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The Wishart distribution on an homogeneous cone is a generalization of the Riesz distribution on a symmetric cone which corresponds to a given graph. The paper extends to this distribution, the famous Olkin and Rubin characterization of the ordinary Wishart distribution on symmetric matrices.

Introduction

In many practical situations, there are manifest inter-relationships among several variables. One important case is when several pair variables are conditionally independent, giving other remaining variables. For multivariate normal distribution, this corresponds to some zeros among the entries of the precision matrix. Due to this there has been an interest in distributions akin to the Wishart but defined more generally on various cones containing the cone Ω of positive definite symmetric matrices as a special case. In particular, Andersson and Wojnar [START_REF] Andersson | The Wishart distribution on homogeneous cones[END_REF] defined the Wishart distribution on homogeneous cones. This distribution is in fact an extension to homogeneous cone of the Riesz distribution on symmetric cones defined by Hassairi and Lajmi in [START_REF] Hassairi | Riesz exponential families on symmetric cones[END_REF]. In the present paper, we give a characterization of the Wishart distribution on homogeneous cones which is parallel to that given in [START_REF] Olkin | A characterization of the Wishart distribution[END_REF] by Olkin and Rubin, or more generally in [START_REF] Casalis | The Lukacs Olkin Rubin characterization of the Wishart distribution on symmetric cones[END_REF] by Casalis and Letac. In these papers, it is not assumed that densities exist, however distributions are assumed to be invariant by the orthogonal group of the appropriate algebra. Our characterization uses the Laplace transform and a decomposition of a random variable on an homogeneous cone as a sum of random variables concentrated on certain subalgebras. The distribution of each component is then assumed to be invariant by the orthogonal group of the corresponding subalgebra. Let us give, a brief history of this characterization. Luckacs (see [START_REF] Luckacs | A characterization of the gamma distribution[END_REF]) gave the following characterization of the Gamma distribution: Let X and Y be two non Dirac and non negative independent random variables such that X + Y is positive almost surely, then U = X + Y is independent of V = X X+Y if and only if there exist σ > 0, p > 0 and q > 0 such that X and Y are distributed as Gamma distributions with parameters (p, σ) and (q, σ) respectively. Olkin and Rubin [START_REF] Olkin | A characterization of the Wishart distribution[END_REF] extended this characterization to the Wishart distribution on the cone Ω of positive definite symmetric matrices. They showed that X and Y in Ω are Wishart if and only if (X + Y ) -1/2 X(X + Y ) -1/2 is independent of X + Y and its distribution is invariant by the orthogonal group K. The characterization has then been extended by Carter [START_REF] Carter | Characterization and testing problems in the complex Wishart distribution[END_REF] to the Wishart on the cone of Hermitian matrices with entries in I C, and by Casalis and Letac [START_REF] Casalis | The Lukacs Olkin Rubin characterization of the Wishart distribution on symmetric cones[END_REF] to any symmetric cone. There are other types of characterizations of the Wishart such as, for example, that given by Letac and Massam in [START_REF] Letac | Quadratic and inverse regression for Wishart distributions[END_REF], Geiger and Heckerman in [START_REF] Geiger | Parameter priors for directed acyclic graphical models and the characterization of several probability distributions[END_REF], and Massam and Weso lowski in [START_REF] Massam | The Matsumoto-Yor property and the structure of the Wishart distribution[END_REF]. We also mention that more recently Bobecka and Weso lowski gave in [START_REF] Bobecka | The Lukacs-Olkin-Rubin theorem without invariance of the "quotient[END_REF] a characterization of the Wishart distribution on Ω without any assumption of invariance. However, they had to assume that the densities of both X and Y with respect to the Lebesgue measure exist and are twice differentiable. The extension of this characterization to homogeneous cones has been the object of a paper by Boutouria [START_REF] Boutouria | Characterization of the Wishart distribution on homogeneous cones in the Bobecka and Wesolowski way Communications in Statistics[END_REF]. The paper is organized as follows.

In §2, we recall various definitions and preliminary results relevant to the Wishart on homogeneous cones and we establish some results concerning the Vinberg multiplication and determinant calculation. In §3, we state and prove our main characterization result.

The Wishart distribution on homogeneous cones

For the convenience of the reader, we will give here the elements of Vinberg algebras and homogeneous cones essential to working with the family of Wishart distributions on homogeneous cones. These elements are taken from [START_REF] Andersson | The Wishart distribution on homogeneous cones[END_REF] and the reader is refereed to this paper for further details. After recalling this development, we give three examples. For the third example, the poset is isomorphic to a rooted tree while this is not so for the second example. The first example corresponds to the ordinary Wishart distribution on symmetric matrices.

Let I be a partially ordered finite set (herewith abbreviated as poset) equipped with a relation denoted . We will write i ≺ j if i j and i = j. We assume that I satisfies the following condition (F ) :

for any two points i and j in I such that either i ≺ j or j ≺ i the path on the Hasse diagram of I between i and j is unique.

For all pairs (i, j) ∈ I × I with j ≺ i, let E ij be a finite-dimensional vector space over IR with

n ij = dim(E ij ) > 0. Set A ij =        IR for i = j E ij for j ≺ i E ji for i ≺ j {0} otherwise and A = i,j∈I×I A ij . Define n i. = µ≺i n iµ , n .i = i≺µ n µi , n i = 1 + 1 2 (n i. + n .i ), i ∈ I and n .. = i∈I n i .
An element A ≡ (a ij , i, j ∈ I) of A may be seen as a matrix and so we define its trace as trA = i∈I a ii .

Let

f ij : E ij → E ij , i ≻ j, be involutional linear mappings, i.e., f -1 ij = f ij .
They induce an involutional mapping ( A → A * ) of A given as follows:

A * = (a * ij |(i, j) ∈ I × I), where a * ij =        a ii for i = j f ij (a ji ) for j ≺ i f ji (a ji )
for i ≺ j 0 otherwise.

We now define the following subspaces of A: the upper triangular matrices

T u = {A ≡ (a ij ) ∈ A, ∀i, j ∈ I : i j ⇒ a ij = 0}; (2.1)
the lower triangular matrices

T l = {A ≡ (a ij ) ∈ A, ∀i, j ∈ I : j i ⇒ a ij = 0}; (2.2)
and the Hermitian matrices

H = {A ∈ A, A * = A}.
The sets of upper and lower triangular matrices in A with positive diagonal elements are respectively denoted by T + u and T + l . The sets of upper and lower triangular matrices with all diagonal elements equal to 1 are respectively denoted by T 1 u and T 1 l . The sets of diagonal matrices and of diagonal matrices with positive entries are denoted by D and D + , respectively. We are going to equip the vector space A with a bilinear map called multiplication and denoted by (A, B) → AB. For this purpose we need to define bilinear mappings

A ij × A jk → A ik , denoted by (a ij , b jk ) → a ij b jk , and then define AB = C ≡ (c ij |(i, j) ∈ I × I) by c ij = µ∈I a iµ b µj .
The multiplication is required to satisfy the following properties:

i) ∀A ∈ A; A = 0 ⇒ tr(AA * ) > 0 ii) ∀A, B ∈ A; (AB) * = B * A * iii) ∀A, B ∈ A; tr(AB) = tr(BA) (2.3) iv) ∀A, B, C ∈ A; tr(A(BC)) = tr((AB)C) v) ∀U, S, T ∈ T l ; (ST )U = S(T U ) vi) ∀U, T ∈ T l ; T (U U * ) = (T U )U * .
An algebra A with the above structure and properties is called a Vinberg algebra (For more details, we can refer to [START_REF] Andersson | The Wishart distribution on homogeneous cones[END_REF]). We choose the element A ≡ (a ij |(i, j) ∈ I × I) of D such that a ii = 1, ∀ i ∈ I as the unit element of A and we denote it by e. Vinberg proved in [START_REF] Vinberg | The structure of the group of automorphisms of a convex homogeneous cone[END_REF] that the subset P = {T T * ∈ A, T ∈ T + l } ⊂ H ⊂ A forms a homogeneous cone, that is the action of its automorphism group is transitive. The definition of P could be changed to the following equivalent definition

P = {T DT * ∈ A, T ∈ T 1 l , D ∈ D + }.
The two decompositions S = T T * , T ∈ T + l and S = T 1 DT * 1 , T 1 ∈ T 1 l , D ∈ D + are unique and their connection is given by T

= T 1 √ D where √ D ≡ diag( √ d i , i ∈ I) ∈ D + when D ≡ diag(d i , i ∈ I) ∈ D + . For S = (s ij , i, j ∈ I) = T 1 DT * 1 , we write D ii = S [i].
. If opp is the opposite ordering on the index set I, i.e., i opp j ⇔ j i. The Vinberg algebra

A opp = i,j∈I×I A opp ij
, where

A opp ij =        IR for i = j E ji for j ≺ opp i E ij for i ≺ opp j {0} otherwise,
differs from the Vinberg algebra A only in the ordering of the index set I. It is proved (see [START_REF] Massam | The Matsumoto-Yor property and the structure of the Wishart distribution[END_REF]) that P opp = {T * T ∈ A, T ∈ T + l } is the dual cone of P which is also denoted P * .

Let's explain why condition (F) on the poset I is required for the definition of a Vinberg algebra. In fact, the property vi) in (2.3) fails to be verified if the condition (F) is not satisfied. Suppose that (F) is not satisfied, then there exist two elements i and j in I such that either i ≺ j or j ≺ i and the path on the Hasse diagram of I between i and j is not unique. Without loss of generality, we suppose that i ≺ j. Then there exist k and s in I such that k = s, i ≺ k ≺ j and i ≺ s ≺ j. Consider the elements T = (t nm ) n,m∈I and U = (u nm ) n,m∈I of T l defined by t nm = 0 and u nm = 0 if n, m ∈ {i, j, k} and t nm = 0 and u nm = 0 otherwise. Then

[T (U U * )] jk = t ji u ii u ik + t jk (u 2 ik + u 2 kk ) + t jj (u ki u ij + u jk u kk )
and [(T U )U * ] jk = (t ji u ii + t jk u ki + t js u si + t jj u ji )u ik + (t jk u kk + t jj u jk )u kk .

We see that T (U U * ) = (T U )U * so that vi) in (2.3) is not satisfied. Andersson, Letac and Massam [START_REF] Andersson | Homogeneous cones, Personal communication[END_REF] have also shown, without using the theory of Vinberg algebras, that if (F) is satisfied then, the cone P is homogeneous.

Let G be the connected component of the identity in Aut(P), the group of linear transformations leaving P invariant. We recall that χ : G → IR + is said to be a multiplier on the group G if it is continuous, χ(e) = 1 and χ(h

1 h 2 ) = χ(h 1 )χ(h 2 ) for all h 1 , h 2 ∈ G. Consider the map π : T ∈ T + l → π(T ) ∈ π(T + l ) ⊂ G such that for X = W W * ∈ P, W ∈ T + l π(T )(X) = (T W )(W * T * ).
(2.4)

Andersson and Wojnar show in [START_REF] Andersson | The Wishart distribution on homogeneous cones[END_REF] that the restriction of a multiplier χ to the (lower) triangular group T + l , i.e., χ • π : T + l → IR + is in one to one correspondence with the set of (λ i , i ∈ I) ∈ IR I . To each χ corresponds a unique (up to a multiplicative constant) equivariant measure ν χ on C with multiplier χ under the action of G, that is for all h ∈ G, the image measure h

-1 ν χ of ν χ by h -1 is h -1 ν χ = χ(h)ν χ .
For θ ∈ P * , the Laplace transform of ν χ is L χ (θ) = P exp{-θ(P )}dν χ (P ).

(2.5)

We define the χ-inverse of θ by

θ χ = - d dθ log L χ (θ).
The mapping

θ ∈ P * → θ χ ∈ P,
is a bijection. Its inverse is denoted by

P ∈ P → P -χ ∈ P * ,
and we have the properties

(h -1 P ) -χ = t hP -χ and ( t hθ) χ = h -1 (θ χ ), (2.6) 
where h ∈ G, P ∈ P and θ ∈ P * . Also for θ ∈ P * , it is convenient to introduce the notation σ = θ -χ . Then (2.5) may be written as a function of σ as

n χ (σ) = P exp{-σ -χ (P )}dν χ (P ),
so that for h ∈ G, σ ∈ P, n χ has the property

n χ (hσ) = χ(h)n χ (σ). (2.7)
Andersson and Wojnar (see [START_REF] Andersson | The Wishart distribution on homogeneous cones[END_REF]) consider the set

X = {χ • π : T + l → IR + ; λ i > n i. 2 , i ∈ I},
and show that for χ ∈ X , the measure concentrated on P

ν χ (dX) = i∈I x λ i -n i [i]. 1 P (X)dX (2.8)
generates the Wishart natural exponential family of distributions on P absolutely continuous with respect to the Lebesgue measure, parameterized by σ ∈ P

HW χ,σ (dX) = π |I|-n•• 2 i∈I λ λ i i i∈I x λ i -n i [i]. i∈I Γ(λ i -n i. 2 ) i∈I σ λ i [i]. exp -{ tr (σ -χ X)}1 P (X)dX. (2.9) It is shown in [2] that if σ = ZZ * , where Z ∈ T + l , σ -χ = (Z * ) -1 diag(λ i |i ∈ I)Z -1 .
(2.10)

We are now going to give three examples of homogeneous cones and their corresponding Wishart distributions.

Example 2.1 In this example, we show how the ordinary Wishart distribution on symmetric matrices is a particular case of the general Wishart distribution HW χ,σ on homogeneous cones. Take I = {1, • • •, I} equipped with the usual total ordering on integers, denote by I its cardinality, and set E ij = IR, j ≺ i. Then the vector space A is the space M(I, IR) of all I × I matrices. With the standard multiplication and inner product the vector space M(I, IR) is a Vinberg algebra. The homogeneous cone P in this Vinberg algebra is the usual cone of I × I positive definite symmetric matrices usually denoted Ω. In this case, we have

n .i = I -i, n i. = i -1, n i = I + 1 2 , n .. = I(I + 1) 2 
and every multiplier χ :

G → IR + has the form χ(h) = | det(h)| α , α ∈ IR. Thus for all i ∈ I, λ i doesn't depend on i, it is equal to λ = I+1 2 α, so that χ can be replaced by λ. From (2.10), it follows that σ -χ = λσ -1 , where σ -1 is the usual inverse of σ in P. Since for S = (s ij , i, j ∈ I) ∈ Ω, det(S) = i∈I s [i]. , the density of the Wishart distribution (2.9) becomes W λ, σ (dS) = λ Iλ det(S) λ-I+1 2 π I(I-1) 4 i∈I Γ(λ - i -1 2 ) det(σ) λ exp{-λtr(σ -1 )}1 Ω (S)dS, (2.11) 
which is the usual Wishart distribution on Ω with parameters λ > I-1 2 and σ ∈ Ω.

Example 2.2 Let I = {1, 2, 3, 4} be an index set and consider the poset defined by

1 ≺ 3, 2 ≺ 3, 2 ≺ 4.
The homogeneous cone corresponding to this poset cannot be of the type Q G of incomplete matrices with submatrices corresponding to the cliques of G being positive definite. We will not give the details of the argument for this assertion here. However, an accurate, albeit short, argument is that according to Theorem 2.2 in [START_REF] Letac | Wishart distributions for decomposable graphs[END_REF], this can only happen if the undirected graph obtained by dropping the directions on the graphical representation of the poset is a homogeneous graph. The graphical representation of the poset in this example is the directed graph with directed edges

{(1, 3), (2, 3), (2, 4)}.
The undirected graph obtained by dropping the directions is the three-link chain with undirected edges {(1, 3), (3, 2), (2, 4)}, which, by definition, is not a homogeneous graph. Let us illustrate this in the case where E ij = IR for all appropriate (i, j). The Vinberg algebra A is thus the vector space of all I × I real matrices with zeros at the (1,2), (2,1), [START_REF] Bobecka | The Lukacs-Olkin-Rubin theorem without invariance of the "quotient[END_REF][START_REF] Boutouria | Characterization of the Wishart distribution on homogeneous cones in the Bobecka and Wesolowski way Communications in Statistics[END_REF] and [START_REF] Boutouria | Characterization of the Wishart distribution on homogeneous cones in the Bobecka and Wesolowski way Communications in Statistics[END_REF][START_REF] Bobecka | The Lukacs-Olkin-Rubin theorem without invariance of the "quotient[END_REF] entries. An element

X = (x ij ) i,j∈I of P is decomposed into X = T DT * with T ∈ T 1 l , D ∈ D, such that T * =     1 0 t 13 0 0 1 t 23 t 24 0 0 1 0 0 0 0 1     , D =     d 1 0 0 0 0 d 2 0 0 0 0 d 3 0 0 0 0 d 4     .
Then the equation 

X =     x 1 0 x 13 0 0 x 2 x 23 x 24 x 31 x 32 x 3 0 0 x 42 0 x 4     =     1 0 0 0 0 1 0 0 t 31 t 32 1 0 0 t 42 0 1         d 1 0 0 0 0 d 2 0 0 0 0 d 3 0 0 0 0 d 4         1 0 t 13 0 1 t 23 t 0 0 1 0 0 0     =       d 1 0 d 1 t 13 0 0 d 2 d 2 t
     
has a unique solution

d 1 = x 1 = x [1]• , t 13 = x 13 x 1 , d 2 = x 2 = x [2]• , t 23 = x 23 x 2 , t 24 = x 24 x 2 , d 3 = x 3 -x 32 x -1 2 x 23 = x [3]• , d 4 = x 4 -x 42 x -1 2 x 24 = x [4]• .
(2.12)

The cone P is then the set of symmetric matrices X = (x ij ) such that

x 1 > 0, x 2 > 0, x 3 -x -1 2 x 2 23 > 0 and x 4 -x -1 2 x 2 24 > 0. Since E ij = IR, we have that n ij = 1, n 1• = 0, n 2• = 0, n 3• = 2 and n 4• = 1. Therefore X = {(λ 1 , λ 2 , λ 3 , λ 4 ) : λ 1 > 0, λ 2 > 0, λ 3 > 1, λ 4 > 1 2 }.
and the Wishart distribution on this homogeneous cone is given for χ ∈ X and σ ∈ P by

HW χ,σ (dX) = π 4-8 2 4 i=1 λ λ i i x λ 1 -3 2 [1]. x λ 2 -2 [2]. x λ 3 -2 [3]. x λ 4 -3 2 [4]. Γ(λ 1 )Γ(λ 2 )Γ(λ 3 -1)Γ(λ 4 -1 2 ) 4 i=1 σ λ i [i].
exp -{ tr (σ -χ X)}1 P (X)dX.

Example 2.3 In this example, the poset is isomorphic to a rooted tree and therefore the homogeneous cone P is of the Q G type, that is, it corresponds to a homogeneous graph (see [START_REF] Letac | Wishart distributions for decomposable graphs[END_REF], Theorem 2.2).

Let the index set be I = {1, . . . , k} and the poset be defined by

1 ≺ i, i = 2, . . . , k.
We can immediately see here that the undirected graph obtained by dropping the directions on the directed graphical representation of the poset is the star-shaped graph with k vertices and undirected edges {(1, i), i = 2, . . . , k}, which is a homogeneous graph. According to Theorem 2.2 in [START_REF] Letac | Wishart distributions for decomposable graphs[END_REF], the cone P is therefore of the Q G type. Again, we take E ij = IR for all appropriate (i, j).

Then n .1 = k -1, n 1. = 0, n 1 = k+1 2 and n .i = 0, n i. = 1, n i = 3 2 , ∀i = 1. The Vinberg algebra A is the vector space of all A = (a ij |(i, j) ∈ I × I) ∈ M(I, IR)
with a ij = 0 when i and j are not related. We have

X = {(λ i , i = 1, . . . , k) : λ 1 > 0, λ i > 1 2 , i = 2, . . . k},
and the Wishart distribution is given by

HW χ,σ (dX) = π 1 2 k i=1 λ λ i i x λ 1 -k+1 2 [1]. k i=2 x λ i -3 2 [i]. Γ(λ 1 ) k i=2 Γ(λ i -1 2 ) k i=1 σ λ i [i].
exp -{ tr (σ -χ X)}1 P (X)dX, where χ = {λ i , i ∈ I} ∈ X and σ -χ is defined as in (2.10), for σ ∈ P.

To illustrate the decomposition of an element of P in this example, we consider the case

where

k = 4. An element X =     x 1 x 12 x 13 x 14 x 21 x 2 0 0 x 31 0 x 3 0 x 41 0 0 x 4   
 of P can then be written as an incomplete matrix

X * =     x 1 x 12 x 13 x 14 x 21 x 2 * * x 31 * x 3 * x 41 * * x 4     .
It can also be decomposed as X = T DT * with T ∈ T 1 l , D ∈ D, where

T * =     1 t 12 t 13 t 14 0 1 0 0 0 0 1 0 0 0 0 1     , D =     d 1 0 0 0 0 d 2 0 0 0 0 d 3 0 0 0 0 d 4     .
The equation

X =     1 0 0 0 t 21 1 0 0 t 31 0 1 0 t 41 0 0 1         d 1 0 0 0 0 d 2 0 0 0 0 d 3 0 0 0 0 d 4         1 t 12 t 13 t 14 0 1 0 0 0 0 1 0 0 0 0 1     =     d 1 t 12 d 1 t 13 d 1 t 14 d 1 t 21 d 1 t 21 d 1 t 12 + d 2 0 0 t 31 d 1 0 t 31 d 1 t 13 + d 3 0 t 41 d 1 0 0 t 41 d 1 t 14 + d 4    
has a unique solution

d 1 = x 1 = x [1]• , t 12 = x 12 x 1 , t 13 = x 13 x 1 , t 14 = x 14 x 1 d 2 = x 2 -x 21 x -1 1 x 12 = x [2]• , d 3 = x 3 -x 31 x -1 1 x 13 = x [3]• , d 4 = x 4 -x 41 x -1 1 x 14 = x [4]• .
Hence, in this example, the cone P is the set of symmetric matrices X such that

x 1 > 0, x 2 -x -1 1 x 2 12 > 0, x 3 -x -1 1 x 2 13 > 0 and x 4 -x -1 1 x 2 14 > 0.
Let us note that the distribution of X ∈ Q G can be obtained from the distributions of d i , i = 1, . . . , k and t 1i , i = 2, . . . , k. This transformation is given explicitly in [START_REF] Letac | Wishart distributions for decomposable graphs[END_REF], Formula (3.15) and Theorem 4.5.

Now, we recall that an edge is written as an arrow from its origin to its destination, and we define the in-degree of a vertex to be the number of edges having this vertex as their destination. A vertex is considered a source in a graph if its in-degree is 0 (no vertices have a source as their destination) and if it is the parent of at least two vertices. This notion is needed in the following result.

Proposition 2.1 The Vinberg multiplication T T * is the same as the standard matrix multiplication T.T * if and only if there is no source in I.

Proof (⇒) Suppose that there exists a source a in I. Let b and c be in I such that a ≺ b, a ≺ c, and consider T = (t ij ) i,j∈I ∈ T + l such that t bc = 0. Then T.T * = T T * , which contradicts our assumption and therefore the source does not exist. (⇐) Suppose that there exists T such that T.T * = T T * . Then there exist in I two different and non connected element i and j such that (T T * ) ij = 0 and (T.T * ) ij = 0. As (T T * ) ij = k i, j t ik t jk , there exists k in I such that k ≺ i and k ≺ j. This implies that k is a source which is a contradiction.

In what follows, we suppose that I has no source and we call m a maximal element in I, if it is not less than any element of I. For T = (t ij ) i,j∈I is in T + l , we define the element T i of T l by T i = (t ′ ij ) i,j∈I , with t ′ jk = t jk if i j, k and t ′ jk = 0 otherwise. It follows from Proposition 2.2 that if m is maximal, then for any Z ∈ P, we have

det Z m = i m Z [i]. ,
Indeed, m maximal implies that I m has no source, and in this case, the Vinberg multiplication is nothing but the standard multiplication of matrices. Also, we have that for any i ∈ I,

det Z i = i ′ i Z [i ′ ]. and det Z ≺i = i ′ ≺i Z [i ′ ]. . because i is maximal in I i . Therefore, for all v ∈ I, Z [v]. = det Z v det Z ≺v • (2.13)
We now introduce the notion of a division algorithm in a homogeneous cone needed for our characterization of the Wishart distribution on the cone P. This notion is defined in [START_REF] Casalis | The Lukacs Olkin Rubin characterization of the Wishart distribution on symmetric cones[END_REF] in the case of a symmetric cone. A division algorithm is a measurable map

g : P → G U → g(U )
such that g(U )(U ) = e. In particular, for U = T T * , we define g(U ) = π(T -1 ), where π is defined in (2.4), then g is a division algorithm, so that if X = W W * ∈ P, then

g(U )(X) = (T -1 W )(W * (T -1 ) * ).
This algorithm is the one that we will use in all what follows.

Main characterization result

In this section, we state and prove our main characterization result concerning the Wishart distribution on homogeneous cones in the line of the characterizations given for the ordinary Wishart on symmetric matrices by Olkin and Rubin [START_REF] Olkin | A characterization of the Wishart distribution[END_REF] and by Casalis and Letac [START_REF] Casalis | The Lukacs Olkin Rubin characterization of the Wishart distribution on symmetric cones[END_REF]. Our considerations here will be restricted to the case of homogeneous cones with

E ij = IR, (i, j) ∈ I × I.
It is easy to see that the Laplace transform of the Wishart distribution HW χ,σ on the homogeneous cone P is given for θ ∈ P * by

L HWχ,σ (θ) = n χ [(θ + σ -χ ) χ ] n χ (σ) . As n χ (σ) = i∈I σ λ i [i]
. n χ (e), this can be written as

L HWχ,σ (θ) = i∈I [(θ + σ -χ ) χ ] λ i [i]. i∈I σ λ i [i].
• Recall that for i ∈ I, we denote I i = {j ∈ I; j i} and I i = {j ∈ I; i j}. Let i 1 and i 2 in I, such that i 1 i 2 and i 2 i 1 , we say that j separates i 1 and i 2 if j ∈ I i 1 ∩ I i 2 and j ∈ {i 1 , i 2 }. In this case, j is called a separator. We also denote S i = {j ∈ I i ; j is a separator and ∀ k = j, k ≺ j}, S = i∈I S i and S = {i ∈ S, ∀ j = i, j ≺ i}. This leads to the following decomposition of an element of P which will serve in our characterization result. 

Z i = T i T * i and Z i =        Z i - s∈S i Z s if i ∈ ℘ Z i if i ∈ S 0 otherwise,
Then we have that A kl , j ∈ I which we denote respectively by (Z) j and

Z = i∈I Z i = i∈℘∪S Z i . ( 3 
( i∈℘∪S Z i ) j .
From the definition of (Z j ), we first observe that (Z) j = (Z j ) j , ∀ j ∈ I.

(3.15)

Now we discuss according to the position of j.

If j ∈ ℘ ∪ S, then there exists a unique i 0 ∈ ℘ ∪ S such that j ∈ I i 0 . The fact that j ∈ I i 0 implies that (Z i 0 ) j = (Z j ) j . From this and (3.15), we get

(Z) j = (Z j ) j = (Z i 0 ) j = ( i∈℘∪S Z i ) j .
If j ∈ S, we have (Z i ) j = 0, for all i ∈ ℘. Therefore

( i∈℘∪S Z i ) j = ( i∈S Z i ) j = (Z j ) j = (Z j ) j .
For j ∈ ℘, we have that (

i∈℘ Z i ) j = Z j = Z j - s∈S j
Z s , and we consider separately the cases S j = ∅ and S j = ∅. If S j = ∅, then (

i∈S Z i ) j = 0 and (Z) j = (Z j ) j = Z j = ( i∈℘ Z i ) j . If S j = ∅, ( i∈S Z i ) j = ( i∈S j Z i ) j = ( i∈S j Z i ) j . Therefore (Z) j = ( i∈℘∪S Z i ) j .
Example 3.1 Consider the following poset on I = {1, 2, 3, 4} where 1 ≺ 3, 1 ≺ 4, 2 ≺ 4.

Then S = S 1 = S 2 = {4}, I 3 = {3}. Hence Z 3 = (0), Z 4 = Z 4 =     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t 44         0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t 44     , Z 1 =     t 11 0 0 0 0 0 0 0 t 13 0 t 33 0 t 14 0 0 t 44         t 11 0 t 13 t 14 0 0 0 0 0 0 t 33 0 0 0 0 t 44     -Z 4 ,
and

Z 2 =     0 0 0 0 0 t 22 0 0 0 0 0 0 0 t 24 0 t 44         0 0 0 0 0 t 22 0 t 24 0 0 0 0 0 0 0 t 44     -Z 4 .
Consider the Vinberg subalgebra of A defined by A i = k,l∈I i A kl , and denote P i , G i and e i respectively, the corresponding homogeneous cone, connected component of the identity in Aut(P i ), and unit element. Also denote K = {g ∈ G, g(e) = e} the orthogonal group of A, and K i = {k ∈ K, k(e i ) = e i }. Finally let

g i : P i → G i (3.16) U i = T i T * i → g i (U i ) such that g i (U i )(X i ) = (T -1 i W i )(W * i (T -1 i ) * ), where X i = W i W * i . Then it is easy to see that (g(X + Y )X) i = g i (X i + Y i )X i •
From now on, a Wishart distribution HW χ,e χ will be called a standard Wishart distribution. Next, we verify that any Wishart distribution on the homogeneous cone P may be standardized by a linear transformation. Proposition 3.2 Let X be a random variable valued in P. Then X is HW χ,σ if and only if there exist ρ in G such that ρ(X) is HW χ,e χ .

Proof (⇒) Suppose that X is HW χ,σ and write σ = T T * with T ∈ T + l , χ = {λ i , i ∈ I}. We have that diag(λ i , i ∈ I)T -1 ∈ T + l , we then consider the element of G, ρ = π( diag(λ i , i ∈ I)T -1 )
, where π is defined by (2.4). Using (2.6) and (2.7), we have for

θ ∈ P * , L ρ(X) (θ) = E(e -tr(θρ(X )) ) = E(e -tr(ρ * (θ)X) ) = i∈I [(ρ * (θ) + σ -χ ) χ ] λ i [i]. i∈I σ λ i [i]. = i∈I [ρ -1 (θ + ρ * -1 (σ -χ )) χ ] λ i [i]. i∈I σ λ i [i].
, and using the fact that n χ (g

-1 (u)(σ)) = χ(g -1 (u))n χ (σ) and χ(g(u)) = i∈I u -λ i [i]. (see [2]),
we easily verify that

i∈I (g -1 (u)σ) λ i [i]. = i∈I u λ i [i]. σ λ i [i]. • This applied to g -1 (u) = ρ gives L ρ(X) (θ) = i∈I [(θ + ρ * -1 (σ -χ )) χ ] λ i [i]. i∈I [ρ(σ)] λ i [i].
.

As ρ * -1 (σ -χ ) = (ρ(σ)) -χ = (e χ ) -χ = e, we obtain L ρ(X) (θ) = i∈I [(θ + e) χ ] λ i [i]. i∈I (e χ ) λ i [i].
, which is the Laplace transform of a HW χ,e χ distribution.

(⇐) Suppose that there exist ρ in G such that X ′ = ρ(X) is HW χ,e χ . Then using again (2.6) and (2.7), we have for θ ∈ P * ,

L X (θ) = E(e -tr(θX) ) = E(e -tr(ρ * -1 (θ)X ′ ) ) = i∈I [(ρ * -1 (θ) + e) χ ] λ i [i]. i∈I (e χ ) λ i [i]. = i∈I [(θ + ρ * (e)) χ ] λ i [i]. i∈I [(ρ * (e)) χ ] λ i [i].
• Hence X is HW χ,σ , with σ = (ρ * (e)) χ ∈ P.

We are now in a position to give our characterization results. According to Proposition 3.2, the statements will concern the Wishart distribution HW χ,e χ . Theorem 3.1 i) Let X = T T * , with T = (t ij ) i,j∈I in T + l , be a random variable with Wishart distribution HW χ,σ . Then σ = e χ if and only if the t ij , i, j ∈ I are independent. ii) If X and Y are two independent random variables with respective Wishart distribution, HW χ,e χ and HW χ ′ ,e χ ′ , then for i ∈ I, the distribution of

V i = g i (X i + Y i )X i is K i invariant,
where g i is defined by (3.16).

Next, we give the reciprocal of this theorem. Theorem 3.2 Let X and Y be independent random variables valued in P. Write X = T T * and Y = M M * , with T = (t ij ) i,j∈I and M = (m ij ) i,j∈I in T + l . Consider the divisions algorithms g defined by (2.14) and g i defined by (3.16) and suppose that (i) the t ij , i, j ∈ I are independent and the m ij , i, j

∈ I are independent, (ii) X + Y is independent of g(X + Y )(X), (iii) for i ∈ ℘ ∪ S, the distribution of V i = g i (X i + Y i )X i is K i invariant. Then there exist χ, χ ′ ∈ X such that X ∼ HW χ,e χ and Y ∼ HW χ ′ ,e χ ′ .
Before embarking on the proofs of these theorems, it is worth mentioning that in the particular case where the Vinberg algebra is the algebra M(I, IR) of I × I matrices (see Example 2.1), Theorem 3.1 and Theorem 3.2 give together the famous Olkin and Rubin characterization of the ordinary Wishart distribution on symmetric matrices. In fact in this case we have, ℘ = {1}, S = ∅, so that ℘ ∪ S = {1}, and it follows that only

K 1 = K = {g ∈ G, g(e)
= e} appears in Theorem the point (iii) of 3.2. We also have e χ = λe. Hence Theorem 3.1 becomes: i) Let X = T T * , with T = (t ij ) i,j∈I in T + l , be a random variable with Wishart distribution W λ,σ . Then σ = λe if and only if the t ij , i, j ∈ I are independent ii) If X and Y are two independent random variables with respective Wishart distribution, W λ,λe and W λ ′ ,λ ′ e , then for i ∈ I, the distribution of

g i (X i + Y i )X i is K i invariant,
where g i is defined by (3.16), in particular g(X + Y )(X) is K invariant.

For the proof of the theorems, we need to establish the following result.

Lemma 3.1 Let X and Y be two independent random variables with respective Wishart distribution, HW χ,e χ and HW χ ′ ,e χ ′ . For i ∈ I, let

α U i denote the distribution of X i conditional on X i + Y i = U i . Then for f in G i , the image measure f α U i of α U i by f is such that f α U i = α f (U i ) .
Proof Let H : A → IR and F : A → IR be any continuous functions with compact support. Let χ i and χ ′ i be two multipliers on G i and set

χ 1 i = χ i χ ′ i . Denote ν χ i , ν χ ′ i and ν χ 1
i the corresponding equivariant measures concentrated on P i as defined in (2.8) and set

X 1 i = f (X i ) and Y 1 i = f (Y i ).
We consider the following equalities obtained by using the decomposition

ν χ i (dX i )ν χ ′ i (dY i ) = α U i (dY i )ν χ 1 i (dU i )
and using the change of variable formula for integrals. For U i = X i + Y i , we have

J = A 2 H(U i )F (X 1 i )f (α U i )(dX 1 i )ν χ 1 i (dU i ) = A 2 H(U i )(F of )(X i )α U i (dX i )ν χ 1 i (dU i ) = A 2 H(X i + Y i )F of (X i )ν χ i (dX i )ν χ ′ i (dY i )• Thus J = A 2 H(f -1 (X 1 i + Y 1 i ))F (X 1 i )(f ν χ i )(dX 1 i )(f ν χ ′ i )(dY 1 i ) = χ i (f -1 ) A 2 H(f -1 (X 1 i + Y 1 i ))F (X 1 i )ν χ i (dX 1 i )ν χ ′ i (dY 1 i ) = χ i (f -1 ) A 2 H(f -1 (S i ))F (X 1 i )α S i (dX 1 i )ν χ 1 i (dS i ) ,
where

S i = X 1 i + Y 1 i . Since f -1 (S i ) = U i , we have J = χ 1 i (f -1 ) A 2 H(U i )F (X 1 i )α f (U i ) (dX 1 i )f -1 ν χ 1 i (dU i ) = A 2 H(U i )F (X 1 i )α f (U i ) (dX 1 i )ν χ 1 i (dU i )•
Comparing this expression with the definition of J, the lemma is proved.

Proof of Theorem 3.1 i) (⇐) See [START_REF] Andersson | The Wishart distribution on homogeneous cones[END_REF] where it is proved that if X ∼ W χ,e χ , then t ij , i, j ∈ I are independent.

(⇒) Suppose that X = T T * , with T = (t ij ) i,j∈I in T + l , is HW χ,σ with σ = e χ . We will show that in this case, the t ij are not all independent. As σ = e χ , there exist i = j such that σ ij = 0. Writing σ = W W * , with W = (w ij ) i,j∈I ∈ T + l , we have that σ ij = k∈I w ik w jk , and as σ ij = 0, there exists k ∈ I such that w ik w jk = 0. From Proposition 3.2, we have that X ′ = π( diag(λ i , i ∈ I)W -1 )(X) is HW χ,e χ . If we set X ′ = SS * , with S = (s ij ) i,j∈I ∈ T + l and Z = W diag(λ -1 i , i ∈ I) = (z ij ) i,j∈I , we can write

X = π -1 ( diag(λ i , i ∈ I)W -1 )(X ′ ) = (ZS)(S * Z * )• This implies that t jk = µ∈I z jµ s µk for j = k. Hence E(t jk t kk ) -E(t jk )E(t kk ) = µ∈I z jµ z kk E(s µk s kk ) - µ∈I z jµ z kk E(s µk )E(s kk ) = µ =k z kk z jµ E(s µk s kk ) + z jk z kk E(s 2 kk ) - µ =k z jµ z kk E(s µk )E(s kk ) -z jk z kk E(s kk ) 2 •
We use the fact that the s ij are independent, because X ′ is HW χ,e χ , to obtain

E(t jk t kk ) -E(t jk )E(t kk ) = z jk z kk (E(s 2 kk ) -E(s kk ) 2 ) = z jk z kk var(s kk )•
This is different from 0 because z kk = w kk λ -1 kk = 0, z jk = w jk λ -1 kk = 0 and s kk is not degenerate, since s 2 kk is gamma distributed (see [START_REF] Andersson | The Wishart distribution on homogeneous cones[END_REF]). ii) Using the notation of Lemma 3.1 and the fact that U and V are independent, for two arbitrary continuous functions with compact support, H : A → IR and F : A → IR, we have that

E(H(U i )F (V i )) = E(H(U i ) A F (g i (U i )X i )α U i (dX i )).
Writing v i = g i (U i )X i in the last integral and using Lemma 4.1, we get

E(H(U i )F (V i )) = E(H(U i ) A F (V i )α e i (dV i ))
This proves (ii).

Proof of Theorem 3.2 Let i ∈ I such that X i = 0, where X i is defined as in (3.14) and let U = X + Y = W W * , V = g(X + Y )(X). Without loss of generality, we can suppose that S i has just one element; S i = {s}. We will consider first the case where i ∈ S. In this case, from the hypotheses of independence, we have, for

A 1 , A 2 , B 1 , B 2 and C 1 in P * , E(exp tr(A 1 W i -A 2 W s + B 1 W i W * i -B 2 W s W * s + C 1 V i )) = E(exp tr(A 1 W i -A 2 W s + B 1 W i W * i -B 2 W s W * s ))E(exp tr(C 1 V i )) = f i (A 1 , A 2 , B 1 , B 2 )h i (C 1 ), (3.17) 
where

f i (A 1 , A 2 , B 1 , B 2 ) = E(exp tr(A 1 W i -A 2 W s + B 1 W i W * i -B 2 W s W * s )) and h i (C 1 ) = E(exp trC 1 V i ).
We adopt the notations:

(f i ) jk = ∂f i ∂(A 1 ) jk , (f i ) jk = ∂f i ∂(B 1 ) jk and (h i ) jk = ∂h i ∂(C 1 ) jk ,
and we define, for 

B ∈ P * , f i (B) = E(exp trB(X + Y ) i )• It is clear that if A 1 = A 2 = 0 and B 1 = B 2 = B, then ( f i ) jk = (f i ) jk when {j, k} ⊂ S i ( 
∂ 2 ∂(A 1 ) jα ∂(A 1 ) kα ∂ q f i ∂t 1 • • • ∂t q = ∂ ∂(B 1 ) jk ∂ q f i ∂t 1 • • • ∂t q , (3.20) 
where t 1 , • • •, t q are any arguments of f i . Differentiating (3.17) successively with respect to (A 1 ) jλ , (C 1 ) λµ , and (A 1 ) kµ , for {j, k} ⊂ S i and summing over λ and µ, give the basic differential equations

E((X i ) jk exp tr(A 1 W i -A 2 W s + B 1 W i W * i -B 2 W s W * s + C 1 V i )) = λ,µ∈I i f jλ,kµ i (h i ) λµ .
(3.21)

And differentiating (3.21) successively with respect to (A 1 ) lν , (C 1 ) νσ and (A 1 ) nσ , for {l, n} ⊂ S i and summing, we obtain

E((X i ) jk (X i ) ln exp tr(A 1 W i -A 2 W s + B 1 W i W * i -B 2 W s W * s + C 1 V i )) = λ,µ,ν,σ∈I i f jλ,kµ,lν,nσ i (h i ) λµ,νσ • (3.22)
Now, we use the hypothesis of invariance of the distribution of V i by the orthogonal group K i . In terms of Laplace transform, we have that for any k ∈ K i ,

h i (C 1 ) = E(exp trC 1 V i ) = E(exp trC 1 k(V i )). ( 3 

.23)

By the choice of suitable k in K i and differentiation of (3.23), we first establish that there exists a real constant θ i such that

(h i ) jm (0) = ∂h i (C 1 ) ∂C jm | C 1 =0 = θ i δ jm , for j, m ∈ I i , (3.24) 
where δ jm is the Kronecker delta, then that (h i ) jj,jm (0, 0) = (h i ) jj,ml (0, 0) = (h i ) jm,jl (0, 0) = (h i ) jm,ln (0, 0) = 0, for all different j, m, l and n in I i . Now, we set k = (t jm ) j,m∈I i in (3.23) and we differentiate to get In the case where i is a separator, the system (3.17) is replaced by

(h i ) jm,ln (0, 0) = α,β,η,δ t jα t mβ t lη t nδ (h i ) αβ,ηδ , which yields (h i ) jm,ln (0, 0) = η i δ jm δ ln + ξ i [δ jl δ mn + δ jn δ ml ], j, m, l, n ∈ I i , ( 3 
S i , E((X i ) jk exp trB(X + Y ) i ) = λ,µ∈I i ( f i ) jλ,kµ (h i ) λµ = θ i λ,µ∈I i ( f i ) jλ,kµ δ λµ = θ i ( f i ) jk , (3.26) and E 
((X i ) jk (X i ) ln exp trB(X + Y ) i ) = λ,µ,ν,σ∈I i f jλ,kµ,
E(exp tr(A 1 W i + B 1 W i W * i + C 1 V i )) = E(exp tr(A 1 W i + B 1 W i W * i ))E(exp trC 1 V i ) = f i (A 1 , B 1 )h i (C 1 ).
and by the same reasoning, we also obtain equations (3.26) and (3.27), but for j, k, l, n in I i . Now, to solve (3.26) and (3.27), we introduce the functions ϕ i (B) = E(exp trBX i ), ψ i (B) = E(exp trBY i ).

(3.28) Then (3.26) and (3.27) can be written as The general solution of this system is

(ϕ i ) jk ψ i = θ i (ϕ i ψ i ) jk , ( 3 
φ i (B) = β i ln(B + D) χ 1 [i]. + a i ,
where D ∈ P * , χ 1 ∈ X , and a i ∈ IR are arbitrary constants and β i is a constant depending on θ i , ξ i , η i . This is in particular, justified by the fact that

(B + D) χ 1 [i]. = (B + D i ) χ 1 [i]. ,
where D i ∈ P * i . Now, if A = R * R ∈ P * , we denote A opp = R -1 (R -1 ) * ∈ P. Therefore, we use (2.13) and a result in [START_REF] Andersson | The Wishart distribution on homogeneous cones[END_REF] due to Andersson and Wojnar which says that, for θ = Z * Z, where Z ∈ T + l , θ χ = Z -1 e χ (Z * ) -1 , to write

φ i (B) = β i ln((B + D) opp ) [i]. + a ′ i = β i [ln det(B + D) opp i -ln det(B + D) ≺ opp i ] + a ′ i ,
where a ′ i is a constant. Thus (D opp i )

β i θ i [i].
and ψ i (B) = (B + D) opp i)

β i (1-θ i ) [i].
(D opp i )

β i (1-θ i ) [i].
•

We now observe that the fact that the t ij , i, j ∈ I are independent implies that the X i , i ∈ I are independent. This is important for the calculation of the Laplace transform of X = i∈I X i . In fact, for each i ∈ I, by its very definition, X i depends only on the t ij such that i j and on the t kj such that j, k ∈ S i and i k, j, which are different from the ones on which any other component X i ′ , i ′ = i depends. In other words, there exists a partition (τ i ) i∈I of the set {t jk , j, k ∈ I} such that each X i depends only on the t kj in τ i .

Similarly the independence of the a ij , i, j ∈ I implies the independence of the Y i , i ∈ I. 

β i (1-θ i ) [i]. i∈I [D χ ′ ] β i (1-θ i ) [i].
. Thus X ∼ HW χ,σ and Y ∼ HW χ ′ ,σ ′ , where σ = D χ and σ ′ = D χ ′ . Invoking Theorem 3.1 i), we have necessarily D = e. This concludes the proof of the Theorem 3.2.

Proposition 2 . 2

 22 Let m be a maximal element in I and let I m = {i ∈ I, i m}. Then I m has no source. Proof Suppose that there exists a source a ∈ I m and let b and c in I m be two children of a with a ≺ b, a ≺ c. As m is a maximal, we have that a = m. Also m = b, because, if m = b, then c b. Thus b m, c m and a m. Hence we obtain a ≺ b, a ≺ c, b ≺ m, c ≺ m and a ≺ m which is impossible by Condition (F) of this section, and the lemma is proved.

Proposition 3 . 1

 31 Let Z = T T * be an element of P with T ∈ T + l . Denote ℘ = {i ∈ I, I ≺i = ∅} and define, for i ∈ I,

. 14 )

 14 Proof: In order to prove the equality (3.14), we compare the blocks of Z and i∈I Z i on each subalgebra A j = k,l∈I j

  .25) where η i and ξ i are real constants. We set in (3.21) and (3.22) A 1 = A 2 = C 1 = 0 and B 1 = B 2 = B. Taking into account (3.20), (3.24) and (3.25), we obtain, for {j, k} ⊂ S i and {l, n} ⊂

  ϕ i (B) = ((B + D) opp i ) β i θ i [i].

  Finally denoting χ = {β i θ i , i ∈ I} and χ ′ = {β i (1θ i ), i ∈ I}, we obtain the Laplace transforms ϕ of X = i∈I X i and ψ of Y = i∈I + D) χ ′ ]

  23 d 2 t 24 t 31 d 1 t 32 d 2 t 32 d 2 t 23 + d 3 t 32 d 2 t 24 0 t 42 d 2 t 32 d 2 t 23 + d 3 t 32 d 2 t 24 0 t 42 d 2 t 42 d 2 t 23 t 42 d 2 t 24 + d 4

  3.18) and ( f i ) jk,ln = (f i ) jk,ln when {j, k} ⊂ S i and {l, n} ⊂ S i . (3.19) Since we can differentiate under the expectation, there is a relation between the second partial derivatives with respect to A 1 and the first partial derivatives with respect to B 1 , namely we have

	α

  lν,nσ i [η i δ λµ δ νσ + ξ i (δ λν δ µσ + δ λσ δ µν )] = η i ( f i ) jk,ln + ξ i [( f i ) jl,kn + ( f i ) jn,lk ]• (3.27)

  .29) (ϕ i ) jk,ln ψ i = η i (ϕ i ψ i ) jk,ln + ξ i [(ϕ i ψ i ) jl,kn + (ϕ i ψ i ) jn,lk ] • (3.30)Equation (3.29) implies in particular thatϕ i = (ϕ i ψ i ) θ i . (3.31)Let φ i be such that, for B sufficiently close to zero,ϕ i ψ i = exp φ i . (3.32)Then (3.31) and (3.32) lead to the differential equation system defined for j, k, l, n ∈ I i byθ i (φ i ) jk,ln + θ 2 i (φ i ) jk (φ i ) ln = ξ i [(φ i ) jl,kn + (φ i ) jl (φ i ) kn + (φ i ) jn,lk + (φ i ) jn (φ i ) lk ] + η i [(φ i ) jk,ln + (φ i ) jk (φ i ) ln ]. (3.33) 
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