
HAL Id: hal-00453893
https://hal.science/hal-00453893v1

Preprint submitted on 6 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Potential Wadge classes
Dominique Lecomte

To cite this version:

Dominique Lecomte. Potential Wadge classes. 2010. �hal-00453893�

https://hal.science/hal-00453893v1
https://hal.archives-ouvertes.fr


Potential Wadge classes

Dominique LECOMTE

January 2010
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1 Introduction

The reader should see [K] for the descriptive set theoretic notation used in this paper. The standard
way of comparing the topological complexity of subsets of0-dimensional Polish spaces is the Wadge
reducibility quasi-order≤W . Recall that ifX (resp.,Y ) is a0-dimensional Polish space andA (resp.,
B) a subset ofX (resp.,Y ), then

(X,A) ≤W (Y,B) ⇔ ∃f :X→Y continuous such thatA=f−1(B).

This is a very natural definition since the continuous functions are the morphisms for the topological
structure. So the scheme is as follows:

X A

¬A
−−−−−−−−→
−−−−−−−−→

B

¬B
Y

The “0-dimensional” condition is here to ensure the existence of enough continuous functions (the
only continuous functions fromR into ωω are the constant functions, for example). In the sequel,Γ

will be a class of Borel subsets of0-dimensional Polish spaces. We denote byΓ̌ := {¬A | A ∈ Γ}
the class of complements of elements ofΓ. We say thatΓ is self -dual if Γ = Γ̌. We also set
∆(Γ) :=Γ ∩ Γ̌. Following 4.1 in [Lo-SR2], we give the following definition:

Definition 1.1 We say thatΓ is aWadge class of Borel sets if there is a Borel subsetA0 of ωω

such that for each0-dimensional Polish spaceX, and for eachA ⊆ X, A is in Γ if and only if
(X,A) ≤W (ωω, A0). We say thatA0 is Γ-complete.

The Wadge hierarchy defined by≤W , i.e., the inclusion of Wadge classes, is the finest hierarchy
of topological complexity in descriptive set theory. The goal of this paper is to study the descriptive
complexity of the Borel subsets of products of Polish spaces. More specifically, we are looking for
a dichotomy of the following form, quite standard in descriptive set theory: either a set is simple, or
it is more complicated than a well-known complicated set. Ofcourse, we have to specify the notions
of complexity and comparison we are considering. The two things are actually very much related.
The usual notion of comparison between analytic equivalence relations is the Borel reducibility quasi-
order≤B . Recall that ifX (resp.,Y ) is a Polish space andE (resp.,F ) an equivalence relation on
X (resp.,Y ), then(X,E) ≤B (Y, F ) ⇔ ∃f :X → Y Borel such thatE = (f×f)−1(F ). Note
that this makes sense even ifE andF are not equivalence relations. The notion of complexity we are
considering is a natural invariant for≤B in dimension 2. Its definition generalizes Definition 3.3 in
[Lo3] to any dimensiond making sense in the context of descriptive set theory, and also to any class
Γ. So in the sequeld will be a cardinal, and we will have2≤d≤ω since2ω1 is not metrizable.

Definition 1.2 Let (Xi)i∈d be a sequence of Polish spaces, andB a Borel subset ofΠi∈d Xi. We
say thatB is potentially in Γ

(

denotedB∈pot(Γ)
)

if, for eachi∈d, there is a finer0-dimensional
Polish topologyτi onXi such thatB∈Γ

(

Πi∈d (Xi, τi)
)

.

One should emphasize the fact that the point of this definition is to consider product topologies.
Indeed, ifB is a Borel subset of a Polish spaceX, then there is a finer Polish topologyτ onX such
thatB is a clopen subset of(X, τ) (see 13.1 in [K]). This is not the case in products: if for exampleΓ
is a non self-dual Wadge class of Borel sets, then there are sets inΓ

(

(ωω)2
)

that are not pot(Γ̌) (see
Theorem 3.3 in [L1]). For example, the diagonal ofωω is not potentially open.
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Note also that since we work up to finer Polish topologies, the“0-dimensional” condition is not
a restriction. Indeed, ifX is a Polish space, then there is a finer0-dimensional Polish topology on
X (see 13.5 in [K]). The notion of potential complexity is an invariant for≤B in the sense that if
(X,E) ≤B (Y, F ) andF is pot(Γ), thenE is pot(Γ) too.

The good notion of comparison is not the rectangular versionof ≤B . Instead of considering a
Borel setE and its complement, we have to consider pairs of disjoint analytic sets. This leads to the
following notation. Let(Xi)i∈d, (Yi)i∈d be sequences of Polish spaces, andA0, A1 (resp.,B0, B1)
disjoint analytic subsets ofΠi∈d Xi (resp.,Πi∈d Yi). Then
(

(Xi)i∈d, A0, A1

)

≤
(

(Yi)i∈d, B0, B1

)

⇔ ∀i∈d ∃fi :Xi→Yi continuous such that

∀ε∈2 Aε⊆(Πi∈d fi)
−1(Bε).

So the good scheme of comparison is as follows:

Πi∈d Xi A0

A1

−−−−−−−−→

−−−−−−−−→

B0

B1

Πi∈d Yi

The notion of potential complexity was studied in [L1]-[L7]for d = 2 and the non self-dual Borel
classes. The main question of this long study was asked by A. Louveau to the author in 1990. A.
Louveau wanted to know whether Hurewicz’s characterization ofGδ sets could be extended to pot(Γ)
sets whenΓ is a Wadge class of Borel sets. The main result of this paper gives a complete and positive
answer to this question:

Theorem 1.3 LetΓ be a Wadge class of Borel sets, or the class∆
0
ξ for some1≤ ξ<ω1. Then there

are Borel subsetsS0, S1 of (dω)d such that for any sequence of Polish spaces(Xi)i∈d, and for any
disjoint analytic subsetsA0, A1 of Πi∈d Xi, exactly one of the following holds:

(a) The setA0 is separable fromA1 by a pot(Γ) set.

(b) The inequality
(

(dω)i∈d,S
0,S1

)

≤
(

(Xi)i∈d, A0, A1

)

holds.

It is natural to try to prove Theorem 1.3 since it is a result ofcontinuous reduction, which appears
in the very definition of a Wadge class. So it goes beyond a simple generalization. The work in this
paper is the continuation of the article [L7], that was announced in [L6]. We generalize the main
results of [L7]. The generalization goes in different directions:

- It works in any dimensiond.

- It works for the self-dual Borel classes∆0
ξ .

- It works for any Wadge class of Borel sets, which is the hardest part.

We generalize, and also in fact give a new proof of the dimension 1 version of Theorem 1.3
obtained by A. Louveau and J. Saint Raymond (see [Lo-SR1]), which itself was a generalization
of Hurewicz’s result. The new proof is without games, and gives a new approach to the study of
Wadge classes. Note that A. Louveau and J. Saint Raymond proved that ifΓ is not self-dual, then the
reduction map in (b) can be one-to-one (see Theorem 5.2 in [Lo-SR2]). We will see that there is no
injectivity in general in Theorem 1.3. However, G. Debs proved that we can have thefi’s one-to-one
whend=2, Γ∈{Π0

ξ ,Σ
0
ξ} andξ≥3. Some injectivity details will be given in the last section.
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We introduce the following notation and definition in order to specify Theorem 1.3. One can
prove that a reduction on the whole product is not possible, for acyclicity reasons (see [L5]-[L7]).
We now specify this. We emphasize the fact that in this paper,there will be a constant identification
between(dd)l and(dl)d, for l≤ω, to avoid as much as possible heavy notation.

Notation. If X is a set, then~x :=(xi)i∈d is an arbitrary element ofX d. If T ⊆X d, then we denote by
GT the graph with set of verticesT , and with set of edges

{

{~x, ~y}⊆T | ~x 6=~y and ∃i∈d xi=yi
}

(see [B] for the basic notions about graphs). So~x 6= ~y ∈ T areGT -related if they have at least one
coordinate in common.

Definition 1.4 (a) We say thatT is one-sided if the following holds:

∀~x 6=~y∈T ∀i 6=j∈d (xi 6=yi ∨ xj 6=yj).

This means that if~x 6=~y∈T , then they have at most one coordinate in common.

(b) We say thatT is almost acyclic if for everyGT -cycle(
−→
xn)n≤L there arei∈d andk<m<n<L

such thatxki =x
m
i =xni . This means that everyGT -cycle contains a “flat” subcycle, i.e., a subcycle

in a single directioni∈d.

(c) We say that a treeT ondd is a tree with suitable levels if the setT l :=T ∩ (dd)l⊆(dl)d is finite,
one-sided and almost acyclic for each integerl.

We do not really need the finiteness of the levels, but it makesthe proof of Theorem 1.3 much
simpler. The following classical property will be crucial in the sequel:

Definition 1.5 We say thatΓ has theseparation property if for eachA,B ∈Γ(ωω) disjoint, there
isC∈∆(Γ)(ωω) separatingA fromB.

The separation property has been studied in [S] and [vW], where the following is proved:

Theorem 1.6 (Steel-van Wesep) LetΓ be a non self-dual Wadge class of Borel sets. Then exactly one
of the two classesΓ, Γ̌ has the separation property.

We now specify Theorem 1.3.

Theorem 1.7 We can find a treeTd with suitable levels, together with, for each non self-dualWadge
class of Borel setsΓ,

(1) Some setSd
Γ
∈Γ(⌈Td⌉) not separable from⌈Td⌉\SdΓ by a pot(Γ̌) set.

(2) If moreoverΓ does not have the separation property, andΓ=Σ
0
ξ or ∆(Γ) is a Wadge class, some

disjoint setsS0
Γ
,S1

Γ
∈Γ(⌈Td⌉) not separable by a pot

(

∆(Γ)
)

set.

Theorem 1.8 Let Td be a tree with suitable levels,Γ a non self-dual Wadge class of Borel sets,
(Xi)i∈d a sequence of Polish spaces, andA0,A1 disjoint analytic subsets ofΠi∈d Xi.

(1) LetS ∈Γ(⌈Td⌉) not separable from⌈Td⌉\S by a pot(Γ̌) set. Then exactly one of the following
holds:

(a) The setA0 is separable fromA1 by a pot(Γ̌) set.

(b) The inequality
(

(dω)i∈d, S, ⌈Td⌉\S
)

≤
(

(Xi)i∈d, A0, A1

)

holds.
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(2) Assume moreover thatΓ does not have the separation property, and thatΓ=Σ
0
ξ or ∆(Γ) is a

Wadge class. LetS0, S1∈Γ(⌈Td⌉) disjoint not separable by a pot
(

∆(Γ)
)

set. Then exactly one of the
following holds:

(a) The setA0 is separable fromA1 by a pot
(

∆(Γ)
)

set.

(b) The inequality
(

(dω)i∈d, S
0, S1

)

≤
(

(Xi)i∈d, A0, A1

)

holds.

We now come back to the new approach to the study of Wadge classes mentioned earlier. There
are a lot of dichotomy results in descriptive set theory about equivalence relations, quasi-orders or
even arbitrary Borel or analytic sets. So it is natural to askfor common points to these dichotomies.
B. Miller’s recent work goes in this direction. He proved many known dichotomies without effective
descriptive set theory, using variants of the Kechris-Solecki-Todorčević dichotomy about analytic
graphs (see [K-S-T]). Here we want to point out another common point, of effective nature. In these
dichotomies, the first possibility of the dichotomy is equivalent to the emptyness of someΣ 1

1 set. For
example, in the Kechris-Solecki-Todorčević dichotomy,theΣ

1
1 set is the complement of the union

of the ∆
1
1 subsets discrete with respect to theΣ

1
1 graph considered. We prove a strengthening of

Theorem 1.8 in which such aΣ 1
1 set appears. We will state in Case (1), unformally. Before that, we

need the following notation.

Notation. Let X be a recursively presented Polish space. We denote by∆X the topology onX
generated by∆1

1(X). This topology is Polish (see (iii)⇒ (i) in the proof of Theorem 3.4 in [Lo3]).
The topologyτ1 on (ωω)d will be the product topology∆d

ωω .

Theorem 1.9 Let Td be a tree with∆1
1 suitable levels,Γ a non self-dual Wadge class of Borel sets

with a∆1
1 code,A0, A1 disjointΣ 1

1 subsets of(ωω)d, andS∈Γ(⌈Td⌉) not separable from⌈Td⌉\S by
a pot(Γ̌) set. Then there is aΣ 1

1 subsetR of (ωω)d such that the following are equivalent:

(a) The setA0 is not separable fromA1 by a pot(Γ̌) set.

(b) The setA0 is not separable fromA1 by a∆1
1 ∩ pot(Γ̌) set.

(c) The setA0 is not separable fromA1 by aΓ̌(τ1) set.

(d)R 6=∅.

(e) The inequality
(

(dω)i∈d, S, ⌈Td⌉\S
)

≤
(

(ωω)i∈d, A0, A1

)

holds.

ThisΣ 1
1 setR is build with topologies based onτ1. The use of theΣ 1

1 setR is the new approach
to the study of Wadge classes.

We first prove Theorems 1.7 and 1.8 for the Borel classes, self-dual or not. Then we consider
the case of the Wadge classes. In Section 2, we start proving Theorem 1.7. We construct a concrete
example of a tree with suitable levels, and we give a general condition to get some complicated sets
as in the statement of Theorem 1.7. We actually reduce the problem to a problem in dimension one.
In Section 3, we prove Theorem 1.7 for the Borel classes. In Section 4, we prove Theorem 1.8 for
the Borel classes, using some tools of effective descriptive set theory and the representation theorem
of Borel sets proved in [D-SR]. In Section 5, we prove Theorem1.7, using the description of Wadge
classes in [Lo-SR2]. In Section 6, we prove Theorems 1.3, 1.8and 1.9. Finally, in Section 7, we give
some injectivity complements.
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2 A general condition to get some complicated sets

We now build an example of a tree with suitable levels. This tree has to be small enough since we
cannot have a reduction on the whole product. But as the same time it has to be big enough to ensure
the existence of complicated sets, as in Theorem 1.7.

Notation. Let b :ω→ω2 be the natural bijection. More precisely, we set, forl∈ω,

M(l) :=max{m∈ω | Σk≤m k≤ l}.

Then we defineb(l)=
(

(l)0, (l)1
)

:=
(

M(l)−l+(Σk≤M(l) k), l−(Σk≤M(l) k)
)

. One can check that
<n, p>:=b−1(n, p)=(Σk≤n+p k)+p. More concretely, we get

b[ω]={(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), . . .}.

In the introduction, we mentionned the idenfication between(dl)d and (dd)l, for l ≤ ω. More

specifically, the bijection we use is given by~α 7→
(

(

αi(j)
)

i∈d

)

j∈l
.

Definition 2.1 We say thatE⊆
⋃

l∈ω (dl)d is aneffective frame if

(a) ∀l∈ω ∃!(sil)i∈d∈E∩(dl)d.

(b) ∀p, q, r∈ω ∀t∈d<ω ∃N ∈ω (siqit0
N )i∈d∈E, (|s0q0t0

N |−1)0=p and
(

(|s0q0t0
N |−1)1

)

0
=r.

(c) ∀l>0 ∃q<l ∃t∈d<ω ∀i∈d sil=s
i
qit.

(d) The mapl 7→(sil)i∈d can be coded by a recursive map fromω into ωd.

We will callTd thetree on dd associated with an effective frame E={(sil)i∈d | l∈ω}:

Td :=
{

~s∈(dd)<ω | (∀i∈d si=∅) ∨
(

∃l∈ω ∃t∈d<ω ∀i∈d si=s
i
lit ∧ ∀n< |s0| s0(n)≤n

)}

.

The uniqueness condition in (a) and Condition (c) ensure that Td is small enough, and also the
almost acyclicity. The definition ofTd ensures thatTd has finite levels. Note thatT l=Td ∩ (dd)l can
be coded by aΠ 0

1 subset of(ωω)l whend=ω. The existence condition in (a) and Condition (b) ensure
thatTd is big enough. More specifically, if(X, τ) is a Polish space andσ a finer Polish topology on
X, then there is a denseGδ subset of(X, τ) on whichτ andσ coincide. The first part of Condition
(b) ensures the possibility to get inside products of denseGδ sets. The examples in Theorem 1.7 are
build using the examples in [Lo-SR1] and [Lo-SR2]. Conditions on verticals are involved, and the
second part of Condition (b) gives a control on the choice of verticals. The very last part of Condition
(b) is not necessary to get Theorem 1.7 for the Borel classes,but is useful to get Theorem 1.7 for the
Wadge classes of Borel sets. Definition 2.1 strengthens Definition 3.1 in [L7], with this very last part
of Condition (b), with Condition (d) (ensuring the regularity of the levels of the tree), and also with
the last part of the definition of the tree (ensuring the finiteness of the levels of the tree).

Proposition 2.2 The treeTd associated with an effective frame is a tree with∆
1
1 suitable levels. In

particular, ⌈Td⌉ is compact.
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Proof. Let l∈ω. Let us prove thatT l is∆1
1 and finite. We argue by induction onl. The result is clear

for l≤1 sinceT 0={~∅} andT 1={(i)i∈d}. If l≥1 and~s∈(dd)<ω, then

~s∈T l ⇔ |s0|= l ∧ ∃q<l ∃t∈d<ω ∀i∈d si=s
i
qit ∧ ∀n<l s0(n)≤n.

But there are only finitely many possibilities fort sinces0(n)≤n for eachn< l, which implies that
t(m)≤q+1+m<l+1+l if m< |t|. This implies thatT l is ∆

1
1 and finite.

• Let T̃d be the tree generated by the effective frame:

T̃d :=
{

~s∈(dd)<ω | (∀i∈d si=∅) ∨
(

∃l∈ω ∃t∈d<ω ∀i∈d si=s
i
lit
)}

.

As Td ⊆ T̃d, we get, with obvious notation,T l ⊆ T̃ l for each integerl. So it is enough to prove that
T̃ l is one-sided and almost acyclic since these properties are hereditary.

• Let us prove that̃T l is almost acyclic. We argue by induction onl. The result is clear forl≤1. So
assume thatl≥1. We set, forj∈d,

Cj :=
{

(siqit)i∈d∈T̃ l+1 | t 6=∅ ∧ t(|t|−1)=j
}

.

We haveT̃ l+1={(sili)i∈d} ∪
⋃

j∈d Cj, and this union is disjoint.

The restriction ofGT̃ l+1
to eachCj is isomorphic toGT̃ l

. The other possibleGT̃ l+1
-edges are

between(sili)i∈d and some vertices in someCj ’s. If a GT̃ l+1
-cycle exists, we may assume that it

involves only(sili)i∈d and members of some fixedCj0. But if ~s ∈ Cj0 is GT̃ l+1
-related to(sili)i∈d,

then we must havesj0l j0= sj0. This implies the existence ofk<m<n showing thatT̃ l+1 is almost
acyclic.

• Now assume that~x 6= ~y ∈ T̃ l, i, j ∈ d, xi = yi andxj = yj. Then we can write~x= (siqit)i∈d and
~y=(siq′it

′)i∈d since~x 6=~y. Asxi=yi, the reversest−1 and(t′)−1 of t andt′ are compatible. Ift= t′,
thenq= |siq|= l−1−|t|= l−1−|t′|= |siq′ |= q

′ and~x=~y, which is absurd. Thust 6= t′, for example

|t′|< |t|, andt−1(|t′|)= i. This proves thati=j andT̃ l is one-sided.

• Let πl :T l+1→dd defined byπl(~s) :=
(

si(l)
)

i∈d
. As T l+1 is finite, the rangecl of πl is also finite.

Thus⌈Td⌉ is compact since⌈Td⌉⊆Πl∈ω cl. �

We now give an example of an effective frame.

Notation. Let bd :ω→d<ω be the natural bijection. More specifically,

• If d<ω, thenbd(0) :=∅ is the sequence of length0, bd(1) :=0, ...,bd(d) :=d−1 are the sequences
of length1 in the lexicographical ordering, and so on.

• If d=ω, then let(pn)n∈ω be the sequence of prime numbers, andI :ω<ω→ω defined byI(∅) :=1,

andI(s) := p
s(0)+1
0 ...p

s(|s|−1)+1
|s|−1

if s 6= ∅. Note thatI is one-to-one, so that there is an increasing

bijection ı :Seq:=I[ω<ω]→ω. We setbω :=(ı ◦ I)−1 :ω→ω<ω.
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Note that|bd(n)|≤n if n∈ω. Indeed, this is clear ifd<ω. If d=ω, then

I
(

bω(n)|0
)

<I
(

bω(n)|1
)

<...<I
(

bω(n)
)

,

so that(ı ◦ I)
(

bω(n)|0
)

<(ı ◦ I)
(

bω(n)|1
)

<...<(ı ◦ I)
(

bω(n)
)

=n. This implies that|bω(n)|≤n.

Lemma 2.3 There is a concrete example of an effective frame.

Proof. Fix i∈ d. We setsi0 = ∅, andsil+1 := si(((l)1)1)0 i bd

(

(

(

(l)1
)

1

)

1

)

0l−(((l)1)1)0−|bd((((l)1)1)1)|.

Note that(l)0+(l)1=M(l)≤Σk≤M(l) k≤ l, so thatsil is well defined and|sil|= l, by induction onl. It
remains to check that Condition (b) in the definition of an effective frame is fullfilled. Setn :=b−1

d (t),
s :=

〈

r,< q, n >
〉

andl :=<p, s>. It remains to putN := l−q−|t|: (siqit0
N )i∈d=(sil+1)i∈d. �

The previous lemma is essentially identical to Lemma 3.3 in [L7]. Now we come to the lemma
crucial for the proof of Theorem 1.7. It strengthens Lemma 3.4 in [L7], even if the proof is essentially
the same.

Notation. If s∈ω<ω andq≤|s|, thens−s|q is defined bys=(s|q)(s−s|q). We extend this definition
to the cases∈ωω whenq<ω. In particular, we denotes∗ :=s−s|1 when∅ 6=s∈ω≤ω. If ∅ 6=s∈ω<ω,
then we defines− :=s|(|s|−1).

• We now definep :ω<ω\{∅}→ω. The definition ofp(s) is by induction on|s|:

p(s) :=







s(0) if |s|=1,

<p(s−), s(|s|−1)> otherwise.

Note thatp|ωn :ωn→ω is a bijection, for eachn≥1.

• Let l≤ω be an ordinal. The map∆:dl×dl→2l is the symmetric difference. So, form∈ l,

(s∆t)(m) :=∆(s, t)(m)=1 ⇔ s(m) 6= t(m).

• By convention,ω−1:=ω.

Lemma 2.4 LetTd be the tree associated with an effective frame and, for eachi∈d, Gi a denseGδ

subset ofΠ′′
i ⌈Td⌉. Then there areα0∈G0 andF :2ω→Π0<i<d Gi continuous such that, forα∈2ω,

(a)
(

α0, F (α)
)

∈⌈Td⌉.

(b) For eachs∈ω<ω, and eachm∈ω,

(i) α
(

p(sm)
)

=1 ⇒ ∃m′∈ω
(

α0∆F0(α)
)(

p(sm′)+1
)

=1.

(ii)
(

α0∆F0(α)
)(

p(sm)+1
)

=1 ⇒ ∃m′∈ω α
(

p(sm′)
)

=1.

Moreover, there is an increasing bijection

Bα :{m∈ω | α(m)=1}→{m′∈ω |
(

α0∆F0(α)
)

(m′+1)=1}

such that(m)0=
(

Bα(m)
)

0
and

(

(m)1
)

0
=
(

(

Bα(m)
)

1

)

0
if α(m)=1.
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Proof. Let (Oi
q)q∈ω be a non-increasing sequence of dense open subsets ofΠ′′

i ⌈Td⌉ whose intersection
is Gi. We construct finite approximations ofα0 andF . The idea is to linearize the binary tree2<ω.
So we will use the bijectionb2 defined before Lemma 2.3. To constructF (α) we have to imagine, for
each lengthl, the different possibilities forα|l. More precisely, we construct a mapl : 2<ω →ω\{0}
satisfying the following conditions:

(1) ∀t∈2<ω ∀i∈d (i≤|t| ⇒ ∅ 6=Nsi
l(t)

∩Π′′
i ⌈Td⌉⊆O

i
|t|),

(2) ∃v∅∈d
<ω ∀i∈d si

l(∅)= iv∅,

(3) ∀t∈2<ω ∀ε∈2 ∃vtε∈d
<ω ∀i∈d si

l(tε)=s
i
l(t)(i·ε)vtε,

(4) ∀r∈ω s0
l(b2(r))

0⊆s0
l(b2(r+1)) ∧ ∀t∈2<ω ∀n<l(t) s0

l(t)(n)≤n,

(5) ∀t∈2<ω
(

l(t)−1
)

0
=(|t|)0 ∧

(

(

l(t)−1
)

1

)

0
=
(

(|t|)1
)

0
.

• Assume that this construction is done. Ass0
l(0q) ⊂ 6= s0

l(0q+1) for each integerq, we can define

α0 :=supq∈ω s
0
l(0q). Similarly, assi+1

l(α|q)⊂ 6= s
i+1
l(α|(q+1)), we can define, forα∈2ω andi<d−1,

Fi(α) :=supq∈ω s
i+1
l(α|q),

andF is continuous.

(a) Fix q∈ω. We have to see that
(

α0, F (α)
)

|q∈Td. Note first thatl(t)≥|t| sincel(tε)>l(t). Then
note thats0

l(t) ⊆α0 sinces0
l(0|t|)

⊆ s0
l(t) ⊆ s0

l(0|t|+1)
. Thus

(

α0, F (α)
)

|l(α|q) = (si
l(α|q))i∈d ∈E. This

implies that
(

α0, F (α)
)

|l(α|q)∈Td sinces0
l(α|q)(n)≤n if n<l(α|q). We are done sincel(α|q)≥q.

Moreover,α0∈
⋂

q∈ω Ns0
l(0q)

∩Π′′
0⌈Td⌉⊆

⋂

q∈ω O0
q =G0. Similarly,

Fi(α)∈
⋂

q∈ω

N
si+1
l(α|q)

∩Π′′
i+1⌈Td⌉⊆

⋂

q≥i+1

Oi+1
q =Gi+1.

(b).(i) We sett :=α|p(sm), so thats1
l(t) 1⊆s

1
l(t1)=s

1
l(α|(p(sm)+1))⊆F0(α). As

(

l(t)−1
)

0
=p(s) (or

(m)0 if s= ∅), there ism′ with l(t) = p(sm′)+1 (or l(t) =m′+1 and(m′)0 = (m)0 if s= ∅). But
s0
l(t) 0⊆s

0
l(α|(p(sm)+1))⊆α0, so thatα0

(

l(t)
)

6=F0(α)
(

l(t)
)

.

(ii) First notice that the only coordinates whereα0 andF0(α) can differ are0 and thel(α|q)’s. There-
fore there is an integerq with p(sm)+1 = l(α|q). In particular,(q)0 =

(

l(α|q)−1
)

0
= p(s) (or

(m)0 if s= ∅). Thus there ism′ with q = p(sm′) (or q =m′ and(m′)0 = (m)0 if s= ∅). We have
α0

(

l(α|q)
)

= s0
l(α|(q+1))

(

l(α|q)
)

=0 6=F0(α)
(

l(α|q)
)

= s1
l(α|(q+1))

(

l(α|q)
)

=α(q). Soα(q)=1 and

α
(

p(sm′)
)

=1.

Now it is clear that the formulaBα(m) := l(α|m)−1 defines the bijection we are looking for.
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• So let us prove that the construction is possible. We construct l(t) by induction onb−1
2 (t).

As (i0∞)i∈d ∈ ⌈Td⌉, 0∞ ∈Π′′
0⌈Td⌉ andO0

0 is not empty. Thus there isu00 ∈ d
<ω \{∅} such that

∅ 6=Nu0
0
∩Π′′

0⌈Td⌉⊆O
0
0. Chooseβ0∈Nu0

0
∩Π′′

0⌈Td⌉, and~α∈⌈Td⌉ such thatα0=β0. Then~α||u00|∈Td
andu00(n)≤n for eachn< |u00|. Note thatu00(0)=0 and(u00−u

0
0|1)(n)=u

0
0(n+1)≤1+n for each

n< |u00|−1. We chooseN∅∈ω with
(

i (u00−u
0
0|1) 0

N∅
)

i∈d
∈E, (|0 (u00−u

0
0|1) 0

N∅ |−1)0=(0)0 and
(

(|0 (u00−u
0
0|1) 0

N∅ |−1)1
)

0
=
(

(0)1
)

0
. We putv∅ :=(u00−u

0
0|1) 0

N∅ andl(∅) := |0 (u00−u
0
0|1) 0

N∅ |.

As (iv∅0
∞)i∈d ∈ ⌈Td⌉, N0v∅0 ∩ Π′′

0⌈Td⌉ is a nonempty open subset ofΠ′′
0⌈Td⌉. Thus there is

u01 ∈ d<ω such that∅ 6= N0v∅0u
0
1
∩ Π′′

0⌈Td⌉ ⊆ O0
1. As before we see thatu01(n) ≤ 1+ |v∅|+1+n

for eachn< |u01|. This implies that(iv∅0u
0
10

∞)i∈d ∈ ⌈Td⌉. ThusN1v∅0u
0
1
∩ Π′′

1⌈Td⌉ is a nonempty

open subset ofΠ′′
1⌈Td⌉. So there isu11 ∈ d<ω such that∅ 6= N1v∅0u

0
1u

1
1
∩ Π′′

1⌈Td⌉ ⊆ O1
1. Choose

β1∈N1v∅0u
0
1u

1
1
∩Π′′

1⌈Td⌉, and~γ∈⌈Td⌉ such thatγ1=β1. Then~γ||1v∅0u
0
1u

1
1|∈Td andγ0(n)≤n for

eachn< |1v∅0u
0
1u

1
1|. This implies thatγ0(|1v∅0u

0
1|+n)≤|1v∅0u

0
1|+n for eachn< |u11|. But u11(n)

is either1, or γ0(|1v∅0u
0
1|+n). Thusu11(n)≤ |1v∅0u

0
1|+n if n< |u11|. We chooseN0 ∈ω such that

(si
l(∅) 0u

0
1u

1
1 0

N0)i∈d ∈E,
(

l(∅)+|u01u
1
1|+N0

)

0
=(1)0 and

(

(

l(∅)+|u01u
1
1|+N0

)

1

)

0
=
(

(1)1
)

0
. We

put v0 :=u01u
1
1 0

N0 andl(0) := l(∅)+1+|v0 |.

Assume that
(

l(t)
)

b−1
2 (t)≤r

satisfying (1)-(5) have been constructed, which is the casefor r=1.

Fix t∈2<ω andε∈2 such thatb2(r+1)= tε, with r≥1. Note thatb−1
2 (t)<r, so thatl(t)<l

(

b2(r)
)

,
by induction assumption.

AsNs0
l(b2(r))

∩Π′′
0⌈Td⌉ is nonempty,Ns0

l(b2(r))
0 ∩Π′′

0⌈Td⌉ is nonempty too. Thus there isu0|t|+1 in

d<ω such that∅ 6=Ns0
l(b2(r))

0u0
|t|+1

∩Π′′
0⌈Td⌉⊆O

0
|t|+1. As before we see thatu0|t|+1(n)≤ l

(

b2(r)
)

+1+n

for eachn< |u0|t|+1|. Arguing as in the caser= 1, we prove, for each1≤ i≤ |t|+1, the existence

of ui|t|+1 ∈ d
<ω such that∅ 6= Nsi

l(t)
(i·ε)(s0

l(b2(r))
−s0

l(b2(r))
|(l(t)+1))0u0

|t|+1
...ui

|t|+1
∩ Π′′

i ⌈Td⌉ ⊆ Oi
|t|+1 and

ui|t|+1(n)≤ l
(

b2(r)
)

+1+|u0|t|+1...u
i−1
|t|+1

|+n for eachn< |ui|t|+1| (ui|t|+1(n) can bei, in which case

we use the fact thatl(t)≥|t|). We chooseNtε∈ω such that
(

sil(t) (i·ε)
(

s0l(b2(r))−s
0
l(b2(r))

|
(

l(t)+1
)

)

0 u0|t|+1...u
|t|+1
|t|+1 0

Ntε

)

i∈d

∈E,

(

l
(

b2(r)
)

+|u0|t|+1...u
|t|+1
|t|+1|+Ntε

)

0
=(|t|+1)0 and

(

(

l
(

b2(r)
)

+|u0|t|+1...u
|t|+1
|t|+1|+Ntε

)

1

)

0

=
(

(|t|+1)1
)

0
.

We putl(tε) := l(t)+1+|vtε|, where by definition

vtε :=
(

s0l(b2(r))−s
0
l(b2(r))

|
(

l(t)+1
)

)

0 u0|t|+1...u
|t|+1
|t|+1 0

Ntε .

This finishes the proof. �
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Now we come to the general condition to get some complicated sets as in the statement of Theo-
rem 1.7 announced in the introduction.

Notation. The mapS :2ω→2ω is the shift map:S(α)(m) :=α(m+1).

Definition 2.5 We say thatC⊆2ω is compatible with comeager sets (ccs for short) if

α∈C ⇔ S
(

α0∆F0(α)
)

∈C,

for eachα0∈d
ω andF :2ω→(dω)d−1 satisfying the conclusion of Lemma 2.4.(b).

Notation. Let Td be the tree associated with an effective frame, andC⊆2ω. We put

Sd
C :=

{

~α∈⌈Td⌉ | S(α0∆α1)∈C
}

.

Lemma 2.6 LetTd be the tree associated with an effective frame, andΓ a non self-dual Wadge class
of Borel sets.

(1) Assume thatC is aΓ-complete ccs set. ThenSd
C ∈Γ(⌈Td⌉) is a Borel subset of(dω)d, and is not

separable from⌈Td⌉\Sd
C by a pot(Γ̌) set.

(2) Assume thatC0, C1∈Γ are disjoint, ccs, and not separable by a∆(Γ) set. ThenSd
C0 , S

d
C1 are in

Γ(⌈Td⌉), disjoint Borel subsets of(dω)d, and not separable by a pot
(

∆(Γ)
)

set.

Proof. (1) It is clear thatSd
C ∈ Γ(⌈Td⌉) sinceS and∆ are continuous. SoSd

C is a Borel subset of
(dω)d since⌈Td⌉ is a closed subset of(dω)d. Indeed,⌈Tω⌉ is closed:

~α∈⌈Tω⌉ ⇔ ∀n∈ω\{0} ∃l<n ∀i∈ω sili⊆αi ∧ (αi|n−s
i
li)=(α0|n−s

0
l 0) ∧ α0(n)≤n.

We argue by contradiction to see thatSd
C is not separable from⌈Td⌉\Sd

C by a pot(Γ̌) set: this gives
P ∈ pot(Γ̌). For eachi ∈ d there is a denseGδ subsetGi of the compact spaceΠ′′

i ⌈Td⌉ such that
P ∩ (Πi∈d Gi)∈ Γ̌(Πi∈d Gi), andSd

C ∩ (Πi∈d Gi)⊆P ∩ (Πi∈d Gi)⊆(Πi∈d Gi)\(⌈Td⌉\S
d
C).

Lemma 2.4 providesα0∈G0 andF :2ω→Π0<i<d Gi continuous. Let

D :=
{

α∈2ω |
(

α0, F (α)
)

∈P ∩ (Πi∈d Gi)
}

.

ThenD∈ Γ̌. Let us prove thatC=D, which will contradict the fact thatC /∈ Γ̌. AsC is ccs,α∈C is
equivalent toS

(

α0∆F0(α)
)

∈C. Thus

α∈C ⇒ S
(

α0∆F0(α)
)

∈C ⇒
(

α0, F (α)
)

∈Sd
C ∩ (Πi∈d Gi)⊆P ∩ (Πi∈d Gi) ⇒ α∈D.

Similarly,α /∈C ⇒ α /∈D, andC=D.

(2) We argue as in (1). �

This lemma reduces the problem of finding some complicated sets as in the statement of Theorem
1.7 to a problem in dimension 1.
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3 The proof of Theorem 1.7 for the Borel classes

The full version of Theorem 1.7 for the Borel classes is as follows:

Theorem 3.1 We can find concrete examples of a treeTd with ∆
1
1 suitable levels, together with, for

each1≤ξ<ω1,

(1) Some setSdξ ∈Σ
0
ξ(⌈Td⌉) not separable from⌈Td⌉\Sdξ by a pot(Π0

ξ) set.

(2) Some disjoint setsS0ξ ,S
1
ξ ∈Σ

0
ξ(⌈Td⌉) not separable by a pot(∆0

ξ) set.

This is an application of Lemma 2.6. We now introduce the objects useful to define the suitable
setsC ’s of this lemma. These objects will also be useful in the general case. The following definition
can be found in [Lo-SR2] (see Definition 2.2).

Definition 3.2 A setH⊆2ω is Γ-strategically complete if

(a)H∈Γ(2ω).

(b) If A∈Γ(ωω), then Player 2 wins the Wadge gameG(A,H) (where Player 1 playsα∈ωω, Player
2 playsβ∈2ω and Player 2 wins ifα∈A⇔ β∈H).

The following definition can essentially be found in [Lo-SR1] (see Section 3) and [Lo-SR2] (see
Definition 2.3).

Definition 3.3 Letη<ω1. A functionρ :2ω→2ω is anindependent η-function if

(a) For some functionπ : ω→ ω, the valueρ(α)(m), for eachα ∈ 2ω and each integerm, depends
only on the values ofα onπ−1({m}).

(b) For each integerm, we setCm :={α∈2ω | ρ(α)(m)=1}.

(1) If η=0, then for each integerm the setCm is a∆0
1-complete set.

(2) If η=θ+1 is successor, then for each integerm the setCm is aΠ0
1+θ-strategically complete set.

(3) If η limit, then for some sequence(θm)m∈ω with θm<η and supp≥1 θmp =η for each one-to-one
sequence(mp)p≥1 of integers, and for each integerm the setCm is aΠ

0
1+θm

-strategically complete
set.

Note that we added a condition whenη=0. Moreover, we do not ask the sequence(θm)m∈ω to
be increasing, unlike in [Lo-SR2], Definition 2.3. Note alsothat an independentη-function has to be
Σ

0
1+η-measurable. Moreover, ifρ is an independentη-function, thenπ has to be onto.

Examples.In [Lo-SR1], Lemma 3.3, the mapρ0 :2ω→2ω defined as follows is introduced:

ρ0(α)(m) :=







1 if α(<m,n>)=0, for eachn∈ω,

0 otherwise.

Thenρ0 is clearly an independent1-function, withπ(k) = (k)0. In this paper,ρη0 : 2
ω → 2ω is also

defined forη<ω1 as follows, by induction onη (see the proof of Theorem 3.2).
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We put

- ρ00 := Id2ω .

- ρθ+1
0 :=ρ0 ◦ ρ

θ
0.

- If η > 0 is limit, then fix a sequence(θηm)m∈ω ⊆ η of successor ordinals withΣm∈ω θ
η
m = η. We

defineρ(m,m+1)
0 :2ω→2ω by

ρ
(m,m+1)
0 (α)(i) :=







α(i) if i<m,

ρθ
η
m
0

(

Sm(α)
)

(i−m) if i≥m.

We setρ(0,m+1)
0 :=ρ

(m,m+1)
0 ◦ ρ

(m−1,m)
0 ◦ . . . ◦ ρ

(0,1)
0 andρη0(α)(m) :=ρ

(0,m+1)
0 (α)(m). The authors

prove thatρη0 is an independentη-function (see the proof of Theorem 3.2). In this paper, the set
H1+η := (ρη0)

−1({0∞}) is also introduced, and the authors prove thatH1+η is Π
0
1+η-complete (see

Theorem 3.2).

Notation. Let 1≤ξ :=1+η<ω1. We setCξ :=¬Hξ. If moreoverε∈2, then we set

Cε
ξ :=

{

α∈2ω | ∃m∈ω ρη0(α)(m)=1 ∧ ∀l<m ρη0(α)(l)=0 ∧ (m)0≡ε (mod2)
}

.

Then we setSdξ :=S
d
Cξ

andSεξ :=S
d
Cε

ξ
.

Theorem 3.1 is a corollary of Proposition 2.2, Lemmas 2.3 and2.6, and of the following lemma.

Lemma 3.4 Let1≤ξ<ω1.

(1) The setCξ is aΣ0
ξ-complete ccs set.

(2) The setsC0
ξ , C1

ξ ∈Σ
0
ξ , are disjoint, ccs, and not separable by a∆0

ξ set.

Proof. (1)Cξ isΣ0
ξ-complete sinceHξ isΠ0

ξ-complete.

• Assume thatα0, F satisfy the conclusion of Lemma 2.4.(b). Let us prove that

ρη0(α)=ρ
η
0

(

S
(

α0∆F0(α)
)

)

,

for each1≤ η<ω1 andα∈ 2ω. Forη=1 we apply the conclusion of Lemma 2.4.(b) tos∈ω. Then

we have, by induction,ρθ+1
0 (α)= ρ0

(

ρθ0(α)
)

= ρ0

(

ρθ0

(

S
(

α0∆F0(α)
)

)

)

= ρθ+1
0

(

S
(

α0∆F0(α)
)

)

.

From this we deduce, forλ>0 limit, by induction again, that

ρ
(0,1)
0 (α)=ρ

θλ0
0 (α)=ρ

θλ0
0

(

S
(

α0∆F0(α)
)

)

=ρ
(0,1)
0

(

S
(

α0∆F0(α)
)

)

.

Thusρ(0,m+1)
0 (α)=ρ

(0,m+1)
0

(

S
(

α0∆F0(α)
)

)

, and

ρλ0(α)(m)=ρ
(0,m+1)
0 (α)(m)=ρ

(0,m+1)
0

(

S
(

α0∆F0(α)
)

)

(m)=ρλ0

(

S
(

α0∆F0(α)
)

)

(m).

• If we apply the previous point, or the conclusion of Lemma 2.4.(b) tos :=∅, then we get

α∈Cξ ⇔ ∃m∈ω ρη0(α)(m)=1 ⇔ ∃m′∈ω ρη0

(

S
(

α0∆F0(α)
)

)

(m′)=1 ⇔ S
(

α0∆F0(α)
)

∈Cξ.

ThusCξ is ccs.
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(2) Note first thatC0
ξ ,C1

ξ ∈Σ
0
ξ sinceρη0 isΣ0

1+η-measurable, are clearly disjoint, and are ccs as in (1)
since(m)0=

(

Bα(m)
)

0
in Lemma 2.4.(b).

• We set, forε∈2, Vε :=
{

α∈2ω | ∃m∈ω ρη0(α)(m)=1 and (m)0≡ε (mod2)
}

. ThenVε is aΣ0
ξ

set sinceρη0 is Σ
0
1+η-measurable. Let us prove thatVε is Σ

0
ξ-complete.

- If η=0, then0∞∈Vε\Vε, so thatVε isΣ0
1-complete.

- If η = θ+1, thenρη0 is an independentη-function. Let (Am)m∈ω be a sequence ofΠ0
1+θ(2

ω)
sets. Choose a continuous mapfm : 2ω → 2ω such thatAm = f−1

m (Cm). We definef : 2ω → 2ω by
f(α)(k) :=fm(α)(k) if πη(k)=m, andf is continuous. Moreover,

α∈Am ⇔ fm(α)∈Cn ⇔ f(α)∈Cm,

so that
⋃

m∈ω,(m)0≡ε (mod2) Am=f−1(Vε). ThusVε is Σ
0
ξ-complete.

- If η is the limit of theθm’s, thenρη0 is an independentη-function. We argue as in the successor case
to see thatVε isΣ0

ξ-complete.

• We argue by contradiction, which givesD∈∆
0
ξ separatingC0

ξ from C1
ξ . Let v0, v1 be disjointΣ0

ξ

subsets of2ω. Then we can find a continuous mapfε : 2ω → 2ω such thatvε= f−1
ε (Vε). As ρη0 is an

independentη-function, we getπη :ω→ω. We define a mapf : 2ω → 2ω by f(α)(k) := fε(α)(k) if
(

πη(k)
)

0
≡ ε (mod2), andf is continuous. Note thatα ∈ vε ⇔ fε(α) ∈ Vε ⇔ f(α) ∈ Vε, so that

vε = f−1(Vε). Thusα∈ v0 ⇔ f(α)∈ V0 ⇔ f(α)∈ V0\V1 ⊆C0
ξ ⊆D sincev0 is disjoint fromv1.

Similarly,α∈v1 ⇔ f(α)∈V1\V0⊆C
1
ξ ⊆¬D. Thusf−1(D) separatesv0 from v1. Asf−1(D)∈∆

0
ξ ,

this implies thatΣ0
ξ has the separation property, which contradicts 22.C in [K]. �

4 The proof of Theorem 1.8 for the Borel classes

The full versions of Theorem 1.8 and Corollary 1.9 for the Borel classes are as follows:

Theorem 4.1 LetTd be a tree with suitable levels,1≤ ξ <ω1, (Xi)i∈d a sequence of Polish spaces,
andA0,A1 disjoint analytic subsets ofΠi∈d Xi.

(1) LetS∈Σ
0
ξ(⌈Td⌉). Then one of the following holds:

(a) The setA0 is separable fromA1 by a pot(Π0
ξ) set.

(b) The inequality
(

(dω)i∈d, S, ⌈Td⌉\S
)

≤
(

(Xi)i∈d, A0, A1

)

holds.

If we moreover assume thatS is not separable from⌈Td⌉\S by a pot(Π0
ξ) set, then this is a

dichotomy.

(2) LetS0, S1∈Σ
0
ξ(⌈Td⌉) disjoint. Then one of the following holds:

(a) The setA0 is separable fromA1 by a pot(∆0
ξ) set.

(b) The inequality
(

(dω)i∈d, S
0, S1

)

≤
(

(Xi)i∈d, A0, A1

)

holds.

If we moreover assume thatS0 is not separable fromS1 by a pot(∆0
ξ) set, then this is a dichotomy.
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Corollary 4.2 LetΓ be Borel class. Then there are Borel subsetsS
0, S1 of (dω)d such that for any

sequence of Polish spaces(Xi)i∈d, and for any disjoint analytic subsetsA0, A1 of Πi∈d Xi, exactly
one of the following holds:

(a) The setA0 is separable fromA1 by a pot(Γ) set.

(b) The inequality
(

(dω)i∈d,S
0,S1

)

≤
(

(Xi)i∈d, A0, A1

)

holds.

4.1 Acyclicity

In this subsection we prove a result that will be used later toshow Theorem 4.1. This is the place
where the essence of the notion of a finite one-sided almost acyclic set is really used.

Lemma 4.1.1 Assume thatT ⊆X d is finite. Then the following are equivalent:

(a) The setT is one-sided and almost acyclic.

(b) For each
−→
x0∈T , there is an integer0 6=L<d+2 and a partition(Mj)j∈L of T \{

−→
x0} with

(1) ∀i∈d ∀j 6=k∈L Πi[Mj ] ∩Πi[Mk]=∅.

(2) ∀i∈d ∀j∈L ∀~x∈Mj xi=x
0
i ⇒ i=j.

Proof. (a)⇒ (b) If ~y 6=~z∈T and
(−→
yj
)

j≤l
is a walk inGT with

−→
y0 = ~y and

−→
yl =~z, then we choose

such a walk of minimal length, and we call itw~y,~z. We will define a partition ofT . We put, forj∈d,

N := { ~x∈T | ~x 6=
−→
x0 ∧ w

~x,
−→
x0

does not exist},

Lj := { ~x∈T | ~x 6=
−→
x0 ∧

(

w
~x,
−→
x0
(|w

~x,
−→
x0
|−2)

)

j
=x0j }.

So we defined a partition
(

N, (Lj)j∈d
)

of T \{
−→
x0} sinceT is one-sided. AsT is finite, there isj0∈d

minimal such thatLj=∅ if j >j0. We setMj :=Lj if j≤j0,Mj0+1 :=N andL :=j0+2.

(1) Let us prove thatΠi[Lj ] ∩ Πi[N ] = ∅, for eachi, j ∈ d. We argue by contradiction. This gives
xi ∈Πi[Lj] ∩ Πi[N ], ~x∈Lj, and also~y ∈N such thatxi = yi. As ~x, ~y ∈T andLj ∩ N = ∅, ~x 6= ~y
and~x, ~y areGT -related. Note thatw

~y,
−→
x0

does not exist, and thatw
~x,
−→
x0

exists. Now the sequence
(

~y, ~x, ...,
−→
x0
)

shows the existence ofw
~y,
−→
x0

, which is absurd.

It remains to see thatΠi[Lj]∩Πi[Lk]=∅, for eachi, j, k∈dwith j 6=k. We argue by contradiction.
This givesxi ∈Πi[Lj] ∩ Πi[Lk], ~x∈Lj, and also~y ∈Lk such thatxi = yi. As ~x, ~y ∈ T andj 6= k,

~x 6= ~y and~x, ~y areGT -related. Let us denotew
~x,
−→
x0

:=
(−→
zn
)

n≤l+1
andw

~y,
−→
x0

:=
(−→
yn
)

n≤l′+1
. Note

that
−→
zl 6=

−→
yl

′
sincezlj = x0j andyl

′

j 6= x0j , since otherwise
−→
yl

′
,
−→
x0 ∈T ,

−→
yl

′
6=
−→
x0 andyl

′

j = x0j , y
l′

k = x0k,
which contradicts the fact thatT is one-sided.

We denote byW :=
(−→
wn
)

n≤L
the followingGT -walk:

−→
zl ,

−−→
zl−1, ...,

−→
z0,

−→
y0,

−→
y1, ...,

−→
yl

′
. If there are

k<n≤L with
−→
wk=

−→
wn, then we putW ′ :=

−→
w0, ...,

−→
wk ,

−−−→
wn+1, ...,

−→
wL. If we iterate this construction,

then we get aGT -walk without repetitionV :=
(−→
vn
)

n≤L′
from

−→
w0 to

−→
wL.
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If there arei∈ d andk+1<n≤L′ with vki = vni , then we putV ′ :=
−→
v0, ...,

−→
vk,

−→
vn, ...,

−→
vL

′
. If we

iterate this construction, then we get aGT -walk without repetitionU :=
(−→
un
)

n≤L′′
from

−→
w0 to

−→
wL

for which it is not possible to findi∈d andk+1<n≤L′′ with uki =u
n
i .

Now
−→
x0,

−→
u0, ...,

−−→
uL

′′
,
−→
x0 is aGT -cycle contradicting the almost acyclicity ofT .

(2) If ~x∈N , thenw
~x,
−→
x0

does not exist. This implies thatxi 6=x0i for eachi∈d, since otherwise~x and
−→
x0 would beGT -related, which contradicts the non-existence ofw

~x,
−→
x0

.

If ~x ∈ Lj , then i is the only coordinate for whichxi = x0i sinceT is one-sided. Note that

w
~x,
−→
x0

=
(

~x,
−→
x0
)

. As ~x ∈ Lj , we get
(

w
~x,
−→
x0
(|w

~x,
−→
x0
|−2)

)

j
= x0j . But w

~x,
−→
x0
(|w

~x,
−→
x0
|−2) = ~x. Thus

xj=x
0
j andi=j.

(b) ⇒ (a) Let
−→
x0 6=~x∈T , i, j ∈d such thatx0i =xi andx0j =xj , andk∈L such that~x∈Mk. By (2)

we geti= k= j andT is one-sided. Now consider aGT -cycle (
−→
xn)n≤L. By (1) there isj ∈L such

that
−→
xn∈Mj for each0<n<L. Then by (2) we getx0j =x

1
j =x

L−1
j andT is almost acyclic. �

Definition 4.1.2 and Lemma 4.1.3 below are essentially due toG. Debs (see Subsection 2.1 in
[L7]):

Definition 4.1.2 (Debs) LetΘ:X d→2(ω
ω)d , T ⊆X d. We say that the mapθ=Πi∈d θi∈

(

(ωω)X
)d

is aπ-selector on T for Θ if

(a) θ(~x)=
(

θi(xi)
)

i∈d
for each~x∈X d.

(b) θ(~x)∈Θ(~x) for each~x∈T .

Lemma 4.1.3 (Debs) Letl be an integer,X := dl+1, T ⊆ X d be∆
1
1, finite, one-sided, and almost

acyclic,Θ:X d→Σ
1
1

(

(ωω)d
)

, andΘ:X d→Σ
1
1

(

(ωω)d
)

defined byΘ(~x) :=Θ(~x)
τ1

. ThenΘ admits
a π-selector onT if Θ does.

Proof. (a) Let
−→
x0 ∈ T , andΨ :X d →Σ

1
1

(

(ωω)d
)

. We assume thatΨ(~x) =Θ(~x) if ~x 6=
−→
x0, and that

Ψ
(−→
x0
)

⊆Θ
(−→
x0
)τ1

. We first prove thatΘ admits aπ-selector onT if Ψ does.

• Lemma 4.1.1 gives a finite partition(Mj)j∈L of T \{
−→
x0}. Fix aπ-selectorψ̃ on T for Ψ, and let

M :=max(d ∩ L). We defineΣ 1
1 setsUi, for i≤M , by

Ui :=
{

α∈ωω | ∃ψ∈
(

(ωω)X
)d

α=ψi(x
0
i ) ∧ ∀~x∈T ψ(~x)∈Ψ(~x)

}

.

As ψ̃
(−→
x0
)

=
(

ψ̃i(x
0
i )
)

i∈d
∈Ψ

(−→
x0
)

∩
(

(Πi≤M Ui)×(ωω)d−M−1
)

we get

∅ 6=Ψ

(

−→
x0
)

∩
(

(Πi≤M Ui)×(ωω)d−M−1
)

⊆Θ

(

−→
x0
)τ1

∩
(

(Πi≤M Ui)×(ωω)d−M−1
)

.
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By the separation theorem this implies thatΘ
(−→
x0
)

∩
(

(Πi≤M Ui)×(ωω)d−M−1
)

is not empty

and contains some point~α. Fix i≤M . Asαi∈Ui there isψi∈
(

(ωω)X
)d

such thatαi=ψ
i
i(x

0
i ) and

ψi(~x)∈Ψ(~x) if ~x∈T .

• Now we can defineθi :X →ωω, for eachi∈d. We put

θi(xi) :=























αi if xi=x0i ,

ψj
i (xi) if xi∈Πi[Mj ]\{x

0
i } ∧ j≤M ,

ψ0
i (xi) otherwise.

Then we setθ(~x)(i) :=θi(xi) if i∈d.

• It remains to see thatθ(~x)∈Θ(~x) for each~x∈T .

Note thatθ
(−→
x0
)

=~α∈Θ
(−→
x0
)

. So we may assume that~x 6=
−→
x0. So letj∈L with ~x∈Mj .

- If xi 6=x0i for eachi∈d andj≤M , thenθ(~x)=
(

θi(xi)
)

i∈d
=ψj(~x)∈Ψ(~x)=Θ(~x).

- Similarly, if xi 6=x0i for eachi∈d andj>M , thenθ(~x)=
(

θi(xi)
)

i∈d
=ψ0(~x)∈Ψ(~x)=Θ(~x).

- If xi=x0i for somei∈d, theni=j≤M . This implies thatθj(xj)=αj=ψ
j
j (x

0
j)=ψ

j
j (xj) and

θ(~x)=
(

θi(xi)
)

i∈d
=ψj(~x)∈Ψ(~x)=Θ(~x).

(b) Write T :=
{−→
x1, . . . ,

−→
xn
}

, and setΨ0 :=Θ. We defineΨj+1 :X
d→Σ

1
1

(

(ωω)d
)

as follows. We

putΨj+1(~x) :=Ψj(~x) if ~x 6=
−−→
xj+1, andΨj+1

(−−→
xj+1

)

:=Θ
(−−→
xj+1

)

, for j<n. The result now follows

from an iterative application of (a). �

4.2 The topologies

In this subsection we prove two other results that will be used to show Theorem 4.1. We use tools
of effective descriptive set theory (the reader should see [M] for the basic notions). We first recall a
classical result in the spirit of Theorem 3.3.1 in [H-K-Lo].

Notation. Let X be a recursively presented Polish space. Using the bijection betweenω andω2

defined before Definition 2.1, we can build a bijection(xn) 7→< xn > between(Xω)ω andXω by the
formula< xn > (l) :=x(l)0

(

(l)1
)

. The inverse mapx 7→
(

(x)n
)

is given by(x)n(p) :=x(< n, p >).
These bijections are recursive.

Lemma 4.2.1 LetX be a recursively presented Polish space. Then there areΠ
1
1 setsWX ⊆ ωω,

CX ⊆ωω×X with {(α, x)∈ωω×X | α∈WX andx /∈CX
α }∈Π

1
1 , ∆1

1(X)={CX
α | α∈∆

1
1 ∩W

X},
and∆1

1(X)={CX
α | α∈WX}.
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Proof. By 3E.2, 3F.6 and 3H.1 in [M], there isUX ∈Π
1
1 (ω

ω×X) which is universal forΠ1
1(X) and

satisfies the two following properties:

- A subsetP of X isΠ 1
1 if and only if there isα∈ωω recursive withP =UX

α .

- There isSX :ωω×ωω→ωω recursive such that(α, β, x)∈Uωω×X ⇔
(

SX(α, β), x
)

∈UX .

We set, forε∈2, Uε :={(α, x)∈ωω×X |
(

(α)ε, x
)

∈UX}. ThenUε∈Π
1
1 . By 4B.10 in [M],Π 1

1

has the reduction property, which givesU ′
0, U

′
1 ∈Π

1
1 disjoint withU ′

ε⊆Uε andU ′
0 ∪ U

′
1 =U0 ∪ U1.

We setWX :={α∈ωω | (U ′
0)α ∪ (U ′

1)α=X} andCX :=U ′
0, which definesΠ 1

1 sets. Moreover,

α∈WX ∧ x /∈CX
α ⇔ α∈WX ∧ (α, x)∈U ′

1

is Π
1
1 in (α, x). Assume thatA ∈∆

1
1(X), which givesα0, α1 ∈ ω

ω recursive withA= UX
α0

(resp.,
¬A=UX

α1
). We defineα∈ωω by (α)ε :=αε, so thatα is recursive. We get

x∈A⇔ (α0, x)∈UX ⇔ (α, x)∈U0 ⇔ (α, x)∈U0\U1 ⇔ (α, x)∈U ′
0,

x /∈A⇔ (α1, x)∈UX ⇔ (α, x)∈U1 ⇔ (α, x)∈U1\U0 ⇔ (α, x)∈U ′
1,

so thatα∈WX andCX
α =A. This also proves that∆1

1(X)⊆{CX
α | α∈WX}.

Conversely, letα ∈∆
1
1 ∩W

X . ThenCX
α ∈Π

1
1 , andx /∈CX

α ⇔ α ∈WX andx /∈CX
α , so that

¬CX
α ∈Π

1
1 andCX

α ∈∆
1
1. Note that this also proves that∆1

1(X)⊇{CX
α | α∈WX}. �

We now give some notation to state an effective version of Theorem 4.1.

Notation. LetX be a recursively presented Polish space.

• We will use the Gandy-Harrington topologyΣX onX generated byΣ 1
1 (X). Recall that the set

ΩX := {x ∈X | ωx
1 = ωCK

1 } is Borel andΣ 1
1 , that (ΩX ,ΣX) is a0-dimensional Polish space (the

intersection ofΩX with any nonemptyΣ 1
1 set is a nonempty clopen subset of(ΩX ,ΣX)) (see [L8]).

• Recall the topologyτ1 defined before Theorem 1.9. We will also consider some topologies between
τ1 andΣ(ωω)d . Let 2≤ ξ <ωCK

1 . The topologyτξ is generated byΣ 1
1

(

(ωω)d
)

∩Π
0
<ξ(τ1). We have

Σ
0
1(τξ)⊆Σ

0
ξ(τ1), so thatΠ0

1(τξ)⊆Π
0
ξ(τ1). These topologies are similar to the ones considered in

[Lo2] (see Definition 1.5).

• We set pot(Π0
0) := {Πi∈d Ai | Ai ∈ ∆

1
1(ω

ω), andAi = ωω for almost everyi ∈ d}. We also set
W :=W (ωω)d andC :=C(ωω)d (see Lemma 4.2.1). We will define specifically, forξ<ω1,

{

(β, γ)∈ωω×W | β codes a pot(Π0
ξ) set andCγ is the set coded byβ

}

.

The way we will do it is not the simplest possible (we can in fact forgetβ, and work withγ integer
instead of real, see [L7]). We do it this way to start to give the flavor of what is going on with the
Wadge classes.
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• To do this, we set

V0 :=

{

(β, γ)∈ωω×W | ∀i<β(0) (β∗)i∈W
ωω

∧ γ∈∆
1
1(β)∧







β(0)=d ∧ Cγ=Πi<β(0) C
ωω

(β∗)i
if d<ω

Cγ=
(

Πi<β(0) C
ωω

(β∗)i

)

×(ωω)ω if d=ω

}

.

We define an inductive operatorΦ overωω×ωω (see [C]) as follows:

Φ(A) :=A ∪ V0 ∪
{

(β, γ)∈ωω×W | γ∈∆
1
1(β)∧

∃γ′∈∆
1
1(β) ∀n∈ω

(

(β)n, (γ
′)n
)

∈A ∧ ¬Cγ=
⋃

n∈ω C(γ′)n

}

.

ThenΦ is clearly aΠ 1
1 monotone inductive operator. We set, for any ordinalξ, Vξ := Φξ (which is

coherent with the definition ofV0). We also setV<ξ :=
⋃

η<ξ Vη. The effective version of Theorem
4.1, which is the specific version of Theorem 1.9 for the Borelclasses, is as follows:

Theorem 4.2.2 LetTd be a tree with∆1
1 suitable levels,1≤ξ<ωCK

1 , andA0,A1 disjointΣ 1
1 subsets

of (ωω)d.

(1) Assume thatS ∈Σ
0
ξ(⌈Td⌉) is not separable from⌈Td⌉\S by a pot(Π0

ξ) set. Then the following
are equivalent:

(a) The setA0 is not separable fromA1 by a pot(Π0
ξ) set.

(b) The setA0 is not separable fromA1 by a∆1
1 ∩ pot(Π0

ξ) set.

(c) ¬
(

∃(β, γ)∈(∆1
1×∆

1
1) ∩ Vξ A0⊆Cγ⊆¬A1

)

.

(d) The setA0 is not separable fromA1 by aΠ0
ξ(τ1) set.

(e)A0
τξ ∩A1 6=∅.

(f) The inequality
(

(dω)i∈d, S, ⌈Td⌉\S
)

≤
(

(ωω)i∈d, A0, A1

)

holds.

(2) The setsVξ andV<ξ areΠ
1
1 .

(3) Assume thatS0, S1 ∈ Σ
0
ξ(⌈Td⌉) are disjoint and not separable by a pot(∆0

ξ) set. Then the
following are equivalent:

(a) The setA0 is not separable fromA1 by a pot(∆0
ξ) set.

(b) The setA0 is not separable fromA1 by a∆1
1 ∩ pot(∆0

ξ) set.

(c) ¬
(

∃(β, γ), (β′, γ′)∈(∆1
1×∆1

1) ∩ Vξ Cγ′ =¬Cγ and A0⊆Cγ⊆¬A1

)

.

(d) The setA0 is not separable fromA1 by a∆0
ξ(τ1) set.

(e)A0
τξ ∩A1

τξ 6=∅.

(f) The inequality
(

(dω)i∈d, S
0, S1

)

≤
(

(ωω)i∈d, A0, A1

)

holds.

The proofs of Theorems 4.1 and 4.2.2 will be by induction onξ. This appears in the statement of
the following lemma.
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Lemma 4.2.3 (1) The setV0 isΠ 1
1 .

(2) Let1≤ξ<ωCK
1 . We assume that Theorem 4.2.2 is proved forη<ξ.

(a) The setV<ξ is Π
1
1 .

(b) FixA∈Σ
1
1

(

(ωω)d
)

. ThenA
τξ ∈Σ

1
1

(

(ωω)d).

(c) Letn≥ 1, 1≤ ξ1<ξ2<. . .< ξn≤ ξ, andS1, . . ., Sn beΣ 1
1 sets. Assume thatSi⊆Si+1

τξi+1 for
1≤ i<n. ThenSn ∩

⋂

1≤i<n Si
τξi is τ1-dense inS1

τ1 .

Proof. (1) The setV0 is clearlyΠ 1
1 .

(2).(a) The proof is contained in the proof of Theorem 4.1 in [L7]. It is a consequence of Lemma 4.8
in [C].

(b) The proof is essentially the proof of Lemma 2.2.2.(a) in [L7].

(c) The proof is essentially the proof of Lemma 2.2.2.(b) in [L7]. �

Lemma 4.2.4 LetS, T ∈Σ
1
1

(

(ωω)d
)

such thatS is τ1-dense inT , (Xi)i∈d a sequence ofΣ 1
1 subsets

of ωω such thatXi=ω
ω if i≥ i0. ThenS ∩ (Πi∈d Xi) is τ1-dense inT ∩ (Πi∈d Xi).

Proof. Let (∆i)i∈d be a sequence of∆1
1 subsets ofωω such that∆i = ωω if i ≥ j0 ≥ i0, and also

T ∩ (Πi∈d Ii) 6= ∅, whereIi := Xi ∩ ∆i. We have to see thatS ∩ (Πi∈d Ii) 6= ∅. We argue by
contradiction. This gives a sequence(Di)i∈d of ∆1

1 subsets ofωω such thatIi ⊆ Di if i ∈ d, and
S ∩ (Πi∈d Di)=∅, by j0 applications of the separation theorem. ButT ∩ (Πi∈d Di) 6=∅, andDi=ω

ω

if i≥j0. SoS ∩ (Πi∈d Di) 6=∅, by τ1-density ofS in T , which is absurd. �

4.3 Representation of Borel sets

Now we come to the representation theorem of Borel sets by G. Debs and J. Saint Raymond (see
[D-SR]). It specifies the classical result of Lusin asserting that any Borel set in a Polish space is the
bijective continuous image of a closed subset of the Baire space. The material in this Subsection can
be found in Subsection 2.3 of [L7], but we recall most of it since it will be used iteratively in the case
of Wadge classes. The following definition can be found in [D-SR].

Definition 4.3.1 (Debs-Saint Raymond) Letc be a countable set. A partial order relationR on c<ω

is a tree relation if, for t∈c<ω,

(a) ∅ R t.

(b) The setPR(t) :={s∈c<ω | s R t} is finite and linearly ordered byR.

For instance, the non strict extension relation⊆ is a tree relation.

• LetR be a tree relation. AnR-branch is an⊆-maximal subset ofc<ω linearly ordered byR. We
denote by[R] the set of all infiniteR-branches.

We equip(c<ω)ω with the product of the discrete topology onc<ω. If R is a tree relation, then the
space[R]⊆ (c<ω)ω is equipped with the topology induced by that of(c<ω)ω. The maph : cω → [⊆]
defined byh(γ) :=(γ|j)j∈ω is an homeomorphism.
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• LetR, S be tree relations withR⊆S. Thecanonical map Π:[R]→ [S] is defined by

Π(B) := the uniqueS-branch containingB.

• LetS be a tree relation. We say thatR⊆S is distinguished in S if

∀s, t, u∈c<ω s S t S u
s R u

}

⇒ s R t.

For example, letC be a closed subset ofcω, and define

s R t ⇔ s⊆ t ∧Ns ∩ C 6=∅.

ThenR is distinguished in⊆.

• Letη<ω1. A family(R(ρ))ρ≤η of tree relations is aresolution family if

(a)R(ρ+1) is a distinguished subtree ofR(ρ), for all ρ<η.

(b)R(λ)=
⋂

ρ<λ R(ρ), for all limit λ≤η.

We will use the following extension of the property of distinction:

Lemma 4.3.2 Let η < ω1, (R(ρ))ρ≤η a resolution family, andρ < η. Assume thats R(0) s′ R(ρ) s′′

ands R(ρ+1) s′′. Thens R(ρ+1) s′.

Notation. Let η < ω1, (R(ρ))ρ≤η a resolution family such thatR(0) is a subrelation of⊆, ρ≤ η and
t∈c<ω\{∅}. We set

tρ := t | max{r< |t| | t|r R(ρ) t}.

We enumerate{tρ | ρ≤η} by {tξi | 1≤ i≤n}, where1≤n∈ω andξ1<. . .<ξn=η. We can write
tξn ⊂ 6= t

ξn−1 ⊂ 6= . . .⊂ 6= t
ξ2 ⊂ 6= t

ξ1 ⊂ 6= t. By Lemma 4.3.2 we havetξi+1 R(ξi+1) tξi for each1≤ i<n.

Lemma 4.3.3 Let η < ω1, (R(ρ))ρ≤η a resolution family such thatR(0) is a subrelation of⊆, t in
c<ω\{∅} and1≤ i<n.

(a) Setηi :={ρ≤η | tξi ⊆ tρ}. Thenηi is a successor ordinal.

(b) We may assume thattξi+1⊂ 6= t
ξi .

The following is part of Theorem I-6.6 in [D-SR].

Theorem 4.3.4 (Debs-Saint Raymond) Letη < ω1, R a tree relation,(In)n∈ω a sequence ofΠ0
η+1

subsets of[R]. Then there is a resolution family(R(ρ))ρ≤η with

(a)R(0) = R.

(b) The canonical mapΠ:[R(η)]→ [R] is a continuous bijection.

(c) The setΠ−1(In) is a closed subset of[R(η)] for each integern.

Now we come to the actual proof of Theorem 4.1.
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4.4 Proof of Theorem 4.1

The next result is essentially Theorem 2.4.1 in [L7]. But we give its proof since it is the basis for
further generalizations.

Theorem 4.4.1 LetTd be a tree with∆1
1 suitable levels,ξ<ωCK

1 a successor ordinal,S∈Σ
0
ξ(⌈Td⌉),

andA0, A1 disjoint Σ 1
1 subsets of(ωω)d. We assume that Theorem 4.2.2 is proved forη < ξ. Then

one of the following holds:

(a)A0
τξ ∩A1=∅.

(b) The inequality
(

(Π′′
i ⌈Td⌉)i∈d, S, ⌈Td⌉\S

)

≤
(

(ωω)i∈d, A0, A1

)

holds.

Proof. Fix η<ωCK
1 with ξ=η+1.

• Recall the finite setscl defined at the end of the proof of Proposition 2.2 (we only usedthe fact
that Td has finite levels to see that they are finite). With the notation of Definition 4.3.1, we put
c :=

⋃

l∈ω cl, so thatc is countable. The setI :=h[⌈Td⌉\S] is aΠ0
η+1 subset of[⊆]. Theorem 4.3.4

provides a resolution family. We put

D :=
{

~s∈Td | ~s=~∅ ∨ ∃B∈Π−1(I) ~s∈B
}

.

• Assume thatA0
τξ ∩A1 is not empty. Recall that(ΩX ,ΣX) is a Polish space (see the notation at the

beginning of Section 4.2). We fix a complete metricdX on (ΩX ,ΣX).

• We construct

- (αi
s)i∈d,s∈Π′′

i Td
⊆ωω,

- (Oi
s)i≤|s|,i∈d,s∈Π′′

i Td
⊆Σ

1
1 (ω

ω),

- (U~s)~s∈Td
⊆Σ

1
1

(

(ωω)d
)

.

We want these objects to satisfy the following conditions.

(1) αi
s∈O

i
s⊆Ωωω ∧ (αi

si
)i∈d∈U~s⊆Ω(ωω)d ,

(2) Oi
sq⊆O

i
s,

(3) diamdωω (O
i
s)≤2−|s| ∧ diamd

(ωω)d
(U~s)≤2−|~s|,

(4) U~s⊆A0
τξ ∩A1 if ~s∈D,

(5) U~s⊆A0 if ~s /∈D,

(6)
(

1≤ρ≤η ∧ ~s R(ρ) ~t
)

⇒ U~t⊆U~s
τρ ,

(7)
(

(~s,~t∈D ∨ ~s,~t /∈D) ∧ ~s R(η) ~t
)

⇒ U~t⊆U~s.

22



• Let us prove that this construction is sufficient to get the theorem.

- Fix ~β ∈ ⌈Td⌉. Then we can define(jk)k∈ω :=(j
~β
k )k∈ω by Π−1

(

(~β|j)j∈ω
)

=(~β|jk)k∈ω, with the

inequalitiesjk<jk+1. In particular,~β|jk R(η) ~β|jk+1. We have

~β /∈S ⇔ h(~β)=(~β|j)j∈ω∈I ⇔ (~β|jk)k∈ω∈Π−1(I) ⇔ ∀k≥k0 :=0 ~β|jk∈D

sinceΠ−1(I) is a closed subset of[R(η)]. Similarly, ~β ∈ S is equivalent to the existence ofk0 ∈ ω
such that~β|jk /∈D for eachk≥k0.

This implies that(U~β|jk
)k≥k0 is a non-increasing sequence of nonempty clopen subsets of the

space(Ω(ωω)d ,Σ(ωω)d) whosed(ωω)d-diameters tend to zero, and we can define

{F(~β)} :=
⋂

k≥k0

U~β|jk
⊆Ω(ωω)d .

Note thatF(~β) is the limit of
(

(αi
βi|jk

)i∈d
)

k∈ω
.

- Now let γ ∈ Π′′
i ⌈Td⌉, and ~β ∈ ⌈Td⌉ such thatβi = γ. We setfi(γ) := Fi(~β). This defines

fi :Π
′′
i ⌈Td⌉→ωω.

Note thatfi(γ) is the limit of (αi
γ|j)j∈ω. Indeed,fi(γ) is the limit of (αi

γ|jk
)k∈ω. If j ≥ i, then

αi
γ|j ∈O

i
γ|j , and the sequence(Oi

γ|j)j≥i is decreasing. Fixε> 0, k≥ i such that2−k <ε. Then we

get, if j≥k, dωω

(

fi(γ), α
i
γ|j

)

≤diamdωω (O
i
γ|j)≤2−j≤2−k<ε. In particular,fi(γ) does not depend

on the choice of~β. This also proves thatfi is continuous onΠ′′
i ⌈Td⌉.

- Note thatFi(~β) is the limit of some subsequence of(αi
βi|j

)j∈ω, by continuity of the projections.

ThusFi(~β)=fi(βi), andF(~β)=(Πi∈d fi)(~β). This implies that the inclusionsS⊆(Πi∈d fi)
−1(A0)

and⌈Td⌉\S⊆(Πi∈d fi)
−1(A1) hold.

• So let us prove that the construction is possible.

- Let (αi
∅)i∈d ∈ A0

τξ ∩ A1 ∩ Ω(ωω)d , which is nonempty sinceA0
τξ ∩ A1 6= ∅ is Σ

1
1 , by Lemma

4.2.3.(2).(b). Then we choose aΣ 1
1 subsetU~∅

of (ωω)d, with d(ωω)d-diameter at most1, such that

(αi
∅)i∈d∈U~∅

⊆A0
τξ ∩A1 ∩ Ω(ωω)d .

We choose aΣ 1
1 subsetO0

∅ of ωω, with dωω -diameter at most1, withα0
∅∈O

0
∅⊆Ωωω , which is possible

sinceΩ(ωω)d ⊆Ωd
ωω . Assume that(αi

s)|s|≤l, (O
i
s)|s|≤l and(U~s)|~s|≤l satisfying conditions (1)-(7) have

been constructed, which is the case forl=0.
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- Let
−→
tm∈Td ∩ (dl+1)d. Note that

−→
tmη ∈D if

−→
tmη ∈D is not equivalent to

−→
tm∈D (see the notation

before Lemma 4.3.3).

- The conclusions in the assertions (a), (b) and (c) of the following claim do not really depend on
their respective assumptions, but we will use these assertions later in this form. We defineXi :=O

i
ti

if i≤ l, andωω if i>l.

Claim. Assume thatη>0.

(a) The setA0 ∩
⋂

1≤ρ≤η U−→
tmρ

τρ ∩ (Πi∈d Xi) is τ1-dense inU−→
tm1

τ1 ∩ (Πi∈d Xi) if
−→
tmη ∈D and

−→
tm /∈D.

(b) The setU−→
tmη ∩

⋂

1≤ρ<η U−→
tmρ

τρ ∩ (Πi∈d Xi) is τ1-dense inU−→
tm1

τ1 ∩ (Πi∈d Xi) if
−→
tmη,

−→
tm∈D

or
−→
tmη,

−→
tm /∈D.

Indeed, let us forgetΠi∈dXi for the moment. We may assume that
−→
tmξi+1⊂ 6=

−→
tmξi if 1≤ i<n, by

Lemma 4.3.3. We setSi :=U−→
tmξi

, for 1≤ξi≤η. As
−→
tmξi+1 R(ξi+1) −→tmξi , we can writeSi⊆Si+1

τξi+1,

for 1 ≤ ξi < η, by induction assumption. If
−→
tmη ∈ D and

−→
tm /∈ D, thenSn ⊆ A0

τη+1. Thus
A0∩

⋂

1≤ξi≤η U−→
tmξi

τξi andU−→
tmη∩

⋂

1≤ξi<η U−→
tmξi

τξi areτ1-dense inU−→
tm1

τ1 , by Lemma 4.2.3.(2).(c).

But if 1≤ρ≤η, then there is1≤ i≤nwith
−→
tmρ=

−→
tmξi . Andρ≤ξi since we have

−→
tmξi+1⊂ 6=

−→
tmξi

if 1≤ i<n. We are done since
⋂

1≤ρ≤η U−→
tmρ

τρ
=
⋂

1≤ξi≤η U−→
tmξi

τξi and

U−→
tmη ∩

⋂

1≤ρ<η

U−→
tmρ

τρ
=U−→

tmη ∩
⋂

1≤ξi<η

U−→
tmξi

τξi

The claim now comes from Lemma 4.2.4. ⋄

- LetX :=dl+1. The mapΘ:X d→Σ
1
1

(

(ωω)d
)

is defined onT l+1 by

Θ(
−→
tm) :=











A0 ∩
⋂

1≤ρ≤η U−→
tmρ

τρ ∩ (Πi∈d Xi) ∩Ω(ωω)d if
−→
tmη∈D ∧

−→
tm /∈D,

U−→
tmη ∩

⋂

1≤ρ<η U−→
tmρ

τρ ∩ (Πi∈d Xi) if
−→
tmη,

−→
tm∈D ∨

−→
tmη,

−→
tm /∈D.

By the claim,Θ(
−→
tm) is τ1-dense inU−→

tm1

τ1 ∩ (Πi∈d Xi) if η > 0. As
−→
tm1 ⊆ ~t ⊆

−→
tm andR(1)

is distinguished in⊆ we get
−→
tm1 R(1) ~t andU~t ⊆ U−→

tm1

τ1 , by induction assumption. Therefore

U~t

τ1 ∩ (Πi∈d Xi)⊆U−→
tm1

τ1 ∩ (Πi∈d Xi)⊆Θ(
−→
tm), and(αi

ti
)i∈d ∈U~t ∩ (Πi∈d Xi)⊆Θ(

−→
tm) (even if

η=0). ThereforeΘ admits aπ-selector onT l+1. Indeed, we define, for eachi∈ d, θi :X →ωω by
θi(timi) :=α

i
ti

if ti∈Π′′
i Td, 0∞ otherwise.

- AsTd is a tree with∆1
1 suitable levels, we can apply Lemma 4.1.3. ThusΘ admits aπ-selectorθ on

T l+1. We set, fors∈Πi[T
l+1], αi

s :=θi(s).

- We chooseΣ 1
1 setsU−→

tm
with d(ωω)d-diameter at most2−l−1 such thatθ(

−→
tm) ∈ U−→

tm
⊆ Θ(

−→
tm) if

−→
tm∈T l+1.
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- Finally, we choose theOi
sq ’s. We first prove thatαi

sq∈O
i
s if sq∈Πi[T

l+1], i∈d andi≤ l.

Let
−→
tm∈T l+1 such thatsq= timi. Thenαi

sq = θi(sq)= θi(timi). As θ(
−→
tm)∈Θ(

−→
tm) andi≤ l,

we getαi
sq∈O

i
ti
=Oi

s.

Now we can define theOi
sq ’s. If sq∈Πi[T

l+1], then we choose aΣ 1
1 setOi

sq, with dωω -diameter
at most2−l−1, such that

αi
sq∈O

i
sq⊆

{

Oi
s if i≤ l,

Ωωω otherwise.

- This finishes the proof since~u R(ρ) −→tm and ~u 6=
−→
tm ⇒ ~u R(ρ) −→tmρ R(ρ) −→tm, by Lemma 4.3.2.�

Now we come to the ambiguous classes.

Theorem 4.4.2 Let Td be a tree with∆1
1 suitable levels,ξ < ωCK

1 a successor ordinal,S0, S1 in
Σ

0
ξ(⌈Td⌉) disjoint, andA0,A1 disjointΣ 1

1 subsets of(ωω)d. We assume that Theorem 4.2.2 is proved
for η<ξ. Then one of the following holds:

(a)A0
τξ ∩A1

τξ =∅.

(b) The inequality
(

(Π′′
i ⌈Td⌉)i∈d, S

0, S1
)

≤
(

(ωω)i∈d, A0, A1

)

holds.

Proof. Let us indicate the differences with the proof of Theorem 4.4.1. Assume thatA0
τξ ∩A1

τξ 6=∅.
We setIε :=h[⌈Td⌉\Sε], so thatIε is aΠ0

ξ subset of[⊆]. We also set, forε∈2,

Dε
1 :=

{

~s∈Td | ~s=~∅ ∨ ∃B∈Π−1(Iε) ~s∈B
}

,

andDε
0 :=Td\D

ε
1. We set, forθ0, θ1∈2,Dθ0,θ1 :=D

0
θ0

∩D1
θ1

. For example,~∅∈D1,1.

• Conditions (4), (5), and (7) become the following:

(4) U~s⊆A0
τξ ∩A1

τξ if ~s∈D1,1,

(5) U~s⊆Aε if ~s∈Dε,1−ε,

(7) (~s,~t∈Dε,1−ε ∧ ~s R
(η) ~t ) ⇒ U~t⊆U~s.

• Fix ~α ∈ ⌈Td⌉. There are(θ0, θ1) ∈ 22 andk0 ∈ ω such that, fork ≥ k0, ~α|jk ∈ Dθ0,θ1. Thus
Sε⊆(Πi∈d fi)

−1(Aε).

• Let (αi
∅)i∈d ∈A0

τξ ∩ A1
τξ ∩ Ω(ωω)d , which is nonempty sinceA0

τξ ∩ A1
τξ 6= ∅ is Σ

1
1 . We choose

U~∅
with (αi

∅)i∈d∈U~∅
⊆A0

τξ ∩ A1
τξ ∩ Ω(ωω)d .
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• The statement of the claim is now as follows:

Claim. Assume thatη>0.

(a) Aε ∩
⋂

1≤ρ≤η U−→
tmρ

τρ ∩ (Πi∈d Xi) is τ1-dense inU−→
tm1

τ1 ∩ (Πi∈d Xi) if
−→
tmη /∈ Dε,1−ε and

−→
tm∈Dε,1−ε.

(b) U−→
tmη ∩

⋂

1≤ρ<η U−→
tmρ

τρ ∩ (Πi∈d Xi) is τ1-dense inU−→
tm1

τ1 ∩ (Πi∈d Xi) otherwise.

The point is that
−→
tmη∈D1,1 if

−→
tmη /∈Dε,1−ε since

−→
tmη∈Dθ0,θ1 with ε≤θ0 and1−ε≤θ1.

• In the same fashion,Θ(
−→
tm) is now defined as follows:

Θ(
−→
tm) :=











Aε ∩
⋂

1≤ρ≤η U−→
tmρ

τρ ∩ (Πi∈d Xi) ∩ Ω(ωω)d if
−→
tmη /∈Dε,1−ε ∧

−→
tm∈Dε,1−ε,

U−→
tmη ∩

⋂

1≤ρ<η U−→
tmρ

τρ ∩ (Πi∈d Xi) otherwise.

We conclude as in the proof of Theorem 4.4.1. �

Now we come to the limit case. We need some more definitions that can be found in [D-SR].

Definition 4.4.3 (Debs-Saint Raymond) LetR be a tree relation onc<ω. If t∈c<ω, thenhR(t) is the
number of strictR-predecessors oft. So we havehR(t)=Card

(

PR(t)
)

−1.

Let ξ<ω1 be an infinite limit ordinal. We say that a resolution family(R(ρ))ρ≤ξ is uniform if

∀k∈ω ∃ηk<ξ ∀s, t∈c
<ω

(

min
(

hR(ξ)(s), hR(ξ) (t)
)

≤k ∧ s R(ηk) t
)

⇒ s R(ξ) t.

We may (and will) assume thatηk≥2.

The following is part of Theorem I-6.6 in [D-SR].

Theorem 4.4.4 (Debs-Saint Raymond) Letξ < ω1 be an infinite limit ordinal,R a tree relation,
(In)n∈ω a sequence ofΠ0

ξ subsets of[R]. Then there is a uniform resolution family(R(ρ))ρ≤ξ with

(a)R(0) = R.

(b) The canonical mapΠ:[R(ξ)]→ [R] is a continuous bijection.

(c) The setΠ−1(In) is a closed subset of[R(ξ)] for each integern.

Here again, the next result is essentially in [L7] (see Theorem 2.4.4).

Theorem 4.4.5 Let Td be a tree with∆1
1 suitable levels,ξ < ωCK

1 an infinite limit ordinal,S in
Σ

0
ξ(⌈Td⌉), andA0, A1 disjoint Σ 1

1 subsets of(ωω)d. We assume that Theorem 4.2.2 is proved for
η<ξ. Then one of the following holds:

(a)A0
τξ ∩A1=∅.

(b) The inequality
(

(Π′′
i ⌈Td⌉)i∈d, S, ⌈Td⌉\S

)

≤
(

(ωω)i∈d, A0, A1

)

holds.
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Proof. Let us indicate the differences with the proof of Theorem 4.4.1.

• The setI :=h[⌈Td⌉\S] isΠ0
ξ([⊆]). Theorem 4.4.4 provides a uniform resolution family.

• If ~t∈c<ω then we setη(~t ) :=max{ηh
R(ξ) (~s)+1 | ~s⊆~t }. Note thatη(~s )≤η(~t ) if ~s⊆~t.

• Conditions (6) and (7) become

(6) (1≤ρ≤η
(

~s
)

∧ ~s R(ρ) ~t ) ⇒ U~t⊆U~s
τρ ,

(7)
(

(~s,~t∈D ∨ ~s,~t /∈D) ∧ ~s R(ξ) ~t
)

⇒ U~t⊆U~s.

Claim 1. Assume that
−→
tmρ 6=

−→
tmξ. Thenρ+1≤η(

−→
tmρ+1).

We argue by contradiction. We getρ+1 > ρ ≥ η(
−→
tmρ+1) ≥ η

h
R(ξ) (

−→
tmξ)+1

= η
h
R(ξ) (

−→
tm)

. As
−→
tmρ R(ρ) −→tm we get

−→
tmρ R(ξ) −→tm, and also

−→
tmρ=

−→
tmξ, which is absurd. ⋄

Note thatξn−1<ξn−1+1≤η(
−→
tmξn−1+1)≤η(

−→
tm). This implies that

−→
tmη(

−→
tm)=

−→
tmξ.

Claim 2. (a) The setA0 ∩
⋂

1≤ρ≤η(
−→
tm)

U−→
tmρ

τρ ∩ (Πi∈d Xi) is τ1-dense inU−→
tm1

τ1 ∩ (Πi∈d Xi) if
−→
tmη∈D and

−→
tm /∈D.

(b) The setU−→
tmξ ∩

⋂

1≤ρ<η(
−→
tm)

U−→
tmρ

τρ ∩(Πi∈d Xi) is τ1-dense inU−→
tm1

τ1∩(Πi∈d Xi) if
−→
tmξ,

−→
tm∈D

or
−→
tmξ,

−→
tm /∈D.

Indeed, we setSi :=U−→
tmξi

, for 1≤ ξi≤ ξ. By Claim 1 we can apply Lemma 4.2.3.(2).(c) and we
are done. ⋄

• The mapΘ:X d→Σ
1
1

(

(ωω)d
)

is defined onT l+1 by

Θ(
−→
tm) :=











A0 ∩
⋂

1≤ρ≤η(
−→
tm)

U−→
tmρ

τρ ∩ (Πi∈d Xi) ∩Ω(ωω)d if
−→
tmη∈D ∧

−→
tm /∈D,

U−→
tmξ∩

⋂

1≤ρ<η(
−→
tm)

U−→
tmρ

τρ∩(Πi∈d Xi) if
−→
tmξ,

−→
tm∈D ∨

−→
tmξ,

−→
tm /∈D.

We conclude as in the proof of Theorem 4.4.1, using the facts thatηk≥1 andη(.) is increasing. �

Now we come to the ambiguous classes.

Theorem 4.4.6 LetT be a tree with∆1
1 suitable levels,ξ <ωCK

1 an infinite limit ordinal,S0, S1 in
Σ

0
ξ(⌈Td⌉) disjoint, andA0,A1 disjointΣ 1

1 subsets of(ωω)d. We assume that Theorem 4.2.2 is proved
for η<ξ. Then one of the following holds:

(a)A0
τξ ∩A1

τξ =∅.

(b) The inequality
(

(Π′′
i ⌈Td⌉)i∈d, S

0, S1
)

≤
(

(ωω)i∈d, A0, A1

)

holds.
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Proof. Let us indicate the differences with the proofs of Theorems 4.4.1, 4.4.2 and 4.4.5.

• The setIε :=h[⌈Td⌉\Sε] is Π
0
ξ([⊆]).

• The statement of Claim 2 is now as follows.

Claim 2. (a)Aε∩
⋂

1≤ρ≤η(
−→
tm)

U−→
tmρ

τρ ∩(Πi∈d Xi) is τ1-dense inU−→
tm1

τ1 ∩(Πi∈d Xi) if
−→
tmξ /∈Dε,1−ε

and
−→
tm∈Dε,1−ε.

(b) U−→
tmξ ∩

⋂

1≤ρ<η(
−→
tm)

U−→
tmρ

τρ ∩ (Πi∈d Xi) is τ1-dense inU−→
tm1

τ1 ∩ (Πi∈d Xi) otherwise.

• In the same fashion,Θ(
−→
tm) is now defined as follows:

Θ(
−→
tm) :=











Aε ∩
⋂

1≤ρ≤η(
−→
tm)

U−→
tmρ

τρ ∩ (Πi∈d Xi) ∩ Ω(ωω)d if
−→
tmξ /∈Dε,1−ε ∧

−→
tm∈Dε,1−ε,

U−→
tmξ ∩

⋂

1≤ρ<η(
−→
tm)

U−→
tmρ

τρ ∩ (Πi∈d Xi) otherwise.

We conclude as in the proof of Theorem 4.4.5. �

Lemma 4.4.7 Let Γ be a Wadge class of Borel sets. Then the class of pot(Γ) sets is closed under
pre-images by products of continuous maps.

Proof. Assume thatA ∈ pot(Γ), A ⊆ Πi∈d Yi, andfi : Xi → Yi is continuous. Letτi be a finer
0-dimensional Polish topology onYi such thatA∈Γ

(

Πi∈d (Yi, τi)
)

. As fi :Xi → (Yi, τi) is Borel,
there is a finer0-dimensional Polish topologyσi onXi such thatfi : (Xi, σi)→(Yi, τi) is continuous.
Thus(Πi∈d fi)

−1(A)∈Γ
(

Πi∈d (Xi, σi)
)

and(Πi∈d fi)
−1(A)∈pot(Γ). �

Proof of Theorem 4.1 forξ, assuming that Theorem 4.2.2 is proved forη<ξ.

(1) We assume that (a) does not hold. This implies that theXi’s are not empty.

- We first prove that we may assume thatXi=ω
ω for eachi∈d.

By 13.5 in [K], there is a finer zero-dimensional Polish topology τi onXi, and, by 7.8 in [K],
(Xi, τi) is homeomorphic to a closed subsetFi of ωω, via a mapϕi. By 2.8 in [K], there is a
continuous retractionri : ωω → Fi. LetA′

ε be the intersection ofΠi∈d Fi with the pre-image ofAε

by Πi∈d (ϕ−1
i ◦ ri). ThenA′

0 andA′
1 are disjoint analytic subsets of(ωω)d. Moreover,A′

0 is not
separable fromA′

1 by a pot(Π0
ξ) set, since otherwise (a) would hold.

This givesgi :dω→ωω continuous withS⊆ (Πi∈d gi)
−1(A′

0) and⌈Td⌉\S⊆ (Πi∈d gi)
−1(A′

1). It
remains to setfi(α) :=(ϕ−1

i ◦ ri ◦ gi)(α) if α∈dω.

- To simplify the notation, we may assume thatTd has∆1
1 levels,ξ<ωCK

1 andA0,A1 areΣ 1
1

(

(ωω)d
)

.
Notice thatA0

τξ ∩ A1 is not empty, since otherwiseA0 would be separable fromA1 by a set in
Π

0
1(τξ) ⊆ Π

0
ξ(τ1) ⊆ pot(Π0

ξ) set, which is absurd. So (b) holds, by Theorems 4.4.1 and 4.4.5 (as
Π′′

i ⌈Td⌉ is compact, we just have to compose with continuous retractions to get functions defined on
dω). So (a) or (b) holds.
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• If P ∈pot(Π0
ξ) separatesA0 fromA1 and (b) holds, thenS⊆ (Πi∈d fi)

−1(P )⊆¬(⌈Td⌉\S). This
implies thatS is separable from⌈Td⌉\S by a pot(Π0

ξ) set, by Lemma 4.4.7.

(2) We argue as in the proof of (1). Here we considerA0
τξ ∩A1

τξ , and we apply Theorems 4.4.2 and
4.4.6. This finishes the proof. �

Proof of Theorem 4.2.2.We assume that Theorem 4.1 is proved forξ, and that Theorem 4.2.2 is
proved forη<ξ.

(1) By Lemma 4.2.3,V0 andV<ξ areΠ 1
1 .

(a)⇒ (b) and (a)⇒ (d) are clear since∆ωω is Polish.

(b)⇒ (c) We argue by contradiction. Asγ∈∆
1
1 we getCγ ∈∆

1
1. If (β, γ)∈V<ξ , thenCγ∈pot(Π0

<ξ),
which is absurd. If(β, γ)∈V0, thenCγ ∈pot(Π0

0)⊆pot(Π0
ξ), which is absurd. If(β, γ) /∈V<ξ ∪ V0,

then we getγ′ ∈ ∆
1
1 (see the definition ofΦ before Theorem 4.2.2). As

(

(β)n, (γ
′)n
)

∈ V<ξ, we
getC(γ′)n ∈ pot(Π0

<ξ). Now the equality¬Cγ =
⋃

n∈ω C(γ′)n implies thatCγ ∈ pot(Π0
ξ), which is

absurd.

(d) ⇒ (e) This comes from the proof of Theorem 4.1.(1).

(e)⇒ (f) This comes from Theorems 4.4.1 and 4.4.5.

(f) ⇒ (a) This comes from Theorem 4.1.(1).

(c) ⇒ (e) We argue by contradiction, so thatA0
τξ separatesA0 fromA1.

If ξ = 1, then for each~δ ∈ A1 there is(β̃, γ̃) ∈ (∆1
1 ×∆

1
1) ∩ V0 such that~δ ∈ Cγ̃ ⊆ ¬A0.

The first reflection theorem givesβ, γ′ ∈ ∆
1
1 such that

(

(β)n, (γ
′)n
)

∈ V0 for each integern and
A1⊆U :=

⋃

n∈ω C(γ′)n ⊆¬A0. We chooseγ∈∆
1
1 ∩W with ¬Cγ=U , and(β, γ) contradicts (c).

If ξ ≥ 2, then by induction assumption and the first reflection theorem there areβ, γ′ ∈∆
1
1 with

(

(β)n, (γ
′)n
)

∈ V<ξ andC(γ′)n ⊆ ¬A0, for each integern, andA1 ⊆ U :=
⋃

n C(γ′)n . But U is
∆

1
1 ∩ pot(Σ0

ξ) and separatesA1 fromA0. So letγ∈∆
1
1 ∩W with ¬Cγ=U . We have(β, γ)∈Vξ and

Cγ separatesA0 fromA1, which is absurd.

(2) It is clear thatVξ isΠ 1
1 .

(3) We argue as in the proof of (1), except for the implication(c)⇒ (e) (for the implication (e)⇒ (f)
we use Theorems 4.4.2 and 4.4.6).

(c) ⇒ (e) We argue by contradiction. By 4D.2 in [M], there areW ∈Π
1
1 (ω) and a partial function

d :ω→ωω, Π 1
1 -recursive onW , such thatd′′W is the set of∆1

1 points ofωω. We define

ΠAε :=
{

n∈ω | (n)0, (n)1∈W ∧
(

d
(

(n)0
)

,d
(

(n)1
))

∈V<ξ ∧Cd((n)1) ∩Aε=∅
}

.

ThenΠAε ∈Π
1
1 and∀~β ∈ (ωω)d ∃n∈ΠA0 ∪ ΠA1

~β ∈Cd((n)1) sinceA0
τξ ∩ A1

τξ = ∅ (we use the
induction assumption). By the first reflection theorem thereisD∈∆

1
1(ω) such thatD⊆ΠA0 ∪ ΠA1

and∀~β∈(ωω)d ∃n∈D ~β∈Cd((n)1).
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As Π
1
1 has the reduction property, we can findΠ′

Aε
∈ Π

1
1 disjoint such thatΠ′

Aε
⊆ ΠAε and

Π′
A0

∪Π′
A1

=ΠA0 ∪ΠA1 . We set∆:=
⋃

n∈D∩Π′
A1

Cd((n)1)\(
⋃

q<n Cd((q)1)). Then

¬∆=
⋃

n∈D∩Π′
A0

C
(ωω)d

d((n)1)
\(
⋃

q<n

C
(ωω)d

d((q)1)
),

which proves that∆∈∆
1
1∩pot(∆0

ξ), and separatesA0 fromA1. Let (β, γ), (β′, γ′)∈(∆1
1×∆

1
1)∩Vξ

with ∆=Cγ and¬∆=Cγ′ . Then we get a contradiction with (c). �

Remarks.The assertions 4.2.3.(2).(a) and 4.2.3.(2).(b) admit uniform versions in the following sense.
By 3E.2, 3F.6 and 3H.1 in [M], there isS : ωω×ωω → ωω recursive such that for each recursively
presented Polish spaceX there is a universal setUX ∈Π

1
1

(

(ωω)d
)

satisfying the following properties:

- Π1
1(X)={UX

α | α∈ωω},

- Π 1
1 (X)={UX

α | α∈ωω recursive},

- (α, β, x)∈Uωω×X ⇔
(

S(α, β), x
)

∈UX .

We setU :=U (ωω)d . The following relations areΠ 1
1 :

Q(α, β, γ) ⇔ α∈WO∧ (β, γ)∈V|α|,
R(α, β,~δ) ⇔ α∈∆

1
1 ∩ WO∧ |α|≥1 ∧ ~δ /∈¬Uβ

τ|α| .

Indeed, this comes from the proof of Lemma 4.2.3.

• One can give simpler examplesS0,S1 for which Corollary 4.2 is fullfilled whenΓ=Π
0
1. Indeed,

recall the mapbω defined before Lemma 2.3. As|bω(n)| ≤ n for each integern, we can define the
sequencesωn :=bω(n)0

n−|bω(n)|. We setS1 :=S0\S0, where

S
0 :=

{

(

0sωn0γ, ..., 0s
ω
nnγ, (n+1)sωn(n+1)γ, (n+1)sωn(n+2)γ, ...

)

| (n, γ)∈ω×ωω
}

(we do not really needTω whenΓ=Π
0
1). We haveS0 = (Πi∈d fi)

−1(A0) ∩ S0 if (b) holds. Let us
denote this byS0 ≤ A0 (we have a quasi-order, by continuity of thefi’s).

• The fact thatTd has finite levels was used to give a proof of Corollary 4.2 as simple as possible. The
treeTd has finite levels whend<ω, and not always whend=ω. This is one of the main new points
in the case of the infinite dimension. Let us specify this.

(a) We saw in the proof of Proposition 2.2 that the treeT̃d generated by an effective frame is a tree
with one-sided almost acyclic levels. As before Lemma 2.6, we can define

S̃ω
C1

:={~α∈⌈T̃d⌉ | S(α0∆α1)∈C1},

which is not separable from⌈T̃d⌉\ S̃ω
C1

by a potentially closed set, since otherwiseSω
C1

would be
separable from⌈Td⌉\Sω

C1
by a potentially closed set, which would contradict Lemmas 2.6 and 3.4.

But A0 := {01+n(1+n)∞ | n ∈ ω} ⊆ ωω is not potentially closed since0∞ ∈ A0 \A0 and the
topology onω is discrete. And one can prove, in a straightforward way, that S̃ω

C1
6≤ A0 andA0 6≤ S̃ω

C1
.

This proves that the finiteness of the levels ofTd is useful. But we will see that it is not necessary.
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(b) We defineo :{s∈2<ω | 0 6⊆s}→ω<ω such that|o(s)|= |s| by

o(10n010n1 ...10nl) :=01+n0(1+n0)
1+n1 ...

(

(1+n0)+...+(1+nl−1)
)1+nl .

In other words, we haveo(s)(i) = i if s(i) = 1, o(s)(i) = o(s)(i−1) if s(i) = 0. Note thato is an
injective homomorphism, in the sense thato(s)⊆o(t) if s⊆ t. This implies that we can extendo to a
continuous map from the basic clopen setN1 into ωω by the formulao(α) :=supm∈ω o(α|m).

We setFω :=
{

(miαi)i∈ω ∈ (ωω)ω | ~α ∈ ⌈T̃ω⌉ and ∀i ∈ ω mi = o(α0∆α1)(i)
}

, and we put
Sω
Cξ

:= {(miαi)i∈ω ∈ Fω | S(α0∆α1) ∈Cξ}. One can takeSωξ = Sω
Cξ

, and the proof is much more

complicated than the one we gave. But the tree associated with Sω
Cξ

=Fω is

{~∅
}

∪
{

(misi)i∈ω∈(ωω)<ω | (mi)i∈ω∈o
′′[N1] and ~s∈ T̃ω and ∀i< |~s | mi=o(s0∆s1)(i)

}

,

and has infinite levels. This proves that the finiteness of thelevels of the tree associated withSωξ is
not necessary.

(c) In [L8], an extension to any dimension of the Kechris-Solecki-Todorčević dichotomy about ana-
lytic graphs is proved. In [L5], it is proved that Corollary 4.2 is a consequence of the Kechris-Solecki-
Todorčević dichotomy whenΓ=Π

0
1. This works as well whend < ω, but not whend= ω. More

specifically, letG :={α∈ωω | ∀m∈ω ∃n≥m sωn0⊆α} and

Aω :={(sωniγ)i∈ω | n∈ω ∧ γ∈ωω}.

Then the extension to the case whered=ω of the Kechris-Solecki-Todorčević dichotomy works with
G

ω ∩Aω (see [L8]). But one can prove the following result:

Theorem 4.4.8 LetX be a recursively presented Polish space,σX the topology onXω generated by
{Πi∈ω Ci | C∈∆

1
1(ω×X)}, andA a∆

1
1 subset ofXω. Then exactly one of the following holds:

(a)A
σX \A=∅.

(b) Gω ∩ Aω ≤ A.

In particular,Gω ∩ Aω 6≤ A0 and we cannot takeSω1 =G
ω ∩ Aω.

5 The proof of Theorem 1.7

5.1 Some material in dimension one

The material in this subsection is due to A. Louveau and J. Saint Raymond, and can be found
in [Lo-SR1] or [Lo-SR2]. However, some changes are needed for our purposes, and moreover some
proofs are left to the reader in these papers. So we will sometimes give some proofs. The following
definition can be found in [Lo-SR2] (see Definition 1.5).
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Definition 5.1.1 Let1≤ξ<ω1, Γ andΓ′ two classes. Then

A∈Sξ(Γ,Γ
′) ⇔ A=

⋃

p≥1

(Ap ∩ Cp) ∪



B\
⋃

p≥1

Cp





for some sequence of setsAp in Γ,B∈Γ
′, and a sequence(Cp)p≥1 of pairwise disjointΣ0

ξ sets.

Now we come to the definition ofsecond type descriptions of non self-dual Wadge classes of
Borel sets, which are elements ofωω

1 , sometimes identified with(ωω
1 )

ω. This definition can also be
found in [Lo-SR2] (see Definition 1.6).

Definition 5.1.2 The relations “u is a second type description” and “ u describes Γ” (written
u∈D andΓu=Γ - ambiguously) are the least relations satisfying

(a) If u=0∞, thenu∈D andΓu={∅}.

(b) If u=ξ⌢1⌢u∗, withu∗∈D andu∗(0)=ξ, thenu∈D andΓu= Γ̌u∗.

(c) If u = ξ⌢2⌢< up > satisfiesξ ≥ 1, up ∈ D, and up(0) ≥ ξ or up(0) = 0, thenu ∈ D and
Γu=Sξ(

⋃

p≥1 Γup ,Γu0).

Remark. If A∈Sξ(
⋃

p≥1 Γup ,Γu0), thenA has a decomposition as in Definition 5.1.1, andAp is in
⋃

p≥1 Γup . But we may assume thatAp∈Γu(p)0+1
, using the fact thatCp may be empty if necessary.

This remark will be useful in the sequel, since it specifies the class ofAp.

The following result can be found in [Lo-SR2] (see Section 3).

Theorem 5.1.3 Let Γ be a non self-dual Wadge class of Borel sets. Then there isu ∈ D such that
Γ(ωω)=Γu(ω

ω). Conversely,

Γu :={f−1(A) | f :X→ωω continuous∧X 0-dimensional Polish space∧A∈Γu(ω
ω)}

is a non self-dual Wadge class of Borel sets ifu∈D.

If η≤ ξ < ω1, thenξ−η is the unique ordinalθ with η+θ= ξ. The following definition can be
found in [Lo-SR2] (see Definition 1.9).

Definition 5.1.4 Letη<ω1 andu∈D. We defineuη∈D as follows:

(a) If u(0)=0, thenuη :=u.

(b) If u=ξ1u∗, with ξ≥1, thenuη :=
(

1+η+(ξ−1)
)

1(u∗)η.

(c) If u=ξ2 <up>, with ξ≥1, thenuη :=
(

1+η+(ξ−1)
)

2 < (up)
η >.

The following result can be found in [Lo-SR2] (see Proposition 1.10).

Proposition 5.1.5 (a) If f : ωω → ωω is Σ
0
1+η-measurable, andA ∈ Γu(ω

ω) for someu ∈ D, then
f−1(A)∈Γuη .

(b) The setD is the least subsetD⊆D such that0∞ ∈D, u(0)1u ∈D if u ∈D, 12 < up >∈D if
up ∈D for eachp∈ω, anduη∈D if u ∈D, for eachη<ω1.

Recall the definition of an independentη-function (see Definition 3.3).
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Example. Let τ : ω → ω be one-to-one (in [Lo-SR2] just before Lemma 2.5, increasing maps are
considered, but here we relax this condition). We defineτ̃ :2ω→2ω by τ̃(α) :=α ◦ τ . Clearlyτ̃ is an
independent0-function, withπ(k)= τ−1(k) if k is in the range ofτ , 0 otherwise. We now describe
an important instance of this situation.

Example.Let n be an integer, andS the shift map (see the notation before Definition 2.5). ThenSn

is an independent0-function. Indeed, if we setτn(m) :=m+n, thenSn= τ̃n, by induction onn. In
particular, Id2ω =S0 is an independent0-function.

The next result is essentially Lemma 2.5 in [Lo-SR2], which is given without proof, so we give
the details here.

Lemma 5.1.6 Letτ :ω→ω be one-to-one,ρ an independentη-function. Theñτ ◦ρ is an independent
η-function.

Proof. Let π associated withρ. We defineπ′ :ω→ω by π′(k) :=τ−1
(

π(k)
)

if π(k) is in the range of
τ , 0 otherwise, so thatπ′(k)=m if π(k)=τ(m). If m is an integer, then(τ̃ ◦ρ)(α)(m)=ρ(α)

(

τ(m)
)

depends only of the values ofα onπ−1
(

{τ(m)}
)

⊆(π′)−1({m}).

If ξ = 0 (resp.,ξ = θ+1, ξ = supm∈ω θm), thenCm = {α ∈ 2ω | ρ(α)
(

τ(m)
)

= 1} is ∆
0
1-

complete (resp.,Π0
1+θ-strategically complete,Π0

1+θτ(m)
-strategically complete). We are done since

ξ=supp≥1 θτ(mp) if ξ is a limit ordinal (τ is one-to-one). �

After Definition 3.3, we saw thatρη0 is an independentη-function. We will actually prove more,
actually a result which is essentially Theorem 2.4.(b) in [Lo-SR2].

Theorem 5.1.7 Let η, ξ < ω1, ρ an independentξ-function. Thenρη0 ◦ ρ is an independent(ξ+η)-
function.

Proof. Note first that ifε ∈ 2, ρε : 2ω → 2ω is equipped withπε such thatρε(α)(m) depends only
on the values ofα on (πε)−1({m}), then(ρ0 ◦ ρ1)(α)(m) depends only on the values ofρ1(α) on
(π0)−1({m}), so it depends only on the values ofα on (π1)−1

(

(π0)−1({m})
)

, so that if we set
π :=π0 ◦ π1, then(ρ0 ◦ ρ1)(α)(m) depends only on the values ofα onπ−1({m}).

• We argue by induction onη. The result is clear forη = 0. So assume thatη = θ+1, so that
ρη0 ◦ ρ=ρ0 ◦ ρ

θ
0 ◦ ρ. The induction assumption implies thatρθ ◦ ρ is an independent(ξ+θ)-function.

The fact thatρ0 is an independent1-function and the previous point prove the existence ofπη such
that(ρη0 ◦ ρ)(α)(m) depends only on the values ofα onπ−1

η ({m}).

We setAn := {α∈ 2ω | (ρθ0 ◦ ρ)(α)(< m,n >)= 1}. Let us prove that
⋂

n∈ω ¬An is Π
0
1+ξ+θ-

strategically complete.

Assume first thatξ+θ 6=0. Asρθ ◦ρ is an independent(ξ+θ)-function,An isΠ0
1+θn

-strategically
complete, for someθn<ξ+θ satisfyingθn+1=ξ+θ if ξ+θ is a successor ordinal, supn∈ω θn=ξ+θ
if ξ+θ is a limit ordinal. Note thatξ+θ = supn∈ω (θn+1). As ρθ ◦ ρ is an independent(ξ+θ)-
function, there isπθ such that(ρθ0 ◦ ρ)(α)(q) depends only on the values ofα onπ−1

θ ({q}). We set
π(α)(k) :=

(

πθ(α)
)

1
, so that the fact thatα∈An depends only on the values ofα onπ−1({n}). By

Lemma 3.7 in [Lo-SR1],
⋂

n∈ω ¬An isΠ0
1+ξ+θ-strategically complete.
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Assume now thatξ+θ = 0. ThenAn := {α ∈ 2ω | ρ(α)(< m,n >) = 1} is ∆
0
1-complete

sinceρ is an independent0-function. LetB be a closed subset ofωω, (Bn)n∈ω a sequence of clopen
subsets withB =

⋂

n∈ω Bn, andgn : ωω → 2ω continuous withBn = g−1
n (¬An). As ρ is an

independent0-function, there isπρ such thatρ(α)(q) depends only on the values ofα onπ−1
ρ ({q}).

We setπ(α)(k) :=
(

πρ(α)
)

1
, so that the fact thatα ∈ An depends only on the values ofα on

π−1({n}). We defineg : ωω → 2ω by g(β)(k) := gπ(k)(β)(k), so thatg is continuous. Moreover,
β ∈Bn ⇔ gn(β) /∈An ⇔ g(β) /∈An since the fact thatα∈An depends only on the values ofα on
π−1({n}). ThusB = g−1(

⋂

n∈ω ¬An) and
⋂

n∈ω ¬An is Π
0
1-complete. Therefore

⋂

n∈ω ¬An is
Π

0
1+ξ+θ-strategically complete.

Now note that
⋂

n∈ω ¬An={α∈2ω | ∀n∈ω (ρθ0 ◦ ρ)(α)(< m,n >)=0}

={α∈2ω | (ρ0 ◦ ρ
θ
0 ◦ ρ)(α)(m)=1}={α∈2ω | (ρη0 ◦ ρ)(α)(m)=1}.

Thus{α∈2ω | (ρη0 ◦ρ)(α)(m)=1} isΠ0
1+ξ+θ-strategically complete for eachm, andξ+η=ξ+θ+1,

so thatρη0 ◦ ρ is an independent(ξ+η)-function.

• Assume now thatη is a limit ordinal. In the definition ofρη0 we fixed a sequence(θηm)m∈ω ⊆ η of

successor ordinals withΣm∈ω θ
η
m = η. As ρθ

η
m
0 is an independentθηm-function, we getπηm : ω→ ω.

We defineπm,m+1 :ω→ω by πm,m+1(k) := k if k<m, πηm(k−m)+m if k≥m. Let us check that

ρ
(m,m+1)
0 (α)(i) depends only on the values ofα onπ−1

m,m+1({i}). It is clearly the case ifi<m. So
assume thati≥m. Note thatπm,m+1(k)= i if k∈ (πηm)−1({i−m})+m, and we are done. Now the

first point of this proof givesπ0,m+1 :ω→ω such thatρ(0,m+1)
0 (α)(i) depends only on the values of

α onπ−1
0,m+1({i}). We will check thatρη0(α)(m) :=ρ

(0,m+1)
0 (α)(m) depends only on the values ofα

onEm := π−1
0,m+1({m}) ∩

⋂

l<m π−1
0,l+1(¬(l+1)). We actually prove something stronger: for each

integerk, ρ(0,m+1)
0 (α)(k+m) depends only on the values ofα on

π−1
0,m+1({k+m}) ∩

⋂

l<m

π−1
0,l+1(¬(l+1)).

We argue by induction onm. Form=0, the result is clear. Assume that the result is true form. Note
thatρ(0,m+2)

0 (α)(k+m+1) depends only on the values ofα onπ−1
0,m+2({k+m+1}). But

ρ
(0,m+2)
0 (α)(k+m+1)=ρ

(m+1,m+2)
0

(

ρ
(0,m+1)
0 (α)

)

(k+m+1)=ρ
θ
η
m+1

0

(

Sm+1
(

ρ
(0,m+1)
0 (α)

)

)

(k),

and we are done sinceρ(0,m+2)
0 (α)(α)(k+m+1) depends only on the values ofSm+1

(

ρ
(0,m+1)
0 (α)

)

,
which depends only on the values ofα onπ−1

0,m+1(¬(m+1)) ∩
⋂

l<m π−1
0,l+1(¬(l+1)).

As theEm’s are pairwise disjoint, we can define a mapπη :ω→ω by πη(k) :=m if k∈Em, and
0 if k /∈

⋃

m∈ω Em. Now it is clear thatρη0(α)(m) depends only on the values ofα on (πη)−1({m}).
The first point of this proof givesπη :ω→ω such that(ρη0 ◦ ρ)(α)(m) depends only on the values of
α onπ−1

η ({m}).
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Let ζηm such thatθηm :=ζηm+1, andθm :=ξ+Σl<m θηl+ζ
η
m, so thatθm<ξ+η and supp≥1 θmp =ξ+η

for each one-to-one sequence(mp)p≥1 of integers. It remains to see that

Cm :={α∈2ω | (ρη0 ◦ ρ)(α)(m)=1}

is Π
0
1+θm

-strategically complete for each integerm.

Let us check thatSm ◦ ρ
(0,m+1)
0 = ρθ

η
m
0 ◦ ◦l<m (S ◦ ρ

θ
η
m−l−1

0 ) for each integerm. We argue by

induction onm. Form=0 the property is clear sinceρ(0,1)0 = ρ
θ
η
0
0 . Assume that the property is true

for m. Then

Sm+1 ◦ ρ
(0,m+2)
0 =ρ

θ
η
m+1

0 ◦ Sm+1 ◦ ρ
(0,m+1)
0 =ρ

θ
η
m+1

0 ◦ S ◦ Sm ◦ ρ
(0,m+1)
0

=ρ
θ
η
m+1

0 ◦ S ◦ ρθ
η
m
0 ◦ ◦l<m (S ◦ ρ

θ
η
m−l−1

0 )=ρ
θ
η
m+1

0 ◦ ◦l≤m (S ◦ ρ
θ
η
m−l

0 )

since in the last induction we proved thatSm+1 ◦ ρ
(0,m+2)
0 =ρ

θ
η
m+1

0 ◦ Sm+1 ◦ ρ
(0,m+1)
0 . Thus

Cm={α∈2ω | ρ
(0,m+1)
0

(

ρ(α)
)

(m)=1}={α∈2ω | (Sm ◦ ρ
(0,m+1)
0 ◦ ρ)(α)(0)=1}

={α∈2ω |
(

ρθ
η
m
0 ◦ ◦l<m (S ◦ ρ

θ
η
m−l−1

0 ) ◦ ρ
)

(α)(0)=1}.

So it is enough to see thatρm :=ρθ
η
m
0 ◦ ◦l<m (S ◦ ρ

θ
η
m−l−1

0 ) ◦ ρ is an independent(θm+1)-function.

We argue by induction onm. Form=0, we are done sinceρ
θ
η
0
0 ◦ ρ is by induction assumption an

independent(ξ+θη0)-function, andξ+θη0 = ξ+ζη0 +1= θ0+1. Assume that the property is true for

m. Thenρm+1=ρ
θ
η
m+1

0 ◦ S ◦ ρm. By induction assumption,ρm is an independent(θm+1)-function.
By Lemma 5.1.6 and the example just before it,S ◦ ρm is also an independent(θm+1)-function. By
induction assumption,ρm+1 is an independent(θm+1+θηm+1)-function, and

θm+1+θηm+1=ξ+Σl<m θηl +ζ
η
m+1+θηm+1=ξ+Σl≤m θηl +ζ

η
m+1+1=θm+1+1.

This finishes the proof. �

5.2 Some complicated sets

Now we come to the existence of complicated sets, as in the statement of Theorem 1.7. Their
construction is based on Theorem 2.7 in [Lo-SR2] that we now change. The main problem is that we
want to ensure the ccs conditions of Lemma 2.6. To do this, we modify the definition of the mapsτi
of Lemma 2.11 in [Lo-SR2].

Notation. Let i be an integer. We defineτi :ω→ω by

τi(k) :=







< 0, k > if i=0,

<< i, (k)0 >, (k)1 > if i≥1,

so thatτi is one-to-one. This allows us to define, for eachα∈2ω, αi := τ̃i(α). If s∈(ω\{0})<ω , then
we setτ̃s := τ̃s(0) ◦ ... ◦ τ̃s(|s|−1).
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Lemma 5.2.1 LetΓ be a non self-dual Wadge class of Borel sets, andH a Γ-strategically complete
set. Then

(a) The set̃τi−1(H) is Γ-strategically complete for each integeri.

(b) Assume thatτ : ω→ ω is one-to-one such that the fact thatα∈H depends only onα ◦ τ . Then
L :={α ◦ τ | α∈H} is Γ-strategically complete.

Proof. (a) As τ̃i is continuous,τ̃i−1(H) ∈ Γ(2ω). We define a continuous mapfτi : 2
ω → 2ω by

fτi(α)(m) := α
(

τ−1
i (m)

)

if m is in the range ofτi, 0 otherwise. Note that̃τi
(

fτi(α)
)

= α, so that
H=f−1

τi

(

τ̃i
−1(H)

)

. This implies that̃τi−1(H) is Γ-strategically complete.

(b) As in (a), we consider the continuous mapfτ , so that̃τ
(

fτ (β)
)

=β for eachβ∈2ω. Here again we
get thatf−1

τ (H)∈Γ(2ω). Letβ∈L, which givesα∈H with β=α ◦ τ . Asfτ (β) ◦ τ = τ̃
(

fτ (β)
)

=β,
we getfτ (β) ◦ τ = α ◦ τ andfτ (β) ∈H by the assumption onH. Conversely, iffτ (β) ∈H, then
β= τ̃

(

fτ (β)
)

=fτ (β) ◦ τ ∈L. Thusf−1
τ (H)=L, andL∈Γ(2ω).

If α ∈H, thenτ̃(α) =α ◦ τ ∈L. Conversely, assume thatτ̃(α) ∈L. Then there isβ ∈H with
β ◦ τ =α ◦ τ . The assumption onH implies thatα∈H. ThusH= τ̃−1(L) andL is Γ-strategically
complete. �

Lemma 5.2.2 LetΓ be a Wadge class of Borel sets, andA⊆2ω. ThenA∈Γ(2ω) if and only if there
isB∈Γ(ωω) withA=B ∩ 2ω.

Proof. ⇒ Let r :ωω→2ω be a continuous retraction. We just have to setB :=r−1(A).

⇐ Let i :2ω→ωω be the canonical injection. ThenA= i−1(B)∈Γ(2ω). �

This lemma shows that the notationΓu in Theorem 5.1.3 will not create any trouble, since it is
equivalent to the one in Definition 5.1.2.

Notation. The following notation can essentially be found in [Lo-SR2](after Lemma 2.5). LetR be
the least set of functions from2ω into itself which contains the functionsρη0, the functions̃τi for i≥1,
and is closed under composition. By Lemma 5.1.6 and Theorem 5.1.7, eachρ∈R is an independent
η-function for someη called theorder o(ρ) of ρ.

Definition 5.2.3 Letu∈D. A setH⊆2ω is strongly u-strategically complete if for eachρ∈R of
order η, ρ−1(H) isΓuη -strategically complete and ccs.

Theorem 5.2.4 Let u ∈ D. Then there exists a stronglyu-strategically complete setHu ⊆ 2ω. In
particular,Hu isΓu-complete and ccs.

Proof. We will check that the setsHu given by Theorem 2.7 in [Lo-SR2] essentially work, even if we
change them.

The construction is by induction onu∈D. Let us say thatu is nice if it satisfies the conclusion
of the theorem. By Proposition 5.1.5, it is enough to prove that 0∞ is nice, thatu(0)1u is nice ifu is
nice, thatuη is nice ifu is nice andη<ω1, and that12 < up > is nice if theup’s are nice.

• We setH0∞ :=∅, which is clearly strongly0∞-strategically complete.
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• Assume thatu is nice. We setHu(0)1u := ¬Hu, which is stronglyu(0)1u-strategically complete.
Indeed, ifu(0)=0, thenΓ(u(0)1u)η =Γu(0)1u= Γ̌u= Γ̌uη . If u(0)≥1, then

Γ(u(0)1u)η =Γ(1+η+(u(0)−1))1uη = Γ̌uη

sinceuη(0)=1+η+
(

u(0)−1
)

.

• Assume thatu is nice, and letη<ω1. We setHuη :=(ρη0)
−1(Hu), which is stronglyuη-strategically

complete. Indeed, letρ ∈ R of order ξ. Thenρ−1(Huη) = (ρη0 ◦ ρ)−1(Hu) is Γuξ+η -strategically
complete and compatible with comeager sets sinceu is nice andρη0 ◦ ρ is in R of order ξ+η. It
remains to notice that(uη)ξ=uξ+η, which is clear by induction onu and by definition of the ordinal
subtraction.

• Assume that theup’s are nice. We set

α∈H12<up> ⇔







α0=0∞ ∧ α1∈Hu0

or
∃m∈ω α0(m)=1 ∧ ∀l<m α0(l)=0 ∧ α(m)0+2∈Hu((m)0+2)0+1

.

- Recall thatΓ12<up> =S1(
⋃

p≥1 Γup ,Γu0). We setH ′
0 := {α∈ 2ω | α1 ∈Hu0}= τ̃1

−1(Hu0), and
for n≥2,

H ′
n :={α∈2ω | αn∈Hu(n)0+1

}= τ̃n
−1(Hu(n)0+1

),

Cn :={α∈2ω | ∃m∈ω α0(m)=1 and ∀l<m α0(l)=0 and (m)0+2=n}.

Note that(Cn)n≥2 is a sequence of pairwise disjoint open sets, andH ′
0∈Γu0,H ′

n∈Γu(n)0+1
if n≥2

by Lemma 5.2.1.(a). Moreover,H12<up>=
⋃

n≥2 (H
′
n ∩ Cn) ∪ (H ′

0\
⋃

n≥2 Cn)∈Γ12<up>(2
ω), by

Lemma 5.2.2 and the reduction property for the class of open sets (see 22.16 in [K]).

- Let ρ ∈ R of order η. Thenρ−1(H12<up>) ∈ Γ(12<up>)η (2
ω), by Proposition 5.1.5.(a) and a

retraction argument in the style of the proof of Lemma 5.2.2.Let π be associated withρ, θ0 :ω→ω
be a one-to-one enumeration ofπ−1

(

Ran(τ1)
)

, and, forn≥2, θn :ω→ω be a one-to-one enumeration
of π−1

(

Ran(τn)
)

andθn0 :ω→ω be a one-to-one enumeration of

π−1
({

j∈Ran(τ0) |
(

τ−1
0 (j)

)

0
+2=n

})

.

As τi is one-to-one, Ran(τi) is infinite, andπ−1
(

Ran(τi)
)

is also infinite sinceπ is onto. This
proves the existence of theθn’s and of theθn0 ’s. Note that the Ran(τi)’s are pairwise disjoint since
0=< 0, 0 >. This implies that the elements of{Ran(θn) | n 6=1} ∪ {Ran(θn0 ) | n≥ 2} are pairwise
disjoint.

- Note that the fact thatα∈Hη
n :=ρ−1(H ′

n) depends only onα ◦ θn if n 6=1. We set, forn 6=1,

Lη
n :={α ◦ θn | α∈Hη

n}.

Note thatρ−1(H ′
0)=ρ

−1
(

τ̃1
−1(Hu0)

)

=(τ̃1 ◦ ρ)
−1(Hu0) is Γu

η
0
-strategically complete sinceu0

is nice andτ̃1 ◦ ρ is in R of orderη. Similarly, ρ−1(H ′
n) is Γu

η

(n)0+1
-strategically complete ifn≥ 2.

By Lemma 5.2.1.(b), we get thatLη
0 is Γu

η
0
-strategically complete, andLη

n is Γu
η

(n)0+1
-strategically

complete ifn≥2.
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- We set, forn≥2, Cη
n :={α ◦ θn0 | ∃m∈ω ρ(α)0(m)=1 and (m)0+2=n}. Let us prove thatCη

n

is Σ
0
1+η-strategically complete.

Note first that{α ∈ 2ω | f(α) 6= 0∞} is Σ
0
1+η-strategically complete iff is an independent

η-function. Indeed, with the notation of Definition 3.3, we can write

{α∈2ω | f(α)=0∞}=
⋂

m∈ω

¬ Cm.

Moreover, the fact thatα∈Cm depends only of the values ofα onπ−1
f ({m}).

Assume first thatη≥1. As f is an independentη-function,Cm is Π
0
1+θm

-strategically complete,
for someθm < η satisfyingθm+1 = η if η is a successor ordinal, supm∈ω θm = η if η is a limit
ordinal. Note thatη = supm∈ω (θm+1). By Lemma 3.7 in [Lo-SR1],{α ∈ 2ω | f(α) = 0∞} is
Π

0
1+η-strategically complete.

Assume now thatη=0. As in the proof of Theorem 5.1.7 we see that{α∈ 2ω | f(α)= 0∞} is
Π

0
1+η-strategically complete.

Now we come back to theCη
n’s. We defineτ : ω → ω by τ(k) := < n−2, k >, so thatτ is

one-to-one and Ran(τ) = {m ∈ ω | (m)0 = n−2}. As ρ is an independentη-function, τ̃0 ◦ ρ and
τ̃ ◦ τ̃0 ◦ ρ are also independentη-functions by Lemma 5.1.6. The previous point shows that

Ln :={α∈2ω | (τ̃ ◦ τ̃0 ◦ ρ)(α) 6=0∞}

is Σ
0
1+η-strategically complete. But

Ln ={α∈2ω | ∃k∈ω τ̃
(

(τ̃0 ◦ ρ)(α)
)

(k)=1}={α∈2ω | ∃k∈ω (τ̃0 ◦ ρ)(α)
(

τ(k)
)

=1}

={α∈2ω | ∃m∈ω (τ̃0 ◦ ρ)(α)(m)=1 and (m)0+2=n}

and the fact thatα ∈ Ln depends only onα ◦ θn0 . By Lemma 5.2.1.(b), we get thatCξ
n is Σ

0
1+η-

strategically complete.

- LetH∗ ∈Γ(12<up>)η(ω
ω), sayH∗ =

⋃

n≥2 (H
∗
n ∩ C∗

n) ∪ (H∗
0 \
⋃

n≥2 C
∗
n), with pairwise disjoint

C∗
n∈Σ

0
1+η,H∗

0 ∈Γu
η
0
, and without loss of generalityH∗

n∈Γu
η

(n)0+1
. Then Player 2 has for eachn 6=1

a winning strategyσn in G(H∗
n, L

η
n), and for eachn≥ 2 a winning strategyσ∗n in G(C∗

n, C
η
n). Let

then Player 2 plays inG
(

H∗, ρ−1(Hu12<up>
)
)

againstβ by playing his strategiesσn, σ∗n at the right
places (the ranges ofθn andθn0 respectively) against this sameβ, independently, and by playing0 out
of these ranges. The result is someα such thatα ◦ θn wins againstβ in G(H∗

n, L
η
n) andα ◦ θn0 wins

againstβ in G(C∗
n, C

η
n). This wins, forα∈ρ−1(H ′

n) just in caseβ∈H∗
n, andρ(α)0 takes value1 on

somem with (m)0+2=n just in caseβ ∈C∗
n. But as theC∗

n are pairwise disjoint, there is at most
onen in {(m)0+2 | ρ(α)0(m)= 1}, andα∈ ρ−1(Cn) just in caseβ ∈C∗

n. Thusρ−1(H12<up>) is
Γ(12<up>)η -strategically complete.
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- It remains to see thatρ−1(H12<up>) is ccs. So letα0 ∈ d
ω andF : 2ω → (dω)d−1 satisfying the

conclusion of Lemma 2.4.(b).

◦ LetN ≥ 1 andM ∈ω. Thenρ(α)N ∈HuM
⇔ (τ̃N ◦ ρ)(α)∈HuM

⇔ α∈ (τ̃N ◦ ρ)−1(HuM
). As

N≥1, τ̃N ◦ ρ is inR, and(τ̃N ◦ ρ)−1(HuM
) is ccs sinceuM is nice. Thusρ(α)N ∈HuM

if and only

if ρ
(

S
(

α0∆F0(α)
)

)

N
∈HuM

.

◦ Recall the notation before Lemma 2.4. We defineq :ω<ω\{∅}→ω as follows:

q(t) :=







t(0) if |t|=1,

< t(|t|−1), q(t−) > if |t|≥2.

◦ Let us prove that̃τs(α)(n)=α(< q
(

(n)0s
)

, (n)1 >) for eachs∈(ω\{0})<ω .

We argue by induction on|s|. So assume that the result is proved for|s|≤ l, which is the case for
l=0. Assume that|s|= l+1. We get

τ̃s(α)(n)= τ̃s|l
(

˜τs(l)(α)
)

(n)= ˜τs(l)(α)(<q
(

(n)0(s|l)
)

,(n)1>)=α
(

τs(l)(<q
(

(n)0(s|l)
)

,(n)1>)
)

=α
(〈

<s(l), q
(

(n)0(s|l)
)

>, (n)1
〉)

=α(<q
(

(n)0s
)

, (n)1>).

◦ Let us prove that(ρ0 ◦ τ̃s)(α)=(ρ0 ◦ τ̃s)
(

S
(

α0∆F0(α)
)

)

for eachs∈(ω\{0})<ω and eachα∈2ω.

This comes from the following equivalences:

(ρ0 ◦ τ̃s)(α)(n)=0 ⇔ ∃m∈ω τ̃s(α)(< n,m >)=1 ⇔ ∃m∈ω α(< q(ns),m >)=1

⇔ ∃m′∈ω S
(

α0∆F0(α)
)

(< q(ns),m′ >)=1

⇔ (ρ0 ◦ τ̃s)
(

S
(

α0∆F0(α)
)

)

(n)=0.

◦ Let us prove that(ρη0 ◦ τ̃s)(α)=(ρη0 ◦ τ̃s)
(

S
(

α0∆F0(α)
)

)

for each1≤η<ω1, eachs∈(ω\{0})<ω

and eachα∈2ω .

We argue by induction onη. Forη=1, this comes from the previous point. Ifθ≥1 andη=θ+1,
then this comes from the fact thatρη0=ρ0 ◦ ρ

θ
0. If η is a limit ordinal andm is an integer, then

(ρη0 ◦ τ̃s)(α)(m)

= ρη0
(

τ̃s(α)
)

(m)=ρ
(0,m+1)
0

(

τ̃s(α)
)

(m)

= (ρ
(m,m+1)
0 ◦ ... ◦ ρ

(1,2)
0 )

(

ρ
(0,1)
0

(

τ̃s(α)
)

)

(m)=(ρ
(m,m+1)
0 ◦ ... ◦ ρ

(1,2)
0 )

(

ρ
θ
η
0
0

(

τ̃s(α)
)

)

(m)

= (ρ
(m,m+1)
0 ◦ ... ◦ ρ

(1,2)
0 )

(

ρ
θ
η
0
0

(

τ̃s

(

S
(

α0∆F0(α)
)

)

)

)

(m)=(ρη0 ◦ τ̃s)
(

S
(

α0∆F0(α)
)

)

(m).
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◦ Note thatρ(α)0=0∞ ⇔ α∈(τ̃0 ◦ ρ)
−1({0∞}). Let us prove that(τ̃0 ◦ ρ)−1({0∞}) is ccs.

We can writeρ=◦j≤l ρ
j, wherel is an integer and eachρj is either of the formρη0, or one of the

τ̃i’s for i≥ 1. By the previous point, we may assume that that eachρj is eitherρ00 = Id2ω , or one of
the τ̃i’s for i≥1. So there iss∈(ω\{0})<ω such thatρ= τ̃s. We get

α /∈ (τ̃0 ◦ ρ)
−1({0∞}) ⇔ ∃m∈ω (τ̃0 ◦ ρ)(α)(m)=1 ⇔ ∃m∈ω ρ(α)

(

τ0(m)
)

=1

⇔ ∃m∈ω τ̃s(α)(< 0,m >)=1 ⇔ ∃m∈ω α(< q(0s),m >)=1

⇔ ∃m∈ω α
(

p(q(0s),m)
)

=1

⇔ ∃m′∈ω S
(

α0∆F0(α)
)(

p(q(0s),m′)
)

=1

⇔ S
(

α0∆F0(α)
)

/∈(τ̃0 ◦ ρ)
−1({0∞}).

Thusρ(α)0=0∞ ⇔ ρ
(

S
(

α0∆F0(α)
)

)

0
=0∞.

◦ It remains to see that ifρ(α)0 6=0∞ andmα is minimal withρ(α)0(mα)=1, then

(mα)0=(mS(α0∆F0(α)))0.

As in the previous point we may assume that there iss∈(ω\{0})<ω such thatρ= τ̃s. The computations
of the previous point show thatρ(α)0(m)=α(< q(0s),m >) for each integerm. Note that

nα :=<q(0s),mα>=min{n∈ω | α(n)=1 ∧ (n)0=q(0s)}

since<q(0s), .> is increasing, and similarly

<q(0s),mS(α0∆F0(α))>=min{m∈ω | S
(

α0∆F0(α)
)

(m)=1 ∧ (m)0=q(0s)}.

But

Bα[{n∈ω | α(n)=1 and (n)0=q(0s)}]={m∈ω | S
(

α0∆F0(α)
)

(m)=1 and (m)0=q(0s)}

sinceBα is a bijection satisfying(n)0=
(

Bα(n)
)

0
. AsBα is increasing we get

Bα(nα)=<q(0s),mS(α0∆F0(α))>.

Thus(mS(α0∆F0(α)))0=
(

(

Bα(nα)
)

1

)

0
=
(

(nα)1
)

0
=(mα)0 and we are done. �

Corollary 5.2.5 LetΓ be a non self-dual Wadge class of Borel sets. Then there isCΓ⊆ 2ω which is
Γ-complete and ccs.

Proof. By Theorem 5.1.3 there isu ∈ D such thatΓ(ωω) = Γu(ω
ω). By Theorem 5.2.4 there is

Hu⊆2ω which is stronglyΓu-strategically complete. It is clear thatCΓ :=Hu is suitable. �

Now we can prove Theorem 1.7.(1). But we need some more material to prove Theorem 1.7.(2).
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Definition 5.2.6 (a) A setU⊆2ω is strongly ccs if for eachs∈(ω\{0})<ω the set̃τ−1
s (U) is ccs.

(b) LetΓ be a Wadge class of Borel sets, andU0, U1∈Γ(2ω) disjoint. We say that(U0, U1) is com-
plete for pairs of disjoint Γ sets if for any pair (A0, A1) of disjoint Γ subsets ofωω there is
f :ωω→2ω continuous such thatAε=f

−1(Uε) for eachε∈2. Similarly, we can define the notion of
a sequence(Up)p≥1 complete for sequences of pairwise disjointΓ sets.

Lemma 5.2.7 (a) There is(U1, U2) complete for pairs of disjointΣ0
1 sets withUε strongly ccs,

and such that for eachs ∈ (ω \{0})<ω there is a pair(O1, O2) of ccsΣ0
1 sets reducing the pair

(

τ̃−1
1s1(U1 ∪ U2), τ̃

−1
1s2(U1 ∪ U2)

)

.

(b) There is(Up)p≥1 complete for sequences of pairwise disjointΣ
0
1 sets withUp strongly ccs, and

such that for eachs ∈ (ω \ {0})<ω there is a sequence(Oε
p)ε∈{1,2},p≥1 of ccsΣ0

1 sets reducing
(

τ̃−1
sε (Up)

)

ε∈{1,2},p≥1
.

Proof. (a) Recall the definition ofH1 after Definition 3.3:H1 := {0∞}. We saw thatH1 ∈Π
0
1(2

ω)
and isΠ0

1-complete. We setU :=¬H1, so thatU is Σ
0
1-complete. Let(A1, A2) be a pair of disjoint

Σ
0
1 subsets ofωω. AsU is complete there aref1, f2 :ωω→2ω continuous such thatAε=f

−1
ε (U) for

eachε∈{1, 2}. We definef :ωω→2ω by

f(α)
(〈

< ε, (k)0 >, (k)1
〉)

:=

{

fε(α)(k) if ε∈{1, 2},
0 otherwise,

so thatf is continuous andfε= τ̃ε ◦ f . NowAε=f
−1
(

τ̃−1
ε (U)

)

and
(

τ̃−1
1 (U), τ̃−1

2 (U)
)

is complete
for pairs ofΣ0

1 sets (not necessarily disjoint). Note that

τ̃−1
ε (U) =

{

α∈2ω | ∃k∈ω α
(〈

< ε, (k)0 >, (k)1
〉)

=1
}

=
{

α∈2ω | ∃N ∈ω
(

(N)0
)

0
=ε ∧ α(N)=1

}

.

We setVε :=
{

α∈2ω | ∃N ∈ω
(

(N)0
)

0
=ε ∧ α(N)=1 ∧ ∀l<N

(

(

(l)0
)

0
/∈{1, 2} ∨ α(l)=0

)}

.

Note thatVi∈Σ
0
1 and(V1, V2) reduces

(

τ̃−1
1 (U), τ̃−1

2 (U)
)

. Thus

α∈Aε ⇔ f(α)∈ τ̃−1
ε (U) ⇔ f(α)∈ τ̃−1

ε (U)\τ̃−1
3−ε(U) ⇔ f(α)∈Vε

and(V1, V2) is complete for pairs of disjointΣ0
1 sets. Recall the definition ofτ0 before Lemma 5.2.1.

We setUε := τ̃−1
0 (Vε), which defines a pair of disjointΣ0

1 sets. Nowg(α):=< α,α, ... > defines

g : 2ω → 2ω continuous. Note thatα ∈ Aε ⇔ f(α) ∈ Vε ⇔ τ̃0

(

g
(

f(α)
)

)

∈ Vε ⇔ g
(

f(α)
)

∈ Uε,

which shows that(U1, U2) is complete for pairs of disjointΣ0
1 sets.

Fix s∈ (ω\{0})<ω . The proof of Theorem 5.2.4 shows thatτ̃s(α)(n)=α
(

<q
(

(n)0s), (n)1>
)

.
We get

τ̃−1
s (Uε)=

{

α∈2ω | ∃N ∈ω
(

(N)0
)

0
=ε ∧ α(<q(0s), N >)=1 ∧

∀l<N
(

(

(l)0
)

0
/∈{1, 2} ∨ α(<q(0s), l>)=0

)}

.
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Thus

τ̃−1
s (Uε)=

{

α∈2ω | ∃M ∈ω
(

(

(M)1
)

0

)

0
=ε ∧ (M)0=q(0s) ∧ α(M)=1 ∧

∀l<M

(

(

(

(M)1
)

0

)

0
/∈{1, 2} ∨ (l)0 6=q(0s) ∨ α(l)=0

)}

.

Recall the conclusion of Lemma 2.4.(b). The bijectionBα induces an increasing bijection between
{

M ∈ω |
(

(

(M)1
)

0

)

0
∈{1, 2} ∧ (M)0=q(0s) ∧ α(M)=1

}

and

{

M ′∈ω |
(

(

(M ′)1
)

0

)

0
∈{1, 2} ∧ (M ′)0=q(0s) ∧ S

(

α0∆F (α)
)

(M ′)=1
}

since(M)0 =
(

Bα(M)
)

0
and

(

(M)1
)

0
=
(

(

Bα(M)
)

1

)

0
. A second application of this shows that

τ̃−1
s (Uε) is ccs. ThusUε strongly ccs. Note that

τ̃−1
1sε(U1 ∪ U2)=

{

α∈2ω | ∃M ∈ω
(

(

(M)1
)

0

)

0
∈{1, 2} ∧ (M)0=q(01sε) ∧ α(M)=1

}

.

We set

Oε :=

{

α∈2ω | ∃M ∈ω
(

(

(M)1
)

0

)

0
∈{1, 2} ∧ (M)0=q(01sε) ∧ α(M)=1 ∧

∀l<M

(

(

(

(l)1
)

0

)

0
/∈{1, 2} ∨ (l)0 /∈{q(01s1), q(01s2)} ∨ α(l)=0

)}

This defines a pair ofΣ0
1 sets reducing

(

τ̃−1
1s1(U1 ∪ U2), τ̃

−1
1s2(U1 ∪ U2)

)

. We check that they are ccs
as forτ̃−1

s (Uε).

(b) The proof is completely similar to that of (a). �

The following result is a consequence of Theorem 1.9 and Lemmas 1.11, 1.23 in [Lo1], and of
Theorem 3 in [Lo-SR3]:

Theorem 5.2.8 LetΓ be a self-dual Wadge class of Borel sets. Then there is a non self-dual Wadge
class of Borel setsΓ′ such thatΓ(ωω) =∆(Γ′)(ωω), Γ′ does not have the separation property, and
one of the following holds:

(1) There isu∈D such that

Γ
′(ωω)=

{

(A0 ∩C0) ∪ (A1 ∩ C1) | A0,¬A1∈Γu(ω
ω) ∧ C0, C1∈Σ

0
1(ω

ω) ∧ C0 ∩ C1=∅
}

.

(2) There is
(

(u′)p
)

p≥1
∈Dω such that

(

Γ(u′)p(ω
ω)
)

p≥1
is strictly increasing and

Γ
′(ωω)=

{

⋃

p≥1

(Ap ∩ Cp) | Ap∈Γ(u′)p(ω
ω) ∧ Cp∈Σ

0
1(ω

ω) ∧Cp ∩ Cq=∅ if p 6=q
}

.

Lemma 5.2.9 Let Γ′ be as in the statement of Theorem 5.2.8. Then there areC0, C1 ∈ Γ
′(2ω)

disjoint, ccs, and not separable by a∆(Γ′) set.
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Proof. (1) Lemma 5.2.7.(a) gives(U1, U2) complete for pairs of disjointΣ0
1 sets withUε strongly

ccs, and such that for eachs∈ (ω\{0})<ω there is a pair(O1, O2) of ccsΣ0
1 sets reducing the pair

(

τ̃−1
1s1(U1 ∪ U2), τ̃

−1
1s2(U1 ∪ U2)

)

. Theorem 5.2.4 givesHu ⊆ 2ω which isΓu-complete and strongly
ccs. We setH :=

(

τ̃−1
2 (Hu)∩ τ̃

−1
1 (U1)

)

∪
(

τ̃−1
3 (¬Hu)\τ̃

−1
1 (U2)

)

and, forε∈{1, 2}, Eε := τ̃
−1
ε (H).

Finally, we setCε :=(Oε ∩ Eε) ∪ (O3−ε\E3−ε).

• We set, forε, j∈{1, 2}, Aε
1 := τ̃

−1
2ε (Hu), Aε

2 := τ̃
−1
3ε (¬Hu), F ε

j := τ̃
−1
1ε (Uj), so that

Eε=(Aε
1 ∩ F

ε
1 ) ∪ (Aε

2 ∩ F
ε
2 ).

Note that

Cε=(Aε
1 ∩ F

ε
1 ∩Oε) ∪ (Aε

2 ∩ F
ε
2 ∩Oε) ∪ (¬A3−ε

1 ∩ F 3−ε
1 ∩O3−ε) ∪ (¬A3−ε

2 ∩ F 3−ε
2 ∩O3−ε)

=
(

(

(Aε
1 ∩ F

ε
1 ∩Oε) ∪ (¬A3−ε

2 ∩ F 3−ε
2 ∩O3−ε)

)

∩
(

(F ε
1 ∩Oε) ∪ (F 3−ε

2 ∩O3−ε)
)

)

∪

(

(

(Aε
2 ∩ F

ε
2 ∩Oε) ∪ (¬A3−ε

1 ∩ F 3−ε
1 ∩O3−ε)

)

∩
(

(F ε
2 ∩Oε) ∪ (F 3−ε

1 ∩O3−ε)
)

)

,

and thatF ε
1 ∩Oε, F

3−ε
2 ∩O3−ε, F ε

2 ∩Oε, F
3−ε
1 ∩O3−ε are pairwise disjoint open subsets of2ω. By

Lemma 5.2.2 and the reduction property forΣ
0
1 we can writeCε as the intersection of2ω with

(

(

(Aε
1∩Oε

1)∪(¬A3−ε
2 ∩O3−ε

2 )
)

∩(Oε
1∪O3−ε

2 )
)

∪
(

(

(Aε
2∩Oε

2)∪(¬A3−ε
1 ∩O3−ε

1 )
)

∩(Oε
2∪O3−ε

1 )
)

,

whereAε
1,¬A

ε
2∈Γu(ω

ω) andOε
j are four pairwise disjoint open subsets ofωω. By Lemma 1.4.(b) in

[Lo1], (Aε
1∩O

ε
1)∪(¬A

3−ε
2 ∩O3−ε

2 ),¬
(

(Aε
2∩O

ε
2)∪(¬A

3−ε
1 ∩O3−ε

1 )
)

∈Γu(ω
ω), so thatCε∈Γ

′(2ω),
by Lemma 5.2.2 again.

• It is clear thatC1 andC2 are disjoint and ccs.

• Assume, towards a contradiction, thatD ∈ ∆(Γ′) separatesC1 from C2. Let D1,D2 ∈ Γ
′(ωω)

disjoint. AsH is complete we getfε : ωω → 2ω continuous such thatDε = f−1
ε (H). We define

f :ωω→2ω by

f(α)
(〈

<ε, (k)0>, (k)1
〉)

:=

{

fε(α)(k) if ε∈{1, 2},
0 otherwise,

so that
(

f(α)
)

ε
= fε(α). Thenf is continuous andDε = f−1(Eε). Note thatEε\E3−ε ⊆Cε. This

implies thatα∈D1 ⇔ f(α)∈E1 ⇔ f(α)∈E1\E2 ⇒ f(α)∈C1⊆D. Similarly,D2⊆ f
−1(¬D),

andf−1(D) ∈ ∆(Γ′)(ωω) separatesD1 from D2. ThusΓ′ has the separation property, which is
absurd.

(2) Lemma 5.2.7.(b) gives(Up)p≥1 complete for sequences of pairwise disjointΣ
0
1 sets withUp

strongly ccs, and such that for eachs ∈ (ω\{0})<ω there is a sequence(Oε
p)ε∈{1,2},p≥1 of ccsΣ0

1

sets reducing
(

τ̃−1
sε (Up)

)

ε∈{1,2},p≥1
. Theorem 5.2.4 givesH(u′)p ⊆ 2ω which isΓ(u′)p-complete and

strongly ccs. We setH :=
⋃

p≥1

(

τ̃−1
2p (H(u′)p) ∩ τ̃

−1
1 (Up)

)

and, forε∈{1, 2}, Eε := τ̃
−1
ε (H).
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We also setAε
p := τ̃

−1
(2p)ε(H(u′)p), F

ε
p := τ̃

−1
1ε (Up), so thatEε=

⋃

p≥1 (Aε
p ∩ F

ε
p ). Finally, we set

Cε :=(Aε
1 ∩O

ε
1) ∪

⋃

p≥1

(

(O3−ε
p \A3−ε

p ) ∪ (Aε
p+1 ∩O

ε
p+1)

)

.

Note thatCε∈Γ
′(2ω) since

(

Γ(u′)p(ω
ω)
)

p≥1
is strictly increasing, using again Lemma 5.2.2, the

generalized reduction property forΣ0
1 (see 22.16 in [K]), and Lemma 1.4.(b) in [Lo1]. Here again,

Eε\E3−ε⊆C
ε and we conclude as in (1). �

Proof of Theorem 1.7.It is clear that Proposition 2.2, Lemmas 2.3, 2.6, Corollary5.2.5, Lemma
5.2.9 and Theorem 3.1 imply Theorem 1.7, if we setS

d
Γ
:=Sd

CΓ
andSε

Γ
:=Sd

Cε . �

6 The proof of Theorem 1.8

We first introduce an operator in the spirit ofΦ defined before Theorem 4.2.2, but in dimension
one. Another important difference to notice is the following. In Theorem 4.2.2, (f) for example,S
is in a boldface class, whileA0 andA1 are in a lightface class. The same phenomenon will hold in
the case of Wadge classes, and in the new operator we introduce we have boldface conditions (for
example, we do not askγ′ to be∆1

1(β)). We code the Borel classes, and define an operatorΦ1 on
ωω×ωω to do it. Recall the definition of Seq before Lemma 2.3. We set

W0 :=
{

(β, γ)∈ωω×W ωω
|
(

β(0)∈Seq∧ Cωω

γ =
{

δ∈ωω | I−1
(

β(0)
)

⊆δ
}

)

∨
(

β(0) /∈Seq∧ Cωω

γ =∅
)}

,

Φ1(A) :=A ∪W0 ∪
{

(β, γ)∈ωω×W ωω
| ∃γ′∈ωω ∀n∈ω

(

(β)n, (γ
′)n
)

∈A and

¬Cωω

γ =
⋃

n∈ω Cωω

(γ′)n

}

.

In the sequel, we will denoteΦ<ξ
1 :=

⋃

η<ξ Φη
1.

Lemma 6.1 Let 1≤ ξ < ω1 andB ⊆ ωω. ThenB ∈Π
0
ξ if and only if there is(β, γ)∈Φξ

1 such that

Cωω

γ =B.

Proof. Note first thatB=Ns := {δ ∈ωω | s⊆ δ} for somes∈ω<ω or B= ∅ if and only if there is
(β, γ)∈W0=Φ0

1 with Cωω

γ =B. Then

B∈Π
0
1 ⇔ ∃(sn)n∈ω∈(ω<ω)ω ¬B=

⋃

n∈ω Nsn ∨ ¬B=∅
⇔ ∃β, γ′∈ωω ∀n∈ω

(

(β)n, (γ
′)n
)

∈Φ0
1 ∧ ¬B=

⋃

n∈ω Cωω

(γ′)n

⇔ ∃(β, γ)∈Φ1
1 Cωω

γ =B.

Assume now that the result is proved for1≤η<ξ≥2. We get

B∈Π
0
ξ ⇔ ∃(Bn)n∈ω∈(Π0

<ξ)
ω ¬B=

⋃

n∈ω Bn

⇔ ∃β, γ′∈ωω ∀n∈ω
(

(β)n, (γ
′)n
)

∈Φ<ξ
1 ∧ ¬B=

⋃

n∈ω Cωω

(γ′)n

⇔ ∃(β, γ)∈Φξ
1 Cωω

γ =B.

This finishes the proof. �
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We now define aΠ 1
1 coding ofD (recall Definition 5.1.2).

Notation. We define an inductive operatorΛ overωω as follows:

Λ(D) :=D ∪
{

α∈ωω | ∀n∈ω (α)n∈WO∧ |(α)n|=0
}

∪
{

α∈ωω | ∀n∈ω (α)n∈WO∧ (α)0=(α)2 ∧ |(α)1|=1∧ < (α)2+j >∈D
}

∪
{

α∈ωω | ∀n∈ω (α)n∈WO∧ |(α)0|≥1 ∧ |(α)1|=2 ∧

∀p∈ω < (α)2+<p,q> >∈D ∧
(

|(α)2+<p,0>|≥|(α)0| ∨ |(α)2+<p,0>|=0
)}

.

ThenΛ is aΠ 1
1 monotone inductive operator, by 4A.2 in [M].

By 7C.1 in [M] we getΛ∞ :=
⋃

ξ Λξ=Λ(Λ∞)=
⋂

{D⊆ωω | Λ(D)⊆D}. An easy induction on
ξ shows thatΛ∞⊆

{

α∈ωω | ∀n∈ω (α)n∈WO
}

, so that the coding functionc, partially defined by
c(α) :=

(

|(α)n|
)

n∈ω
, is defined onΛ∞.

Lemma 6.2 The setΛ∞ is aΠ 1
1 coding ofD, which means thatΛ∞∈Π

1
1 (ω

ω) andc[Λ∞]=D.

Proof. We first prove thatΛ∞∈Π
1
1 (ω

ω) (see 7C in [M] for that). We define a set relationϕ(α,D) on
ωω byϕ(α,D) ⇔ α∈Λ(D). AsΛ is monotone,ϕ is operative. IfQ∈Π

1
1 (Z×ω

ω), then the relation
ϕ(α, {β ∈ ωω | (z, β) ∈Q}) is in Π

1
1 . Thusϕ is Π

1
1 onΠ

1
1 . By 7C.8 in [M], ϕ∞(α) is in Π

1
1 and

Λ∞∈Π
1
1 (ω

ω).

Let βε ∈WO such that|βε|= ε, for ε∈ 3. Then< β0 | n∈ω >∈Λ0⊆Λ∞, so that0∞ ∈ c[Λ∞].
Let u∗ ∈ c[Λ∞], α∗ ∈Λ∞ with u∗ = c(α∗). Then< (α∗)0, β1, (α

∗)0, (α
∗)1, ... >∈Λ(Λ∞)=Λ∞, so

thatu∗(0)1u∗=c
(

<(α∗)0, β1, (α
∗)0, (α

∗)1, ...>
)

∈c[Λ∞].

Now let ξ≥1, up∈ c[Λ∞] such thatup(0)≥ ξ or up(0)=0, for eachp∈ω. Chooseα∈WO with
|α|=ξ, andαp∈Λ∞ with up=c(αp). Then< α, β2, (α

(0)0)(0)1 , (α
(1)0)(1)1 , ... >∈Λ(Λ∞)=Λ∞, so

thatξ2 < up >=c
(

< α, β2, (α
(0)0 )(0)1 , (α

(1)0)(1)1 , ... >
)

∈c[Λ∞]. ThusD⊆c[Λ∞].

Assume now that̃D⊆ωω
1 satisfies the following properties:

(a)0∞∈D̃.

(b) u∗∈D̃ ⇒ u∗(0)1u∗∈D̃.

(c)
(

ξ≥1 ∧ ∀p∈ω
(

up∈D̃ ∧ (up(0)≥ξ ∨ up(0)=0)
)

)

⇒ ξ2 < up >∈D̃.

We setD :={α∈ωω | ∀n∈ω (α)n∈WO∧ c(α)∈D̃}. It remains to see thatΛ(D)⊆D. Indeed,
this will imply thatΛ∞⊆D, c[Λ∞]⊆c[D]⊆D̃ andc[Λ∞]⊆D.

As 0∞ ∈ D̃ we get
{

α∈ωω | ∀n∈ω (α)n ∈WO ∧ |(α)n|=0
}

⊆D. Assume that(α)n ∈WO
for eachn∈ ω, that(α)0 = (α)2, |(α)1|=1 and< (α)2+j >∈D. Thenu∗ :=

(

|(α)2+j |
)

∈ D̃, and
|(α)2|1u

∗∈D̃. Thusc(α)∈D̃ andα∈D.

Assume now that(α)n ∈ WO for eachn ∈ ω, |(α)0| ≥ 1, |(α)1| = 2, < (α)2+<p,q> >∈ D,
and |(α)2+<p,0>| ≥ |(α)0| or |(α)2+<p,0>| = 0 for eachp ∈ ω. We setξ := |(α)0|. Then we have
up :=

(

|(α)2+<p,q>|
)

∈D̃, andξ2 < up >∈D̃. Thusc(α)∈D̃ andα∈D. �
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Note that just like Definition 5.1.2, the definition ofΛ is cut into three cases, that we will meet
again later on:|(α)1|=0 (or, equivalently,|(α)n|=0 for each integern), |(α)1|=1 or |(α)1|=2.

Even if “u∈D” is the least relation satisfying some conditions, some simplifications are possible.
For example,Γ01010∞ =Γ0∞ . Some other simplifications are possible, and some of them will sim-
plify the notation later on. This will lead to the notion of a normalized code of a description. To define
it, we need to associate a tree to a code of a description. The idea is to describe the construction of
a set inΓu using simpler and simpler sets, until we get the simplest set, namely the empty set. More
specifically, we defineT :Λ∞→{trees onω×Λ∞} as follows. Letα∈Λξ\Λ<ξ. We set

T(α) :=































{∅} ∪ {<(0, α)>} if |(α)1|=0,

{∅} ∪
{

(0, α)⌢s | s∈T(<(α)2+j>)
}

if |(α)1|=1,

{∅} ∪
{

(0, α)⌢s | s∈T(<(α)2+<0,q>>)
}

∪
⋃

p≥1

{

(p, α)⌢s | s∈T(<(α)2+<(p)0+1,q>>)
}

if |(α)1|=2.

An easy induction onη shows thatT(α) is always a countable well-founded tree (the first coordinate
of (p, α) ensures the well-foundedness). A sequences∈T(α) is said to bemaximal if s⊆ t∈T(α)
implies thats= t. Note that

∣

∣

(

s1(|s|−1)
)

1

∣

∣=0 if s is maximal. We denote byMα the set of maximal
sequences inT(α).

Definition 6.3 We say thatα∈Λ∞ is normalized if the following holds:
(

s∈Mα ∧ i< |s| ∧
∣

∣

(

s1(i)
)

1

∣

∣=1
)

⇒ i= |s|−2.

This means that in a maximal sequences of T(α),
∣

∣

(

s1(i)
)

1

∣

∣ is 2, then possibly1 once, and finally
0 once. The next lemma says that we can always assume thatα is normalized. It is based on the fact
that Šξ(Γ,Γ′)=Sξ(Γ̌, Γ̌

′).

Lemma 6.4 Letα∈Λ∞. Then there isα′∈Λ∞ normalized with(α′)0=(α)0 andΓc(α′)=Γc(α).

Proof. Assume thatα∈Λξ\Λ<ξ. We argue by induction onξ.

Case 1.|(α)1|=0.

We just setα′ :=α since
∣

∣

(

s1(i)
)

1

∣

∣=0.

Case 2.|(α)1|=1.

• We first defineN :Λ∞→Λ∞ as follows. We ensure that
(

N(β)
)

0
=(β)0 andΓc(N(β))= Γ̌c(β). Let

β1∈WO with |β1|=1. We set

N(β) :=















<(β)0, β1, (β)0, (β)1, (β)2, ...> if |(β)1|=0,
<(β)2+j> if |(β)1|=1,

<(β)0, (β)1,

(

(

N
(

< (β)2+<(i−2)0,q> >
)

)

(i−2)1

)

i≥2

> if |(β)1|=2,

and one easily checks thatN is defined and suitable.
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• As< (α)2+j >∈Λ<ξ, the induction assumption givesα′′∈Λ∞ normalized satisfying the equalities
(α′′)0=(α)2=(α)0 andΓc(α′′)=Γc(<(α)2+j>). In particular,

Γc(α)= Γ̌c(<(α)2+j>)= Γ̌c(α′′)=Γc(N(α′′)).

So we have to findα′ ∈ Λ∞ normalized with(α′)0 = (α′′)0 andΓc(α′) = Γc(N(α′′)). Assume that
α′′∈Λη\Λ<η . We argue by induction onη.

Subcase 1.|(α′′)1|≤1.

We just setα′ :=N(α′′).

Subcase 2.|(α′′)1|=2.

Note that< (α′′)2+<p,q> > is normalized since(0, α′′)⌢s ∈ Mα′′ (resp.,(p, α′′)⌢s ∈ Mα′′)
if s ∈ M(α′′)2+<0,q>

(resp.,s ∈ M(α′′)2+<(p)0+1,q>
and p ≥ 1). The induction assumption gives

<(α′)2+<p,q>>∈Λ∞ normalized with(α′)2+<p,0>=(α′′)2+<p,0> and

Γc(<(α′)2+<p,q>>)=Γc(N(<(α′′)2+<p,q>>)).

We set(α′)i :=(α′′)i if i∈2 and we are done.

Case 3.|(α)1|=2.

The induction assumption gives< (α′)2+<p,q> >∈ Λ∞ normalized satisfying the equalities
(α′)2+<p,0>=(α)2+<p,0> andΓc(<(α′)2+<p,q>>)=Γc(<(α)2+<p,q>>). We set(α′)i :=(α)i if i∈2 and
we are done. �

UsingΦ1, we will now code the non self-dual Wadge classes of Borel sets, and define an operator
Υ1 on (ωω)3 to do it. We set

Υ1(A) :=A ∪

{

(α, β, γ)∈(ωω)2×W ωω
| ∀n∈ω (α)n∈WO∧

(

∀n∈ω |(α)n|=0 ∧ β(0)=0 ∧ Cωω

γ =∅

)

∨

(

|(α)1|=1 ∧ (α)0=(α)2 ∧ β(0)=1 ∧

∃γ′∈ωω (< (α)2+j >,β
∗, γ′)∈A ∧ Cωω

γ =¬Cωω

γ′

)

∨

(

|(α)1|=2 ∧ |(α)0|≥1 ∧ ∀p∈ω
(

|(α)2+<p,0>|≥|(α)0| ∨ |(α)2+<p,0>|=0
)

∧

β(0)=2 ∧ ∃γ′∈ωω (< (α)2+<0,q> >, (β∗)0, (γ
′)0)∈A ∧

∀p≥1
(

<(α)2+<(p)0+1,q>>,
(

(β∗)p
)

0
,
(

(γ′)p
)

0

)

∈A ∧
((

(β∗)p
)

1
,
(

(γ′)p
)

1

)

∈Φ
|(α)0|
1 ∧

∀p 6=q≥1 Cωω

((γ′)p)1
∪ Cωω

((γ′)q)1
=ωω ∧

Cωω

γ =
⋃

p≥1 (C
ωω

((γ′)p)0
\Cωω

((γ′)p)1
) ∪ (Cωω

(γ′)0
∩
⋂

p≥1 C
ωω

((γ′)p)1
)

)}

.
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Lemma 6.5 Let ξ be an ordinal.

(a) Assume that(α, β, γ)∈Υξ
1. Thenα∈Λξ.

(b) Letα∈Λξ andB⊆ωω. ThenB∈Γc(α) if and only if there areβ, γ∈ωω such that(α, β, γ)∈Υξ
1

andCωω

γ =B.

Proof. (a) We argue by induction onξ. So letα ∈ Υξ
1 \Υ

<ξ
1 . We may assume that|(α)1| ≥ 1.

If |(α)1| = 1, then (< (α)2+j >,β
∗, γ′) ∈ Υ<ξ

1 for someγ′ and< (α)2+j >∈ Λ<ξ by induction
assumption, so we are done. If|(α)1|=2, then

(< (α)2+<0,q> >, (β∗)0, (γ
′)0),

(

< (α)2+<(p)0+1,q> >,
(

(β∗)p
)

0
,
(

(γ′)p
)

0

)

∈Υ<ξ
1

for someγ′ and< (α)2+<p,q> >∈Λ<ξ by induction assumption for each integerp.

(b) ⇒ We argue by induction onξ, and we may assume thatα /∈Λ<ξ.

Case 1.|(α)1|=0.

Note thatc(α) = 0∞ andB = ∅. We setβ := 0∞, and we chooseγ ∈W ωω
with Cγ = ∅. Then

(α, β, γ)∈Υ0
1⊆Υξ

1.

Case 2.|(α)1|=1.

Note that< (α)2+j >∈Λ<ξ, and¬B∈Γc(<(α)2+j>). By induction assumption we getβ′, γ′∈ωω

such that(< (α)2+j >,β
′, γ′)∈Υ<ξ

1 andCωω

γ′ =¬B. We setβ :=1β′ and we chooseγ∈W ωω
with

Cωω

γ =¬Cωω

γ′ .

Case 3.|(α)1|=2.

Note that< (α)2+<p,q> >∈Λ<ξ for each integerp. We can write

B=
⋃

p≥1

(Ap ∩ Cp) ∪ (B′\
⋃

p≥1

Cp),

where(Cp)p≥1 is a sequence of pairwise disjointΣ0
|(α)0|

sets,B′∈Γc(<(α)2+<0,q>>) and

Ap∈Γc(<(α)2+<(p)0+1,q>>).

Lemma 6.1 gives
((

(β∗)p
)

1
,
(

(γ′)p
)

1

)

∈ Φ
|(α)0|
1 such thatCωω

((γ′)p)1
= ¬Cp. The induction assump-

tion gives (β∗)0, (γ′)0 ∈ ωω such that(< (α)2+<0,q> >, (β∗)0, (γ
′)0) ∈ Υ<ξ

1 andCωω

(γ′)0
= B′,

and
(

(β∗)p
)

0
,
(

(γ′)p
)

0
∈ ωω such that

(

< (α)2+<(p)0+1,q> >,
(

(β∗)p
)

0
,
(

(γ′)p
)

0

)

∈ Υ<ξ
1 and

Cωω

((γ′)p)0
=Ap. We setβ(0) :=2 and we chooseγ∈W ωω

with

Cωω

γ =
⋃

p≥1

(Cωω

((γ′)p)0
\Cωω

((γ′)p)1
) ∪ (Cωω

(γ′)0
∩
⋂

p≥1

Cωω

((γ′)p)1
).

48



⇐ We argue by induction onξ, and we may assume that(α, β, γ) /∈Υ<ξ
1 .

Case 1.|(α)1|=0.

Note thatB=Cωω

γ =∅∈Γ0∞ =Γc(α).

Case 2.|(α)1|=1.

Note that there isγ′ such that(< (α)2+j >,β
∗, γ′)∈Υ<ξ

1 andCωω

γ =¬Cωω

γ′ , which implies that

B∈ Γ̌c(<(α)2+j>)=Γc(α).

Case 3.|(α)1|=2.

We getγ′ since(α, β, γ)∈Υξ
1. As

(< (α)2+<0,q> >, (β∗)0, (γ
′)0),

(

< (α)2+<(p)0+1,q> >,
(

(β∗)p
)

0
,
(

(γ′)p
)

0

)

∈Υ<ξ
1

we getCωω

(γ′)0
∈Γc(<(α)2+<0,q>>) andCωω

((γ′)p)0
∈Γc(<(α)2+<(p)0+1,q>>), by induction assumption. As

((

(β∗)p
)

1
,
(

(γ′)p
)

1

)

∈Φ
|(α)0|
1 , we getCωω

((γ′)p)1
∈Π

0
|(α)0|

by Lemma 6.1. This implies that

B∈S|(α)0|(
⋃

p≥1

Γc(<(α)2+<p,q>>),Γc(<(α)2+<0,q>>))=Γc(α).

This finishes the proof. �

Remark. We will also consider the operatorΥ defined just likeΥ1, except that

- We replace(W ωω
, Cωω

) with (W,C) (we work in(ωω)d instead ofωω).

- We replace the condition of the form(β̃, γ̃)∈Φ
|(α)0|
1 with

(

(α)0, β̃, γ̃
)

∈Q (see the remark at the
end of Section 4 for the definition ofQ).

- We askβ, γ, γ′ to be∆1
1(α), so thatΥ is aΠ 1

1 monotone inductive operator.

To prove Theorem 1.8, we will consider some tuples~v := (α, a0, a1, a0, a1, r), whereα ∈ Λ∞.
We will inductively define them through an inductive operator over (ωω)6 calledΘ. The definition
of Θ is in the spirit of that ofΥ1, and is cut into three cases, depending on the value of|(α)1|. As
the definition ofΘ is long and technical, we give first some more informal explanations about its
meaning. We will have~v∈Θ∞. So there is an ordinalξ such that~v∈Θξ.

- α∈Λξ is a (normalized in practice) code for a descriptionu=c(α).

- a0, a1 ∈∆
1
1(α) are codes for a pair of disjoint analytic subsets of(ωω)d. Using the good universal

setU for Π 1
1 defined after the proof of Theorem 4.2.2, at the end of Section4, we will actually code

the complement of these analytic sets, so that we will setAi :=¬Uai for i∈2.

- Similarly, a0, a1 ∈ ∆
1
1(α) are codes for a pair of disjoint analytic subsets of(ωω)d. In fact, we

will have Ai := ¬Uai
⊆ Ai. These codes will be used to buildr, and a0, a1, r will be com-

pletely determined by(α, a0, a1). So one should think thatai = ai(α, a0, a1) ≃ ai(u, a0, a1),
r=r(α, a0, a1)≃r(u, a0, a1). We need the following lemma to specify their meaning.
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Lemma 6.6 There is a recursive mapfa : (ωω)2→ωω such thatUfa(α,r)=U(r)0 ∪
⋃

p≥1 ¬¬U(r)p
τ|α|

if α∈∆
1
1 ∩ WO and|α|≥1.

Proof. Note first thatP :={(β,~δ)∈ωω×(ωω)d | (β)0∈∆
1
1 ∩ WO∧ |(β)0|≥1 ∧

~δ∈U((β)1)0 ∪
⋃

p≥1 ¬¬U((β)1)p
τ|(β)0|}

is aΠ
1
1 set, by the remark at the end of Section 4 definingR. This givesγ ∈ ωω recursive with

P =U
ωω×(ωω)d
γ . Letα∈∆

1
1 ∩ WO with |α|≥1, andr∈ωω. We have

~δ∈U(r)0 ∪
⋃

p≥1 ¬¬U(r)p
τ|α| ⇔ (< α, r, r, ... >,~δ )∈P

⇔ (γ,< α, r, r, ... >,~δ )∈Uωω×(ωω)d

⇔
(

S(γ,< α, r, r, ... >), ~δ
)

∈U

We just have to setfa(α, r) :=S(γ,< α, r, r, ... >). �

The following will hold:

◦ If u=0∞ or u=ξ1u∗, thenai=ai(α, a0, a1)=ai(u, a0, a1)=ai.

◦ If u=ξ2 < up >, then there will bea′0, a
′
1, r

′∈∆
1
1(α) such that, for eachp≥1,

(

< (α)2+<(p)0+1,q> >, a0, a1, (a
′
0)p, (a

′
1)p, (r

′)p
)

∈Θ<ξ.

We will haveai=ai(u, a0, a1)= fa
(

(α)0, < ai, (r
′)1, (r

′)2, ... >
)

, and(r′)p= r(u(p)0+1, a0, a1) if
p≥1. In particular,Ai=Ai ∩

⋂

p≥1 ¬Ur(u(p)0+1,a0,a1)
τξ .

- r ∈ ∆
1
1(α) is a code for an analytic subset of(ωω)d playing the role thatA0

τξ ∩ A1 played in
Theorem 4.2.2. In other words, the emptyness of this analytic set is equivalent to the possibility of
separatingA0 fromA1 by a pot(Γu) set. Here again, usingU , we will actually code the complement
of this analytic set:¬Ur is an analytic subset of(ωω)d. In particular,

◦ If u=0∞, thenr=r(α, a0, a1)=r(u, a0, a1)=a1.

◦ If u=ξ1u∗, thenr=r(α, a0, a1)=r(u, a0, a1)=a0.

◦ If u=ξ2 < up >, then we there will bea′′0, a
′′
1∈∆

1
1(α) such that

(< (α)2+<0,q> >, a0, a1, a
′′
0, a

′′
1 , r)∈Θ<ξ.

In particular,r(u, a0, a1) = r(u0, a0, a1) = r
(

u0, a0(u, a0, a1), a1(u, a0, a1)
)

. We are now ready to
defineΘ (recall the remark at the end of Section 4 definingQ).
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The operatorΘ is defined as follows (recall the definition ofΛ):

Θ(A) :=A ∪

{

(α, a0, a1, a0, a1, r)∈
(

ωω ∩∆
1
1(α)

)6
| ∀n∈ω (α)n∈WO∧

(

∀n∈ω |(α)n|=0 ∧ Ua0 ∪ Ua1 =(ωω)d ∧ (a0, a1)=(a0, a1) ∧ r=a1

)

∨

(

|(α)1|=1 ∧ (α)0=(α)2 ∧ (< (α)2+j >, a0, a1, a0, a1, a1)∈A ∧ r=a0

)

∨

(

|(α)1|=2 ∧ |(α)0|≥1 ∧ ∀p∈ω
(

|(α)2+<p,0>|≥|(α)0| ∨ |(α)2+<p,0>|=0
)

∧

∃a′0, a
′
1, r

′∈∆
1
1(α)

(

< (α)2+<0,q> >, a0, a1, (a
′
0)0, (a

′
1)0, (r

′)0
)

∈A ∧

∀p≥1
(

< (α)2+<(p)0+1,q> >, a0, a1, (a
′
0)p, (a

′
1)p, (r

′)p
)

∈A ∧

∀i∈2 ai=fa
(

(α)0, < ai, (r
′)1, (r

′)2, ... >
)

∧

∃a′′0, a
′′
1∈∆

1
1(α) (< (α)2+<0,q> >, a0, a1, a

′′
0 , a

′′
1 , r)∈A

)}

.

ThenΘ is aΠ 1
1 monotone inductive operator.

Remark. Let ξ be an ordinal, and~v := (α, a0, a1, a0, a1, r)∈Θξ. Then an induction onξ shows the
following properties:

- ¬Ua0 ∩ ¬Ua1 =∅.

- ¬Uai
⊆¬Uai for eachi∈2. In particular,¬Ua0

∩ ¬Ua1
=∅.

- a0, a1, r are completely determined by(α, a0, a1).

- If ¬Uai ⊆¬Ubi for eachi∈2, then¬Uai
⊆¬Ubi

for eachi∈2 and¬Ur(α,a0,a1)⊆¬Ur(α,b0,b1).

- There isi∈2 such that¬Ur⊆¬Uai .

Lemma 6.7 (a) Letξ be an ordinal,α∈∆
1
1, and(α, β, γ) ∈Υξ. Thenα ∈Λξ and the setCγ is in

∆
1
1 ∩ Γc(α)(τ1).

(b) Letα∈∆
1
1 ∩ Λ∞ normalized,a0, a1 ∈∆

1
1 with A0 ∩ A1= ∅. Then there area0, a1, r∈ω

ω such
that (α, a0, a1, a0, a1, r)∈Θ∞.

Proof. (a) We argue as in the proof of Lemmas 6.5.(a) and 6.5.(b)⇐. The only thing to notice is that
in the case|(α)1| = 2,

(

(α)0,
(

(β∗)p
)

1
,
(

(γ′)p
)

1

)

∈ Q. Proposition 2.2, Lemma 2.3 and Theorem
3.1 give a treeTd with ∆

1
1 suitable levels andS ∈ Σ

0
|(α)0|

(⌈Td⌉) not separable from⌈Td⌉\S by a

pot(Π0
|(α)0|

) set. Asα∈∆
1
1, |(α)0|<ωCK

1 and Theorem 4.2.2 implies thatC((γ′)p)1 is inΠ
0
|(α)0|

(τ1).
ThusCγ∈Γc(α)(τ1).

(b) Let ξ be an ordinal withα∈Λξ. Here again we argue by induction onξ. So assume thatα /∈Λ<ξ.

Case 1.|(α)1|=0.

Let ai :=ai andr :=a1. Then(α, a0, a1, a0, a1, r)∈Θ0⊆Θ∞.
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Case 2.|(α)1|=1.

As< (α)2+j >∈Λ<ξ we get, by induction assumption,(a0, a1, r
′) with

(< (α)2+j >, a0, a1, a0, a1, r
′)∈Θ∞.

As α is normalized we get|(α)2+j |=0 for eachj, andr′=a1. We setr :=a0. Then

(α, a0, a1, a0, a1, r)∈Θ(Θ∞)=Θ∞.

Case 3.|(α)1|=2.

As< (α)2+<p,q> >∈Λ<ξ we get, by induction assumption,(ap0, a
p
1, r

′
p) with

(

< (α)2+<0,q> >, a0, a1, a
0
0, a

0
1, r

′
0

)

∈Θ∞,

and(< (α)2+<(p)0+1,q> >, a0, a1, a
p
0, a

p
1, r

′
p)∈Θ∞, for eachp≥ 1. As in the proof of Lemma 6.2

we see thatΘ∞ ∈Π
1
1 . By ∆

1
1-selection, we may assume that the sequences(ap0), (a

p
1) and(r′p) are

∆
1
1. In particular, there isa′i∈∆

1
1 with (a′i)p=a

p
i . We set(r′)p :=r′p, and

ai :=fa
(

(α)0, < ai, (r
′)1, (r

′)2, ... >
)

.

The induction assumption givesa′′0 , a
′′
1 , r such that(< (α)2+<0,q> >, a0, a1, a

′′
0 , a

′′
1 , r)∈Θ∞. We are

done since(α, a0, a1, a0, a1, r)∈Θ∞. �

The next lemma is the crucial separation lemma announced in the presentation ofr.

Lemma 6.8 Let ~v := (α, a0, a1, a0, a1, r) ∈ Θ∞ with α ∈ ∆
1
1 normalized anda0, a1 ∈ ∆

1
1, Σ in

Σ
1
1

(

(ωω)d
)

with (¬Ur) ∩ Σ = ∅. Then there areβ′, γ′ ∈ ωω such that(α, β′, γ′) ∈ Υ∞ andCγ′

separatesA1 ∩Σ fromA0 ∩Σ. In particular,A1 ∩Σ is separable fromA0 ∩Σ by a∆1
1 ∩ Γc(α)(τ1)

set.

Proof. The last assertion comes from Lemma 6.7.(a). Letη be an ordinal with~v∈Θη. We argue by
induction onη. So assume that~v∈Θη\Θ<η.

Case 1.|(α)1|=0.

We setβ′ :=0∞, and chooseγ′∈∆
1
1 ∩W with Cγ′ =∅. We are done since∅=A1 ∩ Σ.

Case 2.|(α)1|=1.

As α is normalized, we get|(α)2+j |=0 for eachj. We setβ′ := 10∞, and chooseγ′ ∈∆
1
1 ∩W

with Cγ′ =(ωω)d. Thenγ′′∈∆
1
1 ∩W with Cγ′′ =∅ is a witness for the fact that(α, β′, γ′)∈Υ∞. We

are done sincer=a0.

Case 3.|(α)1|=2.

There area′0, a
′
1, r

′∈∆
1
1 with

(

< (α)2+<(p)0+1,q> >, a0, a1, (a
′
0)p, (a

′
1)p, (r

′)p
)

∈Θ<η, for each
p≥ 1, and, for eachi ∈ 2, ai = fa

(

(α)0, < ai, (r
′)1, (r

′)2, ... >
)

. Moreover, there area′′0 , a
′′
1 ∈∆

1
1

with (< (α)2+<0,q> >, a0, a1, a
′′
0 , a

′′
1, r)∈Θ<η.

By Lemma 6.7.(a), one of the goals is to buildCγ′ ∈ Γc(α)(τ1). The proof of Lemma 6.7.(a)
shows thatΓc(α) = S|(α)0|(

⋃

p≥1 Γc(<(α)2+<p,q>>),Γc(<(α)2+<0,q>>)). This means that we want to
find sequences(Cp)p≥1, (Sp)p≥1 andB such thatCγ′ =

⋃

p≥1 (Sp ∩Cp) ∪ (B\
⋃

p≥1 Cp).

52



- Let us constructB.

The induction assumption givesβ′′′, γ′′′ ∈ ωω such that(< (α)2+<0,q> >,β′′′, γ′′′) ∈ Υ∞ and
Cγ′′′ separatesA1 ∩ Σ fromA0 ∩ Σ. We setB :=Cγ′′′ .

- Let us construct theCp’s.

We setξ := |(α)0|. Note thatAi=Ai ∩
⋂

p≥1 ¬U(r′)p
τξ . This implies that

U :=
(

Cγ′′′ ∩A0 ∩ Σ
)

∪
(

¬Cγ′′′ ∩A1 ∩ Σ
)

⊆
⋃

p≥1

¬¬U(r′)p
τξ .

As in the proof of Lemma 6.6 we see that the relation “~δ /∈ ¬U(r′)p
τ|(α)0|” is Π

1
1 in (p, α, r′, ~δ). By

∆
1
1-selection there is a∆1

1-recursive mapf : (ωω)d → ω such thatf(~δ)≥ 1 for each~δ∈(ωω)d and
~δ /∈¬U(r′)

f(~δ)

τξ for each~δ∈U .

In particular, for each~δ ∈U there isP ∈Σ
1
1 ∩Π

0
<ξ(τ1) such that~δ ∈P ⊆U(r′)

f(~δ)
. Now P and

¬U(r′)
f(~δ)

are disjointΣ 1
1 sets, and separable by aΠ0

<ξ(τ1) set. Asα∈∆
1
1 we get1≤|(α)0|<ω

CK
1 .

As in the proof of Lemma 6.7.(a) we getTd andS. By Theorem 4.2.2 we get(β, γ)∈(∆1
1×∆

1
1)∩V<ξ

with P ⊆Cγ⊆U(r′)
f(~δ)

.

By Lemma 4.2.3.(2).(a) the relation “(β, γ) is in (∆1
1×∆

1
1)∩V<ξ” is Π

1
1 , so there is a∆1

1-recursive
mapg : (ωω)d→ω×(ωω×ωω) such that

∀~δ∈U g0(~δ)=f(~δ) and g1(~δ)∈(∆1
1×∆

1
1) ∩ V<ξ and ~δ∈C

(g1(~δ))1
⊆U(r′)

f(~δ)
,

by ∆
1
1-selection. In particular, theΣ 1

1 setg[U ] is a subset of
{(

p, (β, γ)
)

∈ω×
(

(∆1
1×∆

1
1) ∩ V<ξ

)

| Cγ⊆U(r′)p

}

,

which isΠ 1
1 and countable. The separation theorem givesD ∈∆

1
1 between these two sets. AsD is

countable, there areN, β̃, γ̃ ∈∆
1
1 with D =

{(

N(q),
(

(β̃)q, (γ̃)q
)

)

| q ∈ ω
}

. Now we can define

Cp :=
⋃

q∈ω,N(q)=p C(γ̃)q \(
⋃

q′<q C(γ̃)q′
).

- We now study the properties of theCp’s. We can say that

◦ The relation “~δ∈Cp” is ∆
1
1 in (p,~δ).

◦ TheCp’s are pairwise disjoint.

◦ Cp∈Σ
0
ξ(τ1) sinceC(γ̃)q ∈Π

0
<ξ(τ1)⊆∆

0
ξ(τ1), by Theorem 4.2.2.

◦ We setC̃ := {(p,~δ) ∈ ω× (ωω)d | ∃q ∈ ω N(q) = p and ~δ ∈ C(γ̃)q}, so thatC̃ ∈ ∆
1
1 and

C̃p∈Σ
0
1(τξ) for eachp≥1. We haveCp⊆ C̃p.

◦
⋃

p≥1 Cp=
⋃

p≥1 C̃p.

◦ C̃p separatesU ∩ f−1({p}) from ¬U(r′)p . In particular,U is a subset of the∆1
1 set

⋃

p≥1 Cp.

Moreover,
⋂

p≥1 ¬U(r′)p
τξ ⊆¬(

⋃

p≥1 C̃p).
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- The induction assumption gives, for eachp≥ 1, βp, γp with (< (α)2+<(p)0+1,q> >,βp, γp)∈Υ∞

andCγp separatesA1 ∩ C̃p fromA0 ∩ C̃p. As in the proof of Lemma 6.7.(b) we may assume that the
sequences(βp) and(γp) are∆1

1. By ∆
1
1-selection again there is a∆1

1-recursive maph :ω→ωω×ωω

such thath(p) ∈ (∆1
1×∆

1
1) ∩ Vξ andCh1(p) = ¬Cp for eachp≥ 1. We set

(

(β′∗)p
)

1
:= h0(p) and

(

(γ)p
)

1
:=h1(p), so that

(

(α)0,
(

(β′∗)p
)

1
,
(

(γ)p
)

1

)

∈Q for eachp≥1.

We setβ′(0) := 2, (β′∗)0 := β′′′, and
(

(β′∗)p
)

0
:= βp if p≥ 1, so thatβ′ is completely defined.

Similarly, we set(γ)0 := γ′′′, and
(

(γ)p
)

0
:= γp if p ≥ 1. Finally, we chooseγ′ ∈ ∆1

1 ∩ W with
Cγ′ =

⋃

p≥1 (Cγp \Ch1(p)) ∪ (C(γ)0 ∩
⋂

p≥1 Ch1(p)), so that(α, β′, γ′) ∈ Υ∞ andCγ′ separates
A1 ∩ Σ fromA0 ∩ Σ. �

The next result is the actual (effective) content of Theorem1.8.(1). It is also the version of
Theorem 4.4.1 for the non self-dual Wadge classes of Borel sets. Letjd : (dω)d→ωω be a continuous
embedding (for example we can embed(dω)d into (ωω)d in the obvious way, and then use a bijection
between(ωω)d andωω).

Theorem 6.9 Let Td be a tree with∆1
1 suitable levels,α in ∆

1
1 normalized,β, γ in ωω such that

(α, β, γ)∈Υ∞
1 , S :=j−1

d (Cωω

γ )∩⌈Td⌉, anda0, a1, a0, a1, r∈ω
ω with~v :=(α, a0, a1, a0, a1, r)∈Θ∞.

Then one of the following holds:

(a) ¬Ur=∅.

(b) The inequality
(

(Π′′
i ⌈Td⌉)i∈d, S, ⌈Td⌉\S

)

≤
(

(ωω)i∈d, A0, A1

)

holds.

Now we can state the version of Theorem 4.2.2 for the non self-dual Wadge classes of Borel sets.

Theorem 6.10 Let Td be a tree with∆1
1 suitable levels,α in ∆

1
1 normalized,β, γ in ωω such that

(α, β, γ)∈Υ∞
1 , S :=j−1

d (Cωω

γ )∩⌈Td⌉, anda0, a1, a0, a1, r∈ω
ω with~v :=(α, a0, a1, a0, a1, r)∈Θ∞.

We assume thatS is not separable from⌈Td⌉\S by a pot(Γ̌c(α)) set. Then the following are equivalent:

(a) The setA0 is not separable fromA1 by a pot(Γ̌c(α)) set.

(b) The setA0 is not separable fromA1 by a∆1
1 ∩ pot(Γ̌c(α)) set.

(c) ¬
(

∃β′, γ′∈ωω such that(α, β′, γ′)∈Υ∞ andA1⊆Cγ′ ⊆¬A0

)

.

(d) The setA0 is not separable fromA1 by aΓ̌c(α)(τ1) set.

(e)¬Ur 6=∅.

(f) The inequality
(

(dω)i∈d, S, ⌈Td⌉\S
)

≤
(

(ωω)i∈d, A0, A1

)

holds.

Proof. (a)⇒ (b) and (a)⇒ (d) are clear since∆ωω is Polish.

(b) ⇒ (c) This comes from Lemma 6.7.(a).

(b) ⇒ (e), (c)⇒ (e) and (d)⇒ (e) This comes from Lemma 6.8.

(e)⇒ (f) This comes from Theorem 6.9 (asΠ′′
i ⌈Td⌉ is compact, we just have to compose with con-

tinuous retractions to get functions defined ondω).

(f) ⇒ (a) If P ∈pot(Γ̌c(α)) separatesA0 fromA1 and (f) holds, thenS⊆(Πi∈d fi)
−1(P )⊆¬(⌈Td⌉\S).

This implies thatS is separable from⌈Td⌉\S by a pot(Γ̌c(α)) set, by Lemma 4.4.7. But this contradicts
the assumption onS. �
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Proof of Theorem 1.8.(1).Note first that (a) and (b) cannot hold simultaneously, as in the proof of
Theorem 6.10.

We assume that (a) does not hold. This implies that theXi’s are not empty, since otherwise
A0=A1=∅, and∅∈ Γ̌ unlessΓ={∅}. As in the proof of Theorem 4.1, we may assume thatXi=ω

ω

for eachi ∈ d, by Lemma 4.4.7. By Theorem 5.1.3 there isu ∈ D with Γ(ωω) = Γu(ω
ω). If E

is a0-dimensional Polish space, then we also haveΓ(E) =Γu(E), by Theorem 4.1.3 in [Lo-SR2].
It follows that pot(Γ) = pot(Γu). By Lemmas 6.2 and 6.4 we may assume that there isα ∈ Λ∞

normalized withc(α)=u.

By Theorem 4.1.3 in [Lo-SR2] there isB ∈ Γ(ωω) with S = j−1
d (B) ∩ ⌈Td⌉. To simplify the

notation, we may assume thatTd has∆1
1 levels,α ∈∆

1
1, andA0, A1 ∈Σ

1
1

(

(ωω)d
)

. By Lemma 6.5
there areβ, γ ∈ ωω such that(α, β, γ) ∈ Υ∞

1 andCωω

γ = B. Lemma 6.7.(b) givesa0, a1, r with
(α, a0, a1, a0, a1, r)∈Θ∞. Lemma 6.8 implies that¬Ur 6=∅. So (b) holds, by Theorem 6.10. �

The sequel is devoted to the proof of Theorem 6.9. We have to introduce a lot of objects before we
can do it. We will create some paragraphs to describe these objects. We start with a general notion.
The idea is that, given a setS in Γc(α)(⌈Td⌉), and with the help of the treeT(α), we will keep in
mind all theΣ0

ξ (or equivalentlyΠ0
ξ , passing to complements) used to buildS. We will represent

theseΠ0
ξ sets, on most sequencess of T(α), by induction on|s|, applying the Debs-Saint Raymond

theorem. At each induction step, we make closed someΠ
0
ξ sets of this level, but we also partially

simplify theΠ0
ξ sets to come. This is why the ordinal substraction is involved (recall the definition of

ordinal substraction after Theorem 5.1.3).

Definition 6.11 LetX be a set,A⊆X, B a countable family of subsets ofX, andΓ a Borel class.
We say thatA∈Γ(B) if A∈Γ(X, τ) for any topologyτ onX containingB.

Proposition 6.12 LetX be a topological space.

(a) LetA⊆X, B a countable family of open subsets ofX, andΓ a Borel class. ThenA∈Γ(X) if
A∈Γ(B).

(b) LetY be a set,B⊆Y , f :X→Y a bijection,B a countable family of subsets ofY , andΓ a Borel
class. Thenf−1(B)∈Γ({f−1(D) | D∈B}) if B∈Γ(B).

(c) Let 1 ≤ η ≤ ξ andA ∈ Π
0
ξ(X). We assume thatX is metrizable. Then there isB ⊆ Π

0
η(X)

countable such thatA∈Π
0
1+(ξ−η)(B̌), whereB̌ :={¬B | B∈B}.

In practice,X will be the metrizable space[R] for some tree relationR, andf will be the canonical
map given by the Debs-Saint Raymond theorem.

Proof. (a) The topologyτ is simply the topology ofX.

(b) Let τ be a topology onX containing{f−1(D) | D ∈ B}. Thenσ := {f [A] | A ∈ τ} is a
topology onY containingB. ThusB∈Γ(Y, σ) sinceB∈Γ(B). Thereforef−1(B)∈Γ(X, τ) since
f : (X, τ)→(Y, σ) is continuous.
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(c) We argue by induction onξ−η. The result is clear ifξ−η=0. So assume thatξ−η≥ 1. Write
A=

⋂

n∈ω ¬An, whereηn<ξ andAn ∈Π
0
ηn
(X). AsX is metrizable, we may assume thatη≤ ηn.

The induction assumption givesBn ⊆Π
0
η(X) countable such thatAn ∈Π

0
1+(ηn−η)(B̌n). It remains

to setB :=
⋃

n∈ω Bn. �

(A) The witnesses

Notation. We first define a map producing witnesses for the fact that~v∈Θ∞. More specifically, we
define a mapW : Θ∞→Θ∞ ∪ (Θ∞)ω. Let~v := (α, a0, a1, a0, a1, r)∈Θξ\Θ<ξ. If |(α)1|=0, then
we setW(~v) :=~v. If |(α)1|=1, then using the definition ofΘ we set

W(~v) :=(< (α)2+j >, a0, a1, a0, a1, a1).

Note thatW(~v)∈Θ<ξ. If |(α)1|=2, then we set

W(~v)(p) :=







(

<(α)2+<0,q>>, a0, a1, (a
′
0)0, (a

′
1)0, (r

′)0
)

if p=0,

(

<(α)2+<(p)0+1,q>>, a0, a1, (a
′
0)p, (a

′
1)p, (r

′)p
)

if p≥1.

Here again,W(~v)(p)∈Θ<ξ.

• Similarly, we define a mapW1 witnessing that~w ∈ Υ∞
1 . Moreover, we keep in mindγ′. More

specifically, we define a mapW1 : Υ∞
1 →Υ∞

1 ∪ (ωω×Υ∞
1 ) ∪

(

ωω×(Υ∞
1 )ω

)

. Let ~w := (α, β, γ)

in Υξ
1\Υ

<ξ
1 . If |(α)1|= 0, then we setW1(~w) := ~w. If |(α)1|= 1, then using the definition ofΥ1

and some choice forγ′, we setW1(~w) :=
(

γ′, (< (α)2+j >,β
∗, γ′)

)

. If |(α)1| = 2, then we set
W1(~w) :=

(

γ′,W1
1(~w)

)

, where

W
1
1(~w)(p) :=







(

<(α)2+<0,q>>, (β
∗)0, (γ

′)0
)

if p=0,

(

<(α)2+<(p)0+1,q>>,
(

(β∗)p
)

0
,
(

(γ′)p
)

0

)

if p≥1.

(B) The trees associated with the codes for the non self-dualWadge classes of Borel sets

• Recall the definition ofT(α) after Lemma 6.2. Similarly, we defineT : Υ∞
1 →{trees onω×Υ∞

1 }

as follows. Let~w :=(α, β, γ)∈Υξ
1\Υ

<ξ
1 . We set

T(~w) :=







{∅} ∪ {<(0, ~w)>} if |(α)1|=0,
{∅} ∪

{

(0, ~w)⌢s | s∈T
(

W1
1(~w)

)}

if |(α)1|=1,
{∅} ∪

⋃

p∈ω

{

(p, ~w)⌢s | s∈T
(

W1
1(~w)(p)

)}

if |(α)1|=2.

Here againT(~w) is always a countable well founded tree containing the sequence< (0, ~w)>. The
set of maximal sequences inT(~w) isM~w :={s∈T(~w) | ∀t∈T(~w) s⊆ t⇒ s= t}.

• Fix ~w :=(α, β, γ)∈Υ∞
1 with α ∈ ∆

1
1 normalized. In the sequel, it will be convenient to set, for

s∈T(~w)\M~w,

s1(|s|) :=







~w if s=∅,
W1

1

(

s1(|s|−1)
)

if s 6=∅ ∧
∣

∣

(

s1(|s|−1)(0)
)

1

∣

∣=1,
W1

1

(

s1(|s|−1)
)(

s0(|s|−1)
)

if s 6=∅ ∧
∣

∣

(

s1(|s|−1)(0)
)

1

∣

∣=2.
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• Let s∈T(~w). We setBs :={i< |s| | |
(

s1(i)(0)
)

1
|=2}. Asα is normalized,Bs is an integer. We

always haveBs≤|s|. If moreovers∈T(~w)\M~w, then we setB′
s :={i≤|s| | |

(

s1(i)(0)
)

1
|=2}.

• The ordinals|(α)0|, for α∈∆
1
1 ∩ Λ∞, will be of particular importance in the sequel. We define a

functionZ :T(~w)\M~w→(ωCK
1 )<ω satisfying|Z(s)|= |s|+1. The sequenceZ(s) gives the ordinals

ξ of theΠ0
ξ sets coded bys. We setZ(s)(i) :=

∣

∣

(

s1(i)(0)
)

0

∣

∣ if i≤|s|. Note the following properties
of Z(s), easy to check:

- Z(s)(i) depends only ons|i.

- Z(s)⊆Z(t) if s⊆ t.

- Z(s)(i+1)≥Z(s)(i) or Z(s)(i+1)=0 if i< |s|.

- Z(s)(i+1)=0 if Z(s)(i)=0 andi< |s|.

-
(

Z(s)(i)
)

i∈B′
s

is a non-decreasing sequence of non zero recursive ordinals.

(C) The resolution families

• Fix ~w :=(α, β, γ)∈Υ∞
1 with α∈∆

1
1 normalized, andp≥1. We set

P̃ ~w
p :=

{

ωω if |(α)1|≤1,
Cωω

((W1
0(~w))p)1

if |(α)1|=2.

Note thatP̃ ~w
p ∈Π

0
|(α)0|

(ωω) if |(α)1|=2, by Lemma 6.1.

• Recall the finite setscl⊆dd defined at the end of the proof of Proposition 2.2 (we only usedthe fact
thatTd has finite levels to see that they are finite). We putc :=

⋃

l∈ω cl, so thatc is countable. This
will be the countable setc of Definition 4.3.1.

• Recall the embeddingjd defined before Theorem 6.9. We setP ~w
p :=h[j−1

d (P̃ ~w
p ) ∩ cω], so that the

unionP ~w
p ∪ P ~w

q =[⊆] if p 6=q≥1. Moreover,Ps1(i)
p ∈Π

0
Z(s)(i)([⊆]) if s∈T(~w)\M~w andi∈B′

s.

• If T is a tree ands∈T , thenTs :={t∈T | s⊆ t}.

• Fix ~w :=(α, β, γ)∈Υ∞
1 with α∈∆

1
1 normalized and|(α)1|=2. We say thats∈T(~w) is extensible

if there ist ∈ T(~w)s such that|s|<Bt (which implies thats /∈M~w). We will construct, for eachs

extensible, a resolution family(R(ρ)
s )ρ≤ηs . Simultaneously, we construct some ordinalsξs andθs. If

θ is an ordinal, then we set

θ∗ :=

{

η if θ=η+1,
θ otherwise

(this is what appears in the Debs-Saint Raymond theorem). Wewill haveηs=θ∗s , ξs=Z(s)(|s|) and

θs :=

{

ξs=Z(s)(0)= |(α)0| if s=∅,
1+(ξs−ξs−) if s 6=∅.
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We want the resolution family to satisfy the following conditions:

- The family(R(ρ)
s )ρ≤ηs is uniform if θs is a limit ordinal.

- R(0)
∅ =⊆, andR

(ηs− )

s−
=R

(0)
s if s 6=∅.

- Πs : [R
(ηs)
s ]→ [R

(0)
s ] is a continuous bijection.

- (Πs|0 ◦Πs|1 ◦ ... ◦ Πs)
−1(P

s1(|s|)
p )∈Π

0
1([R

(ηs)
s ]) if p≥1.

- (Πs|0 ◦ Πs|1 ◦ ... ◦ Πs)
−1(P

t1(j+1)
p ) ∈ Π

0
1+(Z(t)(j+1)−ξs)

([R
(ηs)
s ]) if p ≥ 1, t ∈ T(~w)s \M~w and

|s|<j+1∈B′
t.

• The construction is by induction on|s|. Assume thats= ∅, p≥ 1, t∈T(~w)\M~w andj+1∈B′
t.

Proposition 6.12.(c) givesBt,j
p ⊆Π

0
θ∅
([⊆]) countable such thatPt1(j+1)

p ∈Π
0
1+(Z(t)(j+1)−θ∅)

(B̌t,j
p ).

This implies thatu∅ := {P ~w
p | p ≥ 1} ∪

⋃

p≥1,t∈T(~w)\M~w,j+1∈B′
t
Bt,j
p is countable and made of

Π
0
θ∅
([⊆]) sets. Theorems 4.3.4 and 4.4.4 give a family(R

(ρ)
∅ )ρ≤η∅ , uniform if θ∅ is a limit ordinal,

such that

- R(0)
∅ =⊆.

- Π∅ : [R
(η∅)
∅ ]→ [R

(0)
∅ ] is a continuous bijection.

- Π−1
∅ (Q)∈Π

0
1([R

(η∅)
∅ ]) for eachQ∈u∅.

This family is suitable, by Proposition 6.12.

• Assume now thats 6= ∅ is extensible, and the construction is done for the strict predecessors ofs.

Note that(Πs|0 ◦ Πs|1 ◦ ... ◦ Πs−)
−1(P

s1(|s|)
p )∈Π

0
θs
([R

(η
s− )

s−
]). Assume thatp≥ 1, t∈T(~w)s\M~w

and|s|<j+1∈B′
t. Then Proposition 6.12.(c) gives a countable familyCt,j

p ⊆Π
0
θs
([R

ηs−

s−
]) such that

(Πs|0 ◦Πs|1 ◦ ... ◦ Πs−)
−1(P

t1(j+1)
p )∈Π

0
1+(Z(t)(j+1)−ξs)

(Čt,j
p ). This implies that

us :={(Πs|0 ◦ Πs|1 ◦ ... ◦Πs−)
−1(Ps1(|s|)

p ) | p≥1} ∪
⋃

p≥1,t∈T(~w)s\M~w,|s|<j+1∈B′
t

Ct,j
p

is countable and made ofΠ0
θs
([R

(ηs− )

s−
]) sets. Theorems 4.3.4 and 4.4.4 give a resolution family

(R
(ρ)
s )ρ≤ηs , uniform if θs is a limit ordinal, such that

- R(0)
s =R

(ηs− )

s−
.

- Πs : [R
(ηs)
s ]→ [R

(0)
s ] is a continuous bijection.

- Π−1
s (Q)∈Π

0
1([R

(ηs)
s ]) for eachQ∈us.

This family is suitable, by Proposition 6.12. This completes the construction of the families.
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(D) The subsets ofTd

We now build some subsets ofTd that will play the role thatD andTd\D played in the proof of
Theorem 4.4.1. Fix~w := (α, β, γ) ∈Υ∞

1 with α ∈∆
1
1 normalized and|(α)1|= 2. We will define a

family of subsets ofTd as follows. Assume thats∈T(~w) is extensible. We set, forq≥1,

P0(s) :=
{

~s∈Td | ~s=~∅ ∨ ∀p≥1 ∃Bp∈(Πs|0 ◦Πs|1 ◦ ... ◦ Πs)
−1(P

s1(|s|)
p ) ~s∈Bp

}

,

Pq(s) :=
{

~s∈Td | ~s 6=~∅ ∧ ∀Bq∈(Πs|0 ◦Πs|1 ◦ ... ◦ Πs)
−1(P

s1(|s|)
q ) ~s /∈Bq ∧

∀p∈ω\{0, q} ∃Bp∈(Πs|0 ◦ Πs|1 ◦ ... ◦Πs)
−1(P

s1(|s|)
p ) ~s∈Bp

}

.

Note that thePq(s)’s are pairwise disjoint. The next lemma associates to each~t∈Td a sequences(~t )
in T(~w) saying in whichPq(s)’s the sequence~t is.

Proposition 6.13 Let ~w := (α, β, γ)∈Υ∞
1 with α∈∆

1
1 normalized and|(α)1|=2, and~t∈Td. Then

there arel∈ω ands(~t )∈T(~w) of lengthl such that

(a)~t∈
⋂

i<l Ps(~t )(i)(0)

(

s(~t )|i
)

.

(b) If s(~t ) is extensible byt, then~t /∈Pt(l)(0)(t|l).

Proof. We actually construct, forj ∈ ω, a sequencesj ∈ T(~w). We will havesj ⊆ sj+1, |sj|= j if
j ≤ l, sj = sl if j > l, and~t∈

⋂

i<|sj|
Psj(i)(0)

(

sj |i
)

. At the end,s(~t ) will be sl. The definition of
sj is by induction onj. Assume that(sk)k≤j are constructed satisfying these properties, which is the
case forj=0. We may assume that|sj |=j.

If sj is not extensible or~t /∈ B for eachB ∈ [R
(ηsj )
sj ], then we setsj+1 := sj. If ~t ∈ B for some

B∈ [R
(ηsj )
sj ], then there is a unique integerq such that~t∈Pq(sj) since

(Πsj |0 ◦ Πsj |1 ◦ ... ◦Πsj )
−1(P

(sj)1(j)
p ) ∪ (Πsj |0 ◦ Πsj |1 ◦ ... ◦Πsj )

−1(P
(sj)1(j)
q )=[R

(ηsj )
sj ]

if p 6=q≥1. We will have|sj+1|=j+1, andsj+1(j)(0) :=q. Moreover,

sj+1(j)(1) :=

{

~w if j=0,
W1

1

(

sj(j−1)(1)
)(

sj(j−1)(0)
)

if j≥1.

This completes the construction of thesj ’s, and they are inT(~w). The well-foundedness ofT(~w)
proves the existence ofl, ands(~t ) is suitable. �

Notation. Proposition 6.13 associatess(~t ) ∈ T(~w) to ~t ∈ Td. Under the same conditions, we can
associateS(~t )∈M~w to~t. To do this, we need the following lemma:

Lemma 6.14 Let ~w := (α, β, γ)∈Υ∞
1 with α∈∆

1
1 normalized and|(α)1|=2, ands∈T(~w). Then

there isS∈M~w extendings such thatS0(i)=0 for |s|≤ i< |S|.

59



Proof. If s=∅, then we setS(0) :=(0, ~w) and, ifW1
(

S1(i)
)

6=S1(i), then we set

S(i+1):=















(

0,W1
1

(

S(i)
)

)

if W1
1

(

S(i)
)

∈Υ∞
1 ,

(

0,W1
1

(

S(i)
)

(0)
)

if W1
1

(

S(i)
)

∈(Υ∞
1 )ω.

By induction, we see thatS|(i+1)∈T(~w) for eachi< |S|, which proves that the length ofS is finite
sinceT(~w) is well-founded. ThusS∈M~w.

If s 6=∅, thenS(|s|−1) is defined. We argue similarly. The only thing to change is that

S(|s|) :=
(

0,W1
1

(

s(|s|−1)
)(

s0(|s|−1)
)

)

if W1
(

s1(|s|−1)
)

6=s1(|s|−1) andW1
1

(

s(|s|−1)
)

∈(Υ∞
1 )ω. �

We now associate a maximal extensionS(~t ) of s(~t ) to any~t in Td.

Remark. In particular, there isS(~∅)∈M~w with
(

S(~∅)
)

0
(i)=0 for i< |S(~∅)|. Note thats(~∅)⊆S(~∅).

If ~∅ 6=~t∈Td, then we defineS(~t ) by induction on|~t|:

- If s(~t )=∅, then~t 6=∅ since~∅∈P0(∅), andS(~t ) :=S(~t
η∅
∅ ).

- If s(~t ) 6=∅ and~t
ηs(~t )−

s(~t )−
∈
⋂

i<|s(~t )| Ps(~t )(i)(0)

(

s(~t )|i
)

, thenS(~t ) :=S(~t
ηs(~t )−

s(~t )−
).

- If s(~t ) 6=∅ and~t
η
s(~t )−

s(~t )−
/∈
⋂

i<|s(~t )| Ps(~t )(i)(0)

(

s(~t )|i
)

, thenS(~t ) is the extension ofs(~t ) given by

Lemma 6.14 applied tos :=s(~t ).

Note thatS(~t )∈M~w and is always an extension ofs(~t ), by induction on|~t|. This comes from
the fact thats(~t )⊆s(~t

ηs(~t )−

s(~t )−
) in the second case.

(E) The tuples

We now keep in mind the tuples(α, a0, a1, a0, a1, r) along any sequence ofT(~w), using the
witness mapW. Fix ~w := (α, β, γ) ∈Υ∞

1 , ~v := (α, a0, a1, a0, a1, r)∈Θ∞ with α∈∆
1
1 normalized

and|(α)1|=2. We will define a mapV :T(~w)→ (Θ∞)<ω such that|V (s)|= |s|, V (s)(i) depends
only ons|i as follows. We set, fori< |s|,

V (s)(i) :=







~v if i=0,
W
(

V (s)(i−1)
)

if i≥1 ∧
∣

∣

(

V (s)(i−1)(0)
)

1

∣

∣≤1,
W
(

V (s)(i−1)
)(

s0(i−1)
)

if i≥1 ∧
∣

∣

(

V (s)(i−1)(0)
)

1

∣

∣=2.

Lemma 6.15 Let ~w := (α, β, γ)∈Υ∞
1 , ~v := (α, a0, a1, a0, a1, r)∈Θ∞ with α∈∆

1
1 normalized and

|(α)1|=2, s∈T(~w), andi< |s|. ThenV (s)(i)(0)=s1(i)(0). In particular, s /∈M~w andi≤|s| imply
thatZ(s)(i)= |

(

V (s)(i)(0)
)

0
|.
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Proof. The last assertion clearly comes from the first one. The proofis by induction oni. The
assertion is clear fori=0 sinceV (s)(0)(0)=s1(0)(0)=α. Assume that it holds fori< |s|−1.

• If i /∈Bs, then|
(

V (s)(i)(0)
)

1
|= |
(

s1(i)(0)
)

1
|=1. Thus

V (s)(i+1)(0)=W
(

V (s)(i)
)

(0)=<
(

V (s)(i)(0)
)

2+j
>=<

(

s1(i)(0)
)

2+j
>=s1(i+1)(0).

• If i∈Bs, then
∣

∣

(

V (s)(i)(0)
)

1

∣

∣= |
(

s1(i)(0)
)

1
|=2. If moreovers0(i)=0, then

V (s)(i+1)(0)=<
(

V (s)(i)(0)
)

2+<0,q>
>=<

(

s1(i)(0)
)

2+<0,q>
>=s1(i+1)(0).

The argument is similar ifs0(i)≥1. �

The next lemma is a preparation for Lemma 6.21, which is the crucial step to prove a version of
the claim in the proof of Theorem 4.4.1 for the non self-dual Wadge classes of Borel sets.

Lemma 6.16 Let ~w := (α, β, γ)∈Υ∞
1 , ~v := (α, a0, a1, a0, a1, r)∈Θ∞ with α∈∆

1
1 normalized and

|(α)1|=2, s∈T(~w), andi∈Bs.

(a) If s0(i)=0, then¬UV (s)(i)(5)⊆¬UV (s)(i+1)(5).

(b) We have¬UV (s)(i)(5)⊆¬UV (s)(i+1)(5)
τξs|i .

Proof. (a) We haveV (s)(i+1)=W
(

V (s)(i)
)

(0), by Lemma 6.15. Thus

V (s)(i+ 1)(5)=W
(

V (s)(i)
)

(0)(5)=(r′)0

for somer′ for which¬UV (s)(i)(5)⊆¬U(r′)0 , by the 2nd and the 4th remarks after the definition ofΘ.

(b) We may assume thats0(i)≥1, so thatV (s)(i+ 1)(5)=(r′)s0(i), and

¬UV (s)(i)(5)⊆¬UV (s)(i+1)(5)
τ|(V (s)(i)(0))0|

by the 5th remark after the definition ofΘ and the definition offa. We are done by Lemma 6.15.�

(F) The sequences of integers

We have to keep in mind the integerss0(i) for s∈T(~w). We will consider an ordering of these
finite sequences of integers that will help us to prove the claim just mentioned.

Notation. Fix ~w := (α, β, γ) ∈ Υ∞
1 , ~v := (α, a0, a1, a0, a1, r) ∈ Θ∞ with α ∈ ∆

1
1 normalized and

|(α)1|=2, ands, s′∈T(~w).

• If s ands′ are not compatible, then we denotes∧s′ :=s|i=s′|i, wherei is minimal withs(i) 6=s′(i).
Note that|s ∧ s′|∈Bs.

• We defineO(s)∈ω|s|: we setO(s)(i) :=s0(i).

• We also define a partial order onω<ω as follows:

O ⊑ O′ ⇔ O=O′ ∨ ∃i<min(|O|, |O′|)
(

O|i=O′|i ∧O(i)=0<O′(i)
)

.
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Lemma 6.17 Let ~w := (α, β, γ) ∈ Υ∞
1 , ~v := (α, a0, a1, a0, a1, r) ∈ Θ∞ with α ∈ ∆

1
1 normalized

and |(α)1| = 2, and s, s′ ∈ T(~w) uncompatible. Assume that~s ∈
⋂

i≤|s∧s′| Ps0(i)(s|i), ~t is in
⋂

i≤|s∧s′| Ps′0(i)
(s′|i) and~s R

(ηs||s∧s′|)

s||s∧s′|
~t. ThenO(s) ⊑ O(s′).

Proof. As s(|s ∧ s′|) 6= s′(|s ∧ s′|) ands1(|s ∧ s′|)= s′1(|s ∧ s
′|), we gets0(|s ∧ s′|) 6= s′0(|s ∧ s

′|).

Recall the definition of thePq(s)’s. Note the following facts. Assume thati∈Bs and~s R
(ηs|i)

s|i
~t.

- If s0(i)=0 and~t∈P0(s|i), then~s∈P0(s|i) too.

- If s0(i)≥1 and~t∈Ps0(i)(s|i), then~s∈P0(s|i) ∪ Ps0(i)(s|i).

These facts imply thats0(|s ∧ s′|)=0<s′0(|s ∧ s
′|). ThereforeO(s) ⊑ O(s′). �

(G) The ranges

The goal of this paragraph is to defiine the analytic setsr
(

S(~t )
)

that will containU~t in the
inductive construction of the proof of Theorem 6.9. They will play the role thatA0

τξ ∩ A1 andA0

played in the proof of Theorem 4.4.1, Conditions (4)-(5).

Notation. Fix ~w := (α, β, γ) ∈ Υ∞
1 , ~v := (α, a0, a1, a0, a1, r) ∈ Θ∞ with α ∈ ∆

1
1 normalized and

|(α)1|=2, ands∈T(~w)\{∅}. We set

is :=

{

|s|−1 if ∀j< |s| s0(j)≥1,
min{i< |s| | s0(i)=0} otherwise,

Is :=

{

|s|−1 if s0(|s|−1)≥1,
min{i< |s| | ∀j≥ i s0(j)=0} otherwise.

Note thatis≤ Is≤Bs. We associate, with eachis≤ i< |s|, as,i0 , a
s,i
1 , r

s,i∈ωω. The definition is by
induction oni. We setas,i

s

ε :=aε
(

V (s)(is)(0), a0, a1
)

, rs,i
s
:=r

(

V (s)(is)(0), a0, a1
)

=V (s)(is)(5).
Then

as,i+1
ε :=

{

as,iε if s0(i+1)≥1,
aε
(

V (s)(i+1)(0), as,i0 , a
s,i
1

)

if s0(i+1)=0,

rs,i+1 :=

{

rs,i if s0(i+1)≥1,
r
(

V (s)(i+1)(0), as,i0 , a
s,i
1

)

if s0(i+1)=0.

Therange of s is r(s) :=¬Urs,I
s .

Lemma 6.18 Let ~w := (α, β, γ)∈Υ∞
1 , ~v := (α, a0, a1, a0, a1, r)∈Θ∞ with α∈∆

1
1 normalized and

|(α)1|=2, s∈T(~w)\{∅}, andis≤ i<Bs−1 with s0(i)=0. Thenrs,i=rs,i+1.
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Proof. We may assume thats0(i+1)=0. Assume first thati= is. Then

rs,i
s
=r
(

V (s)(is)(0), a0, a1
)

=r
(

W
(

V (s)(is)
)

(0)(0), a0
(

V (s)(is)(0), a0, a1
)

, a1
(

V (s)(is)(0), a0, a1
)

)

=r
(

W
(

V (s)(is)
)(

s0(i
s)
)

(0), a0
(

V (s)(is)(0), a0, a1
)

, a1
(

V (s)(is)(0), a0, a1
)

)

=r
(

V (s)(is+1)(0), a0
(

V (s)(is)(0), a0, a1
)

, a1
(

V (s)(is)(0), a0, a1
)

)

=r
(

V (s)(is+1)(0), as,i
s

0 , as,i
s

1

)

=rs,i
s+1.

The argument is similar ifi>is. �

Lemma 6.19 Let ~w := (α, β, γ)∈Υ∞
1 , ~v := (α, a0, a1, a0, a1, r)∈Θ∞ with α∈∆

1
1 normalized and

|(α)1|=2. Then there isS(~∅)∈M~w with~∅∈
⋂

i<B
S(~∅)

P
(S(~∅))0(i)

(

S(~∅)|i
)

and¬Ur⊆r
(

S(~∅)
)

.

Proof. We sets :=S(~∅) for short. We already saw thats∈M~w, ~∅∈
⋂

i<Bs
Ps0(i)(s|i), ands0(i)=0

for eachi< |s| after Lemma 6.14. Note thatis=Is=0. We get

¬Ur=¬UV (s)(0)(5)=¬UV (s)(is)(5)=¬Urs,i
s =¬Urs,I

s =r(s).

This finishes the proof. �

The role of the next objects is to determine if we go to theA0 side or theA1 side in the inductive
construction of the proof of Theorem 6.9.

Notation. Let ~w := (α, β, γ) ∈ Υ∞
1 with α ∈ ∆

1
1 normalized and|(α)1| = 2, ands ∈M~w. We set

εs :=0 if Bs< |s|−1, εs :=1 otherwise, i.e., ifBs= |s|−1.

Lemma 6.20 Let ~w := (α, β, γ)∈Υ∞
1 , ~v := (α, a0, a1, a0, a1, r)∈Θ∞ with α∈∆

1
1 normalized and

|(α)1|=2, ands∈M~w. Thenr(s)⊆¬Uaεs .

Proof. Note first that¬U
a
s,i
ε

⊆¬Uaε , by induction oni and the 2nd remark after the definition ofΘ.
This implies that¬Urs,I

s ⊆¬Ur(V (s)(Is)(0),a0,a1)=¬UV (s)(Is)(5), by the 4th remark after the definition
of Θ. Thusr(s)=¬Urs,I

s ⊆¬UV (s)(Is)(5). Lemma 6.16 implies that¬UV (s)(Is)(5) ⊆¬UV (s)(Bs)(5).
But V (s)(Bs)(5)=aεs , by Lemma 6.15. �

Now we come to the crucial lemma for the claim mentioned earlier.

Lemma 6.21 Let ~w := (α, β, γ)∈Υ∞
1 , ~v := (α, a0, a1, a0, a1, r)∈Θ∞ with α∈∆

1
1 normalized and

|(α)1|=2, s, s′∈T(~w) withO(s) 6=O(s′) andO(s) ⊑ O(s′). Thenr(s)⊆r(s′)
τξ

s||s∧s′| .

Proof. We can writeO(s) := 0k0n0...0
kl−1nl−10

kl , with l, ki ∈ ω, andni ≥ 1. Similarly, we write

O(s′) := 0k
′
0n′0...0

k′
l′−1n′l′−10

k′
l′ . The assumption implies thatl′≥ 1, and the existence ofj < l′ with

(ki, ni) = (k′i, n
′
i) if i < j andk′j <kj . Lemma 6.14 shows the existence ofk′′j+1 ≥ 1 ands′′ ∈M~w

with O(s′′)=0k
′
0n′0...0

k′j−1n′j−10
k′jn′j0

k′′j+1 if j<l′−1. If j= l′−1, then we sets′′ :=s′.
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Note thatO(s) 6= O(s′′), O(s) ⊑ O(s′′), andO(s′′) ⊑ O(s′). Moreover,O(s′′) 6= O(s′) and
|s ∧ s′|= |s ∧ s′′|< |s′ ∧ s′′| if j < l′−1. It is enough to prove thatr(s)⊆ r(s′′)

τξ
s||s∧s′′| . This means

that we may assume that(ki, ni) = (k′i, n
′
i) if i < l′−1 andk′l′−1< kl′−1. This implies thatIs

′
≥ 1,

|s ∧ s′|=Is
′
−1, s|(Is

′
−1)=s′|(Is

′
−1), s0(Is

′
−1)=0<s′0(I

s′−1) andis≤Is
′
−1.

Case 1.is=Is andis
′
=Is

′
.

Note thatr(s)=¬Urs,I
s =¬Urs,i

s =¬UV (s)(is)(5)=¬UV (s′)(Is)(5). Lemma 6.16 implies that

r(s)=¬UV (s′)(Is)(5)⊆¬UV (s′)(Is′−1)(5)⊆¬UV (s′)(Is′ )(5)

τξ
s′|(Is

′
−1) =r(s′)

τξ
s||s∧s′| .

Case 2.is=Is andis
′
<Is

′
.

Note thatis= is
′
<Is

′
−1. Lemma 6.18 implies thatr(s)=¬Urs,I

s =¬U
rs,I

s′−1
. Thus

r(s)=¬U
r(V (s)(Is′−1)(0),as,I

s′−2
0 ,a

s,Is
′
−2

1 )

=¬U
r(V (s′)(Is′−1)(0),as

′,Is
′
−2

0 ,a
s′,Is

′
−2

1 )

=¬U
r(V (s′)(Is′−1)(0),as

′,Is
′
−1

0 ,a
s′,Is

′
−1

1 )

⊆¬U
r(V (s′)(Is′ )(0),as

′,Is
′
−1

0 ,a
s′,Is

′
−1

1 )

τξ
s′ |(Is

′
−1)

=r(s′)
τξ

s||s∧s′| ,

by Lemma 6.16.

Case 3.is<Is<Is
′
.

We argue as in Case 2.

Case 4.is<Is andIs
′
≤Is, which implies thatIs

′
<Is.

The 5th remark after the definition ofΥ gives ε ∈ 2 with r(s) = ¬Urs,I
s ⊆ ¬U

a
s,Is−1
ε

. Thus

r(s)⊆¬U
a
s,Is−1
ε

⊆ ...⊆¬U
a
s,Is

′
−1

ε

. If Is
′
≥2, then we get

¬U
a
s,Is

′
−1

ε

=¬U
aε(V (s′)(Is′−1)(0),as

′,Is
′
−2

0 ,a
s′,Is

′
−2

1 )

⊆¬U
r(V (s′)(Is′ )(0),as

′,Is
′
−2

0 ,a
s′,Is

′
−2

1 )

τξ
s||s∧s′|

=¬U
r(V (s′)(Is′ )(0),as

′,Is
′
−1

0 ,a
s′,Is

′
−1

1 )

τξ
s||s∧s′|

=r(s′)
τξ

s||s∧s′| .

Otherwise, we getIs
′
=1, is=0, is

′
=Is

′
and

¬U
a
s,0
ε

=¬Uaε(V (s′)(0)(0),a0 ,a1)⊆¬Ur(V (s′)(1)(0),a0 ,a1)
τξ

s||s∧s′| =r(s′)
τξ

s||s∧s′| .

This finishes the proof. �

64



(H) The maximal sequences

We now associate a maximal sequence to a couple(~β, ~w) with ~β ∈ ⌈Td⌉. It is build in a way
similar to that of thes(~t )’s, but for infinite sequences instead of finite ones.

• Let ~w := (α, β, γ) ∈ Υ∞
1 with α ∈ ∆

1
1 normalized and|(α)1| = 2, and~β ∈ ⌈Td⌉. We will define

s(~β, ~w)∈M~w. Recall the definition of̃P ~w
p . We set, fors∈M~w andi∈Bs,

Es
i :=

{

⋂

p≥1 P̃
s(i)(1)
p if s(i)(0)=0,

¬P̃
s(i)(1)
s(i)(0) if s(i)(0)≥1.

We defines(~β, ~w) in such a way thatjd(~β)∈
⋂

i∈B
s(~β,~w)

E
s(~β,~w)
i . Let ξ be an ordinal such that

~w∈Υξ
1\Υ

<ξ
1 . The definition ofs(~β, ~w) is by induction onξ.

Case 1.|(α)1|=0.

We sets(~β, ~w) :=<(0, ~w)>.

Case 2.|(α)1|=1.

We sets(~β, ~w) :=(0, ~w)⌢s
(

~β,W1
1(~w)

)

.

Case 3.|(α)1|=2.

We sets(~β, ~w) :=

{

(0, ~w)⌢s
(

~β,W1
1(~w)(0)

)

if jd(~β)∈
⋂

p≥1 P̃ ~w
p ,

(p, ~w)⌢s
(

~β,W1
1(~w)(p)

)

if jd(~β) /∈P̃ ~w
p ∧ p≥1.

• We set(~β|jk)k∈ω :=(Π
s(~β,~w)|0 ◦ ... ◦ Πs(~β,~w)|(B

s(~β,~w)
−1))

−1
(

h(~β)
)

.

Recall the definition ofεs before Lemma 6.20.

Lemma 6.22 Let ~w :=(α, β, γ)∈Υ∞
1 with α∈∆

1
1 normalized and|(α)1|=2, and~β∈⌈Td⌉.

(a) There isk0 ∈ ω such that~β|jk ∈
⋂

i<B
s(~β,~w)

P
s(~β,~w)(i)(0)

(

s(~β, ~w)|i
)

if k ≥ k0. In this case, the

sequences(~β|jk) given by Proposition 6.13 iss(~β, ~w)|B
s(~β,~w)

, and is not extensible.

(b) We havejd(~β)∈Cωω

γ if and only ifε
s(~β,~w)

=0.

Proof. We sets :=s(~β, ~w) for simplicity.

(a) To definek0, we will define, fori<Bs, ki0∈ω and we will setk0 :=max{ki0 | i<Bs}. To do this,
we set(~β|jik)k∈ω :=(Πs|0 ◦ ... ◦Πs|i)

−1
(

h(~β)
)

, so that(~β|ji+1
k )k∈ω is a subsequence of(~β|jik)k∈ω if

i<Bs−1.
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By the choice of theEs
i ’s we get, fori<Bs,

h(~β) ∈

{

⋂

p≥1 P
s1(i)
p if s0(i)=0,

¬P
s1(i)
s0(i)

if s0(i)≥1,

(~β|jik)k∈ω ∈

{

⋂

p≥1 (Πs|0 ◦ ... ◦ Πs|i)
−1(P

s1(i)
p ) if s0(i)=0,

¬(Πs|0 ◦ ... ◦Πs|i)
−1(P

s1(i)
s0(i)

) if s0(i)≥1.

Note the existence ofBi
p in (Πs|0 ◦ ... ◦ Πs|i)

−1(P
s1(i)
p ) such that~β|jik ∈ Bi

p if s0(i) = 0, k ∈ ω

andp ≥ 1. If s0(i) ≥ 1 andp ∈ ω\{0, s0(i)}, then(~β|jik)k∈ω ∈ (Πs|0 ◦ ... ◦ Πs|i)
−1(P

s1(i)
p ) since

P
s1(i)
p ∪P

s1(i)
s0(i)

=[⊆]. This implies the existence ofBi
p∈(Πs|0◦...◦Πs|i)

−1(P
s1(i)
p ) such that~β|jik∈Bi

p

if k ∈ ω. As (Πs|0 ◦ ... ◦ Πs|i)
−1(P

s1(i)
s0(i)

) ∈Π
0
1([R

(ηs|i)

s|i ]), there iski0 ≥ 1 such that~β|jik /∈ Bi
s0(i)

if

s0(i)≥1, Bi
s0(i)

∈(Πs|0 ◦ ... ◦Πs|i)
−1(P

s1(i)
s0(i)

) andk≥ki0. This defineski0 andk0. It remains to check

that ~β|jk ∈Ps(i)(0)(s|i) if i <Bs andk≥ k0. This comes from the fact thatjk = jBs−1
k = ji

K(k) for

someK(k)≥k≥k0≥k
i
0. The last assertion comes from the construction ofs(~t ).

(b) We define, fori< |s|, εis∈2. The definition is by induction oni. We first setε0s :=1. Thenεi+1
s :=0

if |s|−i−2 /∈Bs, εi+1
s := εis otherwise. Note thatεs= ε

|s|−1
s (εs is defined before Lemma 6.20). We

have to see thatjd(~β) is inCωω

s1(0)(2)
is equivalent toε|s|−1

s =0. We prove the following stronger fact:

jd(~β)∈C
ωω

s1(|s|−i−1)(2) is equivalent toεis =0 if i < |s|. Here again we argue by induction oni. The

result is clear fori=0 sinceCωω

s1(|s|−1)(2)=∅. So assume that the result is true fori< |s|−1.

If |s|−i−2 /∈Bs, then we are done sinceεi+1
s =1−εis andCωω

s1(|s|−i−2)(2) =¬Cωω

s1(|s|−i−1)(2). If

|s|−i−2∈Bs, thenεi+1
s =εis and

Cωω

s1(|s|−i−2)(2)=
⋃

p≥1 (C
ωω

((W1
0(s1(|s|−i−2)))p)0

\Cωω

((W1
0(s1(|s|−i−2)))p)1

)∪

(Cωω

(W1
0(s1(|s|−i−2)))0

∩
⋂

p≥1 C
ωω

((W1
0(s1(|s|−i−2)))p)1

).

If s0(|s|−i−2)=0, thenjd(~β)∈
⋂

p≥1 P̃
s1(|s|−i−2)
p =

⋂

p≥1 C
ωω

((W1
0(s1(|s|−i−2)))p)1

. We can say

that jd(~β)∈Cωω

s1(|s|−i−2)(2) is equivalent tojd(~β)∈Cωω

(W1
0(s1(|s|−i−2)))0

=Cωω

s1(|s|−i−1)(2), and we are

done by induction assumption. We argue similarly whens0(|s|−i−2)≥1. �

Remark. Recall the definition of an extensible sequence at the beginning of the construction of the
resolution families. Ifs is not extensible, thens admits a unique extensionM(s) in M~w. In particular,
in Lemma 6.22.(a),M

(

s(~β|jk)
)

= s(~β, ~w)=S(~β|jk). In Lemma 6.19,s(~∅)= s|Bs is not extensible

andM
(

s(~∅)
)

=S(~∅).

Notation. Recall the construction of the resolution families, and also the proof of Theorem 4.4.5,
especially the definition ofη(~t ). If θs is a limit ordinal, then we consider some ordinalsηs(~t )’s, as

in the proof of Theorem 4.4.5. We setρ(s,~s ) :=

{

ηs if θs is a successor ordinal,
ηs(~s ) if θs is a limit ordinal.
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The next lemma is the final preparation for the claim mentioned earlier.

Lemma 6.23 Let ~w :=(α, β, γ)∈Υ∞
1 with α∈∆

1
1 normalized and|(α)1|=2, s∈T(~w), andi<Bs.

Then
(

Σi′≤i ρ(s|i
′,
−→
tm)

)

+1≤ξs|i.

Proof. We argue by induction oni. Note first thatρ(s|0,
−→
tm)+1≤θs|0=ξs|0. Then, inductively,

(

Σi′≤i+1 ρ(s|i
′,
−→
tm)

)

+1 ≤
(

Σi′≤i ρ(s|i
′,
−→
tm)

)

+θs|(i+1)

≤
(

Σi′≤i ρ(s|i
′,
−→
tm)

)

+1+(ξs|(i+1)−ξs|i)
≤ξs|i+(ξs|(i+1)−ξs|i)
≤ξs|(i+1)

This finishes the proof. �

Proof of Theorem 6.9.Let ξ be an ordinal with~w :=(α, β, γ)∈Υξ
1. We argue by induction onξ. So

assume that~w∈Υξ
1\Υ

<ξ
1 .

Case 1.|(α)1|=0.

Lemma 6.5 implies thatCωω

γ ∈Γc(α)=Γ0∞ = {∅}, so thatS= ∅. We also haver=a1. Assume
that (a) does not hold. ThenA1 6=∅, so it contains some~α. We just have to setfi(βi) :=αi.

Case 2.|(α)1|=1.

As ~w∈Υξ
1 we getγ′∈ωω with (< (α)2+j >,β

∗, γ′)∈Υ<ξ
1 andCωω

γ =¬Cωω

γ′ (see the definition

of Υ1). Asα is normalized,Cωω

γ′ = ∅, so thatS = ⌈Td⌉. We also haver= a0. Assume that (a) does
not hold. ThenA0 6=∅, and we argue as in Case 1.

Case 3.|(α)1|=2.

Assume that (a) does not hold. As for Theorems 4.4.1 and 4.4.5we construct(αi
s)i∈d,s∈Π′′

i Td
,

(Oi
s)i≤|s|,i∈d,s∈Π′′

i Td
, (U~s)~s∈Td

. We want these objects to satisfy the following conditions.

(1) αi
s∈O

i
s⊆Ωωω ∧ (αi

si
)i∈d∈U~s⊆Ω(ωω)d ,

(2) Oi
sq⊆O

i
s,

(3) diamdωω (O
i
s)≤2−|s| ∧ diamd

(ωω)d
(U~s)≤2−|~s|,

(4) ~t∈Td ⇒ U~t⊆r
(

S(~t )
)

,

(5)







~s,~t∈
⋂

i′<i,ηs|i′≥1 Ps0(i′)(s|i
′)

1≤ρ≤ρ(s|i, ~s)

~s R
(ρ)
s|i
~t






⇒ U~t⊆U~s

τ(Σ
i′<i

ρ(s|i′,~s))+ρ ,

(6)

(

~s∈
⋂

i<|s(~t )| Ps(~t )(i)(0)

(

s(~t )|i
)

∧ ~s R
(ηs(~t )−)

s(~t )−
~t

)

⇒ U~t⊆U~s.
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• Let us prove that this construction is sufficient to get the theorem.

- Fix ~β ∈ ⌈Td⌉. Lemma 6.22 givesk0 ∈ ω such that~β|jk ∈
⋂

i<B
s(~β,~w)

P
s(~β,~w)(i)(0)

(

s(~β, ~w)|i
)

for

eachk≥ k0. Proposition 6.13 givesl ands(~β|jk)∈T(~w) with ~β|jk ∈
⋂

i<l Ps(~β|jk)(i)(0)

(

s(~β|jk)|i
)

,

and Lemma 6.22.(a) implies thats(~β|jk) = s(~β, ~w)|B
s(~β,~w)

. This implies that(U~β|jk
)k≥k0 is non-

increasing since~β|jk R
(ηs(β,~w)|(Bs(β,~w)−1))

s(β,~w)|(Bs(β,~w)−1)
~β|jk+1 for each integerk, by Condition (6). As in the

proof of Theorem 4.4.1 we defineF(~β) andfi continuous withF(~β)=(Πi∈d fi)(~β). The inclusions

S⊆(Πi∈d fi)
−1(A0)

and⌈Td⌉\S⊆(Πi∈d fi)
−1(A1) hold, by Lemmas 6.20 and 6.22, sincer

(

s(β, ~w)
)

⊆Aεs(β,~w)
.

• So let us prove that the construction is possible.

- As¬Ur is nonempty andΣ 1
1 , we can choose(αi

∅)i∈d∈¬Ur ∩ Ω(ωω)d . Then we choose aΣ 1
1 subset

U~∅
of (ωω)d, with d(ωω)d-diameter at most1, such that(αi

∅)i∈d ∈ U~∅
⊆ ¬Ur ∩ Ω(ωω)d . We choose

aΣ
1
1 subsetO0

∅ of Ωωω , with dωω -diameter at most1, with α0
∅ ∈O

0
∅ ⊆Ωωω , which is possible since

Ω(ωω)d ⊆Ωd
ωω . Assume that(αi

s)|s|≤l, (O
i
s)|s|≤l and(U~s)|s0|≤l satisfying conditions (1)-(6) have been

constructed, which is the case forl=0 by Lemma 6.19.

- Let
−→
tm∈Td ∩ (dl+1)d. We defineXi :=O

i
ti

if i≤ l, andωω if i>l.

Claim. Assume thats ∈ T(~w), i < Bs,
−→
tm

ηs|i
s|i ,

−→
tm ∈

⋂

i′<i Ps0(i′)(s|i
′), and i0 ≤ i is minimal with

ηs|i0≥1.

(a) The set

U−→
tm

ρ(s|i,
−→
tm)

s|i

∩
⋂

1≤ρ<ρ(s|i,
−→
tm)

U−→
tm

ρ

s|i

τ
(Σ

i′<i
ρ(s|i′,

−→
tm))+ρ

∩
⋂

i′<i

⋂

1≤ρ≤ρ(s|i′,
−→
tm)

U−→
tm

ρ

s|i′

τ
(Σ

i′′<i′ ρ(s|i′′,
−→
tm))+ρ ∩ (Πi∈d Xi)

is τ1-dense inU−→
tm1

s|i0

τ1 ∩ (Πi∈d Xi).

(b) Assume moreover thats′ ∈T(~w), s ands′ are uncompatible,i := |s ∧ s′|,
−→
tm∈Ps′0(i)

(s′|i), and
−→
tm

ηs|i

s|i ∈Ps0(i)(s|i). Then

r
(

S(
−→
tm)

)

∩
⋂

i′≤i

⋂

1≤ρ≤ρ(s|i′,
−→
tm)

U−→
tm

ρ

s|i′

τ
(Σ

i′′<i′ ρ(s|i′′,
−→
tm))+ρ ∩ (Πi∈d Xi)

is τ1-dense inU−→
tm1

s|i0

τ1 ∩ (Πi∈d Xi).

(a) Assume first thati0 = 0. Note that
−→
tmρ+1

∅ R
(ρ+1)
∅

−→
tmρ

∅ R
(ρ)
∅

−→
tm if 1≤ ρ < ρ(∅,

−→
tm), by Lemma

4.3.2. As in the proof of Claim 2 in Theorem 4.4.5, this implies thatU−→
tm

ρ

∅
⊆U−→

tm
ρ+1
∅

τρ+1. By assump-

tion,
−→
tm

ηs|i

s|i ,
−→
tm∈

⋂

i′<i Ps0(i′)(s|i
′).
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Note that
−→
tmρ

s|(i′+1) ∈ Ps0(i′′)(s|i
′′) if i′′ ≤ i′ < i andρ≤ ηs|(i′+1). Indeed, this comes from the

fact that
−→
tm

ηs|i
s|i R

(ηs|i′′ )

s|i′′
−→
tmρ

s|(i′+1) R
(ηs|i′′ )

s|i′′
−→
tm. As in the proof of Claim 2 in Theorem 4.4.5 again,

this implies thatU−→
tm

ρ

s|(i′+1)

⊆ U−→
tm

ρ+1

s|(i′+1)

τ
(Σ

i′′<i′+1 ρ(s|i′′,
−→
tm))+ρ+1 if ρ < ρ(s|(i′ + 1),

−→
tm). Note that

−→
tm0

s|(i′+1)=
−→
tm

ηs|i′

s|i′ =
−→
tm

ρ(s|i′,
−→
tm)

s|i′ . This implies the result. We argue similarly ifi0>0.

(b) By (a) and Lemma 6.22, it is enough to see thatU :=U−→
tm

ρ(s|i,
−→
tm)

s|i

⊆ r
(

S(
−→
tm)

)
τξs|i . The induction

assumption implies thatU ⊆ r
(

S(
−→
tm

ηs|i
s|i )

)

. So let us prove thatr
(

S(
−→
tm

ηs|i
s|i )

)

⊆ r
(

S(
−→
tm)

)
τξs|i . Note

that s|(i+1) ⊆ s(
−→
tm

ηs|i

s|i )⊆ S(
−→
tm

ηs|i

s|i ) and, similarly,s′|(i+1) ⊆ S(
−→
tm). Lemma 6.17 implies that

O
(

S(
−→
tm

ηs|i
s|i )

)

⊑ O
(

S(
−→
tm)

)

, and the beginning of its proof thatO
(

S(
−→
tm

ηs|i
s|i )

)

6=O
(

S(
−→
tm)

)

. Now
Lemma 6.21 implies the result. ⋄

- LetX :=dl+1. The mapΨ:X d→Σ
1
1

(

(ωω)d
)

is defined onT l+1 by

Ψ(
−→
tm) :=







































































































































































































r
(

S(
−→
tm)

)

∩
⋂

1≤ρ≤ρ(∅,
−→
tm)

U−→
tm

ρ

∅

τρ ∩ (Πi∈d Xi) ∩ Ω(ωω)d if s(
−→
tm)=∅,

U−→
tm

ρ(s(
−→
tm)−,

−→
tm)

s(
−→
tm)−

∩
⋂

1≤ρ<ρ(s(
−→
tm)−,

−→
tm)

U−→
tm

ρ

s(
−→
tm)−

τ
(Σ

i′<|s(
−→
tm)|−1

ρ(s|i′,
−→
tm))+ρ

∩
⋂

i′<|s(
−→
tm)|−1

⋂

1≤ρ≤ρ(s|i′,
−→
tm)

U−→
tm

ρ

s|i′

τ
(Σ

i′′<i′ ρ(s|i′′,
−→
tm))+ρ ∩ (Πi∈d Xi)

if s(
−→
tm) 6=∅ ∧

−→
tm

η
s(

−→
tm)−

s(
−→
tm)−

∈
⋂

i′<|s(
−→
tm)|

P
s(
−→
tm)(i′)(0)

(

s(
−→
tm)|i′

)

∧∃i0< |s(
−→
tm)| η

s(
−→
tm)|i0

≥1,

r
(

S(
−→
tm)

)

∩
⋂

i′≤i

⋂

1≤ρ≤ρ(s(
−→
tm)|i′,

−→
tm)

U−→
tm

ρ

s(
−→
tm)|i′

τ
(Σ

i′′<i′ ρ(s(
−→
tm)|i′′,

−→
tm))+ρ ∩ (Πi∈d Xi) ∩Ω(ωω)d

if s(
−→
tm) 6=∅ ∧

−→
tm

η
s(

−→
tm)−

s(
−→
tm)−

/∈
⋂

i′<|s(
−→
tm)|

P
s(
−→
tm)(i′)(0)

(

s(
−→
tm)|i′

)

∧ i< |s(
−→
tm)| is maximal with

−→
tm

η
s(

−→
tm)|i

s(
−→
tm)|i

∈
⋂

i′<i Ps(
−→
tm)(i′)(0)

(

s(
−→
tm)|i′

)

∧ ∃i0≤ i ηs(−→tm)|i0
≥1,

U~t ∩ (Πi∈d Xi) if s(
−→
tm) 6=∅ ∧

−→
tm

η
s(

−→
tm)−

s(
−→
tm)−

∈
⋂

i′<|s(
−→
tm)|

P
s(
−→
tm)(i′)(0)

(

s(
−→
tm)|i′

)

∧ ∀i0< |s(
−→
tm)| η

s(
−→
tm)|i0

=0,

r
(

S(
−→
tm)

)

∩ (Πi∈d Xi) ∩ Ω(ωω)d if s(
−→
tm) 6=∅

∧
−→
tm

η
s(

−→
tm)−

s(
−→
tm)−

/∈
⋂

i′<|s(
−→
tm)|

P
s(
−→
tm)(i′)(0)

(

s(
−→
tm)|i′

)

∧ i< |s(
−→
tm)| is maximal with

−→
tm

η
s(

−→
tm)|i

s(
−→
tm)|i

∈
⋂

i′<i Ps(
−→
tm)(i′)(0)

(

s(
−→
tm)|i′

)

∧ ∀i0≤ i ηs(−→tm)|i0
=0.

By the claim,Ψ(
−→
tm) is τ1-dense inU−→

tm1
s(

−→
tm)|i0

τ1 ∩ (Πi∈d Xi) in the 2nd and in the 3rd cases.
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In these cases, as
−→
tm1

s(
−→
tm)|i0

⊆~t⊆
−→
tm andR(1)

s(
−→
tm)|i0

is distinguished inR(0)

s(
−→
tm)|i0

=⊆,

−→
tm1

s(
−→
tm)|i0

R
(1)

s(
−→
tm)|i0

~t

andU~t⊆U−→
tm1

s(
−→
tm)|i0

τ1 , by induction assumption. Therefore

U~t ∩ (Πi∈d Xi)⊆U−→
tm1

s(
−→
tm)|i0

τ1 ∩ (Πi∈d Xi)⊆Ψ(
−→
tm).

Using similar arguments, one can prove that this also holds in the last two cases.

Let us look at the first case. Ifη∅ ≥ 1, then using arguing as in the claim one can prove that
U−→
tm

ρ(∅,
−→
tm)

∅

∩
⋂

1≤ρ<ρ(∅,
−→
tm)

U−→
tm

ρ

∅

τρ ∩ (Πi∈d Xi) is τ1-dense inU−→
tm1

∅

τ1 ∩ (Πi∈d Xi). Now we can write

U−→
tm

ρ(∅,
−→
tm)

∅

⊆r
(

S(
−→
tm

η∅
∅ )
)

=r
(

S(
−→
tm)

)

and we can repeat the previous argument sincei0=0. If η∅=0,

then we get
−→
tm

η∅
∅ =~t, andU~t ∩ (Πi∈d Xi)⊆ r

(

S(~t )
)

∩ (Πi∈d Xi)= r
(

S(
−→
tm)

)

∩ (Πi∈d Xi) and we
are done.

Now we can write(αi
ti
)i∈d ∈ U~t ∩ (Πi∈d Xi) ⊆ Ψ(

−→
tm), and we conclude as in the proof of

Theorem 4.4.1. �

The rest of this section is devoted to the proof of Theorem 1.8.(2) when∆(Γ) is a Wadge class.
Recall Theorem 5.2.8. We will say thatα∈∆

1
1 ∩ Λ∞ is suitable if ∆(Γc(α)) is a Wadge class and

one of the following holds:

(1) There isα∈∆
1
1 ∩ Λ∞ normalized with

Γc(α)=
{

(A0 ∩ C0) ∪ (A1 ∩ C1) | A0,¬A1∈Γc(α) ∧ C0, C1∈Σ
0
1 ∧ C0 ∩C1=∅

}

.

(2) There isα′ ∈ ∆
1
1 such that(α′)p ∈ Λ∞ is normalized for eachp ≥ 1,

(

Γc((α′)p)

)

p≥1
is strictly

increasing, andΓc(α)=
{

⋃

p≥1 (Ap ∩Cp) | Ap∈Γc((α′)p) ∧ Cp∈Σ
0
1 ∧ Cp ∩ Cq=∅ if p 6=q

}

.

Assume thatα is suitable anda0, a1 ∈ ∆
1
1 satisfyA0 ∩ A1 = ∅. Then Lemma 6.7.(b) gives

r(α, a0, a1) andr(α, a1, a0), or r
(

(α′)p, a0, a1
)

. We setR(α, a0, a1) := ¬Ur(α,a0,a1) in the same
fashion as before, and

R′(α, a0, a1) :=











R(α, a0, a1)
τ1
∩R(α, a1, a0)

τ1
if we are in Case(1),

⋂

p≥1 R
(

(α′)p, a0, a1
)τ1

if we are in Case(2).

We now give the self-dual version of Lemma 6.8.

Lemma 6.24 Letα suitable, anda0, a1∈∆
1
1 such thatA0∩A1=∅. We assume thatR′(α, a0, a1)=∅.

ThenA0 is separable fromA1 by a∆1
1 ∩∆(Γc(α))(τ1) set.
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Proof. (1) AsR(α, a0, a1)
τ1

∩ R(α, a1, a0)
τ1
=∅, there isC ∈∆

0
1(τ1) separatingR(α, a0, a1) from

R(α, a1, a0). As R(α, a0, a1) andR(α, a1, a0) areΣ 1
1 , we may assume thatC ∈∆

1
1, by Theorem

4.2.2. A double application of Lemmas 6.7.(b) and 6.8 gives some setsB0, B1 ∈ ∆
1
1 ∩ Γc(α)(τ1)

such thatB0 (resp.,B1) separatesA0 ∩ C (resp.,A1\C) from A1 ∩ C (resp.,A0\C). Now the set
(B0 ∩ C) ∪ (¬B1 ∩ ¬C) is suitable.

(2) The proof is similar, but we have to make some∆
1
1-selection. AsΘ∞ is Π

1
1 andr

(

(α′)p, a0, a1
)

is ∆
1
1 and completely determined by(α′)p, a0 anda1, the sequence

(

r
(

(α′)p, a0, a1
)

)

p≥1
is∆1

1. As
⋂

p≥1 R
(

(α′)p, a0, a1
)τ1

= ∅, there is a∆1
1-recursive mapf : (ωω)d → ω such thatf(~α) ≥ 1 and

~α /∈R
(

(α′)f(~α), a0, a1
)τ1

for each~α∈(ωω)d.

We setUp := f−1({p}), so thatUp andR
(

(α′)p, a0, a1
)

are disjointΣ 1
1 sets and separable by a

τ1-open set. By Theorem 4.2.2, there isVp∈∆
1
1∩Σ

0
1(τ1) separating them. Moreover, we may assume

that the sequence(Vp) is∆1
1. We reduce the sequence(Vp) into a∆1

1-sequence(Cp) of ∆1
1 ∩Σ

0
1(τ1)

sets. Note that(Cp) is a partition of(ωω)d into ∆
0
1(τ1) sets. AsR

(

(α′)p, a0, a1
)

∩ Cp= ∅, Lemma
6.8 givesβ′, γ′∈ωω such that

(

(α′)p, (β
′)p, (γ

′)p
)

∈Υ∞ andC(γ′)p separatesA1 ∩Cp fromA0 ∩Cp

for eachp ≥ 1. Moreover, we may assume thatβ′, γ′ ∈∆
1
1. Now the set

⋃

p≥1 (¬C(γ′)p ∩ Cp) is
suitable. �

We now give the self-dual version of Theorem 6.9.

Theorem 6.25 LetTd be a tree with∆1
1 suitable levels,α suitable,βε, γε∈ωω with (α, βε, γε)∈Υ∞

1 ,
Sε := j−1

d (Cωω

γε ) ∩ ⌈Td⌉, anda0, a1, a0, a1, r ∈ ωω such that~v := (α, a0, a1, a0, a1, r) ∈ Θ∞. We
assume thatS0 andS1 are disjoint. Then one of the following holds:

(a)R′(α, a0, a1)=∅.

(b) The inequality
(

(Π′′
i ⌈Td⌉)i∈d, S

0, S1
)

≤
(

(ωω)i∈d, A0, A1

)

holds.

Now we can state the version of Theorem 4.2.2 for the self-dual Wadge classes of Borel sets.

Theorem 6.26 LetTd be a tree with∆1
1 suitable levels,α suitable,βε, γε∈ωω with (α, βε, γε)∈Υ∞

1 ,
Sε := j−1

d (Cωω

γε ) ∩ ⌈Td⌉, anda0, a1, a0, a1, r ∈ ωω such that~v := (α, a0, a1, a0, a1, r) ∈ Θ∞. We
assume thatS0, S1 are disjoint and not separable by a pot

(

∆(Γc(α))
)

set. Then the following are
equivalent:

(a) The setA0 is not separable fromA1 by a pot
(

∆(Γc(α))
)

set.

(b) The setA0 is not separable fromA1 by a∆1
1 ∩ pot

(

∆(Γc(α))
)

set.

(c) The setA0 is not separable fromA1 by a∆(Γc(α))(τ1) set.

(d)R′(α, a0, a1) 6=∅.

(e) The inequality
(

(dω)i∈d, S
0, S1

)

≤
(

(ωω)i∈d, A0, A1

)

holds.

Proof. We argue as in the proof of Theorem 6.10, using Lemma 6.24 (resp., Theorem 6.25) instead
of Lemma 6.8 (resp., Theorem 6.9). �

Proof of Theorem 1.8.(2).We argue as in the proof of Theorem 1.8.(1). Theorem 5.2.8 givesu or
(

(u′)p
)

p≥1
. The equalities in Theorem 5.2.8 hold inωω, but also in any0-dimensional Polish space

(we argue like in Lemma 5.2.2 to see it). Using Definition 5.1.2, we can buildu∈D with Γ=Γu.
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Using Lemmas 6.2 and 6.4, we getα∈Λ∞ normalized withΓc(α)=Γu, andα∈Λ∞ (or α′∈Λ∞

such that(α′)p is) normalized withΓu=Γc(α) (orΓ(u′)p =Γc((α′)p)).

By Theorem 4.1.3 in [Lo-SR2] there isBε ∈Γ(ωω) with Sε= j−1
d (Bε) ∩ ⌈Td⌉. To simplify the

notation, we may assume thatTd has∆1
1 levels,α, as well asα (or α′), are∆1

1, andA0, A1 areΣ 1
1 .

By Lemma 6.5 there areβε, γε∈ωω such that(α, βε, γε)∈Υ∞
1 andCωω

γε =Bε. Lemma 6.7.(b) gives
a0, a1, r with (α, a0, a1, a0, a1, r) ∈Θ∞. Lemma 6.24 implies thatR′(α, a0, a1) 6= ∅. So (b) holds,
by Theorem 6.26. �

Proof of Theorem 6.25.(1) Let Cε
ε′ ∈ Σ

0
1(⌈Td⌉), A

ε
0 ∈ Γc(α)(⌈Td⌉), A

ε
1 ∈ Γ̌c(α)(⌈Td⌉) such that

Sε=(Aε
0∩C

ε
0)∪(A

ε
1∩C

ε
1). We reduce the family(C0

0 , C
0
1 , C

1
0 , C

1
1 ) into a family(O0

0 , O
0
1, O

1
0 , O

1
1) of

open subsets of⌈Td⌉. Note thatSε⊆T ε :=(Aε
0∩O

ε
0)∪(A

ε
1∩O

ε
1)∪(¬A

1−ε
0 ∩O1−ε

0 )∪(¬A1−ε
1 ∩O1−ε

1 ).
We will in fact ensure that

(

(Π′′
i ⌈Td⌉)i∈d, T

0, T 1
)

≤
(

(ωω)i∈d, A0, A1

)

if (a) does not hold, which
will be enough.

Subcase 1.|(α)0|=0.

We setoεε′ :=h[⌈Td⌉\O
ε
ε′ ], so thatoεε′ ∈Π

0
1([⊆]). We also set

D :={~s∈Td | ~s=~∅ ∨ ∀(ε, ε′)∈22 ∃B∈oεε′ ~s∈B},

Dε
ε′ :={~s∈Td | ~s 6=~∅ ∧ ∀B∈oεε′ ~s /∈B ∧ ∀(ε′′, ε′′′)∈22\{(ε, ε′)} ∃B∈oε

′′

ε′′′ ~s∈B},

so that(D,D0
0 ,D

0
1 ,D

1
0,D

1
1) is a partition ofTd. The proof is very similar to the proof of Theorem

4.4.2 whenξ=1. The changes to make in the conditions (1)-(7) are as follows:

(4) U~s⊆R
′(α, a0, a1)=A0

τ1 ∩A1
τ1 if ~s∈D,

(5) U~s⊆A0 if ~s∈D0
1 ∪D

1
0,

(6) U~s⊆A1 if ~s∈D0
0 ∪D

1
1,

(7) (~s,~t∈D ∨ ~s,~t∈Dε
ε′) ⇒ U~t⊆U~s.

We conclude as in the proof of Theorem 4.4.2.

Subcase 2.|(α)0|≥1.

We will have the same scheme of construction as in the proof ofTheorem 6.9. As long as~t∈D,
we will haveU~t⊆R′(α, a0, a1). If ~t∈Dε

ε′ , then all the extensions of~t will stay inDε
ε′ , and we will

copy the construction of the proof of Theorem 6.9, since inside the clopen set defined by~t we want
to reduce a pair(S̃0, S̃1) to (A0, A1).

As Aε
0 ∈ Γc(α)(⌈Td⌉), there isBε

0 ∈ Γc(α)(ω
ω) with Aε

0 = j−1
d (Bε

0) ∩ ⌈Td⌉. As α ∈ ∆1
1 ∩ Λ∞,

Lemma 6.5.(b) givesβε0, γ
ε
0 ∈ ωω such that(α, βε0 , γ

ε
0) ∈ Υ∞

1 andCωω

γε
0
= Bε

0. Similarly, there are

βε1, γ
ε
1∈ω

ω such that(α, βε1, γ
ε
1)∈Υ∞

1 andAε
1=j

−1
d (¬Cωω

γε
1
) ∩ ⌈Td⌉.
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We can associate with any(ε, ε′)∈22 the objects met before, among which the functionZε,ε′, the

ordinalsηε,ε
′

s , the resolution families(R(ρ)
ε,ε′,s)ρ≤η

ε,ε′
s

, the ordinalsρ(ε, ε′, s, ~s ). Instead of considering

the setPq(s), we will considerP ε,ε′

q (s) ∩Dε
ε′ . If ~t∈Dε

ε′ , then we set~w(~t ) := ~wε
ε′ . This allows us to

defines(~t )∈T
(

~w(~t )
)

andS(~t )∈M~w(~t). We also set

~v(~t ) :=







(α, a0, a1, a0, a1, r) if ~t∈D0
0 ∪D

1
1,

(α, a1, a0, a0, a1, r) if ~t∈D0
1 ∪D

1
0.

The other modifications to make in the conditions (1)-(6) areas follows. In condition (4), we ask for
the inclusionU~t⊆R

(

S(~t )
)

only if ~t /∈D. If ~t∈D, then we want thatU~t⊆R
′(α, a0, a1). Condition

(6) was described when~s,~t∈Dε
ε′ . If ~s,~t∈D, then we also want thatU~t⊆U~s.

The sequenceF(~β) is defined ifβ∈C0
0∪C

0
1∪C

1
0∪C

1
1 . If β /∈C0

0∪C
0
1∪C

1
0∪C

1
1 , then~β|k∈D for

each integerk, andF(~β) is also defined. The definition of~v(~t ) ensures thatT ε⊆(Πi∈d fi)
−1(Aε).

The defintion ofΨ(
−→
tm) is done if

−→
tm /∈D. If

−→
tm∈D, then we simply set

Ψ(
−→
tm) :=U~t ∩ (Πi∈d Xi).

Then we conclude as in the proof of Theorem 6.9.

(2) LetCε
p ∈Σ

0
1(⌈Td⌉) andAε

p ∈ Γc((α′)p)(⌈Td⌉) such thatSε =
⋃

p≥1 (Aε
p ∩ C

ε
p). We reduce the

family (C0
1 , C

0
2 , ..., C

1
1 , C

1
2 , ...) into a family (O0

1, O
0
2 , ..., O

1
1 , O

1
2 , ...) of open subsets of⌈Td⌉. Note

thatSε⊆T ε :=(Aε
1 ∩O

ε
1) ∪

⋃

p≥1

(

(¬A1−ε
p ∩O1−ε

p ) ∪ (Aε
p+1 ∩O

ε
p+1)

)

. We will in fact ensure that
(

(Π′′
i ⌈Td⌉)i∈d, T

0, T 1
)

≤
(

(ωω)i∈d, A0, A1

)

if (a) does not hold, which will be enough.

The proof is similar. We can assume that
∣

∣

(

(α′)p
)

0

∣

∣≥ 1 for eachp≥ 1, since(Γc((α′)p))p≥1 is
strictly increasing. So there is no Subcase 1. We set

~v(~t ) :=







(α, a0, a1, a0, a1, r) if ~t∈
⋃

p≥1 D
0
p,

(α, a1, a0, a0, a1, r) if ~t∈
⋃

p≥1 D
1
p.

We conclude as in Case 1. �

7 Injectivity complements

In the introduction, we saw that G. Debs proved that we can have thefi’s one-to-one in Theorem
1.3 whend=2, Γ∈{Π0

ξ ,Σ
0
ξ} andξ≥3.

• This cannot be extended to higher dimensions, even if we replace(dω)d with Πi∈d Zi, whereZi is
a sequence of Polish spaces.
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Indeed, we argue by contradiction. Recall the proof of Theorem 3.1. We saw that there isCξ in
Σ

0
ξ(2

ω)\Π0
ξ such thatS3ξ :={~α∈⌈T3⌉ | S(α0∆α1)∈Cξ} is not separable from⌈T3⌉\S3ξ by a pot(Π0

ξ)
set. We set

B0 :={~α∈3ω×3ω×1 | S(α0∆α1)∈Cξ},
B1 :={~α∈3ω×1×3ω | S(α0∆α2)∈Cξ},
B2 :={~α∈1×3ω×3ω | S(α1∆α2)∈Cξ}.

LetO :3ω→1. AsS3ξ :=(Id3ω×Id3ω×O)−1(B0)∩⌈T3⌉,B0 /∈pot(Π0
ξ). Similarly,B1, B2 /∈pot(Π0

ξ).
This implies that theZi’s have cardinality at most one, andS0∈∆

0
1. ThusS0 is separable fromS1 by

a pot(Π0
ξ) set, which is absurd.

• If d=ω,Γ=Π
0
ξ andξ≥3, then we cannot ensure that at least two of thefi’s are one-to-one. Indeed,

we again argue by contradiction. ConsiderXi :=ω, andBξ ∈Σ
0
ξ(ω

ω)\Π0
ξ . ThenBξ is not pot(Π0

ξ)
since the topology onω is discrete. This implies that two of theZi’s at least are countable, sayZ0, Z1

for example. Consider nowA0 := S
ω
ξ andA1 := ⌈Tω⌉\S

ω
ξ . Then(fi ◦ Πi)[S0] is countable for each

i ∈ 2. ThusP := (Πi∈d fi)[S0] ⊆ S
ω
ξ ⊆ ⌈Tω⌉ is countable since an element of⌈Tω⌉ is completely

determined by two of its coordinates. ThusP ∈ pot(Σ0
2)⊆ pot(Π0

ξ). Therefore(Πi∈d fi)
−1(P ) is a

pot(Π0
ξ) set separatingS0 from S1, which is absurd.

• However, ifΓ ∈ {Π0
ξ ,Σ

0
ξ ,∆

0
ξ} andξ ≥ 3, then we can ensure that(Πi∈d fi)|S0∪S1 is one-to-one,

using G. Debs’s proof and some additional arguments. This isalso true ifΓ=Γu is a non self-dual
Wadge class of Borel sets withu(0)≥ 3. This leads to the following notation. Let(Zi)i∈d, (Xi)i∈d
be sequences of Polish spaces, andS0, S1 (resp.,A0, A1) disjoint analytic subsets ofΠi∈d Zi (resp.,
Πi∈d Xi). Then

(

(Zi)i∈d, S0, S1
)

⊑
(

(Xi)i∈d, A0, A1

)

⇔ ∀i∈d ∃fi :Zi→Xi continuous such that

(Πi∈d fi)|S0∪S1
is one-to-one and∀ε∈2 Sε⊆(Πi∈d fi)

−1(Aε).

Theorem 7.1 There is no tuple
(

(Zi)i∈2, S0, S1), where theZi’s are Polish spaces andS0,S1 disjoint
analytic subsets ofΠi∈2 Zi, such that for any tuple

(

(Xi)i∈2, B0, B1

)

of the same type exactly one of
the following holds:

(a) The setB0 is separable fromB1 by a pot(Π0
1) set.

(b) The inequality
(

(Zi)i∈2, S0, S1
)

⊑
(

(Xi)i∈2, B0, B1

)

holds.

One can prove this result using the Borel digraphB0 :=
⋃

n∈ω Gr(gn|2ω\M ) considered in [L5]
(see Section 3), which has countable vertical sections but is not locally countable. We give here
another proof which moreover shows that we cannot hope for a positive result, even ifB0 is locally
countable. This has to be noticed, since the locally countable sets have been considered a lot in the
last decades.

Lemma 7.2 Let Γ be a Borel class, and
(

(Zi)i∈2, S0, S1) as in the statement of Theorem 5.1 such
thatS0 is not separable fromS1 by a pot(Γ) set. ThenS0 ∩ (Π′′

0S1×Π′′
1S1) is not separable fromS1

by a pot(Γ) set. Moreover,S0 is not separable fromS1 ∩ (Π′′
0S0×Π′′

1S0) by a pot(Γ) set.
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Proof. We prove the first assertion by contradiction, which givesP ∈ pot(Γ). The first reflection
theorem gives Borel setsC0, C1 such thatΠ′′

i S1⊆Ci andS0 ∩ (C0×C1)⊆P . Now

S0⊆P ∪ (¬C0×Z1) ∪ (Z0×¬C1)⊆¬S1,

which contradicts the fact thatS0 is not separable fromS1 by a pot(Γ) set.

We prove the second assertion using the first one, passing to complements. �

Lemma 7.3 Let
(

(Zi)i∈2, S0, S1) and
(

(Xi)i∈2, B0, B1

)

be as in the statement of Theorem 5.1 such
that

(

(Zi)i∈2, S0, S1
)

⊑
(

(Xi)i∈2, B0, B1

)

, (fi)i∈2 witnesses for this inequality, andε0∈2 such that
Bε0 is Borel locally countable. Thenfi|Π′′

i Sε0
is countable-to-one for eachi ∈ 2 andSε0 is locally

countable.

Proof. The inequality
(

(Zi)i∈2, S0, S1
)

⊑
(

(Xi)i∈2, B0, B1

)

givesfi :Zi→Xi continuous such that
(Πi∈2 fi)|S0∪S1

is one-to-one, and alsoSε⊆(Πi∈2 fi)
−1(Bε) for eachε∈2.

• By the Lusin-Novikov theorem and Lemma 2.4.(a) in [L2] we canfind Borel one-to-one partial
functionsbn with Borel domain such thatBε0=

⋃

n∈ω Gr(bn). Let us prove that

fi|Πi[Sε0∩(Πi∈2 fi)−1(Gr(bn))]

is one-to-one for eachi∈2.

Assume for example thati=0. Let z 6=z′∈Π0

[

Sε0 ∩ (Πi∈2 fi)
−1
(

Gr(bn)
)]

, andy, y′∈Z1 such
that(z, y), (z′, y′)∈Sε0 ∩ (Πi∈2 fi)

−1
(

Gr(bn)
)

. As (z, y) 6=(z′, y′), we get
(

f0(z), f1(y)
)

6=
(

f0(z
′), f1(y

′)
)

.

But bn
(

f0(z)
)

= f1(y), bn
(

f0(z
′)
)

= f1(y
′), so thatf0(z) 6= f0(z

′) sincebn is a partial function.
If i = 1, then we use the fact thatbn is one-to-one to see thatfi|Πi[Sε0∩(Πi∈2 fi)−1(Gr(bn))] is also
one-to-one.

• This proves thatfi|Π′′
i Sε0

is countable-to-one sinceSε0=
⋃

n∈ω Sε0 ∩ (Πi∈2 fi)
−1
(

Gr(bn)
)

.

• Now Sε0 is locally countable sinceSε0 ⊆ (Πi∈2 fi|Π′′
i Sε0

)−1(Bε0), Bε0 is locally countable and
fi|Π′′

i Sε0
is countable-to-one for eachi∈2. �

Lemma 7.4 Let Y be a Polish space,C a Borel subset ofY and (mn)n∈ω a sequence of Borel
partial functions from a Borel subset ofC into C. We assume thatM :=

⋃

n∈ω Gr(mn) is disjoint
from∆(C), but not separable from∆(C) by a pot(Π0

1) set. Then there are integersn<p andy∈C
such thatmn(y) andmn

(

mp(y)
)

are defined.

Proof. We may assume thatY is recursively presented andC,M and themn’s are∆1
1. We put

V :=
⋃

{D∈∆
1
1(Y ) | D2 ∩M has finite vertical sections}.

ThenV ∈Π
1
1 (Y ).
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Case 1.V =Y .

We can find a sequence(Dn)n∈ω of ∆1
1 subsets ofY such thatY =

⋃

n∈ω Dn andD2
n ∩M has

finite vertical sections. By Theorem 3.6 in [Lo2],D2
n ∩M is pot(Π0

1), so thatD2
n\M is pot(Σ0

1).
Thus∆(C)⊆

⋃

n∈ω D2
n\M⊆¬M and∆(C) is separable fromM by a pot(Σ0

1) set, which is absurd.

Case 2.V 6=Y .

The first reflection theorem proves that for each nonemptyΣ
1
1 subsetS of Y contained inY \V

there isy∈S such that(S2∩M)y is infinite. So there is an integern such that(Y \V )2∩Gr(mn) 6=∅.
In particular,S :=(Y \V ) ∩m−1

n (Y \V ) is a nonemptyΣ 1
1 subset ofY , which givesy∈S such that

(S2 ∩M)y is infinite. This proves the existence ofp>n such that
(

y,mp(y)
)

∈S2. Note thaty∈C
sinceY \C⊆V . Now it is clear thatn, p andy are suitable. �

Lemma 7.5 Leti∈2, Yi a Polish space,δi a Borel subset ofYi, c :δ0→δ1 a Borel isomorphism,n∈ω,
cn a Borel one-to-one partial function fromY0 into Y1 with Borel domain, andC0 :=

⋃

n∈ω Gr(cn).
We assume thatC0 ∩ (δ0×δ1) is disjoint from Gr(c), but not separable from Gr(c) by a pot(Π0

1) set.
Then there are integersn < p andy0 ∈ Y0 such that(cc−1

n cp)(y0) and (cc−1
n c)(y0) are defined and

different.

Proof. We setc′n := cn|δ0∩c−1
n (δ1)

, so thatC0 ∩ (δ0× δ1) =
⋃

n∈ω Gr(c′n). Now we consider the
pre-images

∆(δ1)=(c−1×Idδ1)
−1
(

Gr(c)
)

and Gr(c′′n)=(c−1×Idδ1)
−1
(

Gr(c′n)
)

, wherec′′n :=c
′
n ◦ c−1

|c[δ0∩c
−1
n (δ1)]

. Note thatc′′n is a Borel one-to-

one partial function with Borel domain and thatC ′′
0 :=

⋃

n∈ω Gr(c′′n) is not separable from∆(δ1) by
a pot(Π0

1) set. This implies that
⋃

n∈ω Gr
(

(c′′n)
−1
)

is not separable from∆(δ1) by a pot(Π0
1) set.

By Lemma 7.4 there are integersn<p andy1∈δ1 such that(c′′n)
−1(y1) and(c′′n)

−1
(

(c′′p)
−1(y1)

)

are defined. We sety0 := (c′p)
−1(y1), so that

(

c(c′n)
−1c′p

)

(y0) and
(

c(c′n)
−1c
)

(y0) are defined and
equal respectively to

(

cc−1
n cp

)

(y0) and
(

cc−1
n c
)

(y0). Now note thaty1 6= (c′′p)
−1(y1) for eachy1 in

the range ofc′′p. This implies that(c′′n)
−1(y1) 6=(c′′n)

−1
(

(c′′p)
−1(y1)

)

,

(

c(c′n)
−1
)

(y1) 6=
(

c(c′n)
−1c(c′p)

−1
)

(y1),

(

c(c′n)
−1c′p

)

(y0) 6=
(

c(c′n)
−1c
)

(y0) and
(

cc−1
n cp

)

(y0) 6=
(

cc−1
n c
)

(y0). �

Lemma 7.6 Let Y be a Polish space,n ∈ ω, c and cn continuous open partial functions fromY
into Y with open domain,ε ∈ 2, Cε :=

⋃

n∈ω Gr(c2n+ε). We assume thatC0 is disjoint from

C1 ∪ Gr(c), but ∅ 6= Gr(c) ⊆ C0 ∩ C1. ThenC0 is not separable fromC1 by a pot(∆0
1) set, and

C0 is not separable from Gr(c) by a pot(Π0
1) set. If moreover the domains Dom(cn) are dense, then

C0 ∩ (
⋂

n∈ω Dom(cn)×2ω) is not separable fromC1 ∩ (
⋂

n∈ω Dom(cn)×2ω) by a pot(∆0
1) set.
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Proof. We argue by contradiction, which givesP ∈ pot(∆0
1). Let Gi be a denseGδ subset ofYi

such thatP ∩ (G0×G1) ∈ ∆
0
1(G0×G1). The proof of Lemma 3.5 in [L1] shows the inclusion

Gr(c)⊆Gr(c) ∩ (G0×G1), and similarly withcn. Thus

Gr(c)⊆C0 ∩ C1 ∩ (G0×G1)⊆C0 ∩ (G0×G1) ∩ C1 ∩ (G0×G1) ∩ (G0×G1)

⊆
(

P ∩ (G0×G1)
)

\
(

P ∩ (G0×G1)
)

=∅,

which is absurd. The last assertion follows since we may assume thatG0 ⊆
⋂

n∈ω Dom(cn). The
proof of the second assertion is similar and simpler. �

Lemma 7.7 There is a tuple
(

(Yi)i∈2, C0, C1

)

such that

(a) Y0 andY1 are Polish spaces.

(b)C0=
⋃

n∈ω Gr(cn)⊆Πi∈2 Yi, for some Borel one-to-one partial functionscn with Borel domain.

(c)C1=Gr(c), for some Borel functionc :Y0→Y1.

(d)C0 is disjoint fromC1, but not separable fromC1 by a pot(Π0
1) set.

(e) We setCε
0 :=

(
⋃

n∈ω Gr(c2n+ε)
)

∩ (
⋂

n∈ω Dom(cn)×2ω), for ε∈2. ThenC0
0 is disjoint fromC1

0 ,

but not separable fromC1
0 by a pot(∆0

1) set, andC0
0 ∩C1

0 ∩ (
⋂

n∈ω Dom(cn)×2ω)⊆Gr(c).

(f) The equality
(

cc−1
n cp

)

(y0) =
(

cc−1
n c
)

(y0) holds as soon as the two members of the equality are
defined andn<p.

Proof. We setYi :=2ω andc(α)(k) :=α(2k).

• We first build an increasing sequence(Sn)n∈ω of co-infinite subsets ofω, a sequence(ψn)n∈ω of
bijections, and a sequence(hn)n∈ω of homeomorphisms of2ω onto itself. We do it by induction onn.
We setS0 :=∅, ψ0 := Idω andh0 := Id2ω . Assume that(Sq)q≤n, (ψq)q≤n and(hq)q≤n are constructed,
which is the case forn=0. We define a mapϕn :ω→ω by

ϕn(k) :=







ψ−1
n (k) if k /∈2Sn,

k
2 if k∈2Sn.

Note thatϕn is a bijection. We setSn+1 := ϕn[2ω] ∪ (n+1), which is co-infinite. The sequence
(Sn)n∈ω is increasing sinceSn=ϕn[2Sn]⊆Sn+1. As Sn+1 is co-infinite we can build the bijection
ψn+1 : ω\Sn+1 → ω\2Sn+1 in such a way thatψn+1(k) 6=ψq(k) for infinitely manyk /∈ Sn+1, for
eachq≤n. We set

hn+1(α)(k) :=







c(α)(k) if k∈Sn+1,

α
(

ψn+1(k)
)

if k /∈Sn+1.

As hn+1 permutes the coordinates, it is an homeomorphism.

• We setDn := {α∈ 2ω | c(α) 6=hn(α) ∧ ∀q <n hn(α) 6=hq(α)}, so thatDn is an open subset of
2ω. We setcn :=hn|Dn

, so thatcn is an homeomorphism fromDn onto its open range,C0 is disjoint
fromC1, andC0

0 is disjoint fromC1
0 .
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Let us prove thatDn is dense for each integern. Note thatD0={α∈2ω | ∃k∈ω α(2k) 6=α(k)},
which is clearly dense. NowDn+1 contains

{α∈2ω | ∃k /∈Sn+1 α(2k) 6=α
(

ψn+1(k)
)

} ∩
⋂

q<n

{α∈2ω | ∃k /∈Sn+1 α
(

ψn+1(k)
)

6=α
(

ψq(k)
)

}.

The set{α ∈ 2ω | ∃k /∈ Sn+1 α(2k) 6= α
(

ψn+1(k)
)

} is open dense since the odd integers are
in ψn+1[ω \Sn+1]. The set{α ∈ 2ω | ∃k /∈ Sn+1 α

(

ψn+1(k)
)

6= α
(

ψq(k)
)

} is open dense by
construction ofψn+1. This proves thatDn+1 is dense.

• Note that Gr(c)⊆C0
0 ∩ C1

0 sincec(α)|n=hn(α)|n, Dn is dense andc is continuous. Lemma 7.6
proves the non-separation assertions. We also haveC0

0 ∩ C1
0 ∩ (

⋂

n∈ω Dom(cn)×2ω)⊆Gr(c) since
c(α)|n=hn(α)|n andcn is continuous.

• Now it is enough to prove thatch−1
n hp=ch

−1
n c if n<p. We have

h−1
n (β)(j) :=







β(k) if j=2k∈2Sn,

β
(

ψ−1
n (j)

)

if j /∈2Sn.

Thus

(ch−1
n c)(α)(k)=c

(

(h−1
n c)(α)

)

(k)=(h−1
n c)(α)(2k)=







c(α)(k) if k∈Sn,

c(α)
(

ψ−1
n (2k)

)

if k /∈Sn.

Similarly,

(ch−1
n hp)(α)(k)=







hp(α)(k) if k∈Sn,

hp(α)
(

ψ−1
n (2k)

)

if k /∈Sn.

Note thatSn=ϕn[2Sn]⊆Sn+1, so thatSn⊆Sp. Thus(ch−1
n hp)(α)(k)= (ch−1

n c)(α)(k) if k∈Sn.
If k /∈Sn, then2k /∈2Sn andϕn(2k)=ψ

−1
n (2k)∈Sn+1⊆Sp. Thus

(ch−1
n hp)(α)(k)=hp(α)

(

ψ−1
n (2k)

)

=c(α)
(

ψ−1
n (2k)

)

=(ch−1
n c)(α)(k).

This finishes the proof. �

Proof of Theorem 7.1.We argue by contradiction. Note thatS0 is not separable fromS1 by a pot(Π0
1)

set since (b) holds. By Lemma 7.2 we may assume that the inequality S1⊆Π′′
0S0×Π′′

1S0 holds.

• Recall the digraphA1 in [L5]. If we takeXi := 2ω, B0 :=A1 andB1 :=∆(2ω), then by Corollary
12 in [L5], B0 is Borel locally countable, not pot(Π0

1), andB1 =B0\B0. It follows thatB0 is not
separable fromB1 by a pot(Π0

1) setQ, since otherwise we would haveB0 = Q ∩ B0 ∈ pot(Π0
1).

This implies that
(

(Xi)i∈2, B0, B1

)

satisfies condition (b) in Theorem 7.1. By Lemma 7.3,fi|Π′′
i S0

is
countable-to-one for eachi∈2 andS0 is locally countable.
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• Lemma 7.7 gives a tuple
(

(Yi)i∈2, C0, C1

)

. Note that
(

(Yi)i∈2, C0, C1

)

satisfies condition (b) in
Theorem 7.1, which givesgi :Zi→Yi. Lemma 7.3 implies thatgi|Π′′

i S0
is countable-to-one for each

i∈2. The first reflection theorem gives a Borel setOi⊇Π′′
i S0 such thatfi|Oi

andgi|Oi
are countable-

to-one, for eachi ∈ 2. By Lemma 2.4.(a) in [L2] we can find a partition(Oi
n)n∈ω of Oi into Borel

sets such thatfi|Oi
n

andgi|Oi
n

are one-to-one, for eachi∈2.

• We setS′′
ε := (Πi∈2 fi|Oi

)−1(Bε) ∩ (Πi∈2 gi)
−1(Cε), for eachε ∈ 2, so thatS′′

ε is a Borel subset
of Πi∈2 Zi containingSε. In particular,S′′

0 is not separable fromS′′
1 by a pot(Π0

1) set. We choose
integersn0 andn1 such thatS′′

0 ∩ (Πi∈2 O
i
ni
) is not separable fromS′′

1 ∩ (Πi∈2 O
i
ni
) by a pot(Π0

1)
set. We setDε := (Πi∈2 fi|Oi

ni
)[S′′

ε ∩ (Πi∈2 O
i
ni
)], so thatD0 is a Borel subset ofB0 which is not

separable fromD1 by a pot(Π0
1) set. Note thatD1 is a Borel subset ofB1 =∆(2ω). In particular,

there is a Borel subsetD of 2ω such thatD1=∆(D). By Lemma 7.2,D0 ∩D
2 is not separable from

D1 by a pot(Π0
1) set. Lethi : D→ Yi be defined byhi(α) := (gi ◦ fi

−1
|Oi

ni

)(α). Thenhi is Borel,

one-to-one, andDε ∩D
2⊆Bε ∩ (Πi∈2 hi)

−1(Cε).

• Note that(Πi∈2 hi)[∆(D)] is a Borel subset ofC1, which proves the existence of a Borel subsetδ
of Y0 such that(Πi∈2 hi)[∆(D)]=Gr(c|δ). If y 6=y′∈δ, then

(

y, c(y)
)

=
(

h0(d), h1(d)
)

and
(

y′, c(y′)
)

=
(

h0(d
′), h1(d

′)
)

for somed 6=d′∈D. Ash1 is one-to-one we getc(y) 6=c(y′), c|δ is one-to-one andc′′δ is Borel.

AsD0∩D
2⊆(Πi∈2 hi)

−1(C0) andD1⊆(Πi∈2 hi)
−1
(

Gr(c|δ)
)

,C0 is not separable from Gr(c|δ)
by a pot(Π0

1) set. By Lemma 7.2,C ′
0 :=C0∩ (δ×c′′δ) is not separable from Gr(c|δ) by a pot(Π0

1) set.

• By Lemma 7.5 applied toδ0 := δ andδ1 := c′′δ there aren<p andy0∈Y0 such that(cc−1
n cp)(y0)

and(cc−1
n c)(y0) are defined and different, which contradicts Lemma 7.7.(f). �

Remark. We recover the algebraic relation “gn=gn ◦ gp if n<p” that was already present in Section
3 of [L5] mentioned just after the statement of Theorem 7.1.

Theorem 7.8 There is no tuple
(

(Zi)i∈2, S0, S1), where theZi’s are Polish spaces andS0,S1 disjoint
analytic subsets ofΠi∈2 Zi, such that for any tuple

(

(Xi)i∈2, B0, B1

)

of the same type exactly one of
the following holds:

(a) The setB0 is separable fromB1 by a pot(∆0
1) set.

(b) The inequality
(

(Zi)i∈2, S0, S1
)

⊑
(

(Xi)i∈2, B0, B1

)

holds.

Proof. Let us indicate the differences with the proof of Theorem 7.1. This time,S0 is not separable
from S1 by a pot(∆0

1) set.

• Note thatA1=
⋃

n∈ω Gr(Hn), whereHn :Nsn0→Nsn1 is a partial homeomorphism with clopen
domain and range. The crucial properties of(sn)n∈ω⊆2<ω is that it is dense and|sn|=n. We can eas-
ily ensure this in such a way that(s2n)n∈ω and(s2n+1)n∈ω are dense. We setBε :=

⋃

n∈ω Gr(H2n+ε).
The previous remark implies that∆(2ω)=Bε\Bε. By Lemma 7.6,B0 is not separable fromB1 by a
pot(∆0

1) set. So here againfi|Π′′
i S0

is countable-to-one for eachi∈2, andS0, S1 are locally countable
by Lemma 7.3.
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• Lemma 7.7 gives a tuple
(

(
⋂

n∈ω Gr(cn), 2ω
)

, C0
0 , C

1
0

)

. Note that
(

(
⋂

n∈ω Gr(cn), 2ω
)

, C0
0 , C

1
0

)

satisfies condition (b) in Theorem 7.8.

• We change the topology on2ω into a finer Polish topologyτ so that the setsf ′′i O
i
ni

become clopen
and the maps(fi|Oi

ni
)−1 become continuous. Now

D0
τ2

∩D1
τ2

⊆B0 ∩B1=
(

B0 ∪∆(2ω)
)

∩
(

B1 ∪∆(2ω)
)

=∆(2ω).

So there is a Borel subsetD of 2ω such thatD0
τ2

∩D1
τ2

=∆(D), andD⊆
⋂

i∈2 f
′′
i O

i
ni

.

• Let us prove thatD0 ∩D
2 is not separable fromD1 ∩D

2 by a pot(∆0
1) set.

We argue by contradiction, which givesP ∈pot(∆0
1) such thatD0 ∩D

2⊆P ⊆D2\D1. The sets

D0
τ2

∩ (¬D×2ω) andD1
τ2

∩ (¬D×2ω) are disjoint, pot(Π0
1), so that they are separable by∆l in

pot(∆0
1). Similarly, there is∆r∈pot(∆0

1) which separatesD0
τ2
∩(2ω×¬D) fromD1

τ2
∩(2ω×¬D).

Now

D0⊆P ∪
(

D0∩ (¬D×2ω)
)

∪
(

D0∩ (2ω×¬D)
)

⊆P ∪
(

∆l∩ (¬D×2ω)
)

∪
(

∆r ∩ (2ω×¬D)
)

⊆¬D1

which is absurd sinceP ∪
(

∆l ∩ (¬D×2ω)
)

∪
(

∆r ∩ (2ω×¬D)
)

∈pot(∆0
1).

• Let us prove thatD0 ∩D
2 is not separable from∆(D) by a pot(Π0

1) set.

We argue by contradiction, which givesQ∈pot(Π0
1) such thatD0 ∩D

2⊆Q⊆D2\∆(D). The
setsQ and∆(D) are disjoint, pot(Π0

1), so that there isR in pot(∆0
1) such thatQ⊆R⊆D2\∆(D).

The setsD0
τ2

∩ R andD1
τ2

∩ R are disjoint, pot(Π0
1), so that there isS in pot(∆0

1) such that

D0
τ2

∩ R⊆S⊆R\D1
τ2

. But S separatesD0 ∩D
2 from D1 ∩D

2, which contradicts the previous
point.

• Note that(Πi∈2 hi)[∆(D)]⊆C0
0 ∩ C1

0 ∩ (
⋂

n∈ω Dom(cn)×2ω)⊆ Gr(c). We conclude as in the
proof of Theorem 7.1. �
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