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Site-specific management (SSM) is a common way to manage within-field variability. This concept divides fields into site-specific management zones (SSMZ) according to one or several soil or crop characteristics. This paper proposes an original methodology for SSMZ delineation which is able to manage different kinds of crop and/or soil images using a powerful segmentation tool: the watershed algorithm. This image analysis algorithm was adapted to the specific constraints of precision agriculture. The algorithm was tested on high-resolution bio-physical images of a set of fields in France.

Introduction

Within-field variability is a well-known phenomenon in agriculture, and its study is at the centre of precision agriculture (PA). The most common method to manage this phenomenon is the site-specific management (SSM) concept [START_REF] Plant | Site-specific management : the application of information technology to crop production[END_REF]. The principle of this concept is to manage areas within a field with variable rates of input [START_REF] Godwin | Precision farming of cereal crops : a review of a six year experiment to develop management guidelines[END_REF]. Site-specific management zones (SSMZ) can be defined in a given field in order to manage within-field variability. A management zone is a sub-region of a field which is defined by a relative homogeneity of crops and/or soil parameters [START_REF] Doerge | Management zone concepts. The Site-Specific Management Guidelines[END_REF], and for which a specific rate of inputs is needed. This within-field heterogeneity management method represents a major development for decision support systems (DSS, McBratney et al., 2005).

Farmstar [START_REF] Coquil | Farmstar: an efficient decision support tool for near real time crop management from satellite images[END_REF] is a DSS based on remote-sensing data which is proposed in France by Infoterra and Arvalis. This service, which has been operational for six years in most of the significant cereal-growing regions, provides farmers with a series of recommendations to monitor crops at the within-field level. Farmstar combines satellite imagery, agronomic models and meteorological data, and was used in France by more than 9,000 farmers for 350,000 ha in 2007. This study aims at finding suitable SSMZ delineation strategies for a widespread DSS like Farmstar.

In the PA literature, various methodologies for SSMZ delineation can be found. A majority of the existing methods are based on unsupervised clustering algorithms [START_REF] Vrindts | Management zones based on correlation between soil compaction, yield and crop data[END_REF]. [START_REF] Fraisse | Use of unsupervised clustering algorithms foir delineating within-field management zones[END_REF] used an ISODATA clustering algorithm. Several authors proposed to use the k-means algorithm [START_REF] Taylor | Soil factors ahnd their influence on within-crop variability. part ii: Spatial analysis and determination of management zones[END_REF][START_REF] Whelan | Definition and interpretation of potential management zones in australia[END_REF][START_REF] Hornung | Comparison of site-specific management zones: Soil-color-based and yield-based[END_REF]. Finally, the fuzzy c-means algorithm is now widely applied [START_REF] Lark | Classification as a first step in the interpretation of temporal and spatial variation of crop yield[END_REF][START_REF] Fridgen | Delineation and analysis of site-specific management zones[END_REF][START_REF] Vrindts | Management zones based on correlation between soil compaction, yield and crop data[END_REF][START_REF] Li | Delineation of site-specific management zones using fuzzy clustering analysis in a coastal saline land[END_REF]. The expansion of the latter approach has been made easier for researchers with the release of user-friendly software like Management Zone Analyst [START_REF] Fridgen | Management Zone Analyst (MZA), software for subfield management zone delineation[END_REF]. The choice of the data layers that are processed by the clustering algorithm has been widely discussed (for more detail, the reader can refer to [START_REF] Jaynes | Identifying potential soybean management zones from multi-year yield data[END_REF][START_REF] Miao | Combining soil-landscape and spatialtemporal variability of yield information to delineate site-specific management zones[END_REF]. Despite their success, some authors noticed that a major drawback of the existing approaches is the resulting fragmentation of the zones. This fragmentation is due to the fact that no spatial information is taken into account in the clustering algorithms [START_REF] Ping | Creating spatially contiguous yield classes for site-specific management[END_REF][START_REF] Simbahan | An algorithm for spatially constrained classification of categorical and continuous soil properties[END_REF][START_REF] Frogbrook | Identifying management zones in agricultural fields using spatially constrained classification of soil and ancillary data[END_REF]. This effect may be reduced by applying a spatial filter on the result of a fuzzy c-means clustering [START_REF] Ping | Creating spatially contiguous yield classes for site-specific management[END_REF][START_REF] Lark | Forming spatially coherent regions by classification of multivariate data: an example from the analysis of maps of crop yield[END_REF]. [START_REF] Li | A new algorithm on delineation of management zone[END_REF] presented a modified version of the k-means clustering algorithm so that it considers both spatial relationships and similarities among pixels. [START_REF] Khosla | Use of site-specific management zones to improve nitrogen management for precision agriculture[END_REF] proposed to include user-defined polygons alongside crop and soil information layers. [START_REF] Simbahan | An algorithm for spatially constrained classification of categorical and continuous soil properties[END_REF] and [START_REF] Frogbrook | Identifying management zones in agricultural fields using spatially constrained classification of soil and ancillary data[END_REF] proposed to introduce a spatial constraint through the variogram parameters. This overview of the literature on SSMZ delineation tools shows that existing approaches (i) rarely consider DSS mass-production constraints, and (ii) are mostly classification-based.

Implementing SSMZ support in a production context implies finding new techniques for SSMZ definition. A mass-production context defines new constraints and legitimizes a specific research effort. Robustness is an important point [START_REF] Mcbratney | Future directions of precision agriculture[END_REF], because (i) the delineation method has to be suitable for a wide range of agro-meteorological conditions, and (ii) the method should also be suitable for different kinds of data layer. Due to the large amount of data to be processed, specific constraints appear, mostly automation and computing efficiency. One should also consider that only remotely-sensed data is processed, i.e. data on a regular grid. In this study, an original approach for SSMZ delineation, using a segmentation tool instead of classification methods, is proposed. An innovative method has been built to address the drawbacks of classification-based methods: spatial fragmentation, control of the resulting number of patches, operations on the morphological characteristics of the patches. Specific constraints presented above like automation, robustness and computing-time are considered. An adaptation of an efficient image-processing segmentation tool to the requirements presented above is proposed. In-field experiments have been carried out on a set of fields in the Burgundy region, France, and show promising results for segmentation-based SSMZ delineation methods.

Theory

Presentation of the watershed segmentation algorithm SSMZ delineation methods are mostly based on classification tools [START_REF] Vrindts | Management zones based on correlation between soil compaction, yield and crop data[END_REF]. In this paper, a segmentation method for SSMZ definition is proposed. Classification gathers the similar pixels of an image according to their radiometrical value, whereas segmentation aims at defining homogeneous zones, and is based on how the values are spatially structured (i.e. topology of the dataset): classification defines classes, i.e. groups of individuals presenting similar properties, and segmentation defines regions, i.e. the expression of those groups in space and/or time [START_REF] Mcbratney | Future directions of precision agriculture[END_REF]. The proposed method is based on the detection of the boundaries of the SSMZ in the processed images.

Mathematical morphology [START_REF] Serra | Image analysis and mathematical morphology[END_REF] proposes an efficient segmentation method, i.e. the watershed algorithm. This is a low-level segmentation method initially proposed by [START_REF] Beucher | Use of watersheds in contour detection[END_REF] and formalized later by [START_REF] Vincent | Watersheds in digital spaces: an efficient algorithm based on immersion simulations[END_REF]. This algorithm is fast and generates closed contours. It has been used on various kinds of images. It is based on an analysis of the magnitude of the gradient image: effective contours correspond to high gradient values. The gradient image can be seen as a hilly landscape, the edges of the hills being the contours of the objects to segment. An iterative flooding of this landscape from the local minima is simulated (Figure 1). The contours of the objects to segment are defined as the points where different flooding lakes meet. A dam between those different lakes is built to mark the contours of the objects.

As the method is based on the gradient magnitude image, it is very sensitive to noise, and over-segmentation of the image is a major drawback of the watershed segmentation [START_REF] Najman | Geodesic saliency of watershed contours and hierarchical segmentation[END_REF]. The over-segmentation phenomenon relates to the creation of small non-representative basins. To solve this problem, a region-merging algorithm is commonly applied after watershed segmentation [START_REF] Haris | Watershed-based image segmentation with fast region merging[END_REF][START_REF] Patino | Fuzzy relations applied to minimize over segmentation in watershed algorithms[END_REF][START_REF] Pichel | Image segmentation based on merging of sub-optimal segmentations[END_REF]. Another way to limit the oversegmentation phenomenon is to initiate relevant basin seeds [START_REF] Meyer | Morphological segmentation[END_REF]. Finally, some authors have proposed characterizing the strength of the different detected contours [START_REF] Grimaud | A new measure of contrast: Dynamics[END_REF][START_REF] Najman | Geodesic saliency of watershed contours and hierarchical segmentation[END_REF]. [START_REF] Grimaud | A new measure of contrast: Dynamics[END_REF] proposed selecting the relevant basin seeds using the basin dynamic method: for a given local minima k of a basin B, the basin dynamic D is defined as the difference between the altitude of k and the lowest altitude to be overcome to gain access to a lower local minimum k (Figure 2). The basin dynamics hierarchize watershed seed candidates, and the basin dynamics map is thresholded so that relevant seeds are selected. However, choosing a threshold is an empirical exercise. The method presented in this paper was inspired from this approach. Here the basin dynamics method is modified by introducing a variable in the standard watershed algorithm itself, in order to improve its robustness to over-segmentation and adapt to the scientific framework of PA. In the PA context, data are often affected by different noise sources (noise due to the sensor and/or the process applied to the data, nugget effect, etc.). It is important to provide a strategy to reduce the incidence of such effects, because they generate an important number of small nonsignificant zones using an algorithm like the watershed algorithm. The originality of our work is to provide a non-parametric method to compute the over-segmentation regulation variable in order to fit with our production context.

Proposition of a specific watershed algorithm for SSMZ delineation

There are two important steps in watershed segmentation. The first step is "diffusion", and consists in the propagation of the existing regions pixel by pixel. The second step is called "labellization", it involves the creation of a new region. Thus, over-segmentation is actually the result of over-labellization. In the standard formulation of the algorithm, those two steps are simultaneous. A "flooding lag" ∆ f is introduced in the standard watershed algorithm between diffusion and labellization, so that labellization and diffusion steps are staggered. The objective of this lag is to maximize the diffusion step, i.e. the spreading of the existing regions, to the detriment of the creation of non-significant zones (Figure 3).

The algorithm processes a gradient image G and generates an image of watershed labels WS, initialized at 0. Two lists of pixels are updated at each step k of the segmentation loop:

ik = {i ∈ G | G(i) ≤ k, W S(i) = 0} (1) iks = i ∈ G G(i) = (k -∆ f ), W S(i) = 0 (2)
The ik list is defined as the pixels that can be allocated to the existing basins. This list groups all the unlabeled pixels whose gradient is smaller or equal to k. The second list, iks, is more restrictive. It gathers all the unlabeled pixels whose gradient equals k -∆ f . Thus, by definition, iks is included in ik. In a given step of the segmentation process, diffusion inside the list ik is computed first. An iterative loop allows the unlabeled pixels to be allocated to the same label as their neighbour, as long as the latter has been labelled itself. If several labels are candidates, the neighbour having the closest value in the initial image is chosen. The processed pixels are eliminated from the ik list. At the end of the diffusion step, the ik list may or may not be empty. When all the possibilities of diffusion inside ik have been processed, the iks list is generated. All the pixels which have not yet been allocated to a basin and whose gradient equals k -∆ f are compiled within this list. As it was not possible to give them a label during ∆ f steps, it was decided to move on to the next step i.e. creation of new basins, considered to be significant. The first item on the list is given a new label, thereby creating a new basin. This label is then diffused among the pixels contained in the ik list. The labelled pixels are then removed from iks list. The creation of new basins is repeated until iks is empty.

During the two steps of the process (Figure 3), the algorithm compiles two separate lists of pixels. List ik is the diffusion volume V defined between the plane P of the current gradient value k, and the plane P, shifted of ∆ f from P. The iks list is defined by the unlabeled pixels of plane P. The iks list is the only plane used for the creation of new basins (labellization step). The treatment of pixels that were not labelled by simple diffusion is thereby forced.

Assessment of the flooding lag ∆ f

The specificity of our watershed algorithm relies on the introduction of a flooding lag ∆ f between diffusion and labellization. This limits the over-segmentation effect by limiting the creation of new regions. ∆ f can be determined by an empirical or expert method. However, in order to reduce operator interventions and expertise, a method that gives ∆ f from the intrinsic characteristics of the data to be segmented is proposed.

On the gradient image to be processed, one should distinguish low spatial frequency variations, which are due to the border between two significant objects, from high spatial frequency variations, which can be due to noise. The detection and the estimation of this noise can be carried out by studying the local variations of the variance in the gradient image. Thus, let σ N be a measurement of the high spatial frequency noise on the gradient image. ∆ f is proportional to σ N :

∆ f = k × σ N , k ∈ R (3) 
σ N can be estimated using the square root of the average variance of the high spatial frequency noise on the gradient image. Let V 0 be this variance. As the disturbances that give rise to over-segmentation are local phenomena, V 0 can be defined, for a gradient image G, as the limit of the average variance V on surfaces S when S tends toward 0:

V 0 = lim S→0 V (G (S)) (4) σ N = V 0 (5) ∆ f = k × V 0 , k ∈ R (6)
Due to the way it is computed (Equation 5), the standard deviation σ N is an average of the image. However, from one case to another, the gradient image for which it has been computed can present a distribution of high spatial frequency phenomena which are more or less homogeneous. If those phenomena are not uniformly distributed over the image -and are thus spatially structured-it means that the areas with high spatial frequency phenomena may be meaningful (e.g. textured areas). To avoid under-segmentation of such heterogeneous meaningful structures, it is important to take into account the levelling effect of the mean operator. Consequently, in the case of heterogeneous noise structuring images, the flooding lag ∆ f must be reduced to avoid under-segmentation of those areas of the image to be segmented.

Let V T be the total variance of the gradient image. V T can be seen as the mean variance, on the whole gradient image, for two distant points. In the case of a homogeneous gradient image, V T ≈ V 0 , the mean variance between two distant points is similar to the mean variance of two neighbouring points, as noise distribution is homogeneous. In the case of a heterogeneous gradient image, V 0 << V T , two neighbouring points will on average be closer in value than two distant points, because the noise distribution is spatially structured. The ratio between V 0 and V T can be used to evaluate the heterogeneity of noise distribution in the gradient image:

• If the gradient image presents a homogeneous distribution of these phenomenon, then V 0 ≈ V T and V 0 /V T → 1. This kind of distribution does not require a decrease in the flooding lag. • If the gradient image shows a heterogeneous distribution of these phenomenon, then V 0 << V T and V 0 /V T → 0. Such a distribution requires a significant decrease in the flooding lag to avoid under-segmentation.

A weighting factor k, proportional with a real constant K to the ratio V 0 /V T can be proposed. The flooding lag ∆ f is estimated (Equation 3) by:

∆ f = k × V 0 = K × V 0 V T × V 0 , K ∈ R (7) 
Thereafter, a constant K = 1 is used.

Material and methods

Study sites and data collection and processing

The study sites were four arable crop-fields located on commercial farms in Burgundy, an important cereal-growing region, near Dijon, France. The soil of those four fields is a silty loam. In terms of area, the sampled sites included two average fields, between 15 and 20 ha (Table 1, fields 1 and 2), and two larger fields (Table 1, fields 3 and 4). The four fields were cropping three different winter wheat (Triticum aestivum) varieties (Table 1). The data collection on those fields took place in 2003.

For each field, the opportunity index (OI, [START_REF] Pringle | A preliminary approach to assessing the opportunity for site-specific crop management in a field, using yield sensor data[END_REF] was computed to qualify the within-field variability. The opportunity index is defined as a function of the magnitude of the data variation (assessed by CV a ), and of the spatial structure of the data variation (assessed by S). The remotely-sensed data used for the experiments were acquired using an airborne CASI sensor mounted on a jet. 11 spectral bands were used, centred at 444,487,555,623,668,693,716,738,783,852, and 900 nm respectively, with a spatial resolution of 5m. Acquisitions were done by the Institut Cartogràphic de Catalunya (ICC), on May 30, 2003, so that the wheat was during the flowering growth stage. The multi-spectral data were processed in order to obtain biomass data on the four experimental fields. The process to provide biomass maps was done using the Farmstar production chain [START_REF] Poilvé | Farmstar: a commercial remote sensing service to agriculture in europe[END_REF]. Table 1 describes field area, wheat variety and statistics of the estimated biomass values.

Biomass data pre-processing

The gradient operator is the morphological gradient, with a square structural element 3 × 3 [START_REF] Rivest | Morphological gradients[END_REF]. For an image I, it is computed as follows:

g(I) = δ E (I) -ε E (I) ( 8 
)
where δ is the dilatation morphological operator and ε the dilatation morphological operator [START_REF] Serra | Image analysis and mathematical morphology[END_REF].

Utilisation of the variogram for the determination of ∆ f

The estimation of V 0 can be done by studying the local variations of the variance in the gradient image. Thus, one can estimate V 0 using different methods: variographic analysis, Fourier analysis, wavelets, etc. In this study, the variogram method [START_REF] Matheron | Principles of geostatistics[END_REF][START_REF] Journel | Mining geostatistics[END_REF] was chosen to estimate the value of V 0 by the nugget effect C 0 of the variogram (Equation 9). This method estimates V 0 and V T by considering the relation between the variance of a set of points and the physical distance between them. Modelling of the experimental variogram allows the estimation of the variance for a null distance between two points. The variogram model provided two variables C 0 and C 1 . The total variance of the image V T was obtained through addition of C 0 and C 1 (Equation 10). Considering relation 7, ∆ f is computed as presented in relation 11.

V 0 = C 0 (9) V T = C 0 +C 1 (10) ∆ f ≈ C 0 C 0 +C 1 × C 0 (11)

Regularisation of the number of zones

In order to refine the results of the watershed segmentation, a regularisation of the watershed segmentation result is done. In image processing, regularisation is the step that aims at improving the results of a segmentation. Indeed, our watershed implementation keeps a small over-segmentation effect, and needs a region merging step to reach the suitable number of regions. This corresponds to the undersegmentation risk management of our approach, which is formulated by the term 11).

C 0 C 0 +C 1 in the ∆ f expression (Equation
In this study, a hierarchical tree algorithm was used to drive the regularisation process. Figure 4 shows a one-dimensional illustration of this fusion procedure. The initial state (IS) corresponds to the regions resulting from the segmentation step.

The fusion is only performed between neighbouring regions. All the fusions that are possible between the neighbouring regions are evaluated. The most favorable fusion is operated using a fit parameter, which is an energy function. This operation is repeated until the suitable number of regions is obtained.

The fit parameter considers both morphological and radiometric parameters. For a given fusion, the fit parameter is a linear combination of compactness (C), regularity (R) and radiometry ρ (Table 2, for more information see [START_REF] Baatz | Multiresolution segmentation : an optimization approach for high quality multi-scale image segmentation[END_REF]. For a given region, when several fusions with neighbouring regions are possible, the one which minimizes the fit parameter is processed.

Determination of the optimum number of zones

The choice of the best number of zones is done for each field. It is based on a variance analysis of the biomass values inspired from [START_REF] Fraisse | Use of unsupervised clustering algorithms foir delineating within-field management zones[END_REF]. Biomass variances for each zone were computed (Equation 12):

V INT RA = N ∑ Z=1 n Z ∑ i=1 B i -B Z 2 (12)
Fig. 4. Tree algorithm used to merge regions according to a given fit parameter. In this one dimensional example, at the initial state (IS), there were eight different regions. The tree algorithm examines all the possible fusions between the different couples of neighbours.

At each iteration, the best fusion according to the fit parameter is chosen. The process is repeated until a given number of regions k, or until one region (final state, FS), is obtained.

Parameter

Assessed characteristic Formula

Compactedness (C)

Morphological C = P region √ S region Regularity (R) Morphological R = P region P BBox Radiometry (ρ) Radiometric ρ = ∑[Biomass(k)] 2 -[∑ Biomass(k)] 2 S region S region Fit = (k 1 ×C) + (k 2 × R) + (k 3 × ρ), k {1,2,3} ∈ R, ∑ 3 i=1 k i = 1 Table 2
Composition of the fit parameter within the hierarchical tree algorithm. P region is the perimeter of the region, S region is its surface. P BBox is the perimeter of the bounding box of the region.

N is the number of zones, n Z the number of cells in the zone Z, B i the biomass value for cell i, and B Z the mean of biomass for zone Z. The percentage decrease in within-zone biomass variance (with reference to the entire field, i.e. one unique zone) was plotted versus the number of zones (Figure 5). To find the most suitable number of zones, the parsimony principle, described by [START_REF] Lark | Some tools for parsimonious modelling and interpretation of within-field variation of soil and crop systems[END_REF] for PA, was applied to each plot. According to this principle, the most suitable number of zones is defined as the number of zones after which the biomass variance reduction remains more or less constant or declines more slowly. 

Data analysis

The algorithms proposed in this paper were implemented using the IDL programming language (IDL 6.2, 2005, c Research Systems, Inc., USA), on a PC platform running on an Intel Pentium 4 processor at 2.8 Ghz and with 1 Gb RAM. Both exponential and spherical variogram models were used [START_REF] Webster | Statistical methods in soil and land ressource survey[END_REF]. Variographic computations were processed with the Vesper software [START_REF] Minasny | Vesper version 1[END_REF]. The performance of the variographic modelling was determined with the RMSE. A flow chart (Figure 6) summarizes the different steps of our method.

Results

Assessment of the flooding lag

Experimental variograms were computed for each field from the gradient of the biomass maps. Figure 7 shows the processed gradient data, the corresponding experimental variograms (dots) and the fitted variogram model (plain line). The parameters of the models fitted are also shown in Table 3. For each field, stationarity was obtained for the fitted model.

In the ∆ f assessment method using a variogram model of the gradient data, important parameters are the nugget effect C 0 and sill C 1 . Within our experimental fields set, Field 3 is the field with the lowest ∆ f : the nugget effect is low, because there are few high spatial frequency noise effects. Moreover, the ratio between C 0 and C 0 + C 1 is low, and thus the ∆ f value is lowered in order to avoid undersegmentation phenomena. Indeed, this field (Figure 7) shows numerous zones, and magnitude between zones is not important (Table 1, CV a = 0.15). Conversely, Field 2 shows a high ∆ f value: an important nugget effect allowed us to take no account of most of the local variations in the gradient map, and the ∆ f value was not lowered by the C 0 / (C 0 +C 1 ) ratio. Figure 7 shows that this field presents a small number of wide and well-marked SSMZ. 3 Results of the ∆ f assessment using a variogram analysis for the 4 experimental fields.

Field 1

Field 2 Field 3 Field 4 Reduction of the over-segmentation using our watershed algorithm

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) 
Figure 8 shows the contours of the SSMZ delineated on Field 4 before the regularisation step, using the standard watershed algorithm on the one hand, and our watershed algorithm improved with flooding lag ∆ f on the other hand. An important reduction of the number of zones is observed when using the flooding lag watershed segmentation method. The latter method delineated wider, more significant zones, while the standard algorithm is strongly affected by the over-segmentation phenomenon. Table 4 compares some quantitative statistics: for the two methods, the number of delineated zones and the average area of those zones is shown. 4 Comparative results of the watershed segmentation step using the standard watershed algorithm and our watershed algorithm with a flooding lag ∆ f : number of delineated zones and average area of the delineated zones.

Results show that there is an important reduction of the number of delineated zones: between 72 and 91.6% for the tested fields. Consequently, the average area of the delineated objects is much more important when using our watershed algorithm. Those two results correspond to the objective of reduction of the over-segmentation phenomenon, in order to work on objects containing a significant number of pixels. As a result, zones given by our algorithm are more relevant, and split the field into homogeneous regions. However, an over-segmentation effect is still observed, and corresponds to the under-segmentation risk-management policy of our method.

Figure 9 compares the result of the SSMZ delineation on Field 4, using the standard watershed algorithm on the one hand and the proposed flooding lag watershed algorithm on the other hand. The same regularisation step was applied to both segmentation results presented in Figure 8. The SSMZ delineations obtained present the same number of regions, but the contours of the regions are different depending on the watershed segmentation algorithm used. When using the standard watershed algorithm, contours are tortuous and complex, and follow the finest spatial variations of the biomass. When using the over-segmentation limitation method, the result gives a more global and simple view of the within-field variations. Indeed, the contours are less complex and render the most significant spatial variations of the biomass. As a result, the latter suits expectations of the project, which is to provide farmers a simplified visualisation of their field variability. This difference underlines the necessity to restrict over-segmentation in the first step. In the case of the standard watershed algorithm, the important initial over-segmentation (Figure 8) implies that the regularisation algorithm processes very small patches, at a scale closer to the data resolution scale (Table 4). Conversely, the over-segmentation limitation method using a flooding lag allows the regularisation step to process wider objects: this segmentation algorithm is more efficient in terms of taking into account spatial characteristics of the data. Those results show the relevance of the over-segmentation limitation method: the watershed algorithm using a flooding lag delineates wider regions. As a result: (i) the influence of the regularisation step, which is parametric, is limited in favour of the segmentation step, which is based on the data ; and (ii) it inserts a real spatial argument in the delineation of the regions, as the regularisation step processes spatial objects (i.e. a set of neighbouring pixels) instead of individual pixels. The over-segmentation limitation method appears to be very efficient.

Management zone delineation on the experimental fields

The approach presented was applied to the set of experimental fields. Figure 10 shows the final SSMZ results of the process after regularisation for each experimental field. From a qualitative point of view, it can be seen that main patterns of the biomass at flowering are identified for each of the four fields. Table 1 shows that Field 2 presented the highest OI (OI = 0.27). Indeed, that field is characterized by a strong spatial structure and an important magnitude of the biomass variations (S = 0.79, CV a = 0.34). As a result, SSMZ are clear because there is a reduced number of zones and an important in biomass values between the zones. On Field 1, the magnitude of the biomass variations is not important (CV a = 0.18), but there is a very strong spatial structure of the biomass variations (S = 0.86). The latter facilitate the SSMZ delineation: because of this important structure of the variations, the algorithm gives satisfying contours. Three zones are obtained, i.e. one zone of important biomass values on the centre of the field, with two zones of weak biomass values at each end of the field. Conversely, Field 4 presents the lowest spatial structure (S = 0.69), and its gradient map (Figure 7.h) presents an important nugget effect. However, the magnitude of the biomass variations is important (CV a = 0.25). As a result, this field presents some inclusions of high biomass value areas mixed within smaller biomass value zones, but the boundaries between zones are clear. Our algorithm succeeds in delineating SSMZ, as we found a reduced number of zones that embody such inclusions. The result is satisfactory: SSMZ gave a global view of the within-field variations. Unlike the other fields, Field 3 does not present sharp boundaries. The within-field variance is the smallest (CV a = 0.15), and is not well-structured (S = 0.69) compared to the other fields. The gradient map (Figure 7.g) shows a reduced nugget effect. As a result, the number of delineated zones is important: our algorithm found six SSMZ. This is relevant compared to the corresponding biomass map. The boundaries of the zones are sometimes more complex than they should be: this is due to the smoothed variations of the biomass values in some parts of the field, as indicated by the low value of the OI (OI = 0.10). The results of our approach are also satisfactory be-cause for both the watershed segmentation step and the regularisation step, computing efficiency of the algorithms allowed us to process the fields in a short time: for the experimental fields 1 to 4, segmentation time was 0.110, 0.138, 0.172, and 0.240 s respectively. 

Next steps

The object-oriented delineation approach presented in this study showed promising results. The different steps of our approach were validated. However, the tests were run on a few fields and most of the processing steps were manually supervised. Several significant problems remain. These problems currently do not allow us to implement the method as is into the production chain. One of the most significant drawbacks comes from the variogram modelling before the watershed segmentation. The variogram is a relevant way to provide an assessment of the flooding lag ∆ f . However experiments highlighted the necessity to supervise variogram estimation, which doesnt fit with the strong automation required in the context of our application. As said previously, many alternative methods can be considered (Fourier transform, wavelets, etc.) and could be tested in further experiments.

Another significant remaining problem is the determination of the optimal number of zones. The solution used in this study is relevant, but once again requires a supervision to make sure the optimal number of zones is reached. This method is lacking robustness to be fully automatable and alternative approaches will have to be investigated further. Finally, a missing functionality is the awareness of the operational constraints (e.g. the footprint and work direction of the application machinery).

Unlike the watershed segmentation, which gave satisfactory improvements in SSMZ delineation and which is not significantly problematic, the regularisation seems to be the most improvable step of our method. A major evolution of this step could be to include the notion of technical opportunity [START_REF] Tisseyre | A technical opportunity index based on mathematical morphology for site-specific management: an application to viticulture[END_REF] into the regularisation for both (i) fusion choices during regularisation (instead of the fit parameter), and (ii) choice of the optimal number of regions (instead of using the variance decrease analysis).

Conclusion

This study showed the relevance of an object-oriented approach in SSMZ delineation. The watershed segmentation proved to be a relevant tool considering the constraints of our specific application. However, before applying this algorithm to PA data, it has to be modified in order to cope with over-segmentation effects. To be successfully implemented in production constraints like those of Farmstar (large databases, large variability in the fields to be processed), algorithms initially developed for image processing have to be specifically adapted for PA data.

Fig. 1 .

 1 Fig. 1. One dimensional illustration of the watershed segmentation. (a) The signal to be segmented. (b) The corresponding gradient signal. Local minima are plotted in red. (c) Flooding of the grey levels from each local minima. When two different floods meet, a dam is built up. Those dams are the resulting contours of the segmentation. (d) Resulting segmentation of the signal.

Fig. 2 .

 2 Fig. 2. One dimensional illustration of the concept of basin dynamics. In this example, D is the dynamic of the basin seed k.

Fig. 3 .

 3 Fig.3. One dimensional illustration of our approach. Plain line represents the gradient magnitude, which is used to detect contours, for one spatial dimension (x). (a, c) Iteration k for the standard watershed algorithm and our approach respectively. (b, d) Iteration k +1 for the standard watershed algorithm and our approach respectively. Diffusion of the existing regions takes place in the volume between (k + 1) and (k -∆ f + 1), i.e. between P and P' (∆ f is the flooding lag). Creation of new regions only occurs on the (k -∆ f + 1) plane, i.e. P'. Over-segmentation due to noisy basins is limited while significant gradient values are respected.

Fig. 5 .

 5 Fig. 5. Illustration of the application of the parsimony principle to the choice of the final number of regions. Biomass variance decrease (%) is plotted versus the number of regions when dividing the field into 1 to 10 SSMZ. The parsimony principle leads to a choice of N = 4.

Fig. 6 .

 6 Fig. 6. Flow chart of the proposed approach. (a) The morphological gradient of the biomass map to be processed is computed. (b) Flooding lag ∆ f is computed from the morphological gradient of the biomass map. (c) The biomass map is segmented from its gradient, using the modified watershed algorithm presented above with the flooding lag ∆ f computed in the (b) step. (d) The most suitable final number of zones is chosen. (e) The number of zones is reduced using the regularisation algorithm.

Fig. 7 .

 7 Fig. 7. Variograms on the gradient data for the four experimental fields. (a -d) Biomass maps (t/ha) for fields {1, 2, 3, 4} respectively. (e -h) Gradient of the biomass maps for fields {1, 2, 3, 4} respectively. (i -l) Variograms of the gradient map for fields {1, 2, 3, 4} respectively.

Fig. 8 .

 8 Fig. 8. Comparison of the watershed segmentation results on the experimental field 4. (a) Biomass values (t/ha). (b) Segmentation results using the standard watershed algorithm. (c) Segmentation results using our approach. Number of zones Average area (ha) Field without ∆ f with ∆ f without ∆ f with ∆ f 1 95 8 0.20 2.44 2 105 25 0.24 1.00 3 161 45 0.23 0.81 4 349 41 0.23 1.94 Table4Comparative results of the watershed segmentation step using the standard watershed algorithm and our watershed algorithm with a flooding lag ∆ f : number of delineated zones and average area of the delineated zones.

Fig. 9 .

 9 Fig. 9. Comparison of the efficiency of the proposed watershed segmentation using a flooding lag ∆ f : resulting SSMZ contours after regularisation. (a) Biomass values (t/ha). (b) SSMZ contours after the watershed segmentation step using the standard algorithm. (c) SSMZ contours after our watershed algorithm.

  Fig. 10. Results of the SSMZ delineation using our approach. (a -d) Biomass maps (t/ha) for fields {1, 2, 3, 4} respectively. (e -h) Resulting SSMZ for fields {1, 2, 3, 4} respectively.

Figure 11 Fig. 11 .

 1111 Figure 11 aims at quantifying the SSMZ delineation results for Field 1. For each zone proposed in this field by our approach, a histogram of the biomass values is shown. The means of the biomass values within each zone are shown with a hashed line. Histograms show that populations within zones 1 and 2 on the one hand, and from zone 3 on the other hand, are significantly different from each other. While zone 3 is a wide central zone of high biomass values, biomass values of zones 1 and 2 overlap: those zones are similar in terms of their values, but are located on the two sides of the field. Finally, on field 1, we delineate 3 SSMZ corresponding to 2 different classes of biomass values.