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Abstract 
Different approaches have been proposed to link high cycle fatigue properties to thermal 

measurements under cyclic loadings, usually referred to as “self-heating tests.”  This paper 

focuses on two models whose parameters are tuned by resorting to self-heating tests and then 

used to predict high cycle fatigue properties.  The first model is based upon a yield surface 

approach to account for stress multiaxiality at a microscopic scale, whereas the second one 

relies on a probabilistic modelling of microplasticity at the scale of slip-planes. 

Both model identifications are cost effective, relying mainly on quickly-obtained temperature 

data in self-heating tests.  They both describe the influence of the stress heterogeneity, the 

volume effect and the hydrostatic stress on fatigue limits.  The thermal effects and mean 

fatigue limit predictions are in good agreement with experimental results for in and out-of 

phase tension-torsion loadings.  In the case of fatigue under non-proportional loading paths, 

the mean fatigue limit prediction error of the critical shear stress approach is three times less 

than with the yield surface approach. 
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Nomenclature 
Variables with very close meanings are used in both models.  For the sake of clarity, they are 

written without tilda for the yield surface approach and with tilda ( .~ ) for the critical shear 

stress approach.  The superscript * refers to any of the two models, e.g. *
effdissΣ  corresponds to 

effdissΣ  for the yield surface approach and effdiss
~Σ  for the critical shear stress approach, 

respectively. 

 
Stresses 
Σ    Macroscopic stress tensor 

m
Σ    Mean macroscopic stress over a cycle 

σ    Microscopic stress tensor 
S    Deviatoric stress tensor 
X   Back stress 

I    Unit second order tensor 

J2    Second stress invariant 
T   Macroscopic shear stress 
T0  Macroscopic shear stress amplitude 
I1,max   Max. hydrostatic stress over a cycle 
I1,m   Mean hydrostatic stress over a cycle 
 
Material parameters 
μ    Shear modulus 
ν  Poisson’s ratio 
ρ  Mass density 
c   Specific heat 
C   Hardening parameter 
 
Microplasticity description 
λ  , λ~  Intensity of the Poisson Point Process 

sV , sV~  Volume around each site 
pε   Plastic strain tensor 

χ   Plastic multiplier 
h , h~   Microscopic hardening coefficients 
σy  Yield stress 
τ   Shear stress  
τy  Critical shear stress 
a   Slip direction 

n    Normal to the considered plane 

m    Slip direction in the plane   
γp   Plastic slip 
κ(m)  Activated directions distribution factor 

Heat transfer parameters and variables 
δ ,δ~   Intrinsic dissipated energies of one site over a cycle 
Δ  Global (mean) dissipated energy 
D  Total dissipated energy 
τeq   Characteristic time 
θ  Mean temperature variation 
θ    Mean steady-state temperature 
 
Fatigue parameters and variables 
PF  Failure probability 
Veff   Effective volume 

∞Σ , ∞Σ
~

Mean fatigue stress 

∞Σ    Standard deviation of the fatigue stress 
CV   Coefficient of variation 
 
Model parameters to be identified 
m, m~   Weibull modulus 
η , η~   Thermal scale parameter 
α , α~   Hydrostatic stress effect parameter 

( )m
00 S~V~ , ( )m

00 S~V~   Fatigue scale parameter 
 
Heterogeneity factors and equivalent stress 

eq
0Σ , eq

0Σ
~

 Equivalent stress amplitude 

effdissΣ , effdissΣ~   Effective dissipative stress 

2mG + , 2mG~ +  Dissipation heterogeneity factor 

2mH + , 2mH~ +   Stress heterogeneity factor 
 
Loading description 
Σ11, 0  Tensile stress amplitude 
Σ12, 0 Shear stress amplitude 
φ Ratio between shear and normal stresses 
r Radius of the specimen 
Re External radius of the specimen 
fr Frequency of loading 
ϕ Phase lag between shear and normal stresses 
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1-Introduction 
 

The constant improvement of materials and the industrial need for appropriate 

characterisation lead to countless tests.  This fact is all the more penalizing in the case of High 

Cycle Fatigue (HCF) where experiments last more than a week and use several tens of 

specimens to get a Wöhler diagram with different reliability levels.  This problem is even 

more important when multiaxial fatigue is concerned, insofar as each loading path 

corresponds to a specific Wöhler campaign.  Consequently, alternative and faster methods of 

fatigue characterisation are sought to save time. 

A promising alternative is based on the measurement of the specimen temperature 

changes during cyclic loadings (Bérard et al., 1998; Cazaud, 1948; Cura et al., 2005; Dengel 

and Harig, 1980; Doudard et al., 2004; Galtier et al., 2002 ; Harry et al., 1981; Kanarchuk et 

al., 1989; Krapez et al., 1999; La Rosa and Risitano, 2000; Lehr, 1926; Luong, 1995; Mabru 

and Chrysochoos, 2001; Moore and Kommers, 1921; Stärk, 1980; Stromeyer, 1915; Welter, 

1937; Yang et al., 2005).  Various experimental procedures were proposed involving the use 

of thermocouples (Doudard et al., 2004; Galtier et al., 2002 ; Lehr, 1926; Moore and 

Kommers, 1921; Welter, 1937) or thermography (Bérard et al., 1998; Cura et al., 2005; 

Krapez et al., 1999; La Rosa and Risitano, 2000; Luong, 1995; Mabru and Chrysochoos, 

2001; Yang et al., 2005), and focusing on the transient temperature history (Krapez et al., 

1999; Moore and Kommers, 1921) and / or the steady-state temperature reached after several 

thousands of cycles (Doudard et al., 2004; Galtier et al., 2002; La Rosa and Risitano, 2000; 

Luong, 1995; Mabru and Chrysochoos, 2001).  The particular test used herein, referred to as 

“self-heating test,” consists in applying successive series of cycles (around 3000 cycles for 

each amplitude step) for different increasing stress amplitudes to a single specimen.  For some 

materials (e.g., steels), the fact that the stress level leading to a significant increase of the 

steady-state temperature is correlated to the mean fatigue limit has been exploited early on 

(Lehr, 1926; Welter, 1937).  More recently Doudard et al. (2005) have proposed a two-scale 

model (i.e., elastoplastic inclusions embedded in an elastic matrix) to explain this relationship.  

It is assumed that fatigue initiation is caused by microplasticity that induces dissipated energy.  

This type of view point was proposed by Dang Van (1973).  The originality of the present 

approach lies in the identification method, namely, all the material parameters introduced in 

the model are tuned using the self-heating test under cyclic loading (Doudard et al., 2005).  
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Moreover fatigue results are scattered and this phenomenon is not taken into account 

by classical two-scale (i.e., deterministic) approaches.  To describe the scatter, a probabilistic 

two-scale model (i.e., a set of elastoplastic sites randomly distributed within an elastic matrix) 

has been proposed.  The distribution of sites is determined from self-heating measurements 

under cyclic loadings (Doudard et al., 2004).  This identification procedure was validated for 

several materials (Doudard, 2004; Poncelet, 2007) by comparing the prediction of S / N 

curves given by the model and experimental results for uniaxial stress states. 

The extension of this self-heating based approach to multiaxial loadings (i.e., analysis 

of the self-heating test to identify a multiaxial fatigue criterion) is not easy and presents two 

challenges, namely, performing and understanding self-heating tests under multiaxial cyclic 

loadings, and second, the definition of the activation (equivalent) stress of elastoplastic sites 

introduced in the probabilistic two-scale model.  A first response was obtained from a heat 

transfer point of view under proportional cyclic loadings (Doudard et al., 2007a) and non-

proportional cyclic loadings (Poncelet et al. 2007) whereby a unique thermal response for 

different loading types is sought in the stress space. Concerning the microplasticity 

description in a two-scale model, two different approaches are generally used, namely, by 

following a “yield surface approach” (e.g., von Mises’ yield criterion (Doudard et al., 2007a; 

Lemaitre and Doghri, 1994)) or a “critical shear stress approach” (e.g., using Schmid’s law 

(Dang Van, 1973; Doudard et al., 2007b; Morel, 1998)). With a deterministic point of view 

(i.e., the microplastic activation is deterministic), no real difference is obtained between both 

descriptions in terms of (good) predictions of fatigue properties under proportional loadings.  

However, unsatisfactory mean fatigue limit predictions are observed under non-proportional 

loading histories (Bainvillet et al., 2003).  With a probabilistic point of view (i.e., the 

microplastic activation is a random process), and to the best of the authors' knowledge, no 

conclusion was drawn.  Thus, this work has two main goals. The first one is to demonstrate 

the potential of a probabilistic scenario in the description of the microplastic activity to 

improve the prediction of multiaxial fatigue properties of materials.  The second goal of this 

work is to propose an identification procedure of the material parameters based on self-

heating measurements under cyclic loadings.  

The present paper is divided into two parts.  The first part is dedicated to the 

description of the two models based on a probabilistic description of microplastic activation.  

Yield surface and critical shear stress approaches descriptions are introduced, i.e., from the 

assumptions concerning microplasticity activation to the thermal and fatigue responses. 

Theses two models are limited to the prediction of crack initiation as the previous ones 
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proposed by the authors.  In the second part, an application to tension-torsion cyclic loadings 

is described.  The identification procedure is performed using only two self-heating test 

results obtained for different loading paths, and one uniaxial mean fatigue limit.  Both 

approaches give good thermal predictions for other loading paths.  The predictions of 

multiaxial fatigue properties with both models are analysed and then compared with 

experimental results.  

 
2-Two probabilistic multiscale models 
 
The main goal of this section is to introduce two models based on probabilistic approaches.  

The physical process of damage initiation is here assumed to be governed by intragranular 

microplasticity.  At that scale, local fields experience fluctuations due to the polycrystalline 

nature of the materials considered.  When a local equivalent stress (to be specified) exceeds a 

local threshold, microplastic activity starts.  The joint effects of local stress fluctuations and of 

local weaknesses are accounted for through a stress-dependent activation probability.  It is 

worth noting that if another mechanism (e.g., microcrack initiation and propagation), or 

another scale at which the degradation occurs (e.g., grain clusters), the equivalent stress and 

activation probability may change. 

A set of elastoplastic sites randomly distributed within an elastic matrix is considered.  

In the present case, no spatial correlations are considered, even though more elaborate 

hypotheses can be made (Jeulin, 1991; Sobczyk and Kirkner, 2001).  It is assumed that HCF 

damage is localized at the mesoscopic scale and is induced by microplastic activity (in the 

grains whose orientation is favourable).  The distribution of active sites (i.e., sites where 

microplasticity occurs) of volume sV  in relation to their surrounding explains the 

‘probabilistic’ feature, which is modelled by a Poisson Point Process (Curtin, 1991; Gulino 

and Phoenix, 1991; Jeulin, 1991; Fedelich, 1998; Denoual and Hild, 2002).  The probability 

of finding k active sites in a domain Ω of volume V reads 

 ( ) [ ] [ ] Vλexp
k!
VλΩP *

k*
*
k −

−
= , (1) 

where ∗λ  is the intensity of the Poisson Point Process and  V∗λ   is the mean number of active 

sites.  The form of the intensity of the process is linked to the modelling of microplasticity, its 

value depends on the loading level, and will be described in Section 2.1. 
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The relationship between the stress tensor in a site where microplasticity occurs, σ , 

and the macroscopic stress tensor Σ  is given by the localisation law (Berveiller and Zaoui, 

1979; Kröner, 1984) 

 ( ) p12 εβμΣσ −−= , (2) 

where pε  is the corresponding plastic strain tensor (an additive decomposition of strain with 

an elastic and a plastic part is assumed for each site) and µ the shear modulus. ( )
( )ν

ν
 - 1 15
5 - 4 2  β =  

is given by Eshelby’s analysis of a spherical inclusion in an elastic matrix, where ν denotes 

the corresponding Poisson’s ratio (Eshelby, 1957). 

In the next section, two different approaches describing microplasticity (i.e., the 

elastoplastic behaviour of sites) are presented. The first one uses a yield surface (e.g., based 

upon von Mises’ equivalent stress) and the second one a critical shear stress approach (e.g., 

Schmid’s criterion). 

 

2.1-Elastoplastic behaviour of the sites  

2.1.1- Yield surface approach 

The first model presented herein is an extension of the one initially proposed in Refs. 

(Doudard et al., 2005, 2007a ; Poncelet et al., 2007).  The uniaxial model (Doudard et al., 

2004) needs a reduced number of parameters and allows closed-form solutions to be derived 

for the description of self-heating responses and the number of cycles to failure in HCF.  The 

present model uses the same type of assumptions so that most of these advantages remain.  

Microplasticity is modelled at a microscopic scale and is described by a yield surface 

 ( ) 0σXSJf y2 ≤−−= , (3) 

where J2 is the second stress invariant, i.e., ( ) ( ) ( )XS:XS
2
3XSJ 2 −−=− .  A normality 

rule is assumed and linear kinematic hardening is considered 

 
S
fε p

∂
∂

= χ , (4) 

 ( ) 00XandεC
3
2X pp === ε . (5) 



 7 

The magnitude of the intrinsic dissipated energy )σ,Σ( y
eq
0δ  in a site over a loading cycle is 

calculated for a given value of the yield stress σy, von Mises’ equivalent stress amplitude 

( )
m2t

eq
0 )t(ΣJMaxΣ Σ−= , and a mean stress 

m
Σ  given by 

 ( )[ ] ( )( )[ ]IzttraceMaxMinYtJMaxMinIIS
tztYmmm −+−=+=Σ )(Σ

3
1)(Σ2,1 . (6) 

For a proportional loading condition, the intrinsic dissipated energy of one site reads 

 y
eq
0

yS
y

eq
0 σΣ 

h
σ4V

 )σ,Σ( −=δ , (7) 

where 〉〈  .  are Macauley’s brackets (i.e., positive part of ‘.’), )−( += βμ 1 3  C  h [19].  

Since σy is assumed to be a random variable, it is proposed that the intensity of the 

Poisson Point Process describing the activation of microplasticity follows a power law of the 

equivalent stress amplitude 

 
m

m

eq

IS ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
Σ

=
,10

0

0

 
V
1 

α
λ , (8) 

where α, m and V0 S0
m are three material parameters, and I1,m the mean hydrostatic stress over 

a given cycle.  Von Mises’ equivalent stress amplitude is chosen because of the isotropy of 

the material tested hereafter.  In the case of anisotropy, a more adequate equivalent stress 

amplitude may be considered.  The power-law dependence is chosen for both experimental 

and theoretical reasons.  It was shown that the onset of microplasticity follows a power-law of 

the applied stress (Cugy and Galtier, 2002), and introducing a power-law as the intensity of a 

Poisson Point Process leads to a Weibull model when the weakest link assumption is made 

(Doudard et al., 2004, 2005).  The hydrostatic stress dependence is introduced to account for 

the mean stress effect on self-heating measurements and on fatigue properties.  Figure 1 

shows schematically the activation scenario of sites, namely, the higher the stress level, the 

larger the number of activated sites, and therefore the higher the dissipated energy.   
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Figure 1: Schematic view of the activation scenario of elastoplastic sites with the 

equivalent stress amplitude. 
 

The total dissipated energy ( )eq
0ΣD  is then obtained by integration over the whole 

population of active sites (Doudard et al., 2005).  For a Poisson point process, Σ
Σ

dV
d
λd  

corresponds to the mean number of sites activated for a stress amplitude ranging from Σ and 

(Σ + d Σ ) in an examination domain of volume V, i.e. the number of sites whose yield stress 

lies between Σ and (Σ + d Σ ) , and whose dissipated energy during a loading cycle 

is )σ,Σ( y
eq
0δ .  Consequently ( )eq

0ΣD  is expressed as 

 ( ) ( ) ( )
∫=

eq
0

0

eq
0eq

0
eq
0 dV

d
Σd

,ΣΣD
Σ

Σ
Σ

λ
Σδ . (9) 

 
For a heterogeneous stress field over a domain Ω of volume V, the general expression 

of the global (mean) dissipated energy Δ reads 

 ∫=
Ω

ΣΔ dV))M((D
V
1 eq

0 . (10) 

The corresponding expression in the particular case of a uniform tensile / compressive loading 

( 1-  R
max

min ==
Σ
Σ ) for a given value of the stress amplitude Σ0 reads 

 
( )

m
00

2m
0Stensile

unif SV2)(m1)h(m
V4m

  
+

++
=

Σ
Δ . (11) 

For proportional loadings, one introduces a dissipation heterogeneity factor Gm+2 defined by 
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 ∫
+

+ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Σ

Σ
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

=
Ω

2m

0

0

,10

,10
2 dV)(

)(V
1

eq
M

eq
m

m

mM
m

M
MIS

IS
G

α
α

, (12) 

where  [ ])M(max eq
0M

eq
M0 ΣΣ

Ω∈
=   and  [ ])(max ,1,1 MII mMmM Ω∈

=  to get the same type of expression 

given in Equation (11), yet valid for any considered history.  This factor is equal to 1 in the 

case of uniform loadings and becomes less than 1 in the case of heterogeneous loadings (e.g., 

torsion or rotary bending).  

It is then possible to express propΔ  as 

 
( )

m
00

2m
effdissSprop

SV2)(m1)h(m
V4m

  
+

++
=

Σ
Δ  (13) 

where 

 )2/(

,1
0

0
)2/(1

2

1
+

+
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

Σ
=Σ mm

mM

eq
M

m
m

effdiss

I
S

G

α
, (14) 

is the “effective dissipation stress.”  For non proportional loadings, it is no longer possible to 

simplify Δ because of the expression of ))M((D eq
0Σ .  Δ is then calculated with the same 

hypothesis, but using a numerical integration scheme.  However, it is possible to obtain the 

same expressions (13) and (14) by introducing the dissipation heterogeneity factor given by 

 
M

2mG
Δ
Δ

=+ , (15) 

where MΔ  denotes the mean dissipated energy for a proportional and uniform loading 

condition, a von Mises’ equivalent stress amplitude eq
M0Σ , and a mean hydrostatic stress mMI ,1 .  

The use of effdissΣ  is helpful since the form of Δ  in Equation (14) is the same for every 

loading path.  In other words, effdissΣ  takes into account the different features of the loading, 

be it uniaxial or multiaxial, with or without mean stress, uniform or heterogeneous, 

proportional or non-proportional.  

 
2.1.2- Critical shear stress approach 

The only –and important– difference with the previous model is the description of 

microplasticity.  Microplasticity is now modelled at the scale of slip planes on which both 

shear and hydrostatic stresses are taken into account (Doudard et al., 2007b).  For the sake of 
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clarity, the .~  notation is exclusively used for every variable of the present model having an 

equivalent in the yield surface approach (e.g., eq
0Σ  and eq

0Σ
~ ).  Identical parameters (e.g., 

Lamé’s coefficient μ ) are unchanged. 

Microplasticity is modelled at the scale of slip planes based on Schmid’s criterion 

 0- y ≤ττ , (16) 

with a:στ =  the (resolved) shear stress for the considered direction defined by 

  )nmmn(
2
1a tt += , (17) 

where n  is the direction normal to the considered plane, and m  the in-plane slip direction.  

The shear stress τ for the considered direction is related to the macroscopic shear stress T by 

the same localization law as before (Doudard et al., 2007b) 

 pγβ)(1μTτ −−= , (18) 

where γp is the plastic slip ( app γε = ).   

The intrinsic dissipated energy in one site of volume SV~  during a cycle for a given critical 

(resolved) shear stress τy and shear amplitude T0 (Figure 2) for the considered site direction is 

expressed as (Doudard et al., 2007b) 

 ( ) y0y
S

y0 τTτ
h~
V~4τ,T~ −=δ , (19) 

with )1(h~ βμ −= . 

 
Figure 2: Shear amplitude T0 in the plane of normal n and slip direction m. 
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Consequently one direction becomes active when the shear stress amplitude T0 is 

greater than the critical shear stress τy, which is assumed to be a random variable.  The 

intensity of the Poisson Point Process now follows a power law of the macroscopic shear 

amplitude integrated over all directions in space (defined by the solid angle Θ) (Doudard et 

al., 2007b) 

 
( )

( )( )∫+
= dΘΘ2T

Iα~S~V~
1λ~ m~

0m~

max1,00

, (20) 

where m~ , α~  and ( )m
00 S~V~  are three parameters depending on the considered material, and 

I1,max the maximum hydrostatic stress over a given cycle.   

With a Poisson point process and for a given direction, dTV
Td
λ~d  corresponds to the 

mean number of sites activated for a shear amplitude ranging from Τ and (Τ + dΤ) in a 

domain of volume V, i.e. the number of sites whose critical shear stress lies between Τ and 

(Τ + dΤ), and whose dissipated energy during a loading cycle is ( )T,T~
0δ .  The global 

dissipated energy density Δ~  during a cycle reads 

 ∫ ∫ ∫∫ ∫ +
−==

Ω

δ
aa T

0
m~

max1,00

1-m~

0
S

Ω

T

0

0 dVdT
)Iα~S~(V~
Θd(2T)4m

TTT
h~

V~
dVdT

dT
λ~dT),(T~

V
1Δ~ . (21) 

As for Equation (10), one introduces a heterogeneity factor to rewrite the previous expression. 

Equation (21) is then related to ( )0m,n

eq
0 T2MaxΣ~ = , Tresca’s equivalent stress amplitude, by 

 
( ) ( ) ( )( )m~

maxM1,0
m~1/

0

2m~

2m~
~

eq
0M

s

Iα~S~V~

GΣ~

2m~1m~h~
m~V~4

Δ~

+

⎟
⎠
⎞

⎜
⎝
⎛

++
=

+

+

, (22) 

where 

 [ ] [ ])M(ImaxI and )M(~max~
max,1MMmax,1

eq
0M

eq
M0 ΩΩ

ΣΣ
∈∈

== . (23) 

The dissipation heterogeneity factor is now defined by  



 12 

 ∫ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
=

+

+

Ω

2m~

eq
0M

eq
0

m

max,10

Mmax,10
2m~ dV2)m~κ(

Σ~
)M(Σ~

)M(I~S~
I~S~

V
1G~

α
α

, (24) 

where )2m~( +κ  represents the distribution of activated directions 

 ∫
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+ dΘ

)M(Σ~
)ΘM,(2T

2)m~κ(
2m~

eq
0

0 . (25) 

It is then possible to rewrite Δ~  as 

 
( )

( )m~

00

2m~

effdisss

S~V~

~

2)m~(1)m~(h~
m~V~4

  ~
+

++
=

Σ
Δ , (26) 

where 

 )2m~/(m~

Mmax,1
0

eq
M0

)2m~/(1
2m~

effdiss

I
S~
~

1

~G~~
+

+
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
α

ΣΣ , (27) 

is the “effective dissipation stress.”  Even though they may appear alike, effdissΣ  and effdiss
~Σ  are 

different.  The definitions of the equivalent stresses are not the same ( eq
0Σ is von Mises’ 

equivalent stress, whereas eq
0Σ

~  is Tresca’s equivalent stress) and κ is relevant only for the 

critical shear stress approach.  Consequently the values of the heterogeneity factors 2mG +  and 

2m~G~ +  are also different.  Moreover, the parameters m and m~  are stricto sensu different.  

However this difference is of no consequence from a practical point of view, i.e. m and m~  

will have the same meaning at the macroscopic scale as one will see hereafter.  Beyond these 

differences of notation, it is worth remembering that the fundamental distinction between the 

two models lies in the description of microplastic activation.   

 
2.2-Self-heating under cyclic loading 

The previous sections have described the basis of both models, i.e. from the mechanism of 

microplasticity activation to the dissipated energy calculation.  The two following sections 

will now present the macroscopic consequences of microplastic activity for each model.  First 

the thermal response (“mean” point of view), and second the fatigue behaviour 

(“probabilistic” point of view) within the same framework. 
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It is assumed that the temperature is uniform in tested samples, which has been 

theoretically discussed and experimentally checked in the case of tubular specimens in torsion 

[26].  The mean dissipation Δ* is then introduced in the following heat conduction equation 

 
c

f *
r

eq ρ
Δ

τ
θθ =+ , (28) 

where refspecimen TT −=θ  is the mean temperature variation with respect to the reference 

temperature refT , τeq a characteristic time depending on the heat transfer boundary conditions 

(Chrysochoos and Louche, 2000), ρ the mass density, c the specific heat and fr the loading 

frequency.  There is no need to add a thermoelastic term, which vanishes over one cycle 

because only mean steady-state temperatures are sought.  For both models, the mean 

(uniform) steady-state temperature θ reads  

 
( )

( ) *

*

m*
0

*
0

2m*
effdiss

**

*
*

SV )2m()1m(
m

+

++
=

Σ
ηθ , (29) 

 

with *

*
Seqr*

h
V

c
f4
ρ

τ
η = .  Equation (29) shows that the thermal behaviour depends only on three 

parameters and on the effective dissipation stress.  This expression is similar to the one for 

uniform tensile loading thanks to the use of effective stress *
effdissΣ . 

Even though the meaning of the parameters m and m~  is initially different in each 

model (the intensity of the Poisson Point Process depends on different microplasticity 

descriptions), it may be noted that after the integration over all the slip directions in space, the 

meaning of m~  in the critical shear stress approach is equivalent to the meaning of m  in the 

yield surface one.  In the next section, it is proposed to use the same framework to model 

HCF results. 

 
2.3-Fatigue limit 

To describe fatigue limits, the weakest link theory is considered.  The failure probability is 

then given by the probability of finding at least one active site.  By using Equation (1), the 

failure probability is related to the loading amplitude by 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−= ∫

Ω

λ dVVexp1P **
F . (30) 
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2.3.1- Yield surface approach 

The failure probability corresponds to the probability of finding at least one active site in a 

given volume Ω.  By using Equation (8), the failure probability is related to the loading 

amplitude 

 ( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
Σ

−−= ∫
Ω

dV
MIS

M
V
VP

m

m

eq

F
,10

0

0

exp1
α

, (31) 

which corresponds to Weibull’s model (Weibull, 1939, 1951).  A second heterogeneity factor 

Hm is introduced to simplify the previous equation.  It is defined by 

 ( )
( )∫

Ω
⎟
⎟
⎠

⎞
⎜
⎜
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Σ
Σ

+
+

= dVM
MIS

IS
V

H
m

eq
M

eq

m

mM
m

0

0

,10

,10 )(
)(

1
α

α , (32) 

and stands for a stress heterogeneity factor, contrary to the previously introduced dissipation 

heterogeneity factor.  Equation (31) becomes 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
Σ

−−=
m

mM

eq
Meff

F ISV
V

P
,10

0

0

exp1
α

, (33) 

where meff VHV =  denotes the effective volume.  

It is worth noting that Hm and Gm+2 , even though different in their meanings (Hm 

stands for a stress heterogeneity factor whereas Gm+2 for a dissipation heterogeneity factor) 

are almost identical in their expressions for proportional loadings.  Because of the high value 

of the exponent m (m = 12 for the present material, see Section 4.1.1), their values will be 

very close, even more for loadings with uniform mean hydrostatic stresses.  Consequently the 

combined effects of direction and heterogeneity of loading are nearly the same for fatigue and 

self-heating results, and thus the interpretation of self-heating results becomes easier.  

Conversely, for non-proportional loadings, Hm and Gm+2 can be very different as shown 

below.  If two uniform loadings with the same equivalent stress amplitude and the same mean 

hydrostatic stress are considered, the first one proportional and the second one non-

proportional, the stress heterogeneity factors are identical but the dissipation heterogeneity 

factors can be very different. 
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Equation (33) allows for the derivation of the mean fatigue limit ∞Σ  (more precisely, 

von Mises’ equivalent amplitude) and the coefficient of variation CV that are used to describe 

HCF data  

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +Γ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=Σ=Σ ∞∞ mV

VIS
m

eff
mM

11)(
)1(

0
,10

eq
0 α  , (34) 
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⎤
⎢⎣
⎡ +

==
∞

∞

m
11Γ

m
11Γ

m
21Γ

CV

2

Σ
Σ , (35) 

where ∞Σ  is the corresponding standard deviation, and ( )∫
+∞

− −=
0

1x dt)texp(t)x(Γ  Euler’s 

(Gamma) function.  The scale and stress heterogeneity effects are taken into account thanks to 

the effective volume effV  (i.e., the smaller the effective volume, the higher the stress 

heterogeneity, the higher the mean fatigue limit).  On the contrary, the coefficient of variation 

is independent of scale or heterogeneity, and only a function of m, which is the Weibull 

modulus (Weibull, 1951). 

 
  2.3.2- Critical shear stress approach 

The failure probability corresponds to the probability of finding at least one active slip 

direction in the given volume.  By using Equation (20), the failure probability is related to the 

shear stress amplitude 

  dVdΘ
Iα~S~

2T
V~
1 - exp - 1  P

Ω

m~
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a

0
F ⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
= ∫ ∫ . (36) 

By using a stress heterogeneity factor mH ~
~ , Equation (36) becomes 
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V~
V~

exp1P
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Σ
, (37) 

which corresponds to Weibull’s model (Weibull, 1939).  The stress heterogeneity factor mH ~
~  

is here defined as 
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, (38) 

so that 2m~G~ + and m~H~ are a priori different because of the influence of the hydrostatic pressure.  

The values of 2m~G~ + and m~H~  are again nearly identical because of the high value of m~  for 

proportional and non-proportional loadings. 

Last, the mean fatigue limit (i.e., Tresca’s equivalent stress amplitude) reads 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+== ∞∞ m~

11
V~
V~

I~S~
~

)~(
)m~/1(

eff

0
Mmax,10

eq
0 ΓαΣΣ , (39) 

and the coefficient of variation CV is the same as for the previous model (Equation (35)).   

Because of the same expression (29) used for the identification of m* (see 

Section 3.2), the values of m and m~  are identical.  Consequently the fatigue scatter will be 

the same for both models (same CV value).  On the contrary, the mean fatigue limits will be 

different for the two approaches because Equations (34) and (39) account for the influence of 

several parameters on fatigue properties (namely, the stress heterogeneity, the volume effect, 

the hydrostatic stress and the multiaxiality of the loading with the equivalent stress amplitude 

and the parameter )m~κ(  (Morel, 1998)) in different ways. 

Both models depend on three parameters to predict the fatigue limits, and a last one to 

account for self-heating under cyclic loadings.  In the next section, it is proposed to analyse 

the ability of both models to describe multiaxial self-heating responses in the case of tubular 

specimens under tension-torsion cyclic loadings, and to evaluate the capacity of both 

approaches to predict multiaxial fatigue properties. 

 
3-Application to tension-torsion loadings 
Tubular specimens being used, the macroscopic stress tensor depends only on the radius r of 

the specimen and is defined by 
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where Σ11,0 and 3 Σ12,0 = tan(φ) Σ11,0 are the tensile and shear stress amplitudes, ϕ the phase 

lag between shear and normal stresses, Σm the mean tensile stress, and Re the external radius 

of the specimen.  

In the particular case of tension-torsion loading on tubular specimens, the hydrostatic 

pressure is uniform over the volume of the specimen, so that the two heterogeneity factors of 

the first model have the same expression for proportional loadings 

 mm HG = , (41) 

and the two heterogeneity factors of the second model are identical for proportional and non-

proportional loadings 

 m~m~ H~G~ = . (42) 

  
3.1 – Experimental results 

The tested material is a medium carbon steel C45 (SAE45) whose chemical composition is 

given in Table 1, and monotonic tensile properties in Table 2.  The microstructure is made of 

equi-axed grains with no significant texture.  All multiaxial self-heating tests are performed 

on the same type of specimens, taken from the same bar of steel in a region whose grain size 

and hardness uniformity was checked.  The elastic and thermal parameters are considered 

uniform and isotropic.  The specimens are tubular, with a thickness / mean radius of the gauge 

section equal to 0.24 (Figure 3a).  The external surface is ground for all specimens. 

All experiments are performed using an MTS tension-torsion servohydraulic-testing 

machine with a load capacity 100 kN in tension and 1200 Nm in torsion.  All loading paths 

were applied at a frequency of 5 Hz.  For temperature measurements and data processing, the 

multiaxial self-heating procedure is similar to earlier uniaxial experiments (Doudard et al., 

2005).  One uses two (K type) thermocouples to measure the temperatures of the gauge zone 

and the lower grip (Figure 3b), and a ThermoEst TTE 50P/A conditioner. 

Table 1: Chemical composition of C45 (SAE45) steel (10−2 wt %). 

C Mn Si Cr P S Mo Fe 

45-51 50-80 15-35 < 40 < 3 2-4 < 10 balance 
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Table 2: Mechanical properties of C45 (SAE45) steel.  Ys = yield stress; 

UTS = ultimate tensile strength; el = elongation at failure. 

Ys (MPa) UTS (MPa) el (%)  

> 360 > 700 28 % 

 

 
-a- -b- 

Figure 3: Tubular specimen geometry in mm (a). Experimental set-up: specimen, grips, 

thermocouples, conditioner (b). 

Tests begin when the grip temperature is stabilised (i.e., after the testing machine has 

warmed up for several hours).  During the test, the amplitude of loading is step-wise constant, 

and increases once the differential temperature is stabilised (ca. 3000 cycles in the present 

case).  More detailed descriptions of the experimental set-up are given in Refs. (Poncelet, 

2007; Poncelet et al., 2007). 

Four different loading paths are performed.  Pure tension and pure torsion are first 

applied, both with zero mean stress, then pure tension with non-zero mean stress, and an out-

of phase tension-torsion loading with a constant von Mises’ equivalent stress at mean radius 

(φ = 48°, ϕ = 90°).  The steady-state temperature is plotted as a function of the loading 

amplitude in Figure 4.  
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Figure 4: Steady state temperatures as functions of the equivalent stress amplitude for 

different loading paths.  
 

As for other steels (Doudard et al., 2005; Doudard, 2004; Poncelet, 2007), each curve 

has a first part that shows virtually no change in temperature, whereas in the second part the 

temperature increases significantly with the stress amplitude.  This transition is reported to be 

a rather good estimation of the mean fatigue limit for steels in uniaxial homogeneous case 

(Doudard et al., 2004; Krapez et al., 1999; La Rosa and Risitano, 2000; Luong, 1995).  

Moreover it has been shown that the gradual increase of temperature is linked to the fatigue 

scatter (Doudard et al., 2004).  The relatively short duration of self-heating tests (in 

comparison with traditional fatigue tests) makes them not only interesting for academic 

studies, but also very attractive for industrial purposes. 

It is now proposed to check whether the links between thermal response and fatigue 

properties are still found in multiaxial cases, and more precisely if an adequate model 

identified on thermal responses is able to predict fatigue limits. 

 
3.2-Identification procedure 

Both models depend exactly on the same parameters, namely, m  or m~  describe the scatter of 

fatigue results and the slope (in a log-log plot) of the self-heating temperature response, η  or 

η~  are scale parameters for the thermal response, α  or α~  account for the effect of the mean 

hydrostatic stress on self-heating and fatigue properties, and ( )m
00 SV  or ( )m~

00 S~V~  are scale 

parameters for the fatigue response.  All parameters will be identified using only 2 self-

heating tests and one fatigue limit that may come from any type of geometry or loading (it is 
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nonetheless possible to perform identification only with fatigue results if self-heating ones are 

not available). 

 

 
-a- 

 
-b- 

Figure 5: Identification of the parameters m, η  and α (yield surface approach) from the 
self-heating test for two loading paths: torsion (a) and tension (b). 

 

Figure 5a shows the identification of the parameters m and η of the yield surface based 

model using a pure torsion self-heating curve (φ = 90° and Σm = 0) and Equation (29).  The 

calculation of 2mH +  is then possible, and the parameter α is determined from a different self-

heating test result, in the present case (Figure 5b) pure tension (φ = 0° and Σm  = Σ0).  

Following the same procedure (a pure torsion self-heating test (φ = 90° and Σm = 0) and pure 

tension (φ = 0° and Σm = Σ0)), parameters m~ , η~  and α~  of the microscopic model are 

identified (Figure 6). 
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-a-  

 
-b- 

Figure 6: Identification of the parameters m~ , η~  and α~  (critical shear stress approach) 
from the self-heating tests for two loading paths: torsion (a) and tension (b). 
 

It is worth noting that no non-proportional loading results are needed to tune the 

material parameters.  More generally, any couple of loading paths may be used to identify the 

yield surface (resp. critical shear stress) based model parameters m, η  and α  (resp. m~ , η~  

and α~ ), as long as their mean (resp. maximum) hydrostatic stresses over a given cycle are 

different.   

The last (scale) parameter of each model is obtained by using a mean fatigue limit and 

Equation (34) for the yield surface approach, or Equation (39) for the critical shear stress 

approach.  This value is obtained for tensile loadings (φ = 0° and Σm = 0) when fatigue limits 

are evaluated for 5 x 106 cycles.  Staircase tests are performed on 15 smooth and round 

samples machined from the same steel bar as before on a 50 kN-servohydraulic testing 

machine with a loading frequency ranging from 20 Hz to 60 Hz.  Stress steps are equal to 

10 MPa.  The measured mean fatigue limit is 262 MPa. 

 
3.3-Predictions of multiaxial self-heating 

First, one checks the prediction of self-heating responses under proportional loadings.  An 

“iso-temperature surface” description is proposed (Doudard et al., 2007a).  It consists in a 

series of proportional self-heating tests applied to the same specimen.  The amplitude of 

loading increases step by step.  When the differential temperature reaches a given offset, a 

new path starts with a different loading direction.  The offset is chosen to ensure a stability of 

the surface and to minimise history effects (Poncelet, 2007).  The directions are investigated 
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with π/8-rad steps in the (Σ11; 3 Σ12) space.  The first, the 6th and the last loading directions 

are the same (0 rad) to check that no history effects occur.  The offset being reached with a 

difference of loading amplitude of 2 %, one considers the history effect negligible.  For each 

loading path the stress amplitude for which the differential temperature reaches the given 

offset is depicted by a line in the (Σ11; Σ12) space (Figure 7).  The measured iso-temperature 

surface shown in Figure 7 was obtained for an offset of 0.5 K.  The 2nd, 3rd and 4th directions 

(respectively equal to π/8, 2π/8 and 3π/8 rad) are expected to give the same results as the 7th, 

8th and 9th directions (the surface is nearly symmetric with respect to the shear axis).  Figure 8 

shows the comparisons of both models against the experimental results.  The difference 

between model and experiment is less than 2.9% (resp. 2.1 %) for the yield surface approach 

(resp. critical shear stress approach), which proves the validity of their predictions when 

proportional loadings are considered. 
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Figure 7: Measured iso-temperature surface for an offset of 0.5 K. 

 

Second, the prediction of the complete self-heating response under proportional and 

non-proportional loadings is investigated.  When the effective dissipative stress of each model 

is used to plot the four self heating results (Figure 9), one observes that the different self-

heating curves collapse onto one another.  In particular, the out-of-phase loading that 

produced a significantly higher temperature compared with the other loading paths lies on top 

of the other responses.  This result proves that the non-proportionality of the loading is well 

accounted for by the yield surface and critical shear stress approaches.  It is worth noting that 

these good predictions were obtained with both approaches.  The yield surface approach 
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predicts the same number of active sites for two uniform loadings with the same equivalent 

stress amplitude and the same hydrostatic stress, the first one proportional and the second one 

non-proportional.  Nonetheless the dissipation heterogeneity factors are different so that the 

experimental self-heating results are well predicted.  For the critical shear stress approach, the 

numbers of active sites are different because of the presence of the κ  factor. 
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-b- 

Figure 8: Comparison of yield surface based model (a) surface and critical shear stress 
based model (b) surface with measured one. 

 

 
-a- 

 
-b- 

Figure 9: Steady state temperatures as functions of the effective dissipative stress for the 
yield surface (a) and critical shear stress (b) approaches. 
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 3.4-Predictions of multiaxial fatigue limits 
To check the multiaxial fatigue limits predicted by the models, three series of staircase tests 

(target: 5 x 106 cycles) are performed.  The first one uses pure torsion loading.  The second 

one corresponds to φ = 48° and Σm = 0, i.e. a proportional tension-torsion test.  The last one is 

a non-proportional loading corresponding to φ = 48°, ϕ =90° (i.e., an out-of-phase loading 

path where the points at mean radius of the specimen are loaded with a constant von Mises’ 

equivalent stress).  All the tests are carried out on the same testing machine as for the self-

heating tests, at a loading frequency of 20 Hz.  For the staircase tests, the fatigue limits are 

calculated with the Dixon-Mood method (Lieurade, 1982) (Table 3).  The corresponding 

fatigue limits are then predicted by both models for each loading path.  Table 3 shows the 

relative prediction error (RPE) defined by 

  exp

preexp

Σ

ΣΣRPE
∞

∞∞ −
=  (42) 

for both models.  

 

Table 3: Relative prediction errors of both models. 

Loadings (Σm = 0) Prop. 

(φ = 90°) 

Prop. 

(φ = 48°) 

Non-prop. 

(φ = 48°, ϕ = 90°) 

Mean fatigue limits, eq
0Σ (MPa) 277 267 205 

Critical shear stress approach 6% 7% -5% 

Yield surface approach 9% 6% -17% 

 
3.5-Discussion 

Both thermal and fatigue behaviours are well described by each model. Relative errors are 

small for each experimental validation, even though the “identification cost” is low (and the 

same for each model), thanks to the information coming from the self-heating tests. 

Although fundamentally different in their microplasticity description, the distinction 

between the yield surface and critical shear stress approaches is nearly impossible from a 

thermal point of view (see Figures 6 and 7).  When the fatigue behaviour is studied, a 

distinction is possible. On the one hand, errors of multiaxial fatigue limit predictions are less 

than 17% for the yield surface approach. On the other hand, the critical shear stress approach 
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yields errors less than 7%.  Concerning proportional loading paths, the two models are 

equivalent. For the non-proportional loading, the predictions are non-conservative in both 

cases.  However the interest of the critical shear stress approach is clearly shown, lowering (in 

absolute value) the prediction error from –17% to –5% without the addition of new 

parameters.  When considering the tensile loading path as a reference for the first model, 

Table 4 shows that the dissipation heterogeneity factors are more sensitive to non-

proportional loading paths than the stress heterogeneity factors so that this model leads to 

good predictions of self-heating but not so good for fatigue limits.  For the critical shear stress 

approach, the heterogeneity factors are alike (the influence of non-proportionality is taken into 

account in the heterogeneity factors by the κ  parameter).  Figure 10 shows the sensitivity of 

the κ  parameter to non-proportional loadings.  These results confirm that even if the global 

structure of the model is left unchanged, the description of microplasticity at the scale of the 

slip-planes by using a probabilistic approach is the key ingredient to better capture fatigue 

limits under non-proportional loadings. 

 

Table 4: Values of the different heterogeneity factors when m = 12 for the studied specimen. 

Proportional (ϕ = 0°) Non-ProportionalLoadings Factors 
(m=12) φ=0° φ=48° φ=90° φ = 48°, ϕ = 90°

Stress 
(Yield surf. appr.) mH  1 0.55 0.36 0.42 

Dissip. 
(Yield surf. appr.) 2+mG  1 0.5 0.32 1.48 

Stress 
(Critical shear appr.) )0,90(H~

H~

m~

m~

=°= ϕφ
 8 2.3 1 2.6 

Dissip. 
(Critical shear appr.) )0,90(G~

G~

2m~

2m~

=°=+

+

ϕφ
 10.2 2.5 1 2.65 
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Figure 10: Factor κ as a function of the ratio between shear and normal stresses φ for a 

proportional loading (ϕ = 0°) and an out-of-phase (ϕ = 90°) path. 
 
 
4-Conclusion 
This work is part of a general study on the links between self-heating responses and high 

cycle fatigue properties.  The present paper was devoted to the comparison of two multiscale 

models whose parameters are tuned thanks to self-heating data, and subsequently used to 

predict multiaxial high cycle fatigue properties.  The first model uses an equivalent stress to 

account for stress multiaxiality at microscopic scale, whereas the second one relies on a 

description of microplasticity at the scale of slip-planes. 

Both models are identified using two different self-heating tests and one fatigue limit.  

Any type of loading can be used for these tests as long as the maximum (for the critical shear 

stress approach) or mean (for yield surface approach) hydrostatic stress over a cycle is 

different between the two self-heating tests. The identification procedure is thus “low cost” 

and easily applicable to already existing results, provided the (dissipative) mechanisms at play 

in self-heating and fatigue tests are identical. 

The models relate thermal effects induced by microplastic dissipation to fatigue 

properties under multiaxial cyclic loadings.  They account for the influence of the stress 

heterogeneity, the volume effect and the hydrostatic stress on fatigue properties.  The 

validation of the models is obtained in terms of mean fatigue limits and temperature histories 

for in and out-of phase tension-torsion loadings.  In the case of non-proportional loadings, the 

critical shear stress approach leads to good predictions of fatigue limits whereas the yield 

surface approach is less reliable.  This ability is not due to the slip plane approach itself (it 
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would lead to an equivalent model if a deterministic point-of-view were chosen), but to the 

combination of slip-plane plasticity and probabilistic activation. 

The next step of this work is the prediction of multiaxial fatigue life with the critical 

shear stress approach and the application to industrial cases.  
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