otimes n}} K \otimes K^{\otimes n} \xrightarrow{\sigma S \otimes K^{\otimes n-1} \otimes \delta} K \otimes K^{\otimes n-1} \otimes \mathbb{F}$. Here $\mu^{(n-1)}: K^{\otimes n} \rightarrow K$ is the iterated product on K and $\Delta_{K^{\otimes n}}$ is the diagonal of $K^{\otimes n}$. The cocyclic operator $\tau_{n}: H^{\otimes n} \rightarrow H^{\otimes n}$ can be written as the composite
$H \otimes H^{\otimes n-1} \otimes \mathbb{F} \xrightarrow{\widetilde{S} \otimes H^{\otimes n-1} \otimes \sigma} H \otimes H^{\otimes n} \xrightarrow{\Delta(n-1) \otimes H^{\otimes n}} H^{\otimes n} \otimes H^{\otimes n} \xrightarrow{\mu_{H}^{\otimes n}} H^{\otimes n}$
Here $\Delta^{(n-1)}: H \rightarrow H^{\otimes n}$ is the iterated diagonal on H and $\mu_{H^{\otimes n}}$ is the multiplication of $H^{\otimes n}$. We saw that the twisted antipode \widetilde{S} on K^{\vee} associated to $\left(e v_{\sigma}, \delta\right)$ was $(\sigma S)^{\vee}$, the dual of σS. Therefore $\psi_{n} \circ \tau_{n}=t_{n}^{\vee} \circ \phi_{n}$. In particular when $n=1$, since ψ_{1} is the identity, $\tau_{1}=t_{1}^{\vee}$. So finally, $\psi_{*}: \Omega\left(K^{\vee}\right)_{\left(e v_{\sigma}, \delta\right)} \xlongequal{\cong}\left(B(K)^{(\delta, \sigma)}\right)^{\vee}$ is an isomorphism of cocyclic modules.

Corollary 46. Let K be a finite dimensional Hopf algebra equipped with a group-like element σ such that $\forall k \in K, S \circ S(k)=\sigma^{-1} k \sigma$. Then $\psi_{*}: \Omega\left(K^{\vee}\right)_{\left(e v_{\sigma}, \varepsilon\right)} \xlongequal{\cong}\left(B(K)^{(\varepsilon, \sigma)}\right)^{\vee}$ is an isomorphism of cyclic operads with multiplication. In particular, $H^{*}\left(\psi_{*}\right): \operatorname{Cotor}_{K^{\vee}}^{*}(\mathbb{F}, \mathbb{F}) \xlongequal{\cong}$ $E x t_{K}^{*}(\mathbb{F}, \mathbb{F})$ is an isomorphism of Batalin-Vilkovisky algebras and ψ_{*} induces an isomorphism of graded Lie algebras $H C_{\left(e v_{\sigma}, \varepsilon\right)}^{*}\left(K^{\vee}\right) \stackrel{\cong}{\rightrightarrows} \widetilde{H C}_{(\varepsilon, \sigma)}^{*}(K)$.
Proof. The canonical injection of K into its bidual $K^{\vee \vee}, \nu: K \hookrightarrow K^{\vee \vee}$, is an isomorphism of bialgebras. Let $C:=K^{\vee}$ be the dual bialgebra. In the proof of Proposition 21, we saw that $\phi: \Omega C \xlongequal{\cong} B\left(C^{\vee}\right)^{\vee}$ is an isomorphism of linear operads with multiplication. Therefore the composite $\Omega\left(K^{\vee}\right) \xrightarrow{\phi} B\left(K^{\vee \vee}\right)^{\vee} \xrightarrow{B(\nu)^{\vee}} B(K)^{\vee}$ is also an isomorphism of linear operads with multiplication. But this composite coincides with the isomorphism of cocyclic modules $\psi_{*}: \Omega\left(K^{\vee}\right)_{\left(e v_{\sigma}, \varepsilon\right)} \xlongequal{\cong}\left(B(K)^{(\varepsilon, \sigma)}\right)^{\vee}$ given by part ii) of Proposition 44.

Theorem 47. Let K be a Hopf algebra equipped with a group-like element σ such that for all $k \in K, S^{2}(k)=\sigma^{-1} k \sigma$. Let $t_{n}: K^{\otimes n} \rightarrow K^{\otimes n}$ be the linear map defined by

$$
t_{n}\left(k_{1} \otimes \cdots \otimes k_{n}\right)=\sigma S\left(k_{1}^{(1)} \ldots k_{n-1}^{(1)} k_{n}\right) \otimes k_{1}^{(2)} \otimes \cdots \otimes k_{n-1}^{(2)}
$$

The dual of the Bar construction on $K, B(K)^{\vee}$ is a cyclic operad with multiplication. In particular, the Gerstenhaber algebra given by Theorem 15, Ext $t_{K}^{*}(\mathbb{k}, \mathbb{k})$, is in fact a Batalin-Vilkovisky algebra and the cyclic cohomology of $K, \widetilde{H C}_{(\varepsilon, \sigma)}^{*}(K)$ has a Lie bracket of degre -1 .

Proof. Corollary 46 explains in details that this Theorem is the dual of Corollaries 42 and 43. Therefore, the computations dual to [33, Proof of Theorem 1.1] show that the operad with multiplication $B(K)^{\vee}$ given in the proof of Theorem 15 together with the cyclic operators t_{n} defines a cyclic operad with multiplication. Using Theorems 34 and 355, we conclude.

7. Characteristic maps

Lemma 48. Let H be a bialgebra. Let A be a left module algebra over H (in the sense of [21, Definition V.6.1]). Then the application $\Phi: H^{\otimes n} \rightarrow \operatorname{Hom}_{\mathbb{k}-\bmod }\left(A^{\otimes n}, A\right)$ mapping $h_{1} \otimes \cdots \otimes h_{n}$ to $f: A^{\otimes n} \rightarrow A$ defined by $f\left(a_{1} \otimes \cdots \otimes a_{n}\right)=\left(h_{1} \cdot a_{1}\right) \ldots\left(h_{n} . a_{n}\right)$ defines a morphism of linear operads with multiplication from the coendomorphism operad of $H, \mathcal{C} o \mathcal{E} n d_{H-\bmod }(H)$, to the endomorphism operad of $A, \mathcal{E} n d_{\mathbb{k}-\bmod }(A)$. In particular, Φ induces a morphism of Gerstenhaber algebras $H^{*}(\Phi)$: $\operatorname{Cotor}_{H}^{*}(\mathbb{k}, \mathbb{k}) \rightarrow H^{*}(A, A)$.

Proof. Since $1_{H} . a_{1}=a_{1}, \Phi\left(1_{H}\right)=i d_{A}$. Let $h_{1} \otimes \cdots \otimes h_{m} \in H^{\otimes m}$, $k_{1} \otimes \cdots \otimes k_{m} \in H^{\otimes n}$ and $a_{1} \otimes \cdots \otimes a_{m+n-1} \in A^{\otimes m+n-1}$. Using (17), we have that $\Phi\left[\left(h_{1} \otimes \cdots \otimes h_{m}\right) \circ_{i}\left(k_{1} \otimes \cdots \otimes k_{n}\right)\right]$ evaluated on $a_{1} \otimes \cdots \otimes a_{m+n-1}$ is equal to the product
$\left(h_{1} \cdot a_{1}\right) \ldots\left(h_{i-1} \cdot a_{i-1}\right)\left(h_{i}^{(1)} k_{1} \cdot a_{i}\right) \ldots\left(h_{i}^{(n)} k_{n} \cdot a_{i+n-1}\right)\left(h_{i+1} \cdot a_{i+n}\right) \ldots\left(h_{m} \cdot a_{m+n-1}\right)$.
On the other hand, using example 2, $\Phi\left(h_{1} \otimes \cdots \otimes h_{m}\right) \circ_{i} \Phi\left(k_{1} \otimes \cdots \otimes k_{n}\right)$ evaluated on $a_{1} \otimes \cdots \otimes a_{m+n-1}$ is equal to the product
$\left(h_{1} \cdot a_{1}\right) \ldots\left(h_{i-1} \cdot a_{i-1}\right)\left(h_{i} \cdot\left[\left(k_{1} \cdot a_{i}\right) \ldots\left(k_{n} \cdot a_{i+n-1}\right)\right]\right)\left(h_{i+1} \cdot a_{i+n}\right) \ldots\left(h_{m} \cdot a_{m+n-1}\right)$.
Since for any $h \in H, a$ and $b \in A, h .(a b)=\left(h^{(1)} \cdot a\right)\left(h^{(2)} \cdot a\right)$, the previous two products are equal. So Φ is a morphism of operads. Now Φ is a morphism of operads with multiplication, since $\Phi\left(1_{\mathfrak{k}}\right)$ is the unit map $\eta: \mathbb{k} \rightarrow A$ and since $\Phi\left(1_{H} \otimes 1_{H}\right)$ is the multiplication $\mu: A \otimes A \rightarrow A$ of A.

The following Lemma is a variant of the previous lemma if H is finite dimensional, since in this case, A is a left module algebra over H if and only if A be a right comodule algebra over the dual of H, H^{\vee}.

Lemma 49. Let H be a bialgebra. Let A be a right comodule algebra over H (in the sense of [21, Definition III.7.1]). Then the application $\Phi:\left(H^{\otimes n}\right)^{\vee} \rightarrow \operatorname{Hom}_{\mathbb{k}-\bmod }\left(A^{\otimes n}, A\right)$ mapping $f: H^{\otimes n} \rightarrow \mathbb{k}$ to $F: A^{\otimes n} \rightarrow A$ defined by $F\left(a_{1} \otimes \cdots \otimes a_{n}\right)=a_{1}^{(1)} \ldots a_{n}^{(1)} f\left(a_{1}^{(2)} \otimes \cdots \otimes a_{n}^{(2)}\right)$. defines a morphism of linear operads with multiplication from the endomorphism operad of $H,{\mathcal{E} n d_{H-c o m o d}(H) \text {, to the endomorphism operad }}$
of $A, \mathcal{E} n d_{\mathfrak{k}-\text { mod }}(A)$. In particular, Φ induces a morphism of Gerstenhaber algebras $H^{*}(\Phi): E x t_{H}^{*}(\mathbb{k}, \mathbb{k}) \rightarrow H H^{*}(A, A)$.

Note that in the case $A=H, H^{*}(\Phi)$ coincides with the inclusion of Gerstenhaber algebras given by Theorem 15. The proof of Lemma 49 is a computation similar to the proof of Lemma 48.

Theorem 50. Let H be a Hopf algebra equipped with a group-like element $\sigma \in H$ such that $\forall h \in H, S^{2}(h)=\sigma^{-1} h \sigma$. Let A be a right comodule algebra over H. Let $\tau: A \rightarrow \mathbb{k}$ be a non degenerate 1trace, i. e. the morphism of left A-modules $\Theta: A \xlongequal{\cong} A^{\vee}$, mapping $b \in A$ to $\varphi: A \rightarrow \mathbb{k}$ given by $\varphi(a)=\tau(a b)$, is an isomorphism of A bimodules. Suppose that τ is σ-invariant in the sense of [23, Definition 3.1]: $\forall a, b \in A, \tau\left(a^{(1)}\right) a^{(2)}=\tau(a) \sigma$. Then

1) the morphism $H^{*}(\Phi): E x t_{H}^{*}(\mathbb{k}, \mathbb{k}) \rightarrow H H^{*}(A, A)$ given by Lemma 48, is a morphism of Batalin-Vilkovisky algebras,
2) the characteristic map defined by Khalkhali-Rangipour [23, (10)] $\gamma^{*}: \widetilde{H C}_{(\varepsilon, \sigma)}^{*}(H) \rightarrow H C_{\lambda}^{*}(A)$ is a morphism of graded Lie algebras.

Proof. Recall from the proof of Corollary 40 that

$$
\mathcal{C}^{*}(A, A) \stackrel{\mathcal{C}^{*}(A, \Theta)}{\cong} \mathcal{C}^{*}\left(A, A^{\vee}\right) \stackrel{A d}{\cong} \mathcal{C}_{*}(A, A)^{\vee}
$$

is a cyclic operad with multiplication. By Lemma 49, $\Phi: B(H)^{\vee} \rightarrow$ $\mathcal{C}^{*}(A, A)$ is a morphism of linear operads with multiplication. Let γ : $\mathcal{C}_{*}(A, A) \rightarrow B(H)$ be the morphism of cyclic modules defined by [23, Proposition 3.1]

$$
\gamma\left(a_{0} \otimes a_{1} \otimes \cdots \otimes a_{n}\right)=\tau\left(a_{0} a_{1}^{(1)} \ldots a_{n}^{(1)}\right)\left(a_{1}^{(2)} \otimes \cdots \otimes a_{n}^{(2)}\right) .
$$

Here the coaction of $a_{i}, \Delta a_{i}=a_{i}^{(1)} \otimes a_{i}^{(2)}$. A straightforward calculation shows that the composite

$$
B(H)^{\vee} \xrightarrow{\Phi} \mathcal{C}^{*}(A, A) \xrightarrow{\mathcal{C}^{*}(A, \Theta)} \underset{\cong}{\cong} \mathcal{C}^{*}\left(A, A^{\vee}\right) \xrightarrow[\cong]{\cong d} \mathcal{C}_{*}(A, A)^{\vee}
$$

is the dual of $\gamma, \gamma^{\vee}: \mathcal{C}_{*}(A, A)^{\vee} \rightarrow B(H)^{\vee}$. Since γ^{\vee} is a morphism of cocyclic modules, $\Phi: B(H)^{\vee} \rightarrow \mathcal{C}^{*}(A, A)$ is a morphism of linear cyclic operads with multiplication. By applying Theorem 34, $H(\Phi)$ is a morphism of Batalin-Vilkovisky algebras between the Batalin-Vilkovisky algebras given by Theorem 47 and Corollary 40. This is 1). By applying Theorem 35, we obtain 2)

Using this time, Lemma 48 and the cocyclic map γ defined by Connes and Moscovici [6, Theorem 6], we obtain easily the following variant of the previous Theorem.

Theorem 51. Let H be a Hopf algebra endowed with a modular pair in involution $(\delta, 1)$. Let A be a module algebra over H. Let $\tau: A \rightarrow \mathbb{k}$ be a non degenerate 1-trace, i. e. the morphism of left A-modules $\Theta: A \xlongequal{\cong} A^{\vee}$, mapping $b \in A$ to $\varphi: A \rightarrow \mathbb{k}$ given by $\varphi(a)=\tau(a b)$, is an isomorphism of A-bimodules. Suppose that τ is δ-invariant. Then

1) the morphism $H^{*}(\Phi): \operatorname{Cotor}_{H}^{*}(\mathbb{k}, \mathbb{k}) \rightarrow H H^{*}(A, A)$ given by Lemma 48, is a morphism of Batalin-Vilkovisky algebras,
2) the characteristic map defined by Connes and Moscovici χ_{τ} : $H C_{(\delta, 1)}^{*}(H) \rightarrow H C_{\lambda}^{*}(A)$ is a morphism of graded Lie algebras.

In [6, Theorem 6] or [39, Section 4.4], Connes and Moscovici have defined more generally a characteristic map $\chi_{\tau}: H C_{(\delta, \sigma)}^{*}(H) \rightarrow H C_{\lambda}^{*}(A)$ without assuming that
i) the group-like element σ is the unit 1 of H, and without assuming that
ii) the σ-trace τ is non degenerated.

But we need i) to have a Lie bracket on $H C_{(\delta, \sigma)}^{*}(H)$ (Corollary 43) and we need i) and ii) to have a Lie bracket on $H C_{\lambda}^{*}(A)$ (Corollary 41). However, note that in their first construction of the characteristic map in (5), Connes and Moscovici were assuming i) like us. We believe that ii) can be weakened, since the Batalin-Vilkovisky algebra on $H H^{*}\left(A, A^{\vee}\right)$ can be defined for non counital symmetric Frobenius algebras, i. e "unital associative algebras with an invariant co-inner product" 47, p. 61-2]. In particular, as Tradler explained us, A does not need to be finite dimensional.

8. Hopf algebras that are symmetric Frobenius

In this section, we work over an arbitrary field \mathbb{F}. We want to consider in Theorem 50, the case where the the comodule algebra A over H is the Hopf algebra H itself. We remark that for a finite dimensional Hopf algebra H, there is a close relationship between being a symmetric Frobenius algebra and being equipped with a modular pair in involution of the form (ε, u) (Theorem 58). Therefore (Theorem 60), for Hopf algebras which are symmetric Frobenius algebras, often we have an inclusion of Batalin-Vilkovisky algebras $\operatorname{Ext}_{H}^{*}(\mathbb{F}, \mathbb{F}) \hookrightarrow H H^{*}(H, H)$ and in some cases, the characteristic map $\widetilde{H C}_{(\varepsilon, \sigma)}^{*}(H) \rightarrow H C_{\lambda}^{*}(H)$ is injective.

First, we recall the notion of (symmetric) Frobenius algebra and that the Nakayama automorphisms of a symmetric Frobenius algebra are all inner automorphisms. Then we recall that an augmented symmetric Frobenius algebra is always unimodular. Specializing to Hopf algebras,
we recall that finite dimensional Hopf algebras are always Frobenius algebras and that the square $S \circ S$ of the antipode of an unimodular Hopf algebra is a particular Nakayama automorphism. Finally, we can recall Theorem 58 due to Oberst and Schneider [36], which explains when a Hopf algebra is a symmetric Frobenius algebra. In the proof of Theorem 58, we recall the construction of a non-degenerated trace τ on H. Checking that the diagonal of H is compatible with this trace τ, we obtain Theorem 60.
8.1. Frobenius algebras. Let A be an algebra. The morphism of right A-modules $\Theta: A \rightarrow A^{\vee}$, mapping 1 to the form ϕ, is an isomorphism (of A-bimodules) if and only if A is finite dimensional and the bilinear form $<, \quad>: A \otimes A \rightarrow \mathbb{F}$ defined by $\langle a, b\rangle:=\phi(a b)$ is non degenerate (and symmetric).

Definition 52. An algebra A is a (symmetric) Frobenius algebra if there exists an isomorphism $\Theta: A \xlongequal{\cong} A^{\vee}$ of right A-modules (respectively of A-bimodules). We call $\phi:=\Theta(1)$ a Frobenius form.

Example 53. Let G be a finite group then its group algebra $\mathbb{F}[G]$ is a non commutative symmetric Frobenius algebra. By definition, the group ring $\mathbb{F}[G]$ admits the set $\{g \in G\}$ as a basis. Denote by δ_{g} the dual basis in $\mathbb{F}[G]^{\vee}$. The linear isomorphism $\Theta: \mathbb{F}[G] \rightarrow \mathbb{F}[G]^{\vee}$, sending g to $\delta_{g^{-1}}$ is an isomorphism of $\mathbb{F}[G]$-bimodules.

Let A be a Frobenius algebra with Frobenius form ϕ. By definition [24, (16.42)], the Nakayama automorphism of ϕ is the unique automorphism of algebras $\sigma: A \xlongequal{\cong} A$ such that for all a and $b \in A$, $\phi(a b)=\phi(\sigma(b) a)$. Let σ and σ^{\prime} be two Nakayama automorphisms of a Frobenius algebra A. Then, by [24, (16.43)], there exists an invertible element $u \in A$ such that for all $x \in A, \sigma^{\prime}(x)=u \sigma(x) u^{-1}$. In particular, if A is a symmetric Frobenius algebra, the identity map of A, $i d_{A}: A \rightarrow A$ is a particular Nakayama automorphism of A. And all the other Nakayama automorphisms are inner automorphisms 27, p. 483 Lemma (b)].

Definition 54. Let $(A, \mu, \eta, \varepsilon)$ be an augmented algebra. A left (respectively right) integral in A is an element l of A such that $\forall h \in A$, $h \times l=\varepsilon(h) l$ (respectively $l \times h=\varepsilon(h) l)$. The augmented algebra A is unimodular if the set of left integrals in A coincides with the set of right integrals in A.

Remark 55. An element l of A is a right integral in A such that $\varepsilon(l)=1$ if and only if $1_{A}-l$ is a left unit in \bar{A}, the augmentation ideal of A.

Suppose that there exists a right integral l in A such that $\varepsilon(l)=1$. Then l defines a morphism of right A-modules $s: \mathbb{F} \rightarrow A$ such that $\varepsilon \circ s=i d_{\mathbb{F}}$. Therefore \mathbb{F} is a right projective A-module and $\operatorname{Ext}_{A}^{*}(\mathbb{F}, \mathbb{F})$ is concentrated in degre 0 (Compare with [7, Proof of Proposition 5.4]).

The set of right (respectively left) integrals in an augmented Frobenius algebra is a \mathbb{F}-vector space of dimension 1 [20, Proposition 6.1]. Let A be an augmented algebra and let $\Theta: A \xrightarrow{\approx} A^{\vee}$ be an isomorphism of left (respectively right) A-modules. Then $\Theta^{-1}(\varepsilon)$ is non-zero left (respectively right) integral in A [20, just above Proposition 6.1]. In particular, if $\Theta: A \xlongequal{\cong} A^{\vee}$ is an isomorphism of A-bimodules, $\Theta^{-1}(\varepsilon)$ is both a non-zero left et right integral in A. Therefore a symmetric Frobenius algebra with an augmentation is always unimodular.

Let A be a Frobenius algebra with an augmentation. Let t be any non-zero left integral in A. The distinguished group-like element or left modular function [20, (6.2)] in A^{\vee} is the unique morphism of algebras $\alpha: A \rightarrow \mathbb{F}$ such that for all $h \in A, t \times h=\alpha(h) t([35,2.2 .3]$ or [37, p. 590]). Note that A is unimodular if and only if the distinguished group-like element in A^{\vee} is ε the augmentation of A.
8.2. Hopf algebras. Let $(H, \mu, \eta, \Delta, \varepsilon, S)$ be a finite dimensional Hopf algebra. Its dual is also a Hopf algebra ($H^{\vee}, \Delta^{\vee}, \varepsilon^{\vee}, \mu^{\vee}, \eta^{\vee}, S^{\vee}$). In particular, a form λ on H is a left (respectively right) integral in H^{\vee} if and only if for every $\varphi \in H^{\vee}$ and $k \in H, \sum \varphi\left(k^{(1)}\right) \lambda\left(k^{(2)}\right)=\varphi\left(1_{H}\right) \lambda(k)$ (respectively $\left.\sum \lambda\left(k^{(1)}\right) \varphi\left(k^{(2)}\right)=\varphi\left(1_{H}\right) \lambda(k)\right)$. Here $\Delta k=\sum k^{(1)} \otimes k^{(2)}$.

Example 56. [35, 2.1.2] If G is a finite group, $\sum_{g \in G} g$ is both a left and right integral in the group algebra $\mathbb{F}[G]$. And δ_{1}, the form mapping $g \in$ G to 1 if $g=1$ and 0 otherwise, is both a left and right integral in $\mathbb{F}[G]^{\vee}$. Since $\delta_{1}(1)=1$, by Remark 55, $\operatorname{Cotor}_{\mathbb{F}[G]}^{*}(\mathbb{F}, \mathbb{F})$ and $\operatorname{Ext}_{\mathbb{F}[G] \vee}^{*}(\mathbb{F}, \mathbb{F})$ are both concentrated in degre 0 (Note that here the product on G is not used and that G does not need to be finite [22, 4. p. 97]).

The set of left (respectively right) integrals in the dual Hopf algebra H^{\vee} is a \mathbb{F}-vector space of dimension 1 [40, Corollary 5.1.6 2)]. So let λ be any non-zero left (respectively right) integral in H^{\vee}. The morphism of left (respectively right) H-modules, $H \stackrel{\cong}{\rightrightarrows} H^{\vee}$, sending g to the form, denoted [40, p. 95] $g \rightharpoonup \lambda$, mapping h to $\lambda(h g)$ (respectively to the form mapping h to $\lambda(g h)$), is an isomorphism [40, Proof of Corollary 5.1.6 2)]. So a finite dimensional Hopf algebra is always a Frobenius algebra, but not always a symmetric Frobenius algebra as Theorem 58 will show.

Lemma 57. ([37, Theorem 3(a)] or [20, (6.8)]) Let H be a finite dimensional Hopf algebra. Let λ be a non-zero right integral in H^{\vee}. Let α be the distinguished group-like element in H^{\vee}. Then for all a and $b \in H$,
i) $\lambda(a b)=\lambda\left(S^{2}(b \leftharpoonup \alpha) a\right)$ where $b \leftharpoonup \alpha=\sum \alpha\left(b^{(1)}\right) b^{(2)}$ (40, p. 95], [37, p. 585] or [20, p. 55]),
ii) In the case H is unimodular, $\lambda(a b)=\lambda\left(S^{2}(b) a\right)$ [25, Proposition 8].

We have seen that if H is unimodular, then $\alpha=\varepsilon$. Therefore ii) follows from i). Note that Kadison's distinguished group-like element [20, (6.2) or p. 57] m in H^{\vee} is $\alpha^{-1}=\alpha \circ S$, the inverse of ours ([35, 2.2.3] or [20, p. 57]), since he uses right integrals to define it and we use left integrals. Lemma 57 means that the Nakayama automorphism σ of any non-zero right integral λ in H^{\vee} is given by $\sigma(b)=S^{2}(b \leftharpoonup \alpha)$ for any $b \in H$.
Theorem 58. [36, 11, 27, 18] A finite dimensional Hopf algebra H is a symmetric Frobenius algebra if and only if H is unimodular and its antipode S satisfies S^{2} is an inner automorphism of H.

Proof. Suppose that H is a symmetric Frobenius algebra. Then we saw that H is unimodular and that all its Nakayama automorphisms are inner automorphisms. By ii) of Lemma 57, S^{2} is a Nakayama automorphism of H.

Conversely, assume that H is unimodular and that S^{2} is an inner automorphism of H. Let u be an invertible element of H such that $\forall h \in H, S^{2}(h)=u h u^{-1}$. Let λ be any non-zero right integral in H^{\vee}. We saw above that $\lambda(a b)$ is a non-degenerate bilinear form on H. By ii) of Lemma 57, $\lambda(a b)=\lambda\left(S^{2}(b) a\right)=\lambda\left(u b u^{-1} a\right)$. Therefore $\beta(h, k):=\lambda(u h k)$ is a non-degenerate symmetric bilinear form [27, p. 487 proof of Proposition].
Example 59. Let G be a finite group. Since $S^{2}=I d$ and since δ_{1} is a right integral for $\mathbb{F}[G]^{\vee}$, we recover that the the linear isomorphism $\mathbb{F}[G] \rightarrow \mathbb{F}[G]^{\vee}$, sending g to $\delta_{1}(g-)=\delta_{g^{-1}}$ is an isomorphism of $\mathbb{F}[G]$ bimodules.

The Sweedler algebra is an example of non unimodular Hopf algebra over any field of characteristic different from 2 [35, 2.1.2]. Notice that a cocommutative Hopf algebra over a field of characteristic different from 0 can be non unimodular [27, p. 487-8, Remark and Examples (1) and (4)].

The square of the antipode of every quasi-cocommutative Hopf algebra with bijective antipode is an inner automorphism (21, Proposition VIII.4.1] or [35, 10.1.4]). Therefore by Theorem 58, every braided (also
called quasitriangular) unimodular finite dimensional Hopf algebra is a symmetric Frobenius algebra. In particular, the Drinfeld double $D(H)$ of any finite dimensional Hopf algebra is a symmetric Frobenius algebra [20, Theorem 6.10].

Theorem 60. Let H be a finite dimensional unimodular (Definition 54) Hopf algebra equipped with a group-like element σ such that $\forall h \in H$, $S^{2}(h)=\sigma^{-1} h \sigma$. Then 1) $H^{*}(\Phi): \operatorname{Exx}_{H}^{*}(\mathbb{F}, \mathbb{F}) \hookrightarrow H H^{*}(H, H)$ is an inclusion of Batalin-Vilkovisky algebras.
2) Suppose moreover that H is cosemisimple. Then $\gamma^{*}: \widetilde{H C}_{(\varepsilon, \sigma)}^{*}(H) \rightarrow$ $H C_{\lambda}^{*}(H)$ is an inclusion of graded Lie algebras.

Remark that by [8, Exercice 5.5.10], a finite dimensional cosemisimple Hopf algebra is always unimodular.

Proof. By Theorem 15, $H^{*}(\Phi): \operatorname{Ext}_{H}^{*}(\mathbb{F}, \mathbb{F}) \hookrightarrow H H^{*}(H, H)$ is an inclusion of Gerstenhaber algebras. By Theorem 47 (or Corollary 46), $\operatorname{Ext}_{H}^{*}(\mathbb{F}, \mathbb{F})$ is a Batalin-Vilkovisky algebra and $\widetilde{H C}_{(\varepsilon, \sigma)}^{*}(H)$ has a Lie bracket of degre -1. By Theorem 58, H is a symmetric Frobenius algebra. Therefore by Corollary 40, $H H^{*}(H, H)$ is a Batalin-Vilkovisky algebra. And by Corollary 41, $H C_{\lambda}^{*}(H)$ has a Lie bracket of degree -1 .

More precisely, let λ be any non-zero right integral in H^{\vee}. Let $\tau: H \rightarrow \mathbb{F}$ given by $\tau(a)=\lambda\left(\sigma^{-1} a\right)$ for all $a \in H$. In the proof of Theorem 58, we saw that τ is a non degenerate 1-trace. Since λ is right integral in H^{\vee}, using the canonical injection of H into its bidual, for every $k \in H, \lambda\left(k^{(1)}\right) k^{(2)}=\lambda(k) 1_{H}$. Here $\Delta k=k^{(1)} \otimes k^{(2)}$. By taking $k=\sigma^{-1} a$, since σ^{-1} is a group like element, for all $a \in$ $H, \tau\left(a^{(1)}\right) \sigma^{-1} a^{(2)}=\lambda\left(\sigma^{-1} a^{(1)}\right) \sigma^{-1} a^{(2)}=\lambda\left(\sigma^{-1} a\right) 1_{H}=\tau(a) 1_{H}$. This means that τ is σ-invariant in the sense of [23, Definition 3.1]. Therefore by applying part 1) of Theorem 50 in the case $A=H$, we obtain that $H^{*}(\Phi): \operatorname{Ext}_{H}(\mathbb{F}, \mathbb{F}) \hookrightarrow H H^{*}(H, H)$ is a morphism of BatalinVilkovisky algebras. This is 1).

By [35, 2.4.6] or [8, Exercice 5.5.9], H is cosemisimple means that there exists a right integral t in H^{\vee} such that $t(1)=1$. Since the set of right integrals in H^{\vee} is a \mathbb{F}-vector space of dimension 1, any non-zero right integral λ in H^{\vee} satisfies $\lambda(1) \neq 0$. Since $\tau(\sigma)=\lambda\left(\sigma^{-1} \sigma\right)=\lambda(1)$ is different from zero, by [23, Theorem 3.1], the morphism of graded Lie algebras given by part 2) of Theorem 50, $\gamma^{*}: \widetilde{H C}_{(\varepsilon, \sigma)}^{*}(H) \rightarrow H C_{\lambda}^{*}(H)$ is injective. So 2) is proved.

Note that by Theorem 58, any Hopf algebra satisfying the hypotheses of Theorem 60 is a symmetric Frobenius algebra. On the contrary, any

CONNES-MOSCOVICI CHARACTERISTIC MAP IS A LIE ALGEBRA MORPHISXI

Hopf algebra which is also a symmetric Frobenius algebra does not necessarily satisfies the hypotheses of Theorem 60. Indeed, in a symmetric Frobenius Hopf algebra, S^{2} is an inner automorphism, not necessarily given by a group-like element σ. But in order, to apply ConnesMoscovici (or more precisely its dual Khalkhali-Rangipour-Taillefer) Hopf cyclic cohomology, we have to suppose that σ is a group-like element.

References

[1] Tomasz Brzezinski and Robert Wisbauer, Corings and comodules, London Mathematical Society Lecture Note Series, vol. 309, Cambridge University Press, Cambridge, 2003.
[2] M. Chas and D. Sullivan, String topology, preprint: math.GT/991159, 1999.
[3] D. Chataur and L. Menichi, String topology of classifying spaces, preprint: math.AT/0801.0174v3, 2008.
[4] F. Cohen, T. Lada, and J. May, The homology of iterated loop spaces, Lecture Notes in Mathematics, vol. 533, Springer-Verlag, 1976.
[5] A. Connes and H. Moscovici, Hopf algebras, cyclic cohomology and the transverse index theorem, Comm. Math. Phys. 198 (1998), no. 1, 199-246.
[6] Alain Connes and Henri Moscovici, Cyclic cohomology and Hopf algebra symmetry, Lett. Math. Phys. 52 (2000), no. 1, 1-28, Conference Moshé Flato 1999 (Dijon).
[7] Marius Crainic, Cyclic cohomology of Hopf algebras, J. Pure Appl. Algebra 166 (2002), no. 1-2, 29-66.
[8] Sorin Dăscălescu, Constantin Năstăsescu, and Şerban Raianu, Hopf algebras, Monographs and Textbooks in Pure and Applied Mathematics, vol. 235, Marcel Dekker Inc., New York, 2001, An introduction.
[9] Pavel Etingof and Viktor Ostrik, Finite tensor categories, Mosc. Math. J. 4 (2004), no. 3, 627-654, 782-783.
[10] Marco A. Farinati and Andrea L. Solotar, G-structure on the cohomology of Hopf algebras, Proc. Amer. Math. Soc. 132 (2004), no. 10, 2859-2865.
[11] Rolf Farnsteiner, On Frobenius extensions defined by Hopf algebras, J. Algebra 166 (1994), no. 1, 130-141.
[12] Y. Félix, L. Menichi, and J.-C. Thomas, Gerstenhaber duality in Hochschild cohomology, J. Pure Appl. Algebra 199 (2005), no. 1-3, 43-59.
[13] Murray Gerstenhaber and Samuel D. Schack, Algebras, bialgebras, quantum groups, and algebraic deformations, Contemp. Math., vol. 134, Amer. Math. Soc., 1992, pp. 51-92.
[14] Murray Gerstenhaber and Alexander A. Voronov, Homotopy G-algebras and moduli space operad, Internat. Math. Res. Notices (1995), no. 3, 141-153.
[15] E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994), no. 2, 265-285.
[16] Alastair Hamilton and Andrey Lazarev, Symplectic A_{∞}-algebras and string topology operations, Amer. Math. Soc. Transl. Ser. 2, vol. 224, Amer. Math. Soc., 2008, pp. 147-157.
[17] Gerhard P. Hochschild, Basic theory of algebraic groups and Lie algebras, Graduate Texts in Mathematics, vol. 75, Springer-Verlag, New York, 1981.
[18] J. E. Humphreys, Symmetry for finite dimensional Hopf algebras, Proc. Amer. Math. Soc. 68 (1978), no. 2, 143-146.
[19] T. Kadeishvili, On the cobar construction of a bialgebra, Homology Homotopy Appl. 7 (2005), no. 2, 109-122 (electronic).
[20] Lars Kadison, New examples of Frobenius extensions, University Lecture Series, vol. 14, American Mathematical Society, Providence, RI, 1999.
[21] Christian Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995.
[22] M. Khalkhali, Lectures on noncommutative geometry, preprint: math/0702140 v2, 2007.
[23] M. Khalkhali and B. Rangipour, A new cyclic module for Hopf algebras, KTheory 27 (2002), no. 2, 111-131.
[24] T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999.
[25] Richard Gustavus Larson and Moss Eisenberg Sweedler, An associative orthogonal bilinear form for Hopf algebras, Amer. J. Math. 91 (1969), 75-94.
[26] J. Loday, Cyclic homology, second ed., Grundlehren der Mathematischen Wissenschaften, vol. 301, Springer-Verlag, Berlin, 1998.
[27] Martin Lorenz, Representations of finite-dimensional Hopf algebras, J. Algebra 188 (1997), no. 2, 476-505.
[28] S. Mac Lane, Categories for the working mathematician, Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York-Berlin, 1971.
[29] M. Markl, S. Shnider, and J. Stasheff, Operads in algebra, topology and physics, Mathematical Surveys and Monographs, vol. 96, Amer. Math. Soc., 2002.
[30] M. Mastnak, J. Pevtsova, P. Schauenburg, and S. Witherspoon, Cohomology of finite dimensional pointed hopf algebras, 2009.
[31] J. Peter May, A general algebraic approach to Steenrod operations, Lecture Notes in Mathematics, Vol. 168, Springer, Berlin, 1970, pp. 153-231.
[32] J. McClure and J. Smith, A solution of Deligne's hochschild cohomology conjecture, Contemp. Math., vol. 293, pp. 153-193, Amer. Math. Soc., 2002.
[33] L. Menichi, Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras, K-Theory 32 (2004), no. 3, 231-251.
[34] _, Van den Bergh isomorphisms in string topology, To appear in J. Noncommut. Geom., arXiv:0907.2105, 2009.
[35] Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1993.
[36] Ulrich Oberst and Hans-Jürgen Schneider, Über Untergruppen endlicher algebraischer Gruppen, Manuscripta Math. 8 (1973), 217-241.
[37] David E. Radford, The trace function and Hopf algebras, J. Algebra 163 (1994), no. 3, 583-622.
[38] Boris Shoikhet, Hopf algebras, tetramodules, and n-fold monoidal categories, 2009.
[39] Georges Skandalis, Géométrie non commutative, opérateur de signature transverse et algèbres de Hopf (d'après A. Connes et H. Moscovici), Astérisque (2002), no. 282, Exp. No. 892, ix, 345-364, Séminaire Bourbaki, Vol. 2000/2001.

CONNES-MOSCOVICI CHARACTERISTIC MAP IS A LIE ALGEBRA MORPHISBI

[40] Moss E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969.
[41] Rachel Taillefer, Cyclic homology of Hopf algebras, K-Theory 24 (2001), no. 1, 69-85.
[42] _, Injective Hopf bimodules, cohomologies of infinite dimensional Hopf algebras and graded-commutativity of the Yoneda product, J. Algebra 276 (2004), no. 1, 259-279.
[43] V. Tourtchine, On the homology of the spaces of long knots, Advances in topological quantum field theory, NATO Sci. Ser. II Math. Phys. Chem., vol. 179, Kluwer Acad. Publ., Dordrecht, 2004, pp. 23-52.
[44] \qquad , On the other side of the bialgebra of chord diagrams, J. Knot Theory Ramifications 16 (2007), no. 5, 575-629.
[45] Victor Tourtchine, Dyer-Lashof-Cohen operations in Hochschild cohomology, Algebr. Geom. Topol. 6 (2006), 875-894 (electronic).
[46] T. Tradler, The BV algebra on Hochschild cohomology induced by infinity inner products, preprint: math.QA/0210150v1, 2002.
[47] Thomas Tradler and Mahmoud Zeinalian, Algebraic string operations, KTheory 38 (2007), no. 1, 59-82.
[48] G. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, 1978.

UMR 6093 associée au CNRS, Université D'Angers, Faculté des Sciences, 2 Boulevard Lavoisier, 49045 Angers, FRANCE

E-mail address: firstname.lastname at univ-angers.fr

[^0]: Key words and phrases. Batalin-Vilkovisky algebra, Hochschild cohomology, cyclic cohomology, Hopf algebra, Frobenius algebra.

