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1 Introduction

The reader should see [K] for the descriptive set theoretiation used in this paper. The standard
way of comparing the topological complexity of subset§-@imensional Polish spaces is the Wadge
reducibility quasi-ordeKyy . Recall that ifX (resp.,Y’) is a0-dimensional Polish space add(resp.,

B) a subset ofX (resp.,Y), then

(X, A) <w (Y,B) & 3f:X—Y continuous such that=f~1(B).

This is a very natural definition since the continuous fuorddiare the morphisms for the topological
structure. So the scheme is as follows:

X A 4——————— —» B |Y
A q4————— —— — —B

The “0-dimensional” condition is here to ensure the existencenofugh continuous functions (the
only continuous functions frorR into w* are the constant functions, for example). In the sedoel,
will be a class of Borel subsets 6fdimensional Polish spaces. We denotelby= {-A | Ac T}
the class of complements of elementsIbf We say thafl® is sel f-dual if T' = I'. We also set
A(T):=T NT. Following 4.1 in [Lo-SR2], we give the following definition

Definition 1.1 We say thal is a Wadge class of Borel sets if there is a Borel subsety of w*
such that for eact)-dimensional Polish spac&’, and for eachA C X, A is in I if and only if
(X, A) <y (w¥, Ag). We say thatd is T'-complete.

The Wadge hierarchy defined by, i.e., the inclusion of Wadge classes, is the finest hieyarch
of topological complexity in descriptive set theory. Theabof this paper is to study the descriptive
complexity of the Borel subsets of products of Polish spadésre specifically, we are looking for
a dichotomy of the following form, quite standard in destivip set theory: either a set is simple, or
it is more complicated than a well-known complicated setc@ifrse, we have to specify the notions
of complexity and comparison we are considering. The twoghiare actually very much related.
The usual notion of comparison between analytic equivaleelations is the Borel reducibility quasi-
order<pg. Recall that ifX (resp.,Y) is a Polish space an#l (resp.,F) an equivalence relation on
X (resp.,Y), then(X,E) <p (Y,F) < 3f:X —Y BorelsuchthatE = (f x f)~1(F). Note
that this makes sense everfifand F' are not equivalence relations. The notion of complexity vee a
considering is a natural invariant fetg in dimension 2. Its definition generalizes Definition 3.3 in
[Lo3] to any dimensioni making sense in the context of descriptive set theory, asaltalany class
T'. So in the sequel will be a cardinal, and we will have < d <w since2*! is not metrizable.

Definition 1.2 Let (X;);cq be a sequence of Polish spaces, @@ Borel subset ofl;c; X;. We
say thatB is potentially in T’ (denotedB € pot(I‘)) if, for eachi € d, there is a fine0-dimensional
Polish topologyr; on X; such thatB € T'(IL;cq (Xi, 74)).

One should emphasize the fact that the point of this definisdo consider product topologies.
Indeed, ifB is a Borel subset of a Polish spa&e then there is a finer Polish topologyon X such
that B is a clopen subset ¢fX, 7) (see 13.1 in [K]). This is not the case in products: if for exdeT
is a non self-dual Wadge class of Borel sets, then there tsersE((w*)?) that are not pdf) (see
Theorem 3.3 in [L1]). For example, the diagonakgf is not potentially open.



Note also that since we work up to finer Polish topologies,“thdimensional” condition is not
a restriction. Indeed, i is a Polish space, then there is a fifedimensional Polish topology on
X (see 13.5 in [K]). The notion of potential complexity is awarniant for <g in the sense that if
(X,FE) <p (Y,F)andF is potT'), thenE is potT") too.

The good notion of comparison is not the rectangular versiof g. Instead of considering a
Borel setE’ and its complement, we have to consider pairs of disjoinlyfinasets. This leads to the
following notation. Let(X;);cq, (Yi)ica be sequences of Polish spaces, did A, (resp.,By, B1)
disjoint analytic subsets dl;c4 X; (resp.,I;c4 Y;). Then
((Xi)icd, Ao, A1) < ((Y)ied» Bo, B1) < Vied 3f;: X;—Y; continuous such that

Vee2 A.C (Hied fi)il(Bg).
So the good scheme of comparison is as follows:

Wiea X | 5| | Hiea Yi
———————

The notion of potential complexity was studied in [L1]-[L#r d = 2 and the non self-dual Borel
classes. The main guestion of this long study was asked byoAveau to the author in 1990. A.
Louveau wanted to know whether Hurewicz’s characteripatio?s sets could be extended to pbj
sets whe" is a Wadge class of Borel sets. The main result of this papes@ complete and positive
answer to this question:

Theorem 1.3 LetT" be a Wadge class of Borel sets, or the clasgsfor somel < ¢ <wi. Then there

are Borel subset§?, S! of (d¢*)? such that for any sequence of Polish spat&s);cq, and for any
disjoint analytic subsetdl, A; of IT;c4 X;, exactly one of the following holds:

(a) The set4 is separable from¥; by a potI') set.
(b) The inequality((d“);cq,S%,S') < ((X;)ica, Ao, A1) holds.

It is natural to try to prove Theorem 1.3 since it is a result@ftinuous reduction, which appears
in the very definition of a Wadge class. So it goes beyond alsiggneralization. The work in this
paper is the continuation of the article [L7], that was ammemd in [L6]. We generalize the main
results of [L7]. The generalization goes in different direas:

- It works in any dimension.
- It works for the self-dual Borel classesy.
- It works for any Wadge class of Borel sets, which is the hstrgart.

We generalize, and also in fact give a new proof of the dintendi version of Theorem 1.3
obtained by A. Louveau and J. Saint Raymond (see [Lo-SR1jjclwitself was a generalization
of Hurewicz’s result. The new proof is without games, andegia new approach to the study of
Wadge classes. Note that A. Louveau and J. Saint Raymonedgbtbat ifT" is not self-dual, then the
reduction map in (b) can be one-to-one (see Theorem 5.2 ¥8RB]). We will see that there is no
injectivity in general in Theorem 1.3. However, G. Debs mathat we can have thg’'s one-to-one
whend=2, T € {I1?, 22} and¢ > 3. Some injectivity details will be given in the last section.



We introduce the following notation and definition in orderdpecify Theorem 1.3. One can
prove that a reduction on the whole product is not possiltlea€yclicity reasons (see [L5]-[L7]).
We now specify this. We emphasize the fact that in this paperge will be a constant identification
between(d?)! and(d")?, for I <w, to avoid as much as possible heavy notation.

Notation. If X is a set, ther¥:= (z;);cq iS an arbitrary element ot<. If 7 C X%, then we denote by
G the graph with set of vertice®, and with set of edge§{Z, 5} C T | £#7 and Jied z;=y;}
(see [B] for the basic notions about graphs). 56 i € T are G -related if they have at least one
coordinate in common.

Definition 1.4 (a) We say thaf is one-sided if the following holds:
Vi£yeT Vi#jed (z;#y; V x; #Yyj).

This means that if £ /€ T, then they have at most one coordinate in common.

(b) We say thaT is almost acyclic if for everyGT—cycIe(ﬁ)ngL there areicd andk<m<n<L
such thatacéC =" =27. This means that every’ -cycle contains a “flat” subcycle, i.e., a subcycle
in a single directior € d.

(c) We say that a tre@ ond? is atree with suitable levels if the setT!:=T'N (d%)! C (d")? is finite,
one-sided and almost acyclic for each integer

We do not really need the finiteness of the levels, but it makegroof of Theorem 1.3 much
simpler. The following classical property will be crucialthe sequel:

Definition 1.5 We say thal has theseparation property if for each A, B € T'(w*) disjoint, there
is Ce A(T)(w¥) separatingA from B.

The separation property has been studied in [S] and [vW]revtiee following is proved:

Theorem 1.6 (Steel-van Wesep) LEtbe a non self-dual Wadge class of Borel sets. Then exactly one
of the two classeF, I'" has the separation property.

We now specify Theorem 1.3.

Theorem 1.7 We can find a tre&; with suitable levels, together with, for each non self-ddadge
class of Borel set¥,

(1) Some seif. € T'([T]) not separable fromi7,;]\S¢ by a potT') set.
(2) If moreovel” does not have the separation property, dhg 22 or A(T") is a Wadge class, some
disjoint setsS%, Sf. e I'([Ty]) not separable by a pfA\(T')) set.

Theorem 1.8 Let T; be a tree with suitable leveld; a non self-dual Wadge class of Borel sets,
(X,)icq @ sequence of Polish spaces, afigl A; disjoint analytic subsets df;c; X;.

(1) LetS € T'([T4]) not separable fromiT;]\ S by a potT") set. Then exactly one of the following
holds:

(a) The setd is separable fromi; by a potT’) set.
(b) The inequality((d“)icq, S, [T4]\S) < ((Xi)icd, Ao, A1) holds.



(2) Assume moreover th&it does not have the separation property, and that 22 or A(T')isa

Wadge class. Le$®, S'eT'([T;]) disjoint not separable by a paf\(T')) set. Then exactly one of the
following holds:

(a) The setd, is separable from4; by a po{ A(T')) set.
(b) The inequality((d“);cq, 5%, S') < ((X;)ica, Ao, 41) holds.

We now come back to the new approach to the study of Wadgeeslasentioned earlier. There
are a lot of dichotomy results in descriptive set theory atemuivalence relations, quasi-orders or
even arbitrary Borel or analytic sets. So it is natural tofaslcommon points to these dichotomies.
B. Miller's recent work goes in this direction. He proved mamown dichotomies without effective
descriptive set theory, using variants of the Kechris-8al@odorcevic dichotomy about analytic
graphs (see [K-S-T]). Here we want to point out another compuint, of effective nature. In these
dichotomies, the first possibility of the dichotomy is egui@nt to the emptyness of somd set. For
example, in the Kechris-Solecki-Todorcevic dichotorthe X! set is the complement of the union
of the Al subsets discrete with respect to thé graph considered. We prove a strengthening of
Theorem 1.8 in which such &/ set appears. We will state in Case (1), unformally. Befoag, tive
need the following notation.

Notation. Let X be a recursively presented Polish space. We denotd piythe topology onX
generated byll(X). This topology is Polish (see (iii> (i) in the proof of Theorem 3.4 in [Lo3]).
The topologyr; on (w*)? will be the product topologyA?...

Theorem 1.9 Let T, be a tree withA] suitable levelsI" a non self-dual Wadge class of Borel sets
with a A} code, Ay, A; disjoint X} subsets ofw*)?, andS € T'([T;]) not separable fromiT;]\S by
a potT') set. Then there is & subsetR of (w*)? such that the following are equivalent:

(a) The setd is not separable fromi; by a potT’) set.

(b) The set4, is not separable fromd; by a Al N pot(T") set.

(c) The setA is not separable fromt; by al'(;) set.

(d) R#0.

(e) The inequality (d“)icq, S, [Ta]\S) < ((w*)ica, Ao, A1) holds.

This X! setR is build with topologies based an. The use of thel'! setR is the new approach
to the study of Wadge classes.

We first prove Theorems 1.7 and 1.8 for the Borel classesdself or not. Then we consider
the case of the Wadge classes. In Section 2, we start proviagrém 1.7. We construct a concrete
example of a tree with suitable levels, and we give a generadition to get some complicated sets
as in the statement of Theorem 1.7. We actually reduce tHagmoto a problem in dimension one.
In Section 3, we prove Theorem 1.7 for the Borel classes. tti@e4, we prove Theorem 1.8 for
the Borel classes, using some tools of effective desceset theory and the representation theorem
of Borel sets proved in [D-SR]. In Section 5, we prove Theofer) using the description of Wadge
classes in [Lo-SR2]. In Section 6, we prove Theorems 1.3add1.9. Finally, in Section 7, we give
some injectivity complements.



2 A general condition to get some complicated sets

We now build an example of a tree with suitable levels. Thds tnas to be small enough since we
cannot have a reduction on the whole product. But as the daredtthas to be big enough to ensure
the existence of complicated sets, as in Theorem 1.7.

Notation. Let b:w— w? be the natural bijection. More precisely, we set, lfety,
M(l):=max{mew | Lyp<,m k<I}.

Then we definé(l) = ((1)o, (1)1) :== (M () =1+ (Sk<mq) k), 1 — (Ek<nmrqy k). One can check that
<n,p>=b"Y(n,p)=(Sk<nip k)+p. More concretely, we get

blw]={(0,0),(1,0),(0,1),(2,0),(1,1),(0,2),...}.

In the introduction, we mentionned the idenfication betwéén’ and (d?)!, for I < w. More

specifically, the bijection we use is given by <(O‘i(j))zed) o
JjE

Definition 2.1 We say that> C|J,.,, (d')?is anef fective frame if

(@) Vl€w 3(s})ieac EN ()"

(b)Vp,q,rew Vted< IN ew (sLit0N)ica € E, (|sg0t0N |[—1)o =p and ((|s§0t0N | —1)1) , =
©)Vi>03g<lIted¥ Vied 3}':322'15.

(d) The mag — (s!);cq can be coded by a recursive map franinto w?.,

We will call T, thetree on d¢ associated with an ef fective frame E={(s});cq | l€w}:
Ty:={5€(d))~ | (Vied s;=0) v (lewIHed ¥ Vied s;=s}it NVn<|so| so(n)<n)}.

The unigueness condition in (a) and Condition (c) ensurefhas small enough, and also the
almost acyclicity. The definition df}; ensures thal; has finite levels. Note thagt' =T, N (d%)! can
be coded by d7, subset ofw*)! whend =w. The existence condition in (a) and Condition (b) ensure
that7} is big enough. More specifically, {fX, 7) is a Polish space angla finer Polish topology on
X, then there is a dens&; subset of X, 7) on whichr ando coincide. The first part of Condition
(b) ensures the possibility to get inside products of dernssets. The examples in Theorem 1.7 are
build using the examples in [Lo-SR1] and [Lo-SR2]. Condismn verticals are involved, and the
second part of Condition (b) gives a control on the choiceesfigals. The very last part of Condition
(b) is not necessary to get Theorem 1.7 for the Borel clagsg$s useful to get Theorem 1.7 for the
Wadge classes of Borel sets. Definition 2.1 strengthens iefir8.1 in [L7], with this very last part
of Condition (b), with Condition (d) (ensuring the regutgrof the levels of the tree), and also with
the last part of the definition of the tree (ensuring the fimgtes of the levels of the tree).

Proposition 2.2 The treeT}; associated with an effective frame is a tree with suitable levels. In
particular, [Ty] is compact.



Proof. Let! cw. Let us prove thaf is Al and finite. We argue by induction édnThe result is clear
for 1 <1since7?= {0} andT'={(i)ieq}. If I>1 and5c (d¥)<«, then

FeT! & |so|=1AJg<l Fted™ Vied s;=slit A\¥n<l so(n)<n

But there are only finitely many possibilities fosincesq(n) <n for eachn < [, which implies that
t(m) <q4+1+m<I4+1+1if m<|t|. Thisimplies that7" is Al and finite.

e Let 7;; be the tree generated by the effective frame:
Ty={5€(dh)~ | (Vied s;=0) Vv BlewIHted<“Vied s;=sit)}.

AsTy C T,, we get, with obvious notatiori] C 7" for each integet. So it is enough to prove that
T is one-sided and almost acyclic since these propertieseseelitary.

e Let us prove thaf is almost acyclic. We argue by induction ariThe result is clear fot<1. So
assume thait>1. We set, forj ed,

Cj={(shit)ica € T [ t£D At(|t|—1)=4}.
We haveT" ™ ={(s}i)ica} UU,cq Cj, and this union is disjoint.

The restriction ofG7 ™ to eachC; is isomorphic toG7". The other possibl&” ™' -edges are
between(s}i);c4 and some vertices in son@;’s. If a G cycle exists, we may assume that it
involves only(si);cq and members of some fixed,,. But if §€ C;, is G7' " -related to(s'i);cq,
then we must have]° jo = s;,. This implies the existence &f < m < n showing that7'*! is almost
acyclic.

o Now assume that # i € 7%, i,j € d, z; = y; and xj =y;. Then we can writer = (Séit)ied and
g=(slit")icq SinceT # . Asx;=y;, the reverses ' and(¢')~' of t andt’ are compatible. If=*/,

theng=|s,|=1—-1—[t|=1-1—[t'| =[s;,|=¢ andZ=y, which is absurd. Thus#?', for example
t'| < |t|, andt~1(|t'|) =i. This proves that=j and7" is one-sided.

o Letm: 7' — a defined byr(5):= (si(1)),., AsT'*! is finite, the range; of 7, is also finite.
Thus[Ty] is compact sincéTy| C11je,, . O

We now give an example of an effective frame.

Notation. Let b;:w — d<* be the natural bijection. More specifically,

e If d<w, thenb,y(0):=0 is the sequence of length b,(1) :=0, ...,bs(d) :=d—1 are the sequences
of length1 in the lexicographical ordering, and so on.

e If d=w, then let(p, ),c., be the sequence of prime numbers, Znd<“ — w defined byZ(0):=1,
andZ(s) := pg(o)ﬂ...pfs("i';l)ﬂ if s # (. Note thatZ is one-to-one, so that there is an increasing
bijection: Seq=Z[w<*] - w. We seth,:=(10T) L:w—w<v.
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Note that|b;(n)| <n if n€w. Indeed, this is clear # <w. If d=w, then
Z (b (n)[0) <Z(by(n)[1) <...<Z(bu(n)),
so that(z 0 Z) (b, (n)]0) < (20 T) (bu(n)[1) <...< (2 0 T) (bu(n)) =n. This implies thatb,,(n)| <n.

Lemma 2.3 There is a concrete example of an effective frame.

Proof. Fix i € d. We setsy =0, andsj, , :=s{ (), ., bd<(((l)1)1)1> 0l = (M) 1)o=lbal(((N1)1)1)I

Note that(1)o+(1)1 =M (1) < Sy<pqy k<, so thats] is well defined andis;| =1, by induction orl. It
remains to check that Condition (b) in the definition of aefive frame is fullfilled. Set := b;l(t),
s:=(r,<qn>)andl:=<p,s>. Itremains to putV:=1—q—[t|: (s.it0N )ieq= (s, )ica- O

The previous lemma is essentially identical to Lemma 3.3.i{.[ Now we come to the lemma
crucial for the proof of Theorem 1.7. It strengthens Lemndar3[L7], even if the proof is essentially
the same.

Notation. If s€w<* andq<|s|, thens—s|q is defined bys = (s|¢)(s—s|q). We extend this definition
to the case € w* wheng < w. In particular, we denote* := s—s|1 when() # s € w=*. If ) £scw<v,
then we defina™ :=s|(|s|—1).

e We now defing:w<“\ {0} —w. The definition ofp(s) is by induction ons|:

s(0) if |s|=1,
p(S):{

<p(s7),s(|s|—1)> otherwise.

Note thatpw :w" —w is a bijection, for each > 1.

e Let!<w be an ordinal. The map :d' x d' — 2! is the symmetric difference. So, fot <1,
(sAt)(m):=A(s,t)(m)=1 < s(m)#t(m).
e By conventionw—1:=w.

Lemma 2.4 LetT}, be the tree associated with an effective frame and, for each G; a denseG
subset ofI/[T,]. Then there arev, € Gy and F': 2¥ — 11,4 G; continuous such that, far € 2¢,

@) (a0, F(@)) € [T4]-

(b) For eachs ew<¥, and eachn e w,

(i) a(p(sm))=1 = Im'ew (apAFy(e))(p(sm’)+1)=1.

(i) (a0AFy(a)) (p(sm)+1)=1 = Im'cw a(p(sm’))=1.
Moreover, there is an increasing bijection

By:{mew | a(m)=1}—{m'cw | (aAFy(a))(m'+1)=1}
such that(m)o = (Ba(m)), and ((m)1),= <(Ba(m))1)0 if a(m)=1.

8



Proof. Let (O})4e. be anon-increasing sequence of dense open subdé{$t§] whose intersection
is G;. We construct finite approximations afy and F'. The idea is to linearize the binary trag>.
So we will use the bijection, defined before Lemma 2.3. To constriitr) we have to imagine, for
each length, the different possibilities for|l. More precisely, we construct a maR<* —w\ {0}
satisfying the following conditions:

(3) Vte2<Y Vee2 Ju.ed<¥ Vied sli(ts):sf(t)(i-s)vtg,

(4) Vrew 5?(b2 i 0< S?(bQ(rJrl)) AVEE2SY Vn<I(t) 5?(15) (n)<n,

(5)vee2< (i)~ 1),=(Itho A ((11)-1),), = (1),

e Assume that this construction is done. A,%Oq) Cx 3l0(0q+1) for each integery, we can define

g =SUP,, slo(oq). Similarly, aSSZiz;l‘q) Cy Szial\(qﬂ))’ we can define, fone 2% andi <d—1,

+1
Fi(r) :=sup,c,, s%&q),
and I is continuous.

(a) Fix g €w. We have to see thdtv, F'(«))|q € T;. Note first thati(¢) > || sincel(te) > [(t). Then

note thatsj,) C ag sinces) ., S sy S s)gpr+1y- TUS (a0, F(a))[1(alq) = (sjq,)ica € E- This

implies that(ag, F(a)) [l(alq) € Ty sinceslo(a|q) (n)<nif n<l(alg). We are done sincka|q) > q.
Moreover,ap €() NS?(O

N 115 [T4] €Nyew O=Go. Similarly,

qEw q qeEw

Fi(a)e () N1 N /[T C (] 08 =Giga.
qew q>i+1
(b).(1)) We sett :=«a|p(sm), so thatsll(t) 1C sll(ﬂ) = sll(a‘(p(sm)ﬂ)) C Fy(a). As (I(t)—1),=p(s) (or
(m)o if s=10), there ism’ with I(t) =p(sm/)+1 (or I(t) =m/+1 and(m')g = (m)o if s=0). But
S?(t) 0C Slo(a|(p(sm)+1)) C v, S0 thatag (1(t)) # Fo(a) (1(t)).

(ii) First notice that the only coordinates whergand Fi,(«) can differ ared and thel(«|q)’s. There-
fore there is an integey with p(sm)+1 = I(|q). In particular,(¢)o = (I(alg) —1), = p(s) (or
(m)o if s=0). Thus there isn’ with ¢ = p(sm’) (or ¢ =m/ and(m’)o = (m)o if s=0). We have
ao (l(alg)) = 3?(a\(q+1)) (I(eq)) =0# Fy(a) (I(alg)) = Sll(a\(q+1)) (I(elq)) = a(q). Soa(g)=1and
a(p(sm’))=1.

Now it is clear that the formul®, (m):=1(«|m)—1 defines the bijection we are looking for.

9



« So let us prove that the construction is possible. We coetstft) by induction onb, ! (t).

As (i0%°);eq € [Ty], 0°° € 1§ [T,;] and O] is not empty. Thus there ig) € d<<\ {0} such that
0# N, NI [T4] C O Choose@oeN o N1 (le anda € [T,] such thaty = 8. Thend||ud| € Ty
anduo( ) <n for eachn < |u|. Note thatuo( )=0and(uj—ud|1)(n) =ud(n+1) <1+n for each
n < |ug|—1. We chooseVy € w with (i (u)—ug|1) 0™), _ € E, (|0 (ug—ug|1) 0V|-1)o=(0)o and
((10 (ug—ug|1) 0No|—1)1), = ((0)1),- We putvy:= (ug—ug|1) ON¢ andi(@):=]0 (ug—ug|1) ONo|.

As (ivp0>)iea € [Tal, Novyo N I [Ty] is @ nonempty open subset Of [T;]. Thus there is
uf € d<* such that) # Ny, o0 N I[T4] C OF. As before we see thatf(n) < 1+ v/ +1+n
for eachn < |[u9|. This implies that(ivg0ul0>);cq € [Ty]. Thus Ny, 0,0 N 11Y[Ty] is @ nonempty
open subset off{[T,]. So there isuj € d<“ such that) # Ny, 9,1 N 1{[74] € O]. Choose
B1 € Nyyyouour NH{[Ta], andy € [T;] such thaty; = ;. Then¥||1vp0udul| € T, andyo(n) <n for
eachn < |1vg0uful|. This implies thaty(|1vg0ul|+n) <|1vg0ul|+n for eachn < |ui|. Butui(n)
is either1, or vo(|1vg0ul| +n). Thusui(n) < [1vg0ul|+n if n < |ui|. We choosaVy € w such that
(sli(@) 0uuf 0N);cq € B, (1(0)+|ufut|+No), = (1)o and ((l(@)—i—\u?u%]—k]\/o)l)o =((1)1),- We
putvg :=ulu} 0N andi(0):=1(0)+ 1+ |vo.

Assume that(l(t))b,l(t)q satisfying (1)-(5) have been constructed, which is the fase=1.
2 =

Fix t € 2<% ande € 2 such thabs(r+1) =te, with » > 1. Note thatb, ' (£) <7, so thatl(t) <1(b2(r)),
by induction assumption.

As N NII{[Ty] is nonempty,N o

. Yot ))0 NII;[Ty] is nonempty too. Thus thereqiz,%Jrl in
d=“ such that) # N, 0, NI [Ty COWJrl

oo O As beforeweseethaﬁthLl n) <U(ba(r))+1+n

for eachn < ‘u\tlﬂ‘ Argumg as in the case= 1, we prove, for each <i < |¢t|+1, the existence
N H [Td-| - O} and

<w i
of “\t|+1 € d<¥ such that) # N o) 0 )5 b ()5 g (| (LCEH)OUS, oy f+1 &
“\Zt|+1( n) <1(ba(r ))+1+|u|t\+1 ‘t|+1|—|—n for eachn < |u‘t|+1| (umﬂ( n) can bei, in which case
we use the fact thd{t) > |¢|). We chooseV,. € w such that

7 . t+1 te
<Sl(t) (i-€) (S?(bQ(r))—3?(b2(r))\(l(t)+1)> VRV HH oY >‘€d€E’

1
(l(bQ ))+’u|t\+1 }iliﬂ"’"Nts) (‘tH_l)O and

<<z(b2(r))+|ug|+1 R > — (1 +1)1),.

0
We putl(te) :=1(t)+1+|v|, where by definition

L 0 0 0 |t‘+1 Nts
Ve 1= <Sl(b2(r)) —Sz(b2(r)>|(l(t)+1)) O g1ty 11 0

This finishes the proof. 0

10



Now we come to the general condition to get some complica&slas in the statement of Theo-
rem 1.7 announced in the introduction.

Notation. The mapS:2¥ — 2¥ is the shift mapsS(«)(m):=a(m-+1).
Definition 2.5 We say that” C 2% is compatible with comeager sets (ccs for short) if
aeC & S(apAFy(a))eC,
for eachag € d¥ and F: 2% — (d¥)4~! satisfying the conclusion of Lemma 2.4.(b).
Notation. Let T; be the tree associated with an effective frame, @nd2“. We put
S&={ae[Ty] | S(apAar)eC}.

Lemma 2.6 LetT, be the tree associated with an effective frame, Bradnon self-dual Wadge class
of Borel sets.

(1) Assume that' is aT'-complete ccs set. Theif. € T'([7,]) is a Borel subset ofd* )<, and is not
separable fron]T,]\S< by a potT’) set.

(2) Assume that?, C'! €T are disjoint, ccs, and not separable by\qT") set. Thersgo, Sgl are in
I'([T,]), disjoint Borel subsets f)¢, and not separable by a pah(T')) set.

Proof. (1) It is clear thatS4 € T'([7}]) sinceS and A are continuous. S6¢, is a Borel subset of
(dv)? since[T] is a closed subset ¢f~). Indeed,[T,,] is closed:

ae[T,] < Vnew\{0} Ji<n Vicw sliCa; A (ailn—sii)=(ap|n—sY0) A ag(n) <n.

We argue by contradiction to see tifit is not separable froMiZ;;]\ S& by a potI') set: this gives
P € pot(T"). For eachi € d there is a densé&'; subsetG; of the compact spacH// [T,] such that
PN (Iieq Gi) €T (Iicq Gi), andSE N (Mieg Gi) € P N (ieq Gi) € (Wieq Gi) \ ([T41\SE).

Lemma 2.4 provides € Go andF': 2% —I1y;-4 G; continuous. Let
D:={ae2’| (ag, F()) €PN (g Gi) }-

ThenDeT. Let us prove tha€ = D, which will contradict the fact thaf' ¢ T". AsC'is ccs,a € C is
equivalent taS (apAFy(a)) €C. Thus

aeC = S(OéoAF(](O[)) eC = (Oé(), F(Oé)) ng« N (Hied Gl) CPn (Hz‘ed Gl) = a€eD.
Similarly, ¢ C = a¢ D, andC'=D.
(2) We argue as in (1). O

This lemma reduces the problem of finding some complicatedesein the statement of Theorem
1.7 to a problem in dimension 1.
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3 The proof of Theorem 1.7 for the Borel classes
The full version of Theorem 1.7 for the Borel classes is dg¥:

Theorem 3.1 We can find concrete examples of a tieewith A} suitable levels, together with, for
eachl <¢ <wy,

(1) Some sef{ € 22([T,]) not separable froniT;]\S¢ by a potIIy) set.
(2) Some disjoint se®, S € I([T;]) not separable by a paA?) set.

This is an application of Lemma 2.6. We now introduce the asjeseful to define the suitable
setsC's of this lemma. These objects will also be useful in the gainease. The following definition
can be found in [Lo-SR2] (see Definition 2.2).

Definition 3.2 A setH C2¥ isI'-strategically complete if

(a) HeI'(2v).

(b) If AeT'(w*), then Player 2 wins the Wadge gafiéA, H) (where Player 1 plays € w*, Player
2 plays €2¥ and Player 2 wins itve A < € H).

The following definition can essentially be found in [Lo-JR4ee Section 3) and [Lo-SR2] (see
Definition 2.3).

Definition 3.3 Letn <w;i. A functionp:2¥ — 2¢ is anindependent n- function if

(a) For some functionr : w — w, the valuep(a)(m), for eacha € 2¢ and each integefn, depends
only on the values af on7—1({m}).

(b) For each integern, we seC,,:={a€2¥ | p(a)(m)=1}.
(1) If n=0, then for each integem the setC,, is a Al-complete set.
(2) If n=0+1is successor, then for each integerthe setC,,, is aIl? Lp-Strategically complete set.

(3) If n limit, then for some sequen¢é,;, ) mc., With 0., <n and sup, 0,,, =7 for each one-to-one
sequencém,),>1 of integers, and for each integen the setC,,, is aIl} 19, -Strategically complete
set.

Note that we added a condition wher-0. Moreover, we do not ask the sequenég, )c., to
be increasing, unlike in [Lo-SR2], Definition 2.3. Note athat an independent-function has to be
2?+n—measurable. Moreover, ifis an independenj-function, thenr has to be onto.

Examples.In [Lo-SR1], Lemma 3.3, the map, : 2 — 2“ defined as follows is introduced:
1if a(<m,n>)=0, for eachn cw,
po(a)(m):=

0 otherwise.

Thenpy is clearly an independentfunction, withw (k) = (k)o. In this paperp( : 2 — 2+ is also
defined form < w; as follows, by induction om (see the proof of Theorem 3.2).

12



We put

- 3 :=Idgw.
- o0t i=py o pf).

- If > 0 is limit, then fix a sequencé;},).nc € 1 of successor ordinals with,,c,, 0;, =n. We
definep(()m’m“) 1 2% 5 2% by

oy (@)(0):= {

a(i) if i<m,

,082Z (8™(a))(i—m)if i>m.

We setp{"m ) = plmmtl) o pim=tm) o o pO0D and pll () (m) := pO™ ™ (@) (m). The authors
prove thatp] is an independeny-function (see the proof of Theorem 3.2). In this paper, te s
Hyy, = (pd)~1({0°°}) is also introduced, and the authors prove tHat., is H?M-complete (see
Theorem 3.2).

Notation. Let 1 <{:=1+n<w;. We setC, :=—-H,. If moreovere € 2, then we set
Ci:={ae2”|Imew pf(a)(m)=1AVI<m pj(a)(l)=0A (m)o=e (mod2)}.
Then we se§{:=S¢, ands; ::Sgg.
Theorem 3.1 is a corollary of Proposition 2.2, Lemmas 2.3Z6dand of the following lemma.

Lemma 3.4 Let1<&<wi.
(1) The seC; is azg—complete ccs set.
(2) The set”?, C} € 22, are disjoint, ccs, and not separable by} set.

Proof. (1) C¢ is Eg—complete sincel; is Hg—complete.
e Assume thaty, F' satisfy the conclusion of Lemma 2.4.(b). Let us prove that
() =p (S (a0AFo()) ).
for eachl <n<w; anda € 2¥. Forn=1 we apply the conclusion of Lemma 2.4.(b)d4& w. Then
we have, by inductiong) ™ (o) = po (p4(a)) = po (pg <S (0 AFy(a)) )) =pht! <S (0 AFy () ) .
From this we deduce, fox> 0 limit, by induction again, that
0} 0}

o8 (@)= (@) =p (S(a0AFy(a)) ) =" (S(a0AFo(a)) ).

ThUSp(()O’erl) (o) :p(()o’erl) (S (AFy (a))) , and
(@) (m) =" (@) (m) = o1 (S (a0 AFb (@) ) (m) = 3 (S (0 A Fo(@) ) (m).

e If we apply the previous point, or the conclusion of Lemma@)to s:=(), then we get
a€Ce & Imew pl(a)(m)=1< Im' cw p] <S (a0 AFy(a)) ) (m)=1 & S(aAF(a))eCe.

ThusC is ccs.

13



(2) Note first than, C’g1 € 22 sincepy is 29, -measurable, are clearly disjoint, and are ccs as in (1)

1+n
since(m)o = (Ba(m)), in Lemma 2.4.(b).

o We set, fore €2, Vo:={a€2¥ | Imew pj(a)(m)=1 and (m)o=e (mod2)}. ThenV. is a3}
set sincep] is =0 +,-Measurable. Let us prove thatis Eg-complete.

- If =0, then0> € V\ V, so thatV. is X{-complete.

- If n = 0+1, thenp] is an independeny-function. Let(Am)mew be a sequence dﬂ1+9( “)
sets. Choose a continuous mAp: 2 — 2¢ such thatA,, = f,-1(C,,). We definef : 2* — 2 by
f(a)(k):= fm () (k) if m,(k)=m, and f is continuous. Moreover,

a€A, < fm(a)elC, < fla)elpy,

sothat,,.c,, myo=- (modz) Am=/""(Vz). ThusV. is 3:¢-complete.

- If n is the limit of thed,,,’s, thenp/ is an independenj-function. We argue as in the successor case
to see thal/; is 3-complete.

e We argue by contradiction, which givésec AO separatmgC0 from C’1 Let vy, v1 be disjointEO
subsets o2¥. Then we can find a continuous mﬁp 29— 2¥ such tha'rvE = f-YV.). Aspjis an
independent)-function, we getr,, : w — w. We define a mag : 2¥ — 2 by f(a)(k) := fo(a)(k) if
(my(k)), =€ (mod2), and f is continuous. Note that € v. < f.(a) € V. & f(a) € Vz, so that
Ve = f*?(Vg). Thusa vy < f(a)eVy & fla)e VO\V1 CO C D sinceuy is disjoint fromuw;.
Similarly, a€v; & f(a)eVi\W gCgl C-D. Thusf~1(D) separateso fromv;. As f~1(D)e A?,
this implies tha‘rzg has the separation property, which contradicts 22.C in [K]. O

4 The proof of Theorem 1.8 for the Borel classes

The full versions of Theorem 1.8 and Corollary 1.9 for the @atasses are as follows:
Theorem 4.1 Let T be a tree with suitable level$,< ¢ <wi, (X;);eq @ Sequence of Polish spaces,
and Ay, A; disjoint analytic subsets dl;c4 X;.
(1) LetSe 22((Td1). Then one of the following holds:
(a) The setd is separable fromi; by a po(l‘Ig) set.
(b) The inequality((d*)ica, S, [Ta]\S) < ((Xi)icd, Ao, A1) holds.

If we moreover assume that is not separable from7,]\ S by a po(l'Ig) set, then this is a
dichotomy.

(2) Lets®, ST e BY([T,]) disjoint. Then one of the following holds:
(a) The setd; is separable fromi; by a po(Ag) set.
(b) The inequality((d“);cq, S, S') < ((X;)icd, Ao, A1) holds.
If we moreover assume théf is not separable frons* by a po(Ag) set, then this is a dichotomy.
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Corollary 4.2 LetT be Borel class. Then there are Borel substitsS' of (d¢*)? such that for any
sequence of Polish spacéX););c4, and for any disjoint analytic subset), A; of 1,4 X;, exactly
one of the following holds:

(a) The set4 is separable from¥; by a potI') set.
(b) The inequality((d“);cq,S°,S') < ((X;)ica, Ao, A1) holds.

4.1 Acyclicity

In this subsection we prove a result that will be used latshtmw Theorem 4.1. This is the place
where the essence of the notion of a finite one-sided almgstiaset is really used.

Lemma 4.1.1 Assume tha¥ C X% is finite. Then the following are equivalent:
(a) The sefl is one-sided and almost acyclic.

(b) For each:c? €T, there is an integeb # £ < d+2 and a partition(M;) jc . of T\{E} with
(D)Vied Vj#ke L TI;[M;] NI [ M| =0.
(2)Vied Vje L VieM; ri=1) = i=j.

Proof. (@)= (b) If £ Z€ T and (yﬂ> is a walk inG7 with y 0= =1 and? = 7, then we choose
such a walk of minimal length, and we callwl;; . We will define a partition of/. We put, forj €d,

N ::{feT!f#aﬁ/\wfﬁ does not exist,
L= {ZeT | #£DA (w (v, 51-2), =20 ).

So we defined a partitiofWV, (L;);eq) of T\{E} since7 is one-sided. Ag is finite, there igjp € d
minimal such that; =0 if j >]0 We setM;:=L; if j <jo, Mj,+1:=N andL:=jy+2.

(1) Let us prove thatl;[L;] N II;[N] = 0, for eachi, j € d. We argue by contradiction. This gives

z; € IL;[L;) N IL[N], £ € L;, and alsoj € N such thatr; =y;. AsZ,y€T andL;, NN =0, Z#y

andz, i are G7 -related. Note thatv_ — does not exist, and that_ — exists. Now the sequence
Y,z z,x

(g, Z, ..., E) shows the existence Qfgﬁ, which is absurd.

It remains to see thai;[L;]NIL;[Li] =0, for each, j, k € d with j # k. We argue by contradiction.
This givesz; € IL;[L;] N 11;[ L], £ € L;, and alsoy € Ly, such thatr; =y;. AsZ,y €T andj #k,

7+ andZ, 7 areG7 -related. Let us denote  — := <7) and = (?> . Note
7Y Y fgg & n<l+1 wﬁﬁ y n<l/+1

T 0 I v : ol 0 A v G
that z* # 4" sincez} =z andy’ # Y, since otherwisg', z° € T, y* # ¥ andy! =9, y; = a7,
which contradicts the fact th&t is one-sided.

__% ﬁ
We denote byl := <—ﬁ) o the foIIowingGT-walk'7> =1 ...,7,y7 ; y'. Ifthere are

k<n<Lwith 117 —m then we pufiV’:= 45 j i —f If we iterate this construction,
then we get &' -walk without repetitionV := <7> L from @ to ;f
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. ! \nsi k / i Z 7 L
If there arei € d andk+1 <n < L' with vF = v, then we pult’’:=o", ... v", o™, .. ,v™ . Ifwe
iterate this construction, then we getd -walk without repetitionl := <u5;) - from w8 to wz
n_ 1

for which it is not possible to finde d andk+1<n < L” with uf =u?.

33 T BT - -
Now z°,u”, ...,u"” ,z" is aG’ -cycle contradicting the almost acyclicity @f.

(2) If ZeN, thenwfg; does not exist. This implies that  z? for eachi € d, since otherwis& and

E would beG7 -related, which contradicts the non-existencevof-;.
z,r

If ¥ € L;, theni is the only coordinate for which; = x? since7 is one-sided. Note that
(=0 - _ 0 _ o
W= (x,x ) As ¥ c L;, we get(wf’:?;ﬂwf’;ﬂ _2))j = ;. But wf;;(|wf,x7;|—2) =&. Thus
xj:x? andi=j.

(b) = (a) Let:n? #T€T,i,jcdsuch that) =z; andz) = z;, andk € £ such that? € M;.. By (2)
we geti =k =j and7 is one-sided. Now consider@’ -cycle (gﬁ)ng. By (1) there isj € £ such
L—1

thatz" € Mj for each0 <n < L. Then by (2) we get}=z;=x;"" andT is aimost acyclic. = [

Definition 4.1.2 and Lemma 4.1.3 below are essentially dué.t®ebs (see Subsection 2.1 in
[L7]):

Definition 4.1.2 (Debs) Let®: X — 2«“)* 7 C x4, We say that the map=1I1;c, 6; € ((w“)X)d

is am-selector on T for © if

(@) (%)= (0i(x:)),., for eachi’e X7,

(b) (%) € ©(Z) for eachZ e T.

Lemma 4.1.3 (Debs) Letl be an integerX := d*, T C x4 pe A}, finite, one-sided, and almost

acyclic, ©: X7 — 2! (w*)%), and®: X — I ((w¥)4) defined byd(Z):=O(Z)" . Then® admits
a r-selector on if © does.

Proof. (a) Letad eT,and¥: X4 — Il ((w”)?). We assume that (Z) = O(7) if 7+ 9?3 and that
% T1
LG (E) ce <m ) . We first prove tha® admits ar-selector ori/ if ¥ does.

e Lemma 4.1.1 gives a finite partitiof/;) jc. of 7\ {E}. Fix ar-selectory) on T for ¥, and let
M :=max(d N L). We defineX! setslU;, fori< M, by

U = {acw? | Fpe (w)¥) a=yi(ad) AVEET (Z)e¥(D)}.

A (20) = (61(2) e € ¥ (25) 1 (Licar U < ()21 we get

0+w @) N ((Micar Up) x ()M co @) N ((Micar Up) x ()=,
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By the separation theorem this implies tI@(E) N (W< Up) x (w*)4=M=1) is not empty

and contains some poift Fix i< M. As «o; € U; there isy)’ € ((w“)")d such thaty; = (z?) and
Vi(T) e (T) if ZET.

e Now we can defing;: X — w*, for eachi € d. We put

«; if xi:x?,

Oi(ai) := § o (i) if wy €TL[M]\{ad} A G < M,

YY) (x;) otherwise.
Then we set (%) (i) :=0;(x;) if ied.
e |t remains to see thak(¥) € ©(Z) for eachz € T .

Note thatt (;ﬁ) =€ <;§) So we may assume thﬁt;é;%. So letj € £ with ©'€ M;.
- If 2; # ) for eachi e d andj < M, thend (%) = (0i(x:)) ., =¥ (F) € U(Z) = O(Z).
- Similarly, if z; # «;) for eachi € d andj > M, thend(z) = (:(x:)),_, = ¢°(¥) € ¥ (&) = O ().
- If ;=29 for somei € d, theni=j < M. This implies that; (z;) = a; =4 (%) = (x;) and
0(7) = (0i(x:)) . =0 (7) € V(D) =O ().
, 5 — — ,

(b) Write T := {xl, — } and setl, :=©O. We definel;;: X% — 2! ((w*)?) as follows. We
put ;1 (Z):=V,;(7) if #2771, and¥, 4 (xﬁl) =0 <x1“) , for j <n. The result now follows

from an iterative application of (a). O

4.2 The topologies

In this subsection we prove two other results that will beduseshow Theorem 4.1. We use tools
of effective descriptive set theory (the reader should Bdqr the basic notions). We first recall a
classical result in the spirit of Theorem 3.3.1 in [H-K-Lo].

Notation. Let X be a recursively presented Polish space. Using the bifettgaweeny and w?
defined before Definition 2.1, we can build a bijection,) — < z,, > between X*)~ and X“ by the
formula< z,, > (I):=2(), ((1)1). The inverse map+— ((z),) is given by(z),(p) :==z(< n,p >).
These bijections are recursive.

Lemma4.2.1Let X be a recursively presented Polish space. Then there/BresetsW X C w,

CX Cw?x X with {(a, z) €w* xX | ae WX andz ¢ CXye I}, AY(X)={CX | ac AL n WX},
andA}(X)={CX | ac WX},
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Proof. By 3E.2, 3F.6 and 3H.1 in [M], there igX € I} (w® x X) which is universal fofI}(X) and
satisfies the two following properties:

- A subsetP of X is I1}! if and only if there iso € w® recursive withP =14X.
- There isS™ :w® x w*” — w* recursive such thdty, 8, z) U~ *X < (5% (o, B), z) eUX.

We set, fore €2, Uz :={(a, z) €w® x X | ((@)s, ) €UX}. ThenU, € I}, By 4B.10 in [M], II}!
has the reduction property, which give§, U; € 1} disjoint with U C U. andU U U{ = Uy U Uy.
We setW X :={acw” | (U))a U (U)o =X} andC* :=U}, which definedI;! sets. Moreover,

WX ANzdCX & acWX A(a,2)eU]

is IT! in (a, 2). Assume thatd € Al(X), which givesag, a; € w® recursive withA :ujf) (resp.,
ﬁA:uC)fl). We definen € w® by (). := ., so thatu is recursive. We get

r€A & (g, 2)eUX & (a,7)€lp & (,2) €U\Ur & (o, ) €U,
r¢As (a1,2)cUX & (a,2)eU; & (a,2)eU\Uy < (o, z) €U,

so thato € WX andC¥ = A. This also proves thaA} (X)) C{CX | ac WX},

Conversely, let € Al N WX, ThenCX € 11}, andx ¢ CX < o€ WX andx ¢ CX, so that
-CX e I} andCX € Al. Note that this also proves thatl (X) D {CX | ac WX}, O

We now give some notation to state an effective version obfdm 4.1.
Notation. Let X be a recursively presented Polish space.

e We will use the Gandy-Harrington topologyx on X generated by~!(X). Recall that the set
Qx ={reX |wf= wch} is Borel andX'l, that(Qx, Xx) is a0-dimensional Polish space (the
intersection of2x with any nonemptyZ; set is a nonempty clopen subset(0fy, X)) (see [L8]).

¢ Recall the topology; defined before Theorem 1.9. We will also consider some t@peddbetween

7 and X .y Let2<E< wCK. The topologyre is generated by’ ((w*)?) N %, (m). We have
39(e) CX2(71), so thatll}(r¢) CII(r1). These topologies are similar to the ones considered in
[Lo2] (see Definition 1.5).

e We set pofI)) := {I;cq A; | A; € A}(w®), andA; = w* for almost everyi € d}. We also set
W:=WwE)" andC:=C@)* (see Lemma 4.2.1). We will define specifically, for w,

{(B,7)€w” xW | B codes a pdilI{) set andC,, is the set coded by }.

The way we will do it is not the simplest possible (we can irt facget 5, and work with~ integer
instead of real, see [L7]). We do it this way to start to give flavor of what is going on with the
Wadge classes.
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e To do this, we set

Vo:={ (B,7)€w’xW | Vi< B(0) (B8*);€W*" AyeAL(B)A
B(0)=d A Cy =TI 40 C(“B“i)i if d<w }
C, = <Hi<5(0) c(u;;)i) (W) if d=w
We define an inductive operatéroverw® x w® (see [C]) as follows:

P(A):=AUVy U{(B,7)€w?xW | ye AL (B)A
I € AL(B) Vnew ((5)n7(7/)n)€A/\_'Cy:Un€w C(ﬁ/)n}.

Then@ is clearly all{ monotone inductive operator. We set, for any ordifial; := ®¢ (which is
coherent with the definition df;). We also seV¢:=J, . V;,. The effective version of Theorem
4.1, which is the specific version of Theorem 1.9 for the Bola$ses, is as follows:

Theorem 4.2.2 LetT, be a tree withA! suitable levels] <¢ < wPK, and Ay, A; disjoint X subsets
of (w*).

(1) Assume thab € 22((le) is not separable fromi7;]\ S by a potﬂg) set. Then the following
are equivalent:

(a) The set4 is not separable fromd; by a po(l'Ig) set.

(b) The setd, is not separable fromt; by aA; N po(ITY) set.

© (3B, 7)e(Al xA) N Ve AgCC,C—Ay).

(d) The setd is not separable fror; by aﬂg(ﬁ) set.

(€) Ap™ N Ay #0.

(f) The inequality((d“)ica, S. [T41\S) < ((w*)ica, Ao, A1) holds.

(2) The setd/; and V¢ are I1}!.

(3) Assume thats®, S' ¢ E?([le) are disjoint and not separable by a pjmg) set. Then the
following are equivalent:

(a) The setd is not separable fromi; by a po(Ag) set.

(b) The setd, is not separable froml; by aAj N pot(Ag) set.

©) ~(3(B.7). (B, 7) (Al xA) NVe Cy=-C, and AgCC,C—4,).
(d) The set4 is not separable fromd; by aAg(n) set.

(€) Ao NAL " #0.

(f) The inequality((d“);cq, S°, S') < ((w*)ica, Ao, A1) holds.

The proofs of Theorems 4.1 and 4.2.2 will be by inductior¢ ohis appears in the statement of
the following lemma.

19



Lemma 4.2.3 (1) The sel; is 11}

(2) Let1<£< w1CK. We assume that Theorem 4.2.2 is provedifarg.

(@) The selV_ is I1}.

(b) Fix A€ 5t ((w*)?). ThenA™ € 2} ((w*)?).

() Letn>1,1<& <6 <... <&, <€ andSy, ..., S, be X} sets. Assume that C S;,; “" for
1<i<n. ThenS, N N;<icn S, is 7,-dense inS; .

Proof. (1) The setl; is clearly IT}.

(2).(a) The proof is contained in the proof of Theorem 4.1LiA|[ It is a consequence of Lemma 4.8
in [C].

(b) The proof is essentially the proof of Lemma 2.2.2.(a)li][
(c) The proof is essentially the proof of Lemma 2.2.2.(b)Ui][ O

Lemma 4.2.4 LetS, T € X} ((w*)?) such thatS is 7 -dense inl’, (X;);cq a Sequence aff subsets
of w such thatX; =w if i >ig. ThenS N (I;cq X;) is 71-dense i’ N (I1;cq X5).

Proof. Let (A;);cq be a sequence all! subsets ofu such thatA; = w® if i > jy > ig, and also
T N (Ieq I;) # 0, wherel; ;== X; N A;. We have to see thal N (Il;cq I;) # 0. We argue by
contradiction. This gives a sequeng®; );cq Of A} subsets ofu¥ such thatl; C D; if i € d, and
SN (Ieq D;)=0, by jo applications of the separation theorem. But (11,4 D;) #0, andD; =w®
if i >jo. S0S N (I;eq D;)#0, by 7-density ofS in T', which is absurd. O

4.3 Representation of Borel sets

Now we come to the representation theorem of Borel sets byeBs@nd J. Saint Raymond (see
[D-SRY]). It specifies the classical result of Lusin assertimat any Borel set in a Polish space is the
bijective continuous image of a closed subset of the BaiaespThe material in this Subsection can
be found in Subsection 2.3 of [L7], but we recall most of itcsrit will be used iteratively in the case
of Wadge classes. The following definition can be found irdR}.

Definition 4.3.1 (Debs-Saint Raymond) Letbe a countable set. A partial order relatiai on ¢c<“
is atree relation if, for t e c<v,

@0 Rt.
(b) The setPr(t):={s€c=* | s R t} is finite and linearly ordered byz.
For instance, the non strict extension relatiénis a tree relation.

e Let R be a tree relation. AmR-branch is an C-maximal subset of<“ linearly ordered byR. We
denote by R] the set of all infiniteR-branches.

We equip(c=*)“ with the product of the discrete topology oft. If R is a tree relation, then the
space[R] C (¢=*)¥ is equipped with the topology induced by tha{¢f*)~. The maph: ¢ — [C]
defined by () :=(v]J) je. i1s @an homeomorphism.

20



e Let R, S be tree relations witlR C S. Thecanonical map I1:[R] — [S] is defined by
I1(B) :=the uniqueS-branch containings.
e Let S be atree relation. We say th& C S is distinguished in S if

sStSu

Vs. t <w
s,t,uec sRu

}:>th.

For example, leC be a closed subset &f, and define
sRt & sCtANNyNC#(.

ThenR is distinguished inc.

o Letn<w;. Afamily(R?),<, of tree relations is aesolution family if
(@) RtV is a distinguished subtree &), for all p <.

(b) RV =Np<» R for all limit A <.

We will use the following extension of the property of disfiion:

Lemma 4.3.2 Letn < wy, (R),<, a resolution family, angh < 7. Assume that R©®) s’ R(") 5"
ands R?t1 ¢ Thens R+ ¢,

Notation. Let n < wi, (R%),<, a resolution family such thak®) is a subrelation of, p < and
tec=“\{0}. We set
tP:=t | max{r <|t| | t|r R t}.

We enumeratét’ | p<n} by {t& | 1<i<n}, wherel <ncw and{; <...<§&,=n. We can write
ton Cptn=1 C oyl Cut2 C 451 C 4 t. By Lemma 4.3.2 we havéi+t RE+D) ¢ for eachl <i<n.

Lemma4.3.3 Letn < w1, (R(P))pg, a resolution family such thaR(® is a subrelation ofc, ¢ in
c\{0} and1<i<n.

(@) Setn; :={p<n | t5% Ctr}. Theny; is a successor ordinal.

(b) We may assume theit 1 C_. t5.

The following is part of Theorem 1-6.6 in [D-SR].

Theorem 4.3.4 (Debs-Saint Raymond) Let< wy, R a tree relation,(1,,),c. & Sequence ol‘IgJrl
subsets ofR]. Then there is a resolution famifR*)) <, with

(@ R® =R,

(b) The canonical mapl : [R"]— [R] is a continuous bijection.

(c) The sefl~!(I,,) is a closed subset §R("] for each integemn.

Now we come to the actual proof of Theorem 4.1.
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4.4 Proof of Theorem 4.1

The next result is essentially Theorem 2.4.1 in [L7]. But Wweedts proof since it is the basis for
further generalizations.

Theorem 4.4.1 LetT, be a tree withA} suitable levels¢ < w1CK a successor ordinal§ € 22( (T4]),

and Ay, A; disjoint X} subsets ofw“)?. We assume that Theorem 4.2.2 is provedjferé. Then
one of the following holds:

(@) Ao™ N A1 =0.
(b) The inequality( (11! [ 1] )ica, S, [Ta]\S) < ((w*”)ied, Ao, A1) holds.
Proof. Fix 77<w1CK with £ =n+1.

e Recall the finite setg; defined at the end of the proof of Proposition 2.2 (we only ubedfact
that T,; has finite levels to see that they are finite). With the notatid Definition 4.3.1, we put
c:=J;e,, @ SO thatc is countable. The sdt:= h[[T,]\S] is al‘IgJr1 subset of C]. Theorem 4.3.4
provides a resolution family. We put

D:={5eT; | 5=0Vv3Bell\(I) 5eB).

e Assume thatd, ™ N A, is not empty. Recall thaf)x, Xy ) is a Polish space (see the notation at the
beginning of Section 4.2). We fix a complete metii¢ on (x, Y'x).

¢ We construct
- (ad)icdsemrr, Cw?,
- (Oi)z‘gs\,ied,senm C It (w?),

- (Us)ser, € 21 ((w*)4).
We want these objects to satisfy the following conditions.

(1) ol € 0L C Qe A (Al )iea € Us C Qe

(2) 0%, COx,

(3) diamy,,, (O%) <27IsI A diamy , ,(Us) <2719,
(4) UsC Ay N A, if 5eD,

(5) UsC Ay if 3¢ D,

(6) (1<p<nASRW ) = U.CU;",

(7) ((5,teDV 5,t¢ D)AN§ R 1) = UCUs.
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e Let us prove that this construction is sufficient to get tremtiem.

- Fix f € [Ty]. Then we can definéji)rew = (jj, Jrew bY T ((B15)jew) = (Blik)rew, With the
inequalitiesjy, < jx41. In particular,3|j. R™ B|ji11. We have

G¢S & h(B)=Bli)jewel © (Blik)rew €T (I) & Vk>ko:=0 Blj€D

sinceH*i(I) is a closed subset dR(]. Similarly, 5 € S is equivalent to the existence bf € w
such thats|ji ¢ D for eachk > k.

This implies that(UEljk)ka0 is a non-increasing sequence of nonempty clopen subseke of t
SPace(§Y(,wyd; L,wye) Whosed,, . a-diameters tend to zero, and we can define

{(FOY =) Uz, S Q-

k>ko

-,

Note thatF(5) is the limit of (o ; Jicd) .-

=,

- Now lety € I1”[Ty], and 5 € [T,] such that3; = v. We setfi(y) := F;(3). This defines
fi :H;’ [Td-‘ —wv.

Note thatf;(~y) is the limit of (ag‘j)jew. Indeed, f;(~) is the limit of (ag‘jk)
al ;€ 0! ., and the sequend®! );>; is decreasing. Fix >0, k > such tha—* <. Then we
get, if j >k, due (fi(7), a%) <diamy,_,, (Oilj) <277 <27% <<, In particular,f;(y) does not depend
on the choice off. This also proves that; is continuous ol [T,].

kew- If J >4, then

-,

- Note thatF;(53) is the limit of some subsequence (@fgi'j)jew, by continuity of the projections.

ThusFi(8) = fi(8;), andF(B) = (;eq f;)(5). This implies that the inclusion$ C (ILicq f;) ' (Ao)
and[T;]\S C (ieq fi)~" (A1) hold.
e S0 let us prove that the construction is possible.

- Let (af)ica € AN AN Q ()2, Which is nonempty sincely © N A; # 0 is X}, by Lemma
4.2.3.(2).(b). Then we choose’d subset; of (w*)4, with d .~ ya-diameter at most, such that

(h)ica €U S Ag™ N A1 N Qo
We choose & subser]) of w*, with d,..-diameter at most, with oj) € O C ..., which is possible

sinces) . ya C Q.. Assume thatal) <, (OL)(5<; and(Us) 51 <, satisfying conditions (1)-(7) have
been constructed, which is the caselfer0.
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-Letime T, N (d*1)?. Note thatm” € D if tm" € D is not equivalent tam € D (see the notation
before Lemma 4.3.3).

- The conclusions in the assertions (a), (b) and (c) of thievidahg claim do not really depend on
their respective assumptions, but we will use these agsertater in this form. We defing; ::O}/’i
if +<l, andw® if 7> 1.

Claim. Assume that) > 0.

(a) The setdy N ﬂ1<p<n Ut7n>p 7N (Iieq X;) is 1-dense inUﬁlT1 N (Ieq X;) if i e D and
tmgéD

(b) The se1U—>77 N ﬂ1<p<n U?np N (I;eq X;) is 71-dense inUWLlT1 N (Mieq X5) if ﬁfm, m eD
or fm? tmgéD

Indeed, let us forgdil;-, X; for the moment. We may assume tlm?zztg +1 Cx tméiif 1 <i<n,by
Lemma4.3.3. We se;:=Us,,, for 1< & <n. Astm&+1 R(@“) imé, we can writeS; C Sy ¢,

for 1 <& <n, by by |nduct|on assumption. hfm” € D and im gé D, thenS C Ay Thus
AoNMy<g,<n U->E randUz Ny<g, < UW“, ‘i arer;-dense |rUtTn>1 ' by Lemma4.2.3.(2).(c).

Butif 1< p <7, then there i8 <i<nwith fm? =mé. And p<¢&; since we havémé+1 c_, s
if 1<i<n.We are done sincf), . ,,, U—>pT’J:ﬁl<&<17 U " and

tm
_ UF
Ugin N ﬂ e =Ugia N ﬂ Ugie: ™
1<p<n 1<&i<n
The claim now comes from Lemma 4.2.4. o

-Let X:=d'"L. The mapo: X? — 5} ((w)9) is defined ori7 '+ by

[0 Nicpey U™ N (ica Xi) N Qe if i€ D A it D,
O(tm):=
Uszy Vi pen Uy N (Tieq X,) if &m", tme DV &, tm ¢ D.
- T1 . —>1 nd —> (1)
By the claim, @(tm) is 71- dense iU, N (Iicq X;)ifp>0. Astm" Ct CtmandR
is distinguished inC we gettm R(l) t and Up C U—>1 , by induction assumption. Therefore
— .
U; N (IMeq X5) gUﬁl n N (Ieq X5) C @(tm) and(ati)ied e UpN (ILicq X5) g@(tm) (even if
n= 0). Therefore® admits ar-selector on7'+!. Indeed, we define, for eaate d, 6; : X — w* by
0;(timi):= o, if t; €11 Ty, 0°° otherwise.

- As T, is a tree withA! suitable levels, we can apply Lemma 4.1.3. TRuadmits ar-selectord on
T, We set, fors € II; [T, ol :=6;(s).

- We chooseX} setsU— with d . ye-diameter at mos2—'~! such thatH(?n) €U C @(tﬁ

tm e T,

) if
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- Finally, we choose the®? 's. We first prove that’, € O if sqeIL [T, icd andi<l.

Let iy € T+ such thatsq = t;m;. Thenal, =0;(sq) = 0;(t;m;). As 9(%) € @(Wz) andi </,
we geta’, € Of, =OL.

Now we can define th®’ 's. If sq € IL;[T"!], then we choose & setO! , with d,.-diameter

at most2—!~1, such that o .
al, €0, C { 8iwlfotzh§rl\;vise.
- This finishes the proof sincé@ R im and @#im = @ R® im? R tm, by Lemma 4.3.2.]
Now we come to the ambiguous classes.
Theorem 4.4.2 Let T, be a tree withA] suitable levels¢ < wch a successor ordinals?, St in

22([le) disjoint, andAg, A; disjoint X} subsets ofw®)?. We assume that Theorem 4.2.2 is proved
for n<&. Then one of the following holds:

(@) Ay NA ¢ =0.
(b) The inequality( (I} [T,])ica, S°, S*) < ((w*)icd, Ao, A1) holds.

Proof. Let us indicate the differences with the proof of Theorem#4.Assume thatl, © N A; " #£0.
We setl¢:=h[[Ty]\S¢], so thatl® is al‘Ig subset ofC]. We also set, for €2,

Dj:={5eT, | 5=0v3IBell Y(I*) 5B},
andD§:=T,\ D5. We set, forfy, 61 €2, Dy, o, ::Dgo N Dgl. For example@e Dy ;.
e Conditions (4), (5), and (7) become the following:

(4) UsC Ay NAC if € Dy,
(5) UsCA. if 5€ D. 1,
(7) (3,1€Dey—c N§RM 1) = U-CUs.

e Fix @ € [T,]. There are(fy,6;) € 2% andkg € w such that, fork > ko, @|jx € Dg,e,- Thus
5S¢ C (Wieq fi) ™ (A).

o Let (af)ica € Ao"* MAL™" N Qwya, which is nonempty sincely ™ N A; ™ #0 is £ We choose
U@’ with (Oéé))z‘ed € U@’QA_OTE NA;* N Q(ww)d.
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e The statement of the claim is now as follows:

Claim. Assume that) > 0.
(@ A. N ﬂlﬁpﬁn U%,f” N (I;eq X;) is T-dense inUﬁlT1 N (Ieq X;) if gl ¢ D.;_. and
tT;LGDeJ,g.

(b) Uiz, N ﬂ1§p<n U—.""nN (IL;eq X;) is T1-dense irUtT>an1 N (I;eq X;) otherwise.

tmpP

The point is that?z” €Dy, if o ¢D.1_¢ sincetm” € Dy, 9, With e <6y and1—e < 0.

e In the same fashiorﬁ)(tﬁ) is now defined as follows:

tmpP

—_— > —
A N Micpey Uz, N (Tica Xi) N Qe if tm"¢ D2y o Atme Dz,

O(tm) :=
Uz, N Ni<pen Uz " N (Tiea X;) otherwise.
We conclude as in the proof of Theorem 4.4.1. d

Now we come to the limit case. We need some more definitiorisctrabe found in [D-SR].

Definition 4.4.3 (Debs-Saint Raymond) L&t be a tree relation or<%. If t € c<¥, thenhg(¢) is the
number of strictR-predecessors df So we havé g (t) =Card(Pr(t)) —1.

Let¢ <wy be an infinite limit ordinal. We say that a resolution fanﬂy(ﬁ))pgg is uniform if
Vkew Inp <& Vs, tec™ (min(hpe (s), hpe () <k As R ¢) = s RO .
We may (and will) assume that > 2.
The following is part of Theorem 1-6.6 in [D-SR].

Theorem 4.4.4 (Debs-Saint Raymond) Lét< w; be an infinite limit ordinal, R a tree relation,
(In)new @ sequence dflg subsets ofR]. Then there is a uniform resolution fami{iR(”)) <, with

(@ R© =R,
(b) The canonical mapl: [R©)] — [R] is a continuous bijection.
(c) The sell~!(I,,) is a closed subset §R(®)] for each integen.

Here again, the next result is essentially in [L7] (see TasDpR.4.4).

Theorem 4.4.5Let T,; be a tree WithA% suitable levels¢ < w1CK an infinite limit ordinal, S in
22([Td1), and Ay, A; disjoint X} subsets ofw“)?. We assume that Theorem 4.2.2 is proved for
n<&. Then one of the following holds:

(@) A0 NA1=0.
(b) The inequality( (11! [T4] )ica, S, [Tu]\S) < ((w*)ied, Ao, A1) holds.
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Proof. Let us indicate the differences with the proof of Theorem#4.4
e The setl :=h[[T;]\S] is Hg([g]). Theorem 4.4.4 provides a uniform resolution family.
o If t€ c<* then we sep(t) =max(y, o 5+ | 5C t'}. Note thaty(3) <n (%) if FCt.
e Conditions (6) and (7) become
(6) (1<p<n(3) AFRWE) = UCT”,
(7) ((5,t€DV 5,1¢ D) N RO ¥) = UCUs.
Claim 1. Assume thatm? imé. Thenp+1< n(WzP“).

We argue by contradiction. We gpt+-1 > p > n(tm?T!) > Mo @1 = Th

-)
tm

. As
R (tm)
tm? R®) i, we getim? R© i, and alsdm? = imé, which is absurd. o

H
Note thatt,,_; < &,_1-+1 <n(fmé=1+1) <n(im). This implies thatm™) = .

Claim 2. (a) The setdo N, <, i
N _ Spsn
tm" e D andtm¢ D.

U,

mP

) "N (Teq X;) is 7-dense inUﬁlT1 N (ieq X;) if

(b) The sel/—, N e U= N (g Xi) is mi-dense il —, " N (Teq X;) if tm€, tme D
tmé 1<p<n(tm) ~tmr tm
e -
ortmé,tm¢ D.

Indeed, we set; := U, , for 1 <¢; <. By Claim 1 we can apply Lemma 4.2.3.(2).(c) and we
are done. o

e The mapO: X4 — X ((w*)?) is defined or7 '+ by

tmpP

_} Ao 0Ny penity Ui N (Hica Xi) 0 Qora if I € D At D,
O(tm):=
U M peniiny U VWi X;) i £, tm € D v imié, i ¢ D.

tm

We conclude as in the proof of Theorem 4.4.1, using the faeits)t, > 1 andr(.) is increasing. [
Now we come to the ambiguous classes.

Theorem 4.4.6 Let T be a tree withA! suitable levels¢ < wch an infinite limit ordinal, S°, S* in
22([le) disjoint, andAg, A; disjoint X} subsets ofw®)?. We assume that Theorem 4.2.2 is proved
for n<&. Then one of the following holds:

(@) Ay N A =0,
(b) The inequality( (I} [T;])ica, S°, S*) < ((w*)icd, Ao, A1) holds.
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Proof. Let us indicate the differences with the proofs of Theoremsl4 4.4.2 and 4.4.5.
o The setl*:=h[[T,]\ 5] is TIY([C]).
e The statement of Claim 2 is now as follows.

Claim 2. (8) A= N, < < i U, N(Ilicq X;) isi-dense iU, ™ N(Iieq X;) if Fmé ¢D:1 ¢
andﬁzeDe,l,g.

(0) Uz NNy peniity U~ N (Wiea X;) is 7i-dense iU, ™ N (Iieq X;) otherwise.

)

e In the same fashiorﬁ)(ﬁz) is now defined as follows:

T

— = —
AN mlﬁpﬁn(%)) Uﬁn)p N (ieq Xi) N Q(ww)d if tmé ¢D571,€ ANtm € De 1,

O(tm) ==
Ugie N ﬂ1§p<n(%) U,;’inp N (IL;eq X;) otherwise.
We conclude as in the proof of Theorem 4.4.5. ]

Lemma 4.4.7 LetT be a Wadge class of Borel sets. Then the class dlpdtets is closed under
pre-images by products of continuous maps.

Proof. Assume thatd € pot(T"), A C Il;4 Y;, and f; : X; — Y; is continuous. Let; be a finer
0-dimensional Polish topology oFj; such thatd € T'(ILicq (Y, 7). As f;: X; — (Y;,7;) is Borel,
there is a fineb-dimensional Polish topology; on X; such thatf;: (X;, 0;) — (Y3, 7;) is continuous.
ThUS(Hied fi)il(A) € I‘(Hied (Xi7 Ui)) and(Hied fi)il(A) € pOt(I‘) O

Proof of Theorem 4.1 for&, assuming that Theorem 4.2.2 is proved fof) < ¢.
(1) We assume that (a) does not hold. This implies thatdlie are not empty.
- We first prove that we may assume thgt=w* for eachi € d.

By 13.5 in [K], there is a finer zero-dimensional Polish tamy 7; on X;, and, by 7.8 in [K],
(X;, ;) is homeomorphic to a closed subdét of w®, via a mapy;. By 2.8 in [K], there is a
continuous retraction; : w* — F;. Let AL be the intersection dfl;c, F; with the pre-image ofd.
by 11,4 (%—1 or;). ThenA) and A} are disjoint analytic subsets ¢b*)?. Moreover, A} is not
separable fromd) by a po(l‘Ig) set, since otherwise (a) would hold.

This givesg; : d* — w* continuous withS C (Tl;eq g;) 1 (Af) and [Ty]\ S C (Iieq g:) " H(A)). It
remains to sef;(a):=(p; " or; 0 g;)(a) if acdv.

- To simplify the notation, we may assume tifathasA! levels ¢ <wK and A4y, 4, are 5} ((w=)?).
Notice thatA, * N A; is not empty, since otherwisé, would be separable from; by a set in
) (7¢) C TY(71) € poy(IIY) set, which is absurd. So (b) holds, by Theorems 4.4.1 an8 {a4.
IT7[T,] is compact, we just have to compose with continuous retrastio get functions defined on
d“). So (a) or (b) holds.
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olf Pe pot(l'Ig) separatesiy from A; and (b) holds, thets C (I;cq fi) = (P) C—([T4]\S). This
implies thatS is separable froni7,;]\S by a po(l‘[?) set, by Lemma 4.4.7.

(2) We argue as in the proof of (1). Here we considgr* N 4; ¢, and we apply Theorems 4.4.2 and
4.4.6. This finishes the proof. 0

Proof of Theorem 4.2.2.We assume that Theorem 4.1 is proved §oand that Theorem 4.2.2 is
proved forn < &.

(1) By Lemma 4.2.3}; andV_¢ arell}.
(a) = (b) and (a)= (d) are clear sincé\, is Polish.

(b) = (c) We argue by contradiction. Asc A} we getC,, € Aj. If (5,7) € V¢, thenC,, € pot(T12,.),
which is absurd. I{3,v) € Vo, thenC, € pot(IIj) C pot(ITY), which is absurd. I{,~) ¢ Ve U Vg,
then we gety’ € A} (see the definition oft before Theorem 4.2.2). A§S)n, (V)n) € Ve, We
getCy, € pot(Hgg). Now the equality-C,, =J C(y1,, implies thatC,, € pot(l'[‘g), which is
absurd.

new

(d) = (e) This comes from the proof of Theorem 4.1.(1).

(e) = (f) This comes from Theorems 4.4.1 and 4.4.5.

(f) = (a) This comes from Theorem 4.1.(1).

(c) = (e) We argue by contradiction, so th&§ © separatesl, from A;.

If ¢ =1, then for eachs € A, there is(3,7) € (Al x Al) NV, such thatd € C5 C —A,.
The first reflection theorem give$, 1" € A} such that((8)n, (v')n) € Vo for each integer and
A CU:={ C(y,, ©—Ao. We choosey € Al N W with -=C,=U, and(8, v) contradicts (c).

new

If £ >2, then by induction assumption and the first reflection theotteere are3, 7/ € Al with
((B)n, (¥ )n) € Vee @andC,y, € —Ay, for each integen, and A, C U :=J, C(,),. ButU is
A} N pot(XY) and separated; from Aq. So letye A} NW with -C, =U. We have(3,~) € V; and
C,, separatesl, from A, which is absurd.

(2) Itis clear that/ is 17}

(3) We argue as in the proof of (1), except for the implication=- (e) (for the implication (e} (f)
we use Theorems 4.4.2 and 4.4.6).

(c) = (e) We argue by contradiction. By 4D.2 in [M], there dfé< II;}(w) and a partial function
d:w—wv, II}-recursive oV, such thad” W is the set ofAl points ofw“. We define

114, ::{TLGW | (n)o, (n)1 €W A (d((n)o),d((n)l)) €EVee A Cd((n)l) N Aezﬂ}.

ThenIly, € II}! andVfG € (w¥)? In€Tla, UILy, B € Ca(my,) Sincedy ™ NA; " =0 (we use the
induction assumption). By the first reflection theorem thie® € Al(w) such thatD CTI4, U 14,
andvj e (ww)d dneD Be Cd((n)l)-

29



As II} has the reduction property, we can find, < I1} disjoint such thafl’, C II4, and
H:40 U th :HAO Ull4, . We setA:= UnEDﬁH% Cd((n)l) \(Uq<n Cd((q)l)) Then

-a= Cé{{nh UC<“

nEDﬂH;‘O q<n

which proves that € A{ Npot(A?), and separated, from A;. Let(5,7), (8,7) € (A1 x A1) NV
with A=C.,, and—=A =C.,. Then we get a contradiction with (c). O

Remarks. The assertions 4.2.3.(2).(a) and 4.2.3.(2).(b) admibumifversions in the following sense.
By 3E.2, 3F.6 and 3H.1 in [M], there iS : w“ x w* — w* recursive such that for each recursively
presented Polish spadéthere is a universal sét* € I1}! ((w*)?) satisfying the following properties:

I (X)) ={U | acw},
- TN X)={UX | acw” recursive,
- (o, B,2) €U & (S(a, B), ) UX.

We seti :=1/(““)". The following relations aref:

Qa, 8,7) & aeWOA (B,7) €V,
R(a,8,6) & a€ ALNWOA |a|>1 A d¢-Us

Tlol

Indeed, this comes from the proof of Lemma 4.2.3.

e One can give simpler exampl8&8, S* for which Corollary 4.2 is fullfilled wherT = IT!. Indeed,
recall the map,, defined before Lemma 2.3. Ak, (n)| < n for each integer,, we can define the
sequence :=b,,(n)0" I~ We setS' :=S0\ S°, where

S0.= { (0507, ..., 0ssny, (n+1)s5 (n+1)y, (n+1)s (n+2)y, ...) | (n,7) waw“’}

(we do not really need, whenT =TI1Y). We haveS® = (Il;cy fi)~'(Ao) N S if (b) holds. Let us
denote this bys® < A, (we have a quasi-order, by continuity of tligs).

e The fact thafl; has finite levels was used to give a proof of Corollary 4.2 agpkt as possible. The
treeTy has finite levels whed < w, and not always whed=w. This is one of the main new points
in the case of the infinite dimension. Let us specify this.

(a) We saw in the proof of Proposition 2.2 that the tigegenerated by an effective frame is a tree
with one-sided almost acyclic levels. As before Lemma 2&can define

581 ={ae[Ty] | S(apAan)€C1},

which is not separable fromi}] \Sgl by a potentially closed set, since otherwiSg would be
separable fromT,]\S¢, by a potentially closed set, which would contradict Lemmdisahd 3.4.

But Ag := {0 (1+n)*® | n € w} Cw* is not potentially closed sSincg™ € Ao\ Ag and the
topology onw is discrete. And one can prove, in a straightforward way, $ha £ Ag andAg £ S¢. .
This proves that the finiteness of the leveldlpfis useful. But we will see that it is not necessary.
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(b) We definen: {s €2 | 0¢ s} —w= such thato(s)| =|s| by
0(1On010m---10m)5:01+n0(1+n0)1+m---((1+n0)+...+(1—|—nl,1))1+nl.

In other words, we have(s)(i) =i if s(i) =1, o(s)(i) = o(s)(: —1) if s(i) =0. Note thato is an
injective homomorphism, in the sense thét) Co(t) if s Ct. This implies that we can extencto a
continuous map from the basic clopen 8&tinto w* by the formulao(a) :=sup,,,, o(a|m).

We setF, = {(m;a;)icw € (w¥)* | d € [T,] and Vi € w m; = o(apAa1)(i)}, and we put
_“55 ={(m;c;)icw € Fiy | S(apAa) € Ce}. One can tak&y :_gﬁ, and the proof is much more
complicated than the one we gave. But the tree associathdi@t: F,is

{(ﬁ} U {(misi)icw € (W) | (m;)icw €0"[N1] and 5 T, and Vi<|3 | mi=o0(s0As1) (i)},

and has infinite levels. This proves that the finiteness ofdhels of the tree associated W@ is
not necessary.

(c) In [L8], an extension to any dimension of the Kechrise®&i-Todorcevit dichotomy about ana-
lytic graphs is proved. In [L5], it is proved that Corollary24s a consequence of the Kechris-Solecki-
Todorcevic dichotomy wheilr = H?. This works as well whed < w, but not wherd = w. More
specifically, letG:={acw” | Vmew In>m s*0C«} and

By ={(s51)iew | n€W A yEW"}.

Then the extension to the case whérew of the Kechris-Solecki-Todor€evit dichotomy works with
G¥ N A, (see [L8]). But one can prove the following result:

Theorem 4.4.8 Let X be a recursively presented Polish spagg, the topology onX“ generated by
{Mie, C; | C€ AY(wx X)}, and A a Al subset ofX“. Then exactly one of the following holds:

(@) A7\ A=0.
(b) G~ N A, < A.

In particular,G* N A, £ Ap and we cannot taky =G~ N A,,.

5 The proof of Theorem 1.7

5.1 Some material in dimension one

The material in this subsection is due to A. Louveau and htSéymond, and can be found
in [Lo-SR1] or [Lo-SR2]. However, some changes are neededdopurposes, and moreover some
proofs are left to the reader in these papers. So we will Samstgive some proofs. The following
definition can be found in [Lo-SR2] (see Definition 1.5).

31



Definition 5.1.1 Let1<¢<wy, I'andIY two classes. Then

AeS(T,T) & A=] (4,nC)u | B\ G

p>1 p=>1
for some sequence of setg in I', BeI”, and a sequencé’;,),> of pairwise disjointzg sets.

Now we come to the definition ofecond type descriptions of non self-dual Wadge classes of
Borel sets, which are elements©of, sometimes identified witkw$)~. This definition can also be
found in [Lo-SR2] (see Definition 1.6).

Definition 5.1.2 The relations *u is a second type description” and “ u describes T (written
uweD andI', =T - ambiguously) are the least relations satisfying

@) If u=0°°, thenue D andT', ={0}.

(b) If u=¢"1"u*, withu* € D andu*(0) =¢, thenue D andT', =T',-.

(€) If u=&727< u, > satisfies¢ > 1, u, € D, and u,(0) > £ or u,(0) = 0, thenu € D and
Tu=5¢(Uys1 Ty Tug)-

Remark. If A€ S¢(U,>1 Tu,, Ty ), thenA has a decomposition as in Definition 5.1.1, afydis in
Up21 Ly, But_ we may assume thalt, I‘ugp)(ﬁl., using_ t_he fact that’, may be empty if necessary.
This remark will be useful in the sequel, since it specifiesdlass ofA,,.

The following result can be found in [Lo-SR2] (see Section 3)

Theorem 5.1.3 Let I’ be a non self-dual Wadge class of Borel sets. Then theseci® such that
I'w¥)=T,(w*). Conversely,

T, :={f1(A4)| f: X —w” continuous A X 0-dimensional Polish space AcT,(w“)}
is a non self-dual Wadge class of Borel setsdfD.

If n <& <wy, then —n is the unique ordinal with n+60 =¢. The following definition can be
found in [Lo-SR2] (see Definition 1.9).

Definition 5.1.4 Letn<w; andueD. We define.” € D as follows:

(@) If u(0)=0, thenu" :=wu.

(b) If u=&1u*, with € > 1, thenu” := (14+n+ (£ —1)) 1 (u*)".

(©) fu=£2 <up>, wWith§>1, thenu:= (1+n+(£—1))2 < (up)" >.
The following result can be found in [Lo-SR2] (see Propositi.10).

Proposition 5.1.5 (a) If f:w” — w®” is 29,

f_l(A) elyn.

(b) The setD is the least subsed C D such that0™ € D, u(0)lu e D if u € D, 12 < u, >€ D if
u, €D for eachpcw, andu" € D if u € D, for eachn <w;.

-measurable, andl € ", (w*) for someu € D, then

Recall the definition of an independepfunction (see Definition 3.3).
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Example. Let 7 : w — w be one-to-one (in [Lo-SR2] just before Lemma 2.5, increasitaps are
considered, but here we relax this condition). We defir’ — 2 by 7(a):=« o 7. Clearly7 is an
independen®-function, withw (k) =71 (k) if k is in the range of-, 0 otherwise. We now describe
an important instance of this situation.

Example.Letn be an integer, and the shift map (see the notation before Definition 2.5). TH&n
is an independertt-function. Indeed, if we set”(m):=m+n, thenS™ =77, by induction om:. In
particular, I1d. =S is an independeri-function.

The next result is essentially Lemma 2.5 in [Lo-SR2], whislyiven without proof, so we give
the details here.

Lemma 5.1.6 Let7:w— w be one-to-oney an independeni-function. Therr o p is an independent
n-function.

Proof. Let 7 associated with. We definer’:w —w by 7’(k):=7"*(r(k)) if =(k) is in the range of
7,0 otherwise, so that'(k) =m if w(k) =7(m). If mis aninteger, the(Fop)(a)(m)=p(a)(7(m))
depends only of the values afon 7! ({r(m)}) C (')~} ({m}).

If € =0 (resp..{ =0+1, £ = sUp,c, Om), thenC,, = {a € 2¥ | p(a)(r(m)) =1} is A-
complete (resp.‘l‘[ 14¢-Strategically completel,‘[1 10, strategically complete). We are done since
§=5Up,>1 Or(m,) if {is alimit ordinal ¢ is one-to- one) d

After Definition 3.3, we saw that] is an independenj-function. We will actually prove more,
actually a result which is essentially Theorem 2.4.(b) io-fR2].

Theorem 5.1.7 Let 7, £ < w1, p an independeng-function. Therp{ o p is an independent{ +1)-
function.

Proof. Note first that ife € 2, p° : 2¥ — 2“ is equipped withr® such thatp®(«)(m) depends only
on the values ofv on (7°)~!({m}), then(p° o p')(a)(m) depends only on the values pf(«) on
(%) ~1({m}), so it depends only on the values @fon (7!)~* ((7°)~*({m})), so that if we set
m:=7" o, then(p® o p!)(a)(m) depends only on the values @fon 7= ({m}).

e We argue by induction on. The result is clear fop = 0. So assume thaj = 8+ 1, so that
pa o p=po o p o p. The induction assumption implies thato p is an independer(t +6)-function.
The fact thatpg is an independent-function and the previous point prove the existencer,psuch
that (pg o p)(a)(m) depends only on the values @fon L{m}).

We setd,, :={a €2¥ | (p§ o p)(a)(< m,n >)=1}. Letus prove thaf), . —A, isII!

strategically complete.

14+6+0°

new

Assume first thag+6 #0. As p? o p is an independer(t+6)-function, A,, is H?Jren -strategically
complete, for somé,, < £+-0 satisfyingd,,+-1=¢£+0 if £+0 is a successor ordinal, syp, 0, =£+0
if £+6 is a limit ordinal. Note that +60 = sup,.,, (0, +1). As p’ o p is an independentt +6)-
function, there isty such thatp§ o p)(a)(¢) depends only on the values efon ;! ({¢}). We set
() (k) := (mg(cx)),, so that the fact that € A,, depends only on the values @fon 7! ({n}). B
Lemma 3.7 in [Lo-SR1]) —A, s H?+£+9—Strategically complete.

new
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Assume now that +6 = 0. Then4,, := {a € 2¥ | p(a)(< m,n >) =1} is Af-complete
sincep is an independerti-function. LetB be a closed subset of’, (B),),c., & Sequence of clopen
subsets withB = (.., Bn, andg, : w¥ — 2 continuous withB,, = g,*(—4,). As p is an
independent-function, there isr, such thaip(a)(q) depends only on the values efon 7 L{q}).
We setr(a)(k) := (m,(a)),, so that the fact thatr € A, depends only on the values of on
71 ({n}). We defineg : w* — 2% by g(8)(k) := gx(x)(8)(k), so thatg is continuous. Moreover,
B € B, < gu(B) ¢ A, < g(58) ¢ A, since the fact that € A,, depends only on the values @fon
7 ({n}). ThusB=g ! (N,c, —A4n) and,c., —4, is IIY-complete. Thereforg), ., —Ay, is
H?+£+9—Strategically complete.

new

Now note that

MNhew "An={a €2 |Vnew (pg op)(a)(< m,n >)=0}

—{@e2? | (pg 0 ph o p)(@)(m) =1} ={a €2 | (o] 0 p)(a)(m)=1}.

Thus{a€2¥ | (plop)(a)(m)=1}is H?+£+0-strategically complete for eaeh, and{+n=£+6+1,
so thatp{ o p is an independert +n)-function.

e Assume now thay is a limit ordinal. In the definition o we fixed a sequenc@,},),c., C 1 of
successor ordinals with, ., 6/, = 7. As pg% is an independent,],-function, we getr,}, : w — w.
We definer,,, m+1:w — w By T mr1 (k) :=k if k& <m, 7 (k—m)+m if k>m. Let us check that
pém’mﬂ)(a)(z‘) depends only on the values @fon w;:mﬂ({z'}). It is clearly the case if <m. So
assume that>m. Note thatr,, ,,+1(k) =i if k€ (m,) "t ({i—m})+m, and we are done. Now the
first point of this proof givesrg ;,,+1:w—w such thal;o(0 m+1)( )(7) depends only on the values of
aon 7T0,m+1({ i}). We will check thatp] () (m) := ((]0 m+1) (a)(m) depends only on the values of
onkE,, := w(j}nﬂ({m}) N Nicm w&}+1(ﬁ(l+1)). We actually prove something stronger: for each

integerk, ,0(0 m“)( )(k+m) depends only on the values @fon
o, m+1 ({k+m}) N ﬂ 7To l+1 —(l+1)).
l<m

We argue by induction om. Form =0, the result is clear. Assume that the result is truesioNote
thatp(0 m+2)( )(k+m+1) depends only on the values @fon w(j,;wz({k%—m%— 1}). But

n
p((]O,erQ)( )(k‘—|—m+1) (m+1 m+2) ( ((]O,erl) (a)) (k:—{—m—!—l) :pgm+1 <Sm+1 (p((]O,erl)(a))) (k)’

and we are done singg”" " (a)(a )(k:+m+1) depends only on the valuesﬁf”l( Omil) (),
which depends only on the values@bn +1( =(m41)) N Niem 770,1+1( =(1+1)).

As the E,,,’s are pairwise disjoint, we can define a mép:w —w by 7 (k) :=m if ke Em, and
0if k¢, ,c, Em- Now itis clear thap](«)(m) depends only on the values @fon (77)~!({m}).
The first point of this proof gives,, : w — w such thatp o p)(«)(m) depends only on the values of

aonz({m}).
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Let(,, such that)), := () +1, andd,,, := {43y, 04, SO thaid,, <&+ and SUR>q O, =&+
for each one-to-one sequen@e,),>1 of integers. It remains to see that
Con:={a €27 | (pf 0 p)()(m)=1}
is 1Y 19, -Strategically complete for each integer

7 0" .
Let us check thas™ o p"™ ™) = pfm o o,_,, (S o p," ") for each integerm. We argue by

n
induction onm. Form =0 the property is clear sinc;ego’l) :pgo. Assume that the property is true
for m. Then

0,m+2 o) 0,m+1 0; 0,m+1
Sm+1 op(() M+ ):pom-H OSm+1 op(() ;m—+ ):p0m+l 0So8Sm op(() ,m+1)

Om 6, Orio1y_ O oy,
=py" " 0 Sopy" o orem (S0 p" ) =pg" " 0 oicm (Sepy" )
o o o1
since in the last induction we proved trit+1 o p*" ) = p "1 o SmHL o PO Thys

Cn={ae2? | o™ (p(a)) (m) =1} ={ae2* | (5™ o o 0 p)(c)(0) =1}

n

n o' .
={a €2 | (pg™ 0 orem (S0 py" ™) 0 p)(@)(0)=1}.
L 0" . . .
So it is enough to see that” ::pgyn 0 Ojem (S0 py" 7)o pis an independer(®,,, +1)-function.
n
We argue by induction om. Form =0, we are done sincpz\g" o p is by induction assumption an

independent< +6())-function, andS +6; = £+ (] +1=6y+ 1. Assume that the property is true for

n

m. Thenp™*! :pgm+1 o S o p™. By induction assumptiory™ is an independenr{,, +1)-function.
By Lemma 5.1.6 and the example just befor&it; o™ is also an independex#,,, +1)-function. By
induction assumptiorp™*! is an independert®,, +1+6,, , ,)-function, and

Om+140) =+ 0]+ +140) =+ 0]+ +1=0p 1 +1.
This finishes the proof. 0

5.2 Some complicated sets

Now we come to the existence of complicated sets, as in thenstamt of Theorem 1.7. Their
construction is based on Theorem 2.7 in [Lo-SR2] that we noange. The main problem is that we
want to ensure the ccs conditions of Lemma 2.6. To do this, waifynthe definition of the maps;
of Lemma 2.11 in [Lo-SR2].

Notation. Let i be an integer. We defing:w — w by

<0,k >if 1=0,
Ti(k):=
<<1,(k)o >, (k) >ifi>1,
so thatr; is one-to-one. This allows us to define, for each2¥, o; :=7;(). If s€ (w\{0})<, then
we setr, ::7:3(0) 0...0 7-s(\s|71)'
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Lemma 5.2.1 LetT" be a non self-dual Wadge class of Borel sets, &hd I'-strategically complete
set. Then

(@) The set;~(H) is I'-strategically complete for each integer
(b) Assume that : w — w is one-to-one such that the fact thaie H depends only onx o 7. Then
L:={a o7 | a€H} isT-strategically complete.

Proof. (a) As7; is continuous,7; ' (H) € T'(2*). We define a continuous mafy, : 2* — 2 by
fri(@)(m) == a(r; ' (m)) if m is in the range of;, 0 otherwise. Note thaf;(f-,(a)) = «, so that
H=f_'(7"'(H)). This implies that’; " (H) is I'-strategically complete.

(b) Asin (a), we consider the continuous m@apso that%(fT(B)) = for eachg € 2¥. Here again we
getthatf-'(H)eI'(2¥). Let € L, which givesa € H with S=ao7. As f;(8)oT=7(f-(8)) =8,
we getf.(8) o=« o7 and f. () € H by the assumption of/. Conversely, iff,.(5) € H, then
B=7(f-(B))=f+(B)oTeL. Thusf ' (H)=L,andLeI(2¥).

If « € H, then7(a) =« o 7 € L. Conversely, assume thafa) € L. Then there is3 € H with
B oT=aor. The assumption ofl implies thata € H. ThusH =7~1(L) and L is T'-strategically
complete. O

Lemma5.2.2 LetT be a Wadge class of Borel sets, aad-2¥. ThenA €I'(2¥) if and only if there
is BeT'(w*) with A=B N 2%,

Proof. = Letr:w* —2“ be a continuous retraction. We just have toBetr—1(A).
< Leti:2¥ —w* be the canonical injection. Thet=i"1(B)cT'(2%). O

This lemma shows that the notati@h, in Theorem 5.1.3 will not create any trouble, since it is
equivalent to the one in Definition 5.1.2.

Notation. The following notation can essentially be found in [Lo-SR&ffer Lemma 2.5). LeR be
the least set of functions frof¥ into itself which contains the functionﬂ, the functionsr; for i >1,
and is closed under composition. By Lemma 5.1.6 and Theorém,®eactp € R is an independent
n-function for some called theorder o(p) of p.

Definition 5.2.3 Letu € D. A setH C 2% is strongly u-strategically complete if for eachp e R of
ordern, p~1(H) is T',»-strategically complete and ccs.

Theorem 5.2.4Letu € D. Then there exists a stronglystrategically complete se,, C 2“. In
particular, H, is T',,-complete and ccs.

Proof. We will check that the set#, given by Theorem 2.7 in [Lo-SR2] essentially work, even if we
change them.

The construction is by induction ane D. Let us say that. is nice if it satisfies the conclusion
of the theorem. By Proposition 5.1.5, it is enough to prowa @R is nice, that:(0)1w is nice ifu is
nice, thatu" is nice ifu is nice and) <wy, and thatl2 < u, > is nice if theu,,’s are nice.

e We setHy~ :=(), which is clearly strongly)>°-strategically complete.
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e Assume that is nice. We sett,, o)1, := —H,, which is stronglyu(0)1u-strategically complete.
Indeed, Ifu(O) =0, thenI‘(u(O)lu)n :Fu(O)lu :I—‘u :f‘un. If U(O) >1, then

L w01y =T 14+ ((0)-1))1un = |
sinceu(0) =1+n+ (u(0)—1).

e Assume that: is nice, and let) <w;. We setH,» := (pg)~*(H.,), which is stronglyu"-strategically
complete. Indeed, lgt € R of orderé. Thenp™'(H,n) = (p] o p)~1(H,) is T,cn-strategically
complete and compatible with comeager sets sini® nice andp] o p is in R of order{+17. It
remains to notice that.”)¢ =5+, which is clear by induction on and by definition of the ordinal
subtraction.

e Assume that the,’s are nice. We set

=0 Aoy € Hy,
a€Higey,> & or

dmew ap(m)=1AVI<m ag(l)=0A qpm),+2 € Hugpn 111

- Recall thatl'y2<y,> = S1(Up>1 Tuy» Tup)- We setHy:={a€2¥ | ay € Hyy} =71 (Hy,), and
for n>2,
H| :={a€2¥|a,€H, 7 H(H

(o+1) = Wy 1)

Cp ={a€2¥ | Imecw ag(m)=1 and Vi<m ap(l)=0 and (m)p+2=n}.

Note that(C),),>2 is a sequence of pairwise disjoint open sets, Hj& I',,,, H), € I‘u(n)O+1 if n>2
by Lemma 5.2.1.(a). MoreoveH12<y,> =, (H;, N Cpn) U (Hp\U,,>2 Cn) € T12<u,>(2¢), by
Lemma 5.2.2 and the reduction property for the class of optn(see 22.16 in [K]).

- Let p € R of ordern. Then p*l(H12<up>) € T'(12<y,>)n(2¥), by Proposition 5.1.5.(a) and a
retraction argument in the style of the proof of Lemma 5.2& = be associated with, 6y :w — w
be a one-to-one enumerationof! (Rar(n)), and, forn>2, 6,,:w — w be a one-to-one enumeration
of ~!(Ran(r,,)) and#f; :w— w be a one-to-one enumeration of

= ! ({jeRan) | (7)) +2=n}).

As 7; is one-to-one, R&m;) is infinite, andz~!(Ran(r;)) is also infinite sincer is onto. This
proves the existence of titg’s and of thedj’s. Note that the Rafr;)’s are pairwise disjoint since
0=< 0,0 >. This implies that the elements ¢Ran(0,,) | n#1} U {Randy) | n > 2} are pairwise
disjoint.
- Note that the fact that € H,! := p~1(H],) depends only om o 0, if n#1. We set, fom #1,
L) :={ao0b, | acH,}.
Note thatp~' (Hg) = p~" (71" (Hu,)) = (71 0 p) "' (H.y,) is T ,n-strategically complete sinae,
is nice andr o p is in R of ordern. Similarly, p='(H/) is I‘U? ) H-strategically complete if > 2.
n)o
By Lemma 5.2.1.(b), we get thdl] is I' »-strategically complete, and; is Ly, -strategically
n)o
complete ifn > 2.
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- We set, form >2, Cjl:={a o0} | Imew p(a)o(m)=1 and (m)o+2=n}. Let us prove that;

is ¢ +n-strategically complete.

Note first that{a € 2¥ | f(a) # 0>} is 2(1]+n—strategically complete iff is an independent
n-function. Indeed, with the notation of Definition 3.3, wencarite

{a€2” | f(a)=0"}= (] —Cn.

mew

Moreover, the fact thak € C,,, depends only of the values afon wj?l({m}).

Assume first thayy > 1. As f is an independeni-function, C,, is H?+9m—strategically complete,
for somed,, < n satisfying6,, +1 = n if n is a successor ordinal, syp,, ¢,, = n if n is a limit
ordinal. Note that) = sup,,c,, (/»+1). By Lemma 3.7 in [Lo-SR1]{a € 2¥ | f(a) =0} is
! -Strategically complete.

Assume now thaty = 0. As in the proof of Theorem 5.1.7 we see thatc 2¥ | f(a) =0} is
) 1-Strategically complete.

Now we come back to th€’s. We definer : w — w by 7(k) := < n—2,k >, so thatr is
one-to-one and Rén) = {m € w | (m)o =n—2}. Asp is an independent-function, 7y o p and
7 o 7y o p are also independentfunctions by Lemma 5.1.6. The previous point shows that

Lp:={a€2 [ (7 o7yop)(a)#07}
is ¢ +n-strategically complete. But
Ly, ={a€2¥ | Tkew 7((Too p)(a))(k)=1}={a€2¥ | Tkew (7yop)(a)(r(k))=1}
={a€2¥ | Imew (79op)(a)(m)=1 and (m)p+2=n}

and the fact thatv € L,, depends only o o 6. By Lemma 5.2.1.(b), we get that$ is 2?+n-
strategically complete.

-Let H* € T 190y, >y (W), SayH* =59 (H;, N Cp) U (Hy\U,>o Cy), With pairwise disjoint
Che 29+n, Hg €T, and without loss of generalitf ; € I‘u? a1 Then Player 2 has for eaeh# 1
7)o

a winning strategyr,, in G(H;, Ly), and for eachn > 2 a winning strategy? in G(C;, Cy!). Let
then Player 2 plays it/ (H*, p~' (Huy,.,,,. ) against3 by playing his strategies,, o, at the right
places (the ranges 6f, andd; respectively) against this sameindependently, and by playirtgout

of these ranges. The result is someuch thatx o 6,, wins againsp? in G(H}, L;,) anda o 6 wins
against3 in G(C;:, C/1). This wins, fora € p~1(H) just in case3 € H}, andp(a), takes value on
somem with (m)o+2=mn just in case3 € C;:. But as theC are pairwise disjoint, there is at most
onen in {(m)o+2 | p(a)o(m) =1}, anda € p~1(Cy,) just in case3 € C;;. Thusp™!(Hiz<y,>) is
T(12<4,>)n-strategically complete.
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- It remains to see that ™! (Hi2<,,>) is ccs. So lety € d and F : 2% — (d*)?~! satisfying the
conclusion of Lemma 2.4.(b).

oLet N>1andM ew. Thenp(a)n € Hy,, < (Tv o p)(a) € Hy,, & a € (T 0 p) H(Hy,, ). As

N>1,7yopisinR, and(7y o p)~1(H,,,) is ccs sincau,, is nice. Thus(a)y € H,,, if and only
if ,0<S(a0AF0(oz))>N€HuM.

o Recall the notation before Lemma 2.4. We define<“\{(} —w as follows:
t(0) if |t|=1,
q(t):=
<t(jt|-1),q(t) > if [¢t|>2.
o Let us prove thaf,(«)(n) =a(< ¢((n)os), (n); >) for eachs € (w\{0})<¥.

We argue by induction ofs|. So assume that the result is proved [fdx [, which is the case for
[=0. Assume thats|=1+1. We get

Ts(@)(n) =Tg (5y (@) (n) =75y (@) (< g ((n)o(s]0)) (1)1 >) = a (T (< g ((n)o(s]1)) ,(n)1>))
:a(< <s(1), q((n)o(s]l)) >, (n)1>) :a(<q((n)os), (n);>).

o Let us prove thatpg o 75)(a) = (pg o 75) (S(aoAFo(a))) for eachs € (w\{0})<* and eachy € 2~.
This comes from the following equivalences:

(pooTs)(a)(n)=0 & Imew Ts(a)(<n,m>)=1<Imew a(< g(ns),m >)=1

& Im'cw S(aAF(a))(< g(ns),m’ >)=1

0.

< (poo ﬁ)(s(aoAFo(Oé)))(”)

o Let us prove thatp] o 75) () = (p{ o 75) <S (aOAFO(a))> for eachl <n<w, eachse (w\{0})<¥
and eachve2v.

We argue by induction on. Forn=1, this comes from the previous point.df>1 andn=0+1,
then this comes from the fact thalf = p o pd. If nis a limit ordinal andm is an integer, then

(8 © 72) () (m)
= pg (7s(@)) (m) = pi" ™ (7()) (m)
= ("™ 0 0 g (65 (7)) ) ) = (o™ 0 0 ) () (7a(@) ) (m)
_ () o 1) ( N (;S (S(aOAFO(a)))>> (m) = (s} 0 7) (S (a0 AFo(0)) ) (m).
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o Note thatp(a)g =0 < a€ (7 o p)~1({0°°}). Let us prove that7 o p)~1({0>°}) is ccs.

We can writep=o;<; p/, wherel is an integer and eagH is either of the formp(, or one of the
7;'s for i > 1. By the previous point, we may assume that that g#dds eitherp) = Ida, or one of
the7;’s for i > 1. So there iss € (w\ {0})<“ such thapp=17,. We get

ad (70 p) L ({0%}) & Fmew (7o p)(a)(m)=1 & Imew p(a)(ro(m)) =1
& Imew AHa)(< 0,m>)=1< Imew a(< ¢(0s),m >)=1
& Imew a(p(q(0s),m)) =1
& Im' cw S(apAFy(a)) (p(g(0s),m')) =1
& S(aoAF() ¢ (7 0 p) 7 ({0°)).
Thusp(a) =0 < p(S(aoAFo(a)))oz()oo.
o It remains to see that ji(a) £ 0% andm,, is minimal with p(a)o(me) =1, then

(Ma)o = (Ms(apAF(a)))0-

As in the previous point we may assume that thekesiéw\{0})<“ such thap = 7. The computations
of the previous point show tha{a)o(m) =a(< ¢(0s), m >) for each integern. Note that

N :=<q(08), me>=min{ncw | a(n)=1A (n)o=q(0s)}

since< ¢(0s),.> is increasing, and similarly
<q(0s), Ms(0gAR () >=Mi{mew | S(aAFy(e))(m)=1A (m)o=q(0s)}.
But
Ba[{new | a(n)=1 and (n)o=q(0s)}]={mew | S(aoAFo(a))(m)=1 and (m)o=q(0s)}
sinceB,, is a bijection satisfyindn), = (Ba(n))o- As B, is increasing we get
Ba(na) =<q(0s), ms(agaFy(a)) >

Thus(ms(agary(a)))o = <(Ba(na))1>0 = ((na)1),=(ma)o and we are done. O

Corollary 5.2.5 LetT be a non self-dual Wadge class of Borel sets. Then therg iS 2¢ which is
T'-complete and ccs.

Proof. By Theorem 5.1.3 there is € D such thatl'(w*) = T',,(w*”). By Theorem 5.2.4 there is
H,, C2¥ which is stronglyI',,-strategically complete. It is clear th&t := H,, is suitable. 0

Now we can prove Theorem 1.7.(1). But we need some more rakteprove Theorem 1.7.(2).
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Definition 5.2.6 (a) A setU C 2 is strongly ccs if for eachs € (w\ {0})<* the set7; 1 (U) is ccs.

(b) LetI" be a Wadge class of Borel sets, dligl U; € I'(2¥) disjoint. We say thatUy, U; ) is com-
plete for pairs of disjoint T' sets if for any pair (4g, A1) of disjoint T" subsets ofo“ there is
f:w¥ —2¢ continuous such that. = f~!(U.) for eache € 2. Similarly, we can define the notion of
a sequencel,),>; complete for sequences of pairwise disjdinsets.

Lemma 5.2.7 (a) There is(Uy,Uz) complete for pairs of disjoin®! sets withU. strongly ccs,
and such that for each € (w)\ {0})<“ there is a pair(O1,O2) of ccsX{ sets reducing the pair
(Tra1 (U1 U ), 715 (U1 U U2)).

(b) There is(U,),>1 complete for sequences of pairwise disjoit sets withU,, strongly ccs, and
such that for eachs € (w\{0})<* there is a sequencgOs).c1 23,1 Of ccs XY sets reducing

(7:86 (Up))ee{l,Z},pZY

Proof. (a) Recall the definition off; after Definition 3.3:H; := {0°}. We saw thatf; € IT{(2*)
and isIT}-complete. We sel/ :=—Hj, so thatU is X{-complete. Le{ A, A,) be a pair of disjoint
9 subsets ofo“. AsU is complete there arfy, f>:w*” — 2 continuous such that. = f-1(U) for
eachs €{1,2}. We definef:w* —2“ by

Fl@)({ < e, (k)o >, (k)1)) ::{ fo(a)(k) if e€{1,2),

0 otherwise,

so thatf is continuous angf. =7. o f. Now A. = f~}(7=1(U)) and (7, ' (U), 7 ' (U)) is complete
for pairs of={ sets (not necessarily disjoint). Note that

U U) ={a€2¥ | Fkecw a(( <&, (k) >,(k)1))=1}

£

:{a€2‘*’ | INecw ((N)o) :gAa(N):l}'

0

We setV. .= {ae 2¢ [ IN€ew ((N)o)y=eAa(N)=1AVI<N (((z)o)o ¢1{1,2} v a(l) :o) }
Note thatV; € £¢ and(V4, V») reduces(7; *(U), 7, *(U)). Thus

a€A. & f(a)eis'(U) & fla) e (U)\FL(U) & f(a)eVe

and(V4, Va) is complete for pairs of disjoinE{ sets. Recall the definition of, before Lemma 5.2.1.
We setU, := %(;1(1/5), which defines a pair of disjoinE{ sets. Nowg(a):=< a,, ... > defines

g:2¥ — 2 continuous. Notethat € A. & f(a)eV. & 7 <g(f(a))) eV, & g(f(w) €.,
which shows thatUs, Us) is complete for pairs of disjoinE! sets.

Fix s € (w\{0})<*. The proof of Theorem 5.2.4 shows thata)(n) = a( <q((n)os), (n)1 >).
We get

e

To (Ug):{a€2“ |INew ((N)o),=e A a(<q(0s), N>)=1A

Vi< N <((l)0)0¢{1,2}\/a(<q(05),l>):0)}.
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Thus

70 = {aezw [3Mew (((M)1),), =2 A (M)o=q(05) A a(M)=1 A

Vi< M ((((M)1)0)0¢{1,2} vV (1)o#4q(0s) V a(l):0> }

Recall the conclusion of Lemma 2.4.(b). The bijectiBp induces an increasing bijection between
{Mew | <((M)1)0>Oe{1,2} A (M)o=q(0s) A a(M)zl} and

{M'ew| (((r)1),) €412} A (M)o=q(05) A S(c0AF(a)) (M)=1}

since(M)o = (Ba(M)), and ((M)1), = ((BQ(M))l)O. A second application of this shows that
77 1(U.) is ccs. ThudJ, strongly ccs. Note that

Frab(U1UUz)={ae2” | 3M €w (((M)1),) €{L.2} A (M)o=q(015e) Aa(M)=1}.

We set

OE::{aezw |3IM ew (((M)1)0>Oe{1,2} A (M)o=q(01se) A a(M)=1 A
Wi<M ((((z>1)0)0¢{1,2} V (1)o ¢ {a(01s1), q(01s2)} v a(l):()) }

This defines a pair oEY sets reducing7;,; (U1 U Us), 71,5(U1 U Us)). We check that they are ccs
as for7;1(U.).
(b) The proof is completely similar to that of (a). d

The following result is a consequence of Theorem 1.9 and Lasninll, 1.23 in [Lol], and of
Theorem 3 in [Lo-SR3]:

Theorem 5.2.8 LetT" be a self-dual Wadge class of Borel sets. Then there is a ibdusd Wadge
class of Borel set§” such thatl'(w*) = A(IV)(w®), I does not have the separation property, and
one of the following holds:

(1) There isue D such that
I"(w“) = {(AO N Co) @] (A1 N Cl) | Ap, Ay GI‘g(w“) AN Cy, CrE E(l](w‘”) AN CoNCh :@}

(2) There is((u’)p)p21 e D¥ such that(T ), (w‘*’))p21 is strictly increasing and

() :{ U (4,1 Cy) | Ap€T (), () A Cp e E9w?) A Cp N Cy =D f p;éq}.

p=>1

Lemma5.2.9 Let IV be as in the statement of Theorem 5.2.8. Then thereC4r&! € I7(2%)
disjoint, ccs, and not separable by’ sT") set.
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Proof. (1) Lemma 5.2.7.(a) givefl/;, Us) complete for pairs of disjoinE{ sets withU, strongly
ccs, and such that for eashe (w\ {0})<“ there is a paiO;, O,) of ccs X! sets reducing the pair
(F151(U1 U Us), 71,5 (U1 U Us)). Theorem 5.2.4 givesl; C 2 which isT';-complete and strongly
ces. We seff := (7, ' (Hg) N7, ' (U1)) U (75 ' (—Hg)\7; ' (U2)) and, fore € {1, 2}, E.:=71(H).
Finally, we setC®:=(O. N E.) U (O3_c\ E3_¢).

o We set, fore, j € {1,2}, Af:=7;_" (Hg), A5:=73.'(~Hg), F5 :=7.'(U;), so that
E.=(AS N F5) U (45N FS).
Note that
Co=(ASNFENO)U(ASNESNO)U (A NFP e N03 ) U (A NE°N0s_.)

= <((A§ NFENO)U(mA S NEN0s_.)) N ((FENO) U (F3N 03_8))>u

<((A§ NF5NO)U(mAT N F N 0;5-.)) N ((F5sNO) U (FPn 03,6))>,

and thatF; N 0., F3°N0s_., F5 NO., F27° N O05_. are pairwise disjoint open subsets2f By
Lemma 5.2.2 and the reduction property 3{ we can writeC*¢ as the intersection & with

(((ATNON U (=43 2N OF) N(OFUOF ) U(((A5N05) U (=AF N0} ) N(O5 U0} ),

whereAs, = A5 € I'z(w”) andO; are four pairwise disjoint open subsetswf. By Lemma 1.4.(b) in
[Lo1], (A5NO5)U(=AS N0 %), = ((A5N05)U (= AT S NOF ) eTy(w®), so thatCe e T(2+),
by Lemma 5.2.2 again.

e Itis clear thatC! andC? are disjoint and ccs.

e Assume, towards a contradiction, thatc A(T’) separate€' from C2. Let Dy, Dy € TV(w®)
disjoint. As H is complete we gef. : w* — 2 continuous such thab. = f-'(H). We define
frw¥—2% by

fe(a)(k) if e€{1,2},

0 otherwise,

F@) (<2 (K)o>, (k)1)) ::{

so that(f(«))_ = f-(«). Thenf is continuous and). = f~!(E.). Note thatE. \ E3_. C C°. This
implies thata € Dy < f(a) € E1 & f(a)€ E1\Ey = f(a)€C1 C D. Similarly, D, C f~1(=D),
and f~1(D) € A(T")(w*) separatesD; from D,. ThusT' has the separation property, which is
absurd.

(2) Lemma 5.2.7.(b) give$U,),>1 complete for sequences of pairwise disjoB{ sets withU,
strongly ccs, and such that for eacke (w\{0})<* there is a sequend@:).c 1 23,>1 Of ccs X}
sets reducing(%s—el(Up))ee{m},pzr Theorem 5.2.4 give#l(,) C2“ whichisT, -complete and

strongly ccs. We sell :=J,~; (75, (Hu,) N7 ' (Up)) and, fors€{1,2}, E.:=71(H).
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We also setds :=17, ) (Hw), ), Fy =71 (Up), so thatE: =5, (4; N Fy). Finally, we set

C®:=(AT N O5) UU,>1 ((OF=\AZ5) U (A5, N 05 y)).
Note thatC® e IV (2%) since(I‘(u/)p (w”))p>1 is strictly increasing, using again Lemma 5.2.2, the

generalized reduction property f&t! (see 22.16 in [K]), and Lemma 1.4.(b) in [Lo1]. Here again,
E.\ E3_. CC* and we conclude as in (1). O

Proof of Theorem 1.7.1t is clear that Proposition 2.2, Lemmas 2.3, 2.6, Corollarg.5, Lemma
5.2.9 and Theorem 3.1 imply Theorem 1.7, if we$kt=5¢_ andS§.:= S¢... O

6 The proof of Theorem 1.8

We first introduce an operator in the spirit ®fdefined before Theorem 4.2.2, but in dimension
one. Another important difference to notice is the follogiinn Theorem 4.2.2, (f) for examplé,
is in a boldface class, whild; and A; are in a lightface class. The same phenomenon will hold in
the case of Wadge classes, and in the new operator we ingosieihave boldface conditions (for
example, we do not asK to be Al(3)). We code the Borel classes, and define an opertasn
w* xw to do it. Recall the definition of Seq before Lemma 2.3. We set

WO::{(ﬁ,fy)Ew“’xW“’“ | <ﬁ(0)€Seq/\ Ce = {5ew | T71(3(0)) ga})v
(8(0) ¢ Sean c2* =0) },
D1(A):=AUWyU {(ﬁ,w)éww x W | 3y ew” VYnew ((B)n, (v')n) EA and

0 =Une €0}

(Y)n
In the sequel, we will denote;*:={J, ., 7.
Lemma6.lletl <{<w;and BCw®. ThenB e Hg if and only if there is(3, ) € <1>§ such that
C“ =B.
Y

Proof. Note first thatB = Ny :={§ € w® | s C ¢} for somes € w<“ or B =0 if and only if there is
(8,7) € Wo =2 with C+“ = B. Then

BeIl} < J(sp)new € (W) =B=,cp, Ns, V-B=0
& 38,7 €w” Vnew ((B)n, (V)n) €RIA-B=U, e, C’EJ;)"
& 3(B,7)e®} C¥"=B.

Assume now that the result is proved fiox n < £ > 2. We get

BEH? = H(Bn)new € (H0<5)w _'B:UnEw By
& 38,7 €w? Ynew ((B)n, (Y)n) €D A=B=U,c, Ctym
< 3(8,7)€d] v =B.
This finishes the proof. d

w
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We now define d7}! coding of D (recall Definition 5.1.2).
Notation. We define an inductive operatdroverw® as follows:

A(D):=DU{acw” |Vnew (), eWOA |(a),|=0} U
{acw? |Vnew (a), eEWOA (a)o=(a)2 Al(a)1|=1A < (a)24; >€D}U
{acw® |Vnew (a)n eWOA [(@)o| =1 Al(a)1|=2 A
Vpew < (@)24<pg> >€D A ([(@)21<po>|>(a)o] V [(@)24<p0>[=0) }.

ThenA is all! monotone inductive operator, by 4A.2 in [M].

By 7C.1in [M] we getA>:=[J, AS=A(A*®)=N{DCw” | A(D)C D}. An easy induction on
& shows thatA*>° C {aEw‘” |Vnew (a), eWO}, so that the coding functiofy partially defined by
c(@):=(|(a)nl), ., is defined om .

Lemma 6.2 The set\*® is a II} coding ofD, which means that> € I7} (w*) and ¢c[A>®] =D.

Proof. We first prove that\*° € 17} (w*) (see 7C in [M] for that). We define a set relatipt, D) on
w* by p(a, D) < a€ A(D). As A is monotoney is operative. IfQ € I1]}(Z xw*), then the relation
oo, {B€w” | (2,8) €Q})isin II}. Thusyis I1} onIIl. By 7C.8 in [M], ¢*°(«) is in I1} and
A € I (w?).

Let 8. € WO such thatB.|=¢, fore € 3. Then< By | n€w >€ A° C A*, so thatd™ € ¢[A>].

Let u* € ¢[A%], a* € A with u* =c(a*). Then< (a*)o, f1, (@*)o, (@)1, ... >€ A(A®) = A, so
thatu* (0)1u* =c( < (a*)o, B1, (a*)o, (a*)1, ...>) €[A™].

Now let¢ > 1, u, € ¢[A*°] such thatu,(0) > & or u,(0) =0, for eachp € w. Choosex € WO with
la|=¢, anda? € A with u, =c(a?). Then< a, B2, (a(90) gy, (@D0) 4y, , ... >EA(A®)=A>, SO
thaté2 < Up >= C( < «, Pa, (a(o)o)(o)l, (a(l)o)(l)l’ e > ) EC[AOO]. ThUSDgC[AOO].

Assume now thaD C w¥ satisfies the following properties:
(@) 0> eD.
(b) u* €D = u*(0)1u*€D.
(c) (521 AVpew (up €D A (up(0)>EV up(O):O))> = €2 < u, >€D.

We setD:={acw” [Vnew (a), EWOA c(a) €D}. It remains to see that(D) C D. Indeed,
this will imply that A>° C D, ¢[A*°] C¢[D]C D andc[A>®]CD.

As0® D we get{acw” | Vnew (a), e WOA|(a),|=0} C D. Assume thafa), € WO
for eachn € w, that(a)o = (@)2, |(a)1| =1 and< (a)a4; >€ D. Thenu* := (|(a)245]) € D, and
|(@)2|1u* € D. Thuse(a) € D andace D.

Assume now thata),, € WO for eachn € w, |(a)o] > 1, |[(@)1] = 2, < (®)24<pg> >€ D,
and|(a)a+<po>| > [(@)o] Or [(@)21<po>| = 0 for eachp € w. We set§ := [(a)o|. Then we have
up:= (|(@)24-<p,q>|) €D, andé2 < u, >€D. Thusc(a) €D andae D. O
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Note that just like Definition 5.1.2, the definition dfis cut into three cases, that we will meet
again later onj(«);|=0 (or, equivalently|(«),,| =0 for each integer), |(a)1|=1 or |(a)1|=2.

Even if “u € D" is the least relation satisfying some conditions, somep$ifinations are possible.
For exampleI'g1p100 = I'g=. Some other simplifications are possible, and some of thdhsiwi-
plify the notation later on. This will lead to the notion of armalized code of a description. To define
it, we need to associate a tree to a code of a description. dHzei$ to describe the construction of
a set inl';, using simpler and simpler sets, until we get the simplestrsghely the empty set. More
specifically, we defin€: A= — {trees onu x A>®} as follows. Letn€ A5\ A<¢. We set

({0} U{<(0,a) >} if |(a)1]=0,
{0y U{(0,0)7s | s€T(< (@)215>)} if [(a)1|=1,

{0y U {(0,a)"s | seT(<(W)24<0,¢>>) JU
\ Up21 {(1% )" s | s€T(<()aq<(p)o+1,g> >)} if |(a)1]=2.

An easy induction om shows thaf («) is always a countable well-founded tree (the first cooradinat
of (p, «) ensures the well-foundedness). A sequene&(«) is said to benaximal if sCteT(a)
implies thats =¢. Note that] (s1(|s|—1)) 1| =0if sis maximal. We denote hy1, the set of maximal
sequences i («).

Definition 6.3 We say thatv € A*° is normalized if the following holds:
(seMa Ni<l|s| A|(s1(i)),|=1) = i=]s|-2.

This means that in a maximal sequena# T(a), |(s1(i)), | is 2, then possiblyl once, and finally
0 once. The next lemma says that we can always assume thatormalized. It is based on the fact
that S¢(T', TV) = S¢(T', I).

Lemma 6.4 Letac A, Then there i/’ € A>° normalized with(a')o = (a)o and T ooy =T o)

Proof. Assume that € A$\ A<¢. We argue by induction o&.
Case 1|(a)1]|=0.
We just set’ :=« since| (s (i))

Case 2|(a)1|=1.
o We first defineV : A — A as follows. We ensure th§iV ()) ,=(8)o andTc(y(s)) =T(s)- Let
B1 € WO with | 51| =1. We set

< (5)07/817 (.5)07 (5)17 (/8)27 > if ’(5)1’:0’

N(B) = <(B)2+;5> 1 |(B)1l=1,
<@ 00 (V< Grrcomma ) ) > F1En]=2
(i—2)1 i>2

1|:O'

and one easily checks thatis defined and suitable.

46



e As < ()24 >€ A<¢, the induction assumption gived € A>° normalized satisfying the equalities
(@")o=(a)2=(a)o andl' ;o) =T'¢(<(a),,,>)- IN particular,

L) =Te(<(@)z1;>) =Teta) =Tev(am)-
So we have to find € A> normalized with(a')o = (@”)o and T (o) = To(n(ar))- Assume that
o€ AT\ A<". We argue by induction on.

Subcase 1|(a)| <1.
We just set’ := N (o).
Subcase 2|(a)1|=2.

Note that< ()21 <pq> > is normalized sincé0,a”) s € M, (resp.,(p,a”)"s € Myr)
if s € My, co,. (€SP.,s € M(a”)2+<<p)0+1q> andp > 1). The induction assumption gives
< ()24 <p,q> >€ A normalized with(a' )24 <p.0> = (@) 24 <p,0> and

Le(<(@2s<pa>>) =T eV (<@)24 <pa>>)-
We set(a/);:= ("), if i€2 and we are done.

Case 3|(a)1|=2.

The induction assumption gives (a/)a1<pq> >€ A normalized satisfying the equalities

(0/)2+<p70> = (oz)2+<p70> andI‘c(<(a/)2+<p’q>>) = Fc(<(a)2+<p7q>>)- We Set(O/)Z' = (a)z if ie2and
we are done. O

Using ®1, we will now code the non self-dual Wadge classes of Borel, setd define an operator
T on(w*)? to do it. We set

Ti(A):=AU {(a,ﬁ,v)e(ww)Qwaw | Vnew (a), WO A
(Vnew |(a)n|:0Aﬁ(0):0AC;J“:(7)> Vv

<|<a>1|=1 A (@)o=(a)2 A B(O0)=1 A

I ew? (< ()ayj >, 657 )€AN C,‘;’w :ﬂC;’,w> v

(!(a)1!=2 Aol 21 AVpew (l(@)2r<pos]Zl(a)o] V I(@)24<p0>[=0) A

B0)=2A T ew” (< (a)21<04> >, (B0, (V)o) EAA
¥p>1 (<(@)ar<rrigs > ((B)5) g (V) o) EAA (((B7)p) 1 (1)p),) €L A

VP#a21 Ciy),), U Oy, =9 A

CF =Upz1 (€51, \Clirymn) Y (€60 MM Cf?wp)l)) }
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Lemma 6.5 Let¢ be an ordinal.
(a) Assume thata, 3,v) € T$. Thena e A%

(b) Leta e A and BCw®. ThenB e L. if and only if there are3, v € w* such that(a, 8,7) € T§
andCv” =
v

Proof. (a) We argue by induction og. So letar € T$\ Y75, We may assume thata);| > 1.
If |(o)1] =1, then(< (a)2y; >, 8%,7) € T for somey’ and < (a)24; >€ A<¢ by induction
assumption, so we are done|(f);|=2, then

(< (@24<0.0> > (80, (7)0)s ( < (@21<m)o+1,0> > ((B)p) o (V)n)) e
for somey’ and< ()24 <p 4> >€ A< by induction assumption for each integer
(b) = We argue by induction of, and we may assume thatt A<¢.
Case 1|(a)1]|=0.

Note thatc(a) = 0 and B = ). We set3 := 0>, and we choose € W** with C,, = (. Then
(0, B,7) €TIC TS,

Case 2|(a)1|=1.

Note that< ()24 ; >€ A<¢, and—-B e T o(<(a)s.;>)- By induction assumption we gét, 7’ € w®
such thal(< (@)oy; >, 0,7 € Tfﬁ andC;u/“’ =-B. We set3:=13" and we choose € W** with
C“J C“’

Case 3|(a)1|=2.

Note that< (a)a1<p 4> >€ A< for each integep. We can write

B=J 4,nC)u(B\J ),

p=1 p>1
where(C,),>1 is a sequence of pairwise disjom)?(a)o‘ Sets,B' €T (< (a)py <045 >) @Nd

Ap€eT(<(a)

24<(p)o+1,a>>)"

Lemma 6.1 giveg ((8*)p) > (7)p),) € ol sych tha’r(]f@)p)1 = —C,. The induction assump-
tion gives (8*)o, (7)o € w* such that(< (a)2+<o.q> >, (6%, (V)o) € T and C(W;f)o = B,
and ((8),) 4. ((7)p), € w* such that( < (a)ay<(yories > ((B)p) g (V)p),) € Tr° and

C(ﬁ )0 = Ap- We setB(0):=2 and we choose & W with

05" = (€150 \Cilon) Y (CEN 0 () Citon,)-

p>1 p>1
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< We argue by induction og, and we may assume that, 3, v) ¢ ng.
Case 1|(a)1]|=0.

Note thatB=C%" =@ € Lo =T(q).-
Case 2|(a)1|=1.

Note that there is’ such that(< (a)y; >, 8%,7/) € T andCy” =-C%", which implies that
B el (<(@)24,>) = Te(a

Case 3|(a)1]|=2.
We gety’ since(a, 3,7) € Y5. As

(< (a)2+<0,q> >, (/8*)07 (7/)0)7 ( < (a)2+<(13)0+1,q> >, ((/8*)13)07 ((Vl)p)o) ET1<§

we getC(w;)O €T c(<()ar<0.42>) andc*(ﬁ:,)p)0 € T o(<(0)a < (g 41.4>>)+ DY induction assumption. As
(((B)p) 1> (1)), € l®o! we getc*(“z:,)p)1 € H?(a)0| by Lemma 6.1. This implies that
B €580l (| Tet<(@pscpas>) Fet<@ <o) =Lefa)-
p>1
This finishes the proof. O

Remark. We will also consider the operatdt defined just likeY' ¢, except that
- We replacg W« , C«") with (W, C') (we work in (w*)? instead of*).

- We replace the condition of the fortis, 7) € &/l with ((@)o, B,7) € Q (see the remark at the
end of Section 4 for the definition @).

- We askB, v, v’ to be Al(a), so thatY is a [T} monotone inductive operator.

To prove Theorem 1.8, we will consider some tuples= («, ag, a1, ag,a,,7), Wherea € A*°.
We will inductively define them through an inductive operatwer (w*)% called®. The definition
of © is in the spirit of that ofY';, and is cut into three cases, depending on the valuéngf|. As
the definition of© is long and technical, we give first some more informal exalms about its
meaning. We will have’c ©>. So there is an ordingl such thati € ©¢.

- a€ AS is a (normalized in practice) code for a descriptios ().

- ag,a; € Al(a) are codes for a pair of disjoint analytic subsetgwf)?. Using the good universal
seti/ for I1}! defined after the proof of Theorem 4.2.2, at the end of Sedtiave will actually code
the complement of these analytic sets, so that we wildset= -4, for ic 2.

- Similarly, ay,a; € Al() are codes for a pair of disjoint analytic subsetswf)?. In fact, we
will have A; := -U, C A;. These codes will be used to build and a,,a,,r will be com-
pletely determined by«, ap,a1). So one should think thai; = a;(a, ap,a1) ~ a;(u,ap,ar),
r=r(a,ag,a1)~r(u,ap,ar). We need the following lemma to specify their meaning.
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Tle|

Lemma 6.6 There is a recursive mafy, : (w*)? —w* such thatds, () =U(r), U Up21 Uy,
if « € A} N"WO andja| > 1.

Proof. Note first thatP := {(, §) € w® x (w*)? | (B)o€ ALNWOA|(B)o]>1 A

€Uy YUyt = Uay, '

is a [T} set, by the remark at the end of Section 4 definibg This givesy € w* recursive with
P:uﬁwx(ww)d. Leta€ Al N WO with || > 1, andr € w*. We have

Yo (<amr,... >,5)6P
s (v, < a,rr, ... >,5)€U”wx(ww)d
& (S(’y,< a,r,T, ... >),g) 71

S€Uy, UUpz1 = U,

We just have to set, (a,7):=S(v, < a, 7,7,y ... >). O

The following will hold:
oIf u=0% oru=¢1u*, theng; =a;(«, ap, a1) =g;(u, ap, a1) = a;.
o If u=¢£2 < u, >, then there will bex(,, a}, 7' € A}(a) such that, for each>1,

( < (a)2+<(p)0+1,q> >, a0, a1, (a{))pv (all)pv (T’l)p) € ®<£'

We will havea; = a;(u, ag, a1) = fa((a)o, < as, ()1, (1")2, ... > ), and (1), =7(u(p)+1, a0, a1) if
p>1. In particular,A; = A; N5, Uy .

U(p)g+1,40,01)

-1 € Al(a) is a code for an analytic subset @5*)¢ playing the role thatd,"* N A; played in
Theorem 4.2.2. In other words, the emptyness of this awadgi is equivalent to the possibility of
separating4, from A; by a potT',,) set. Here again, usirig, we will actually code the complement
of this analytic set=/, is an analytic subset ¢t.,*)?. In particular,

o If u=0%, thenr=r(a, ag,a1)=r(u, ap,a1)=aj.
olf u=£&1u*, thenr=r(«, ag, a1) =r(u, ag, a1) =ayp.
o If u=¢£2 < u, >, then we there will be{j, a} € Al(«) such that

(< (O‘)2+<O,q> >, 09,41, a/0,a alll’ T) € ®<£'

In particular,r(u, ag, a1) = r(uo, ay, a;) = r(uo, ag(u, ao, a1), a, (u, ap,a1)). We are now ready to
define® (recall the remark at the end of Section 4 definipg
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The operato® is defined as follows (recall the definition 4):
O(A):=AU {(a,ao,al,go,gl,r)e (w N A%(a))G | Vnew (a), e WO A
<Vn€w [(@)n| =0 AUyy Uy, = (W) A (ag,a;)=(ag,a1) Ar=ay | V
<](a)1]:1 A (a)o=(a)2 A (< (a)24j >,a0,a1,a9,a1,a1) EANT=0ag

<|(a)1|:2 Al(a)o|=1AVpew ([(@)ag<pos|>1(@)o] V [(@)24<pos]|=0) A

Ja, ay, ' € Al(a) (< (@)24<0,4> >, a0, a1, (ah)o, (a))o, ( ) JeA
Vp>1 (< (« )2t <(p)o+1,g> > 00501, (a9)ps (@), )EA
Vic2 Ql—fa(( )07<al7(r )17 . >)

A
A
A
Elag’allleA%(a) (< (a)2+<0,q> >,QO,Q1,CL8’0’1, S >}

Then® is aIl} monotone inductive operator.

Remark. Let ¢ be an ordinal, and:= («, ag, a1, ag, a1, ) € ©5. Then an induction o4 shows the
following properties:

- Uy N Uy, =0.

- Uy, C—U,, for eachi € 2. In particular,~Uy, N U, =0.

- ag,a,,r are completely determined lw, ag, a1).

- If =U,, C Uy, for eachi € 2, then—U,, C U, for eachi €2 and—l, (4 a9,a1) S Ur(a,bo,br)-
- There isi € 2 such that-¢/, C U, .

Lemma 6.7 (a) Let¢ be an ordinal,a € A}, and (o, 3,7) € T¢. Thena € A¢ and the set, is in
A% N Fc(a) (Tl)'

(b) Leta € Al N A% normalized,ag, a; € Al with Ag N A; =0. Then there arey, a,,r € w* such
that (o, ap, a1,a9,a;,7) €O,

Proof. (a) We argue as in the proof of Lemmas 6.5.(a) and 6.5=(b)he only thing to notice is that

in the casg(a)1| =2, ((a)o, ((6*)p),: ((?')p),) € Q. Proposition 2.2, Lemma 2.3 and Theorem
3.1 give a treel; with Al suitable Ievels and € E?(a) ‘([le) not separable fromi7,]\ S by a

pot(IT? (0o ‘) set. Asa € Al |(a)o] <w K and Theorem 4.2.2 implies thay(,),), is in H?(oz)o\(Tl)'
ThusC eI‘C(a) (7’1).

(b) Let¢ be an ordinal withn € AS. Here again we argue by induction énSo assume that¢ A<¢.
Case 1|(a)1]|=0.

Leta,:=a; andr:=a;. Then(a, ag, a1, ay,a,,7) €O CO>.
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Case 2//(a)1|=1.
As < (a)a4; >€ A<t we get, by induction assumptiofu, a;, ') with
(< (@)2+j >, a0,a1,a9,a1,7") €O,
As ais normalized we gel{«)2, ;| =0 for eachj, andr’ =a;. We setr:=ay. Then
(v, a9, a1,a9,a;,7) EO(OF) =0,
Case 3|(a)1]|=2.
As < (a)21<pg> >€ A< we get, by induction assumptiofu, af, ) with

( < (a)2+<0,q> >,ap, a1, 08, CL?, Té) S @OO;
and (< (@)oq<(p)o+1,4> > 00, a1, ap, ay,r,) € O, for eachp > 1. As in the proof of Lemma 6.2
we see tha@OO €It B_y A}-sele_ction, we may assume that the sequeliggs (o)) and(r,) are
Af. In particular, there is € A{ with (af), =al. We set(+'),:=r, and
a;:= fa((@)0, < as, ()1, (1")2, ... >).
The induction assumption give§, o, such that < ()24 <04~ >, a9, a1, ag, af,r) €O>. We are
done sincéq, ag, ai, ag, a;,r) €O, O
The next lemma is the crucial separation lemma announcédttipresentation of.

Lemma 6.8 Let 7' := («, ag, a1,ay,a;,7) € O with o € A} normalized andu,a; € Al, ¥ in
21 ((w#)?) with (=t4,) N X = (. Then there are¥’,+’ € w* such that(e, 8/,7') € T and C.,
separatesd; N Y from Ap N X. In particular, A; N Y is separable fromig N Y by aAl N Le)(m1)
set.

Proof. The last assertion comes from Lemma 6.7.(a).s7.be an ordinal with7 € ©7. We argue by
induction o). So assume thatc ©7\ ©<".

Case 1|(a)1]|=0.
We set3’:=0°, and choose’ € Al N W with C, =0. We are done sincg=A4; N X.
Case 2|(a)1|=1.

As « is normalized, we ge{a)s+;| = 0 for eachj. We sets’ := 10>, and choose/ € Al N W
with C., = (w*)?. Theny” € A} N W with C.,» =0 is a witness for the fact that, 3',7') € T>°. We
are done since =ay.

Case 3|(a)1]|=2.

There areu, a}, ' € A} With ( < (@)a4<(p)o+1,0> >0, a1, (ah)p, (a))p, (1)) €O, for each
p>1, and, for each €2, a; = fo((@)o, < as, ()1, (r')2,... >). Moreover, there are(, a/ € A
with (< (a)2+<0,q> >)QO,Q1,CL,0/5 allla’r) €@<77_

By Lemma 6.7.(a), one of the goals is to bulld, € T'.(,)(71). The proof of Lemma 6.7.(a)
shows thatl’.(o) = S)(a)o| (Up>1 Te(<(@)2s<pgs>)s Le(<(a)2s<04->))- This means that we want to
find sequencegCy)p>1, (Sp)p>1 and B such thalCyy =, (S, N Cp) U (B\U,>; Cp)-
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- Let us construcB.

The induction assumption give®”, " € w* such that(< (a)24+<0,4> >,5",7") € T> and
C,n separategl; NX from A, N Y. We setB:=C..

- Let us construct the’,’s.
We sett :=|(a)o|. Note thatd; = A; N (5, —U), . This implies that

U:= (C’YW M AO N E) U (—|C,Y/// n Al N E) g U —|—\Z/{(T‘/)p7'§
p=>1

As in the proof of Lemma 6.6 we see that the relationz =, " is II} in (p,a,’,5). By

Al-selection there is a\l-recursive mapf : (w*)? — w such thatf(3) > 1 for eachd e (w*)* and
5¢ Uy, " for eachieU.

In particular, for eactd € U there isP € £} N 112 ¢(11) such that € P C U, )55, Now P and

U, 5 are disjoints}" sets, and separable by[E. . (1;) set. Asa € A7 we getl <\ a)o <wCK

As in the proof of Lemma 6.7.(a) we g&} andsS. By Theorem 4.2.2 we géB, v) € (A{xA) N V¢
with PCC, Uy, -

G

By Lemma 4.2.3.(2).(a) the relatioi, v) isin (A}xA})NV.¢"is II}, so there is a\{-recursive
mapg: (w*)% —wx (w* xw*) such that

VOEU go(8)=f(5) and g1(3) € (A1 x A1) NVee and 6€C, 5 CUp), 5

by Al-selection. In particular, th&} setg[U] is a subset of

{(p, (8,7) ewx ((A1xAD) NVe) | Cy CU, b
which is II! and countable. The separation theorem gilles Al between these two sets. Asis
countable, there ar®, 3,5 € Al with D = {(N(q), ((B)qs (f”y)q)) | q € w}. Now we can define
Cp::UquyN(Q):p C(ﬁ)q\(Uq’<q C(ﬁ)q/)'

- We now study the properties of tiig,’s. We can say that

o The relation §€ C,,"is Al in (p,4).

o TheC)’s are pairwise disjoint.

o Cpe2(n) sinceCy), €M% (m1) C A2(11), by Theorem 4.2.2.

o We setC' := {(p,d) € wx (w¥)? | g€ w N(q)=p and § € C5),}, so thatC' € A} and
C, € X9 (r¢) for eachp>1. We haveC, C C,,.

0 Up>1 ¢ :Up>1 ~p-

o C, separate®/ N f L({p}) from —U,),. In particular,U is a subset of thet! setlU,>; Cp-
Moreover,) oy ~Un, " (U1 Cp)-
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- The induction assumption gives, for egelr 1, 57,97 with (< (@)ay<(p)ot1,4> >, BY577) € T
andC.» separatesi; N C*p from Ag N Cp. As in the proof of Lemma 6.7.(b) we may assume that the
sequence$s?) and(y?) are Al. By Al-selection again there isAl-recursive magh:w — w® x w®
such thath(p) € (A} x A1) N Ve andCy, () = ~C,, for eachp > 1. We set((8"),), := ho(p) and

(@)p),=h1(p), s0 that((a)o, ((B")p) 1 (()p) 1) € for eachp>1.

We sets'(0) :=2, (8")o := ", and ((8"),), := B* if p>1, so thats’ is completely defined.
Similarly, we set(7)o :=~", and ((7),), := 7" if p > 1. Finally, we choose, € A} N W with
Cyr = Ups1 (Cop \Chy(p) U (Crmyy M NMps1 Chy(py)s SO that(a, 8,7") € T° and C.,, separates
AN XfromAgnX. O

The next result is the actual (effective) content of Theotei(1). It is also the version of
Theorem 4.4.1 for the non self-dual Wadge classes of Botel ketj,; : (d)? — w* be a continuous
embedding (for example we can emidet )¢ into (w*)? in the obvious way, and then use a bijection
between(w®)? andw®).

Theorem 6.9 Let T; be a tree withA! suitable levelsp in Al normalized, 3,y in w* such that
(o, B,y)€YSC, S::jd_l(Cﬁ/Jw)ﬂ [Tq], andag, a1, ay, a;,r €w® With v:= («, ag, a1, ag, a;, r) € O,
Then one of the following holds:
(@) ~U,=0.
(b) The inequality((II! [T4] )ica, S, [Ta]\S) < ((w*)icd, Ao, A1) holds.

Now we can state the version of Theorem 4.2.2 for the nondsedf-Wadge classes of Borel sets.

Theorem 6.10 Let T; be a tree WithA% suitable levelsq in A% normalized,s3,~ in w* such that
(o, B,y)€YSC, S::jd_l(Cﬁ/Jw)ﬂ [T4], andag, a1, ay, a;, 7 €w®” With 0':= («, ag, a1, agy, a;,r) €O>.
We assume thétt is not separable fromi7;]\S by a po(f‘c(a)) set. Then the following are equivalent:
(a) The setd; is not separable fromi; by a po(f‘c(a)) set.

(b) The setd is not separable fromi; by aAi N pot(f‘c(a)) set.

(€) ~(38',7' €w* such that(a, #',~') € T> and 4; C C, C—A).

(d) The setd is not separable fromi; by af‘c(a)(ﬁ) set.

(e) U, # 0.

(f) The inequality((d)ica, S, [T4]1\S) < ((w*)ica; Ao, A1) holds.

Proof. (a) = (b) and (a)= (d) are clear since\,. is Polish.

(b) = (c) This comes from Lemma 6.7.(a).

(b) = (e), (c)= (e) and (d)}= (e) This comes from Lemma 6.8.

(e) = (f) This comes from Theorem 6.9 (&'[7}] is compact, we just have to compose with con-
tinuous retractions to get functions definedd).

Hh=@IfPe pot(f‘c(a)) separatesl, from A; and (f) holds, thet$ C (IT;cq f;) 1 (P) S ([T4\S).
This implies thatS is separable fromi7;|\S by a po(f‘c(a)) set, by Lemma 4.4.7. But this contradicts
the assumption of. 0
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Proof of Theorem 1.8.(1).Note first that (a) and (b) cannot hold simultaneously, asiéngroof of
Theorem 6.10.

We assume that (a) does not hold. This implies thatXhe are not empty, since otherwise
Ap=A,=0, andp e T unlessI' = {(}. As in the proof of Theorem 4.1, we may assume tKigt
for eachi € d, by Lemma 4.4.7. By Theorem 5.1.3 thereuis D with I'(w¥) = T, (w¥). If E
is a0-dimensional Polish space, then we also hBy&) =T, (E), by Theorem 4.1.3 in [Lo-SR2].
It follows that potfI') = pot(T',,). By Lemmas 6.2 and 6.4 we may assume that there &A>
normalized withe(a) = u.

By Theorem 4.1.3 in [Lo-SR2] there B € T'(w*) with S = j;*(B) N [T,]. To simplify the
notation, we may assume tHgf has A1 levels,a € A}, and Ay, 4; € £} ((w*)?). By Lemma 6.5
there areB,y € w® such that(«, 3,7v) € T9° and C;““ = B. Lemma 6.7.(b) givesy,a;,r with
(v, ag,a1,ag,a;,7)€O>. Lemma 6.8 implies that/, # (. So (b) holds, by Theorem 6.10. [

The sequel is devoted to the proof of Theorem 6.9. We havédrmince a lot of objects before we
can do it. We will create some paragraphs to describe thgsetebWe start with a general notion.
The idea is that, given a sétin T'.,)([74]), and with the help of the tre€(«), we will keep in
mind all theZ? (or equivalentlyIT?, passing to complements) used to busid We will represent
thesel'Ig sets, on most sequencesf ¥(«), by induction on|s|, applying the Debs-Saint Raymond
theorem. At each induction step, we make closed sﬁl@esets of this level, but we also partially

simplify theﬂg sets to come. This is why the ordinal substraction is invlfrecall the definition of
ordinal substraction after Theorem 5.1.3).

Definition 6.11 Let X be a set, A C X, B a countable family of subsets &f, andT" a Borel class.
We say thatd cT'(B) if AcT'(X, ) for any topologyr on X containing.

Proposition 6.12 Let X be a topological space.

(a) Let A C X, B a countable family of open subsetsXf andI" a Borel class. Therl € T'(X) if
AeT(B).

(b) LetY beasetBCY, f: X —Y abijection,5 a countable family of subsets Bf andI" a Borel
class. Thery "Y(B)eT'({f~1(D) | D€B})if BET(B).

(c) Letl <n < ¢and A e IT)(X). We assume thaX is metrizable. Then there i§ C IT)(X)

countable such that € I17, (B), whereB:={-B | B€B}.

In practice, X will be the metrizable spadé] for some tree relatio®, andf will be the canonical
map given by the Debs-Saint Raymond theorem.

Proof. (a) The topologyr is simply the topology ofX .
(b) Let 7 be a topology onX containing{f~*(D) | D € B}. Theno := {f[A] | A€ r}is a

topology onY containing3. ThusB € T'(Y, o) since B € I'(B). Thereforef ~!(B) e I'(X, 7) since
f:(X,7)—(Y,0) is continuous.
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(c) We argue by induction o—n. The result is clear if —n =0. So assume thgt—» > 1. Write
A=,e, 7An, Wheren, <¢andA, € H?Zn (X). As X is metrizable, we may as§ume thet ;..
The induction assumption gives, C H%(X) countable such that,, € H(l)+(nn—n) (By). It remains
to setB:=J O

new
(A) The witnesses
Notation. We first define a map producing witnesses for the fact@@©>°. More specifically, we
define a ma@y: 0> — O U (0¥, Let¥:= («a, ag, a1, ag, a;,7) € O\ O<E. If |(a)1| =0, then
we setdl(v) :=7. If |(«)1|=1, then using the definition &b we set

QU(ID)) = (< (a)2+j >7 ap, ai, g, a1, al)'

Note thatl(7) € ©<¢. If |(a)1]| =2, then we set
( < (O‘)2+<O,q> >, ap, ai, (CL{))O, (all)(]a (T,)O) if sz,

W(0)(p):= {

( <(@a4<prot1,g> > a0s a1, (ay)p, (ah)p, (r)p) if p>1.

Here again¥(v)(p) € ©<¢.

e Similarly, we define a mafy! witnessing thats € Y$°. Moreover, we keep in ming’. More
specifically, we define a magy! : T3° — T U (w* x T§°) U (w¥ x (Y§°)*). Let i := (o, 8,7)
in TS\ TS If |(a)1] =0, then we sef¥' (&) := . If |(a)1| = 1, then using the definition of
and some choice foy/, we seti! (@) := (v, (< (a)24; >,8*,7)). If |(a)1] =2, then we set
W () := (7,207 (w)), where

{ (<(a)2+<0,4>>(8%)0, (7o) if p=0,

( < (a)2+<(p)0+1,q> >, ((6*)1))0? ((Wl)p)o) if PZ 1.
(B) The trees associated with the codes for the non self-du#adge classes of Borel sets

Wi () (p) =

e Recall the definition off («) after Lemma 6.2. Similarly, we defing: Y{° — {trees ornw x T¢°}
as follows. Letd:= (o, 3,7) € T{\ Y75, We set

{0} U{< (0, @) >}if |[(a)[=0,
(@):=4 {0} U {(0,0) s | s€T(W(w)) } if |(a)| =1,
{0} UUpe {(0.0)7s [ s€T(WL(D)(p)) } if |(a)1]=2.
Here again¥(w) is always a countable well founded tree containing the serpie (0,w) >. The
set of maximal sequences ) is M g:={s €T (W) | Vte T (W) sCt = s=t}.

e Fix w:=(a, 8,7) € T with o € Al normalized. In the sequel, it will be convenient to set, for
s € T(w) \ Mg,

o if s=0,
s1(]s]):= { W1 (s1(]s|—1)) if 575(7)/\ {(51 |s|—1)(0) {:
W1 (s1(/s|—1)) (so(|s|—1)) if s£D A |(s1(|s|—1)(0)),|=2.
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o Lets e T(w). We setB,:={i<|s| | |(s1(i)(0)),| =2}. Asa is normalized,B; is an integer. We
always haveB, <|s|. If moreovers € T(w)\ Mz, then we sef3, :={i <|s| | [(s1(¢)(0)),|=2}.

e The ordinals|(a)o|, for « € A} N A, will be of particular importance in the sequel. We define a

function Z: T (w)\ Mgz — ( CK)<“ satisfying| Z(s)|=|s|+1. The sequencg(s) gives the ordinals
¢ of theTI{ sets coded by. We setZ(s)(i):= | (s1(i)(0)) | if i <|s|. Note the following properties
of Z(s), easy to check:

Z(s)(i) depends only onl|s.

Z(s)CZ(t) if sCt.

- Z(s)(i+1)>Z(s)(i) or Z(s)(i+1)=01f i< |s|.

Z(s)(i+1)=0if Z(s)(i)=0 andi <|s]|.

- (Z(s)(d '))iEB; is a non-decreasing sequence of non zero recursive ordinals

(C) The resolution families

o Fix w:= (o, B,7) € Y$° with a € Al normalized, angh> 1. We set

po. [ llahl<L
Cfiml(m if ()| =2.

Note thatheHHa) (@) if |[(a)1]=2, by Lemma 6.1.

e Recall the finite setg, C d defined at the end of the proof of Proposition 2.2 (we only ubedact
thatT}; has finite levels to see that they are finite). We put ( J;,.,, ¢, so thatc is countable. This
will be the countable setof Definition 4.3.1.

¢ Recall the embedding; defined before Theorem 6.9. We §§f :=hlj (P > ) N ¢], so that the
union Py U PP =[C] if p£q>1. Moreover, Py (") GHOZ(S)(i)([Q]) if seT(w)\ Mgz andie BL..
elf Tisatreeand T, thenT,:={teT | sCt}.

o Fix @ := (a, 3,7) € T$° with a. € A normalized andi(); | =2. We say that € (i) is extensible
if there ist € T(w), such thats| < B; (which implies thats ¢ M ). We will construct, for eachs

extensible, a resolution famil@Rép))pgns. Simultaneously, we construct some ordinglandd;. If
@ is an ordinal, then we set

0% nif 6=n+1,
"] 9 otherwise

(this is what appears in the Debs-Saint Raymond theorem)wiMeave ns =07, £, = Z(s)(|s|) and

6.:{@=zwxmzumaws=a
ST (Gt ) i 54D,
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We want the resolution family to satisfy the following cotigins:

-The famlly( s )pgns is uniform if 6, is a limit ordinal.

- R =c, andR" =R if 540,

-T1,: [R™)) = [R")] is a continuous bijection.

- (g0 0 My © ..o 0 IL) 1P MY e THY (RS i p> 1.

- (o 0 gy © o o T) PR UMY) € 00, iy ey (BY™)) i p > 1, ¢ € T(w0),\ M,z and
|s|<j+1€eB,.

e The construction is by induction dr|. Assume that =0, p>1,t € T(W)\ Mz andj+1€ Bj.
Proposition 6.12.(c) gives,’ C I ,([S]) countable such thapl U ¢ I, 2(j41)— 9@)(8”).
This implies thatuy := {P¥ | p > 1} U Ups1,tes@)\ My, j+1¢B] B.7 is countable and made of

I1) ,([€]) sets. Theorems 4.3.4 and 4.4.4 give a far(ﬁl%& ))pgn@, uniform if 6 is a limit ordinal,
such that

(0) _
-RY =c.

-1y [Ré)””)] — [Ré)o)] is a continuous bijection.
-11,M(Q) € H?([Ré"@)]) for eachQ € uy.

This family is suitable, by Proposition 6.12.

e Assume now that # () is extensible, and the construction is done for the strietpcessors of.
Note that(IT,jp o [Ty o ... HS_)*l(PSI(‘SI)) € ngs([les*)]). Assume thap > 1, t € T(w)s \ Mg
and|s| < j+1¢€ B,. Then Proposition 6.12.(c) gives a countable fardfly C I ([RZS:]) such that

_ i1 . .
(Hgpp 0 gy 0 ... 0 TT,-) Lph Ut €I, 50y (js1)-c, (Ct’]) This implies that

ugi={(Tlyg 0 Ty o ... o TL,- )~ (P | p>1} U U ¢’
p>1LteT(W) s\ M g,|s|<j+1€B;]

(ns-)

is countable and made dfly ([R,“']) sets. Theorems 4.3.4 and 4.4.4 give a resolution family

(Rgp))psns, uniform if 6 is a limit ordinal, such that

-1, [Rgns)] — [Rgo)] is a continuous bijection.
- H(Q) e IIO([RU™)]) for eachQ € u,.

This family is suitable, by Proposition 6.12. This compéetiee construction of the families.
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(D) The subsets offy

We now build some subsets @ that will play the role thatD and7,\ D played in the proof of
Theorem 4.4.1. Fixt := (o, 8,7) € T5° with a € A normalized and(a);| = 2. We will define a
family of subsets of’; as follows. Assume thatc T () is extensible. We set, far>1,

Py(s):={5€Ty| §=0 Vv Vp>1 3B, € (0l y o... o IT,) "1 (Pp D) §eBp},
Py(s)i={5€Ty | 520 AVBy € (T 0 Ty 0. o TL) " (PE Iy 528, A
¥pew\{0,q} IB,e (g0 I,y o... o )~ (P 1) gezsp}.

Note that theP, (s)’s are pairwise disjoint. The next lemma associates to eéadty a sequence(f)
in T(w) saying in whichP,(s)’s the sequenceis.

Proposition 6.13 Letw := (a, 8,7) € T with o € Al normalized and(«);| =2, andt € T,. Then
there arel € w ands(t') € T(w) of lengthl such that

@ T€Mict Py 0) (SI).

(b) If (1) is extensible by, thent'¢ P, ) ) (¢0).

Proof. We actually construct, fof € w, a sequence; € T(w). We will haves; C sj.1, |s;| =7 if
j<l,s;j=sif j>1,andt e Ni<is;l Fos0)00) (s;]i). Atthe end,s(t') will be s;. The definition of

s; is by induction onj. Assume thatsy),<; are constructed satisfying these properties, which is the
case forj =0. We may assume that;| = ;.

If s; is not extensible of ¢ B for each € [RE?SJ)], then we set; 1 := s;. If £ € B for some

Be [Rﬁjsﬂ')], then there is a unique integesuch that € P,(s;) since

1, (55)10 1 (8010 (ns;)
(Hsj\ooﬂsjuomoﬂsj) 1(731() ])1(]))U(HSj|OOHSj|10"'OHSj) 1(7)(5 J)I(J)):[ Sj] ]
if p#¢>1. We will have|s;1|=7+1, ands;1(j)(0) :=¢. Moreover,

_ wif j=0,
s 0= ot 130 s, 10) 521

This completes the construction of tkgs, and they are ir€(«). The well-foundedness & (W)
proves the existence éfands(t) is suitable. O

Notation. Proposition 6.13 associates$t ) € T(w) to ¢ € T;. Under the same conditions, we can
associates (t ) € M,z to £. To do this, we need the following lemma:

Lemma 6.14 Let i := (a, 3,7) € Y with a € Al normalized and(a);| =2, ands € T(w). Then
there isS € Mz extendings such thatSy (i) =0 for |s| <i<|S].
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Proof. If s=0, then we sef(0):= (0, @) and, if20" (51 (i)) # S1(¢), then we set

(0,208 (5()) ) it 2 (S(2)) € T,
S(i+1):=
(0,20} (5(0)) (0) ) if 20} (5(0)) € (T5°)~.

By induction, we see tha|(i+1) € T(w) for eachi <|S|, which proves that the length 6fis finite
sinceX(w) is well-founded. Thus € M ;.

If s#£0, thenS(|s|—1) is defined. We argue similarly. The only thing to change i$ tha
S(Isl) = (0,20 (s(1s| 1)) (so(Is] 1))
f 2" (s3] ~1)) #51(1s| 1) and2w} (s([s| - 1)) € (1)~ .
We now associate a maximal extensi®ft ) of s(¢') to anyt in Tj.

—

Remark. In particular, there is§(() € Mz with (S(@))O(i):o for i < |S(0)|. Note thats () C
If §£F< Ty, then we define(£') by induction on|:

S(0).

- If s(F) =0, thent£ () sincell € Py (1)), andS(£):= S (£ ")

-If s(¥)#0 and? nsu " €Micis@y Peyiipo) (8]0, thenS(T) ::S(fzzg))__ ).

-If s(f') #0 andi’_ S‘“ ¢ﬂz<| P,y 0 (s(E)]i), thenS(7') is the extension of(i') given by
Lemma 6.14 applled t9:=s(t )

Note thatS(t ) € Mz and is always an extension eft ), by induction on/z]. This comes from

the fact thats(¢') C s(t S(f)) ) in the second case.

(E) The tuples

We now keep in mind the tupley, ag, a1, agy, a1, 7) along any sequence & (w), using the
witness mapy. Fix i := (a, 8,7) € Y, v:= (a, ag, a1, ag, a1, ) € O with a € Al normalized
and|(«)1| =2. We will define a mag/ : T(w) — (©°°)<% such thafV(s)| =|s|, V(s)(i) depends
only onsli as follows. We set, fof < |s|,

—

vif 1=0,
V(s)(i):{ W(V(s)(i—1)) if i>1A[(V(s)(i—1)(0)),]| <1,
W(V(s)(i—1))(so(i—1)) if i>1 A [(V(s)(i—1)(0)),|=2.

Lemma 6.15 Letw := (a, 8,7) € Y, ¥:= (o, ag, a1, ay, a;, r) € O with a € Al normalized and

|(a)1]=2, se T(w), andi<|s|. ThenV (s)(:)(0)=s1(7)(0). In particular, s ¢ Mz andi <|s| imply
that Z(s)(i) = (V (5)(0) (0)) -
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Proof. The last assertion clearly comes from the first one. The piodly induction oni. The
assertion is clear far=0 sinceV (s)(0)(0) =s1(0)(0) =a. Assume that it holds faor< |s|—

o If i¢ B, then|(V (s)(i)(0)) ,|=](s1(i)(0)),|=1. Thus
V(s )(z’—i—l)(O):QU(V(s ) (0)=<(V(s)(2) )2+j> < (51(1)(0)) 5, >=s1(i+1)(0).
e If i€ By, then|(V/( )(0)) |=1(s1(2)(0)) ;| =2. If moreovers,(i) =0, then
V($)(i41)(0) =< (V(8)(D)(0) 5, .y >=< (51(1)(0)) 5, g oo >=51(i-+1)(0).
The argument is similar iy(i) > 1. O

The next lemma is a preparation for Lemma 6.21, which is theial step to prove a version of
the claim in the proof of Theorem 4.4.1 for the non self-dualdék classes of Borel sets.

Lemma 6.16 Letw := (o, 3,7) € Y5°, ¥:= (a, ag, a1, ag, a;, ) € O with a € Al normalized and
|(a)1]=2, seT(w), andi € Bs.

(@) If s0(7) =0, then—ly (5)(i)5) € Uy (s)(i+1)(5)-
(b) We have-Ly (s)(i)(5) € Uy (s)(i+1)5) "

Proof. (a) We haveV/(s)(i+1)=20(V(s)(i)) (0), by Lemma 6.15. Thus
V(s)(i+1)(5)=2(V(s)(2)) (0)(5)=(r")o

for somer’ for which =ty () 5)(5) € —U ), by the 2nd and the 4th remarks after the definitio®@of

(b) We may assume thag (i) > 1, so thatV'(s)(i + 1)(5) = (") 5,(;)» and

Uy i) S Ui 0
by the 5th remark after the definition 6f and the definition off,. We are done by Lemma 6.157]
(F) The sequences of integers

We have to keep in mind the integess(:) for s € T(w). We will consider an ordering of these
finite sequences of integers that will help us to prove thiencjast mentioned.

Notation. Fix @ := (a, 3,7) € Y5, ¥ := (a, ag, a1, ag,ay,7) € O with a € Al normalized and
|(@)1]|=2, ands, s’ € T ().

e If sands’ are not compatible, then we denates’:= s|i = s'|i, wherei is minimal withs (i) # s/ (7).
Note that/s A s'| € Bs.

o We defineO(s) e w!*l: we setO(s) (i) := s0(i).
¢ We also define a partial order arr* as follows:

OC O & 0=0"V3Ii<min(|0},|0']) (0li=0"li AO(i)=0<0'(3)).
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Lemma 6.17 Let @ := (, 3,7) € T$°, ¥ := (v, ap, a1, a9, a,,7) € O with o € Al normalized

and [(a):| = 2, and s, s’ € T(w) uncompatible. Assume thate (., Poo(i)(sli), tis in
. — (773 s s/) g

Ni<jsns| Doy (s'l4) and s’ R 1717 ¢ ThenO(s) T O(s').

s||sAs’|

Proof. As s(|s A s'|) £ s'(|s A s'|) andsi (s A s'|) =si(|s A §']), we getso(|s A s'|) # si([s A S']).

Recall the definition of the®,(s)'s. Note the following facts. Assume that B, ands”RiT'Z.s”) t.
- If so(i) =0 andi'€ Py(s|i), thensc Py(s|i) too.
- If 50(i) > 1 andte Py ;) (sli), thense Py(si) U Py iy (sli).
These facts imply thaty(|s A s'|) =0<sg(|s A §'|). ThereforeO(s) C O(s'). O

(G) The ranges

The goal of this paragraph is to defiine the analytic 3({13(5)) that will contain Uy in the
inductive construction of the proof of Theorem 6.9. Theyl wily the role thatd, ™ N A; and 4
played in the proof of Theorem 4.4.1, Conditions (4)-(5).

Notation. Fix @ := (o, 8,7) € Y5°, ¥ := (a, ag, a1,ay,a;,7) € O with a € A} normalized and
|()1]=2, ands € T(w)\{0}. We set

L [lsl-1itvi<ls| so()=1,
I min{i<|s| | so(¢)=0} otherwise,
J5:— |5|_1If 80(|S|—1)211
I min{i<]|s| | Vj>i so(j)=0} otherwise.
Note thati® < I* < B,. We associate, with eadh<i < |s|, a}*,a’", 7% € w*. The definition is by
induction oni. We seta®"" i=a. (V(s)(i*)(0),a0,a1), 75" :=r(V(s)(i*)(0), ag, a1 ) =V (s) (i*)(5).
Then A
sitl._ ) a2t if so(i+1)>1,
=) a(V(s)(i+1)(0),a5", @) if so(i+1)=0,

it ._{ rotif so(i+1) 21,
T L r(V(s)(i+1)(0),ag", ar") if so(i+1)=0.

Therange of sisr(s):=—U,s.1s.

Lemma 6.18 Letw := (o, B,7) € Y$°, ¥:= (a, ag, a1, ag, ay,7) € O with a € Al normalized and
|(a)1|=2, s€Z(w)\ {0}, andi® <i< By—1 with s9(i) =0. Thenysi =yl
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Proof. We may assume thap(i+1)=0. Assume first that=1:°. Then

= (W(V()(0*) 0)(0), 20 (V()()(0), a0, 1), a1 (V(5)(i*)(0), a0, 1) )
=1 (2(V(5)(5*)) (50(5*)) (0), 2 (V(5)(*) (0), a0, 1), s (V () (1) (0), a0, a1 )
=7 V(S)(is+1)(0),QO-SV(S)-SZ‘S (O),ao,al) ( $)(2%)(0), ao,al))
js(}ifg)(zsﬂ)(o)’@é” vay")

The argument is similar if > ¢°. O

Lemma 6.19 Letw := (o, B,7) € Y$°, ¥:= (a, ag, a1, ag, a;,7) € O with a € Al normalized and
|(a)1|=2. Then there isS()) € Mz with ) € ﬂKBS(@) P st (S(0)|i) and =L C7(S(0)).

Proof. We sets:=S(f}) for short. We already saw that M, (Z)EﬂKB Py, iy (sli), andsg (i) =0
for eachi < |s| after Lemma 6.14. Note that=1°=0. We get

U = Uy (5)(0)(5) = Uy (s)(i5) (5) = Ups,is = Ups,1s =7(8).
This finishes the proof. 0

The role of the next objects is to determine if we go to theside or theA; side in the inductive
construction of the proof of Theorem 6.9.

Notation. Let i := (a, 3,7) € TS with o € Al normalized and(a);| = 2, ands € M3. We set
£s:=01if Bs<|s|—1, e5:=1 otherwise, i.e., iBs=|s|—

Lemma 6.20 Letw := (o, B,7) € TS, ¥:= (a, ag, a1, ag, aq, ) € O with a € A} normalized and
|(a)1]=2, ands € M. Thenr(s) C U, .

Proof. Note first that-{/, 50 C —U,_, by induction on; and the 2nd remark after the definition ©f
This implies that-i4,..,rs C U (v (5)(1)(0),a0,a1) = UV (s)(1%)(5)» DY the 4th remark after the definition
of ©. Thusr(s) = U,.s..s €Uy (5)(15)(5)- LeMma 6.16 implies thatldy (s (rs)5) S Uy (s)(Bs)(5)-
But V(s)(Bs)(5) =a.,, by Lemma 6.15. O

Now we come to the crucial lemma for the claim mentioned earli

Lemma 6.21 Letw := (o, 8,7) € Y5°, U:= (v, ap, a1, ag, ay,7) € O with « e Al normalized and
[(a)1]=2, 5,5 € T(@) with O(s) £O(s') andO(s) T O(s'). Thenr(s) Cr(s’) “sllsns'l,

Proof. We can writeO( ) := 0Fong...0F-1n;_ 10, with 1, k; € w, andn; > 1. Similarly, we write
O(s") := 0%on)...0 ki iy, 0¥/, The assumption implies th&t> 1, and the existence gf< !’ with
(kiymg) = (K ,nl)if i<j andk’ < k;. Lemma 6.14 shows the existenceidf ; > 1 ands” e My

17 Z

with O(s")=0%ony). .0~ nf_ OkJn]OkJ+1 if j<l/'—1.1f j=1"—1, then we set”:=
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Note thatO(s) # O(s”), O(s) E O(s"), andO(s”) C O(s’). Moreover,O(s") # O(s’) and
s As'|=|s A s"|<|s' As"|if j<I'—1. Itis enough to prove that(s) C r(s") *sllsAs”I. This means
that we may assume thét;, n;) = (k},n}) if i <I'—1 andk;,_, <k, _,. This implies that/s’ > 1,
s As'| =1 =1, s|/(I" =1)=5'|(I* =1), so(I¥ —=1)=0< sh(I* —1) andi®* < I¥ —1.

Case 1i*=1I° andi® =1I°.
Note that?”(s) ="Ups,15 = ﬁurs,is = ﬁuv(s)(is)@) :ﬁu‘/(s/)(]s)(gj). Lemma 6.16 implies that

TE ! s/ Ts sAs!
r(8)=—Uy (s)(15)(5) S Uy oy 15 —1)(5) © Uy (sryaeys) 10D =r(s') “ollens'l,

Case 24°=1° andi® <I*.
Note thati® =i* < I*'—1. Lemma 6.18 implies that(s) = ~Uy..: ==U , s _,. Thus

’[" S :—|u / /
() r(V(s)(I¥ =1)(0),ay"" ~2,a3"" 72)
p— ! /
r(V(s)(I¢' =1)(0),a5 7" 72,8 1" 72
p— ! /
r(V(s)(I¢' =1)(0),a3 7" ~Lad 1" 7Y
.

Es/\(IS’—l)

)

/ !
r(V(s)(1#)(0),ag T ~Hal 1T
N Esl1sns!
:7“(3 ) sllsns’| |

by Lemma 6.16.
Case 35 < I5<I*.
We argue as in Case 2.
Case 4.° < I* andI®' < I*, which implies that’s’ < I*.

The 5th remark after the definition of givese € 2 with r(s) = —U,.«.rs C U 5,151 Thus
r(s)C-U 51 C..CU o, If 197> 2, then we get
Ye QE’

—|u / :—|u ’ ’
a1 ac(V(s')(I¥' ~1)(0),a2 " 1° ‘Q,Qi"’sf)
=7 , Ssllsas’]

/
= (VI (0),ag T T2 e T )

.
;o Sslsns|

U /
r(V(s')(I#)(0),ay "~ a7 7
nNE ’
:7"(8 ) s|[sAs’| .

Otherwise, we gef* =1, i*=0, i* =I* and

U0 = Ua (v ()(0)(0).a0.01) S o (v () (1)(0).a0.ar) 1 =T () T

This finishes the proof. 0
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(H) The maximal sequences

We now associate a maximal sequence to a co(ples) with 3 € [7]. It is build in a way
similar to that of thes(¢')’s, but for infinite sequences instead of finite ones.

e Let @ := (a, B,7) € T5° with o € Al normalized and(«),| = 2, and 5 € [T,]. We will define
s(B,w) € M. Recall the definition o', We set, fors € M,; andi € B,

2

{ﬂpzl P i 5(i)(0) =0,

i)
~Pi) i s(1)(0)>1.

E5P9  Let¢ be an ordinal such that

7

We defines(f, @) in such a way thajs(5) € N;cp G

W e TS\ T, The definition ofs(3, 1) is by induction ore.
Case 1|(a)1]|=0.

We sets (3, W) :=< (0, 0) >.

Case 2/|(a)1|=1.

w

We sets(, @) := (0,7) s (5, 201 ().

Case 3|(a)1|=2.
We sets(j3, u?)::{( o

o We set(ﬁ\jk)kew::(ﬂ

Recall the definition of; before Lemma 6.20.

Lemma 6.22 Let := (o, ,7) € T5° with a € Al normalized and(«),|=2, and 5 € [T,].

(@) There iskq € w such that3|j;. € ﬂi<Bs<g,m) P, 3.5))0) (s(8,@)i) if k > ko. In this case, the

sequence (i) given by Proposition 6.13 is( 3, @) | B and is not extensible.

s(3@)’
(b) We haveja(5) € C” if and only ife_ ;  =0.

Proof. We sets:= s(3, @) for simplicity.

(a) To definekq, we will define, fori < Bs, kj € w and we will set :=max{k | i < Bs}. To do this,
we set(F]ji Jrew:= (Lo ... o Iy) ~1 (A(B)), so that( 3|55 ) ew is a subsequence OF|j})re. if
1< Bs—1.
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By the choice of theZ;'s we get, fori < By,

B {np>1 PO if s0(i) =0,

h(f) €
8) =P i so(i)>1,

Mys1 (yjo 0 . 0 Tyyy) (Pt if s0(8) =0,
(I © . 0 Tyyy) ™ (7380((?))) if so(i)>1.

(2

(BliiInew € {

Note the existence o}, in (Il o ... o Hs”)‘l(??;l(")) such thatf|ji € B if so(i) = 0, k € w
andp > 1. If so(i) > 1 andp € w\{0,s0(2)}, then(ﬁ]j,i)kew € (g9 0 ... o M)~ (Pﬁl(i)) since
po@yps ) — (] This implies the existence &, e (I;o...ollL,;) ' (P, 1@y such tha1§|j,iel§i

s0(%)
if kew. As (Ilygo ..o I,;) *(P] ()) € HO([R;Z )]) there isk} > 1 such that8|gk ¢B . if
so(1) 21, By ;€ (g 0. o ;) (7351(2))andk>l<:Z This definess) andky. It remains to check

so(t) so(i)
o(%)

that 3| € Pyiy0)(s]7) if i < By andk > ko. This comes from the fact thg, = ]kS‘l _jK(k) for

somekK (k) >k > ko> k. The last assertion comes from the constructios(6.

(b) We define, foi < |s|, €% € 2. The definition is by induction on We first set?:=1. Thensit!:=0

if |s|—i—2¢ By, ai“ :=¢i otherwise. Note that, =" ! (¢, is defined before Lemma 6.20). We

have to see th@y(ﬁ) isin C“ (0)(2) is equivalent tos‘ =1 _0. we prove the following stronger fact:

jd(g) € C;’:E‘ —im1)(2) is equwalent tel =0 if i <|s|. Here again we argue by induction anThe

result is clear for =0 sinceC%", (1s]-1)(2) =¥. So assume that the result is true fet|s| —

If |s|—i—2¢ B, then we are done sin@;@”rl =1-¢ andC¥

ey Ssl-i-n@) = 08
|s|—i—2€ B, theneitl =<t and

S s—icne

C§(|s\—z‘—z)(2):Up21 (C((Qﬁl(slﬂ |—i—2)) \ (QIT1 sl(\ |—i— 2)))p)1)

w

(C% (%1(81(|\ i-2)) mﬂp>1 C((Qﬁl(m(\l i=2)))p)1 )

; _ s1(ls|—i=2) _ w
If so(|s|—i—2)=0, thenjy(8 )eﬂp>1 P =Mp>1 C((wl(&(‘ 2 We can say

that ja(8) € CF(5—i—2)(2) 1S €quivalent t0ja(5) € C(ml(s (Isl—i-2))) = Car(s|—i—1)(2)» @nd we are
done by induction assumption. We argue similarly whefis| —i—2) > 1. O

Remark. Recall the definition of an extensible sequence at the bawjrof the construction of the
resolution families. If is not extensible, thepadmits a unique extensidVI( ) in M. In particular,
in Lemma 6.22.(2)M (s(5|jx)) = (3, @) = S(3]ji). In Lemma 6.195(0) = s| B, is not extensible

and M (s(0)) = S(0).

Notation. Recall the construction of the resolution families, anddte proof of Theorem 4.4.5,
especially the definition ofi(Z'). If 6, is a limit ordinal, then we consider some ordinal$t )’s, as

ns if O is a successor ordinal,
in the proof of Theorem 4.4.5. We sefts, 5 ) := { ns( ) if 6, is a limit ordinal.
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The next lemma is the final preparation for the claim mentiosarlier.

Lemma 6.23 Letw := (o, 3,7) € T$° with a € Al normalized and(a);| =2, s € T(w), andi < Bs.
Then(Su<i p(sli’, tm)) +1< &y

Proof. We argue by induction oh Note first thatp(s|0, Wz)+1 <0,0=E50- Then, inductively,

(Sir<it p(s|t, 1?”)) +1 < (Bu<i p(sl?, 1?”)) +053+1)
< (Bi<i p(s|?, ?n)) +1+ (&) (i+1) —Esl)
<Eepit(Esii+1) —Esls)
<&si(i+1)
This finishes the proof. O

Proof of Theorem 6.9.Let { be an ordinal withi:= (o, 5,7) € Tﬁ. We argue by induction of. So
assume thai e TS\ T,

Case 1|(a)1]|=0.

Lemma 6.5 implies that'>” € T',(,) =g~ = {0}, so thatS = . We also have'=a;. Assume
that (a) does not hold. The#,; (), so it contains som&. We just have to sef;(5;) := «;.

Case 2|(a)1|=1.

As i € T§ we gety’ €w® with (< (a)ar; >, 8*,7/) € TT" andCe” =~C%’ (see the definition
of T1). Asais normalized,C;’,“ =(), so thatS = [T,]|. We also have = ay. Assume that (a) does
not hold. ThenA #(), and we argue as in Case 1.

Case 3|(a)1|=2.

Assume that (a) does not hold. As for Theorems 4.4.1 and Wé-ﬁonSthCT(Oéi)iedﬁengTd,
(o;')l.g‘smed,senm, (Us)set,- We want these objects to satisfy the following conditions.

(1) ot € 0L CQuw A (Al )ica € Us S Qe

i

(2) O}, CO:,

sq —

(3) diamy,,, (0%) <2715l A diamy , ,(Us) < 2151,

§7 te mi’<i,ns‘i/21 Pso(i')(s’i/)
(5) 1<p<p(sli,5) - Ufgﬁgﬁzild p(sli ) +p

§RY

sl

- S0 A = pUs@)-) 7
(6) <3€ﬂi<|s(F) Py i) (5()]0) /\SRS(;(;_) t> = UpCUs.

67



e Let us prove that this construction is sufficient to get tremtiem.

- Fix § € [T;]. Lemma 6.22 gives € w such that3|j. € N G P gaym ( (3,7)|i ) for

eachk > ko. Proposition 6.13 givesand s (5]jx) € T(«7) with §|j), € N, S(E\jk)(i)(O)( s(Blir)i),
and Lemma 6.22.(a) implies thatj]ji.) = s(5, )\B . This implies that( )k>k0 iS non-

(ns(8, ®)(By(g,)~ ) -
(ﬁ w)I(Bs(ﬁ w) 1
proof of Theorem 4.4.1 we defing(5) and f; continuous withF(5) = (IL;cq f;)(5). The inclusions

SC (Wieq fi) ' (Ao)

and[Ty]\S C (Iicq fi)~' (A1) hold, by Lemmas 6.20 and 6.22, sinogs (3, w)) C A, -

i<B,

increasing sinc$|j,C R 5|]k+1 for each mtegelk by Condition (6). As in the

e S0 let us prove that the construction is possible.

- As —U, is nonempty and’}', we can choos(aaé,)ied € ~Uy N Qwya. Then we choose &} subset
Ui of (w*)?, with d,ye-diameter at most, such thai(a%)ied € Uy € Uy N Q(w)a. We choose
a X} subsetO] of Q. with d.-diameter at most, with of € Of C Q,, which is possible since
Q)2 SO Assume thatal ) s <, (O%)5<; and(Us) ., <; Satisfying conditions (1)-(6) have been
constructed, which is the case foe 0 by Lemma 6.19.

- Lettm e Ty N (d+1)2. We defineX, := O}, if i<l, andw® if i >1,

Claim. Assume that € (@), i < Bs, szh‘,ﬁz € Nirei Pso(iry(sli"), andig < i is minimal with
778‘1'0 Z 1.
(a) The set

T(S,_; p(sli Tm))+p

U. = N = U= i’ <i
tﬁg‘(:\ly'ﬁm) nl§p<p(s|z,tm) tmg‘i

TT o (S oy p(sli? Em)+p A ‘
n ﬂi’<i mlgpgp(sﬁ’,;n)) Utmp‘ < N (Hzed XZ)

is ry-dense iU, ' N (Ijeq X;).
s\z
(b) Assume moreover thate ¥ (w), s and s’ are uncompatible; := |s A |, tm e Py iy(s']7), and
0(®)
—>ns\z
GPO( )( ’ ) Then

s\z

[E— =
N | | U;n)p , Syt cqr (I Em))+p (Hied XZ)
. s|i
<i 1<p<p(s|it im)

is ry-dense iU, ' N (Iljeq X;).

s\z
(a) Assume first thaty = 0. Note thattﬁerl RV ¢ _>p Ry im if 1< p< p(0, ?n) by Lemma
4.3.2. Asin the proof of Claim 2 in Theorem 445, thls |mslthatU->p C U->p+1 . By assump-

7757/
tion, tml‘,tmeﬂZQ so(it) (8]1).
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Note thatfr” € Py (sli”) if i <4’ < andp <141y Indeed, this comes from the

8| (i+1)
fact thattmnlsi‘l Riﬁi‘,’/) tms‘(i,ﬂ) R(Yj‘”) #m. As in the proof of Claim 2 in Theorem 4.4.5 again,
this implies thatl;, CU sy e P ENrLi p(s|(if 4 1),im). Note that
18/ 4+1) 1741
o

Wl?\(i/ﬂ) t—>z|z _Wzg"(j“ ™) This implies the result. We argue similarlyiif> 0.

(b) By (a) and Lemma 6.22, it is enough to see thiat= Uﬁp(s‘im) C r(S(tm))TES”. The induction
assumption implies thdfgr(S(tm"fi“)) So let us prove that(S(—mf“)) Cr(S(tm)) . Note
thats|(i+1) C s(tm"fi“) - S(tm"lsi") and, similarly,s’|(i+1) C S(Wz) Lemma 6.17 implies that
O(S(%Z;‘Z)) C O(S(_>)) and the beginning of its proof that(S(¢ "5")) #£0(S(t )). Now
Lemma 6.21 implies the result. o

-Let X:=d"*1. The map¥: x?— 5} (w*)?) is defined o7 ! by

(r(SE) NN oot Ure” N (Miea Xi) N Qe if s(tm) =0,

U n T T iy 1 P F) o
e ()~ ) ﬂ1<p<p(s(tm)_ tm) Yimt _,
s(tm)_ s(tm)

T Sy p(sli M) +p _ ,
mﬂl <| tm)| 1 r]1<p<p( W tm) Utm i < N (HZEd XZ)

stm -
) 20 A G2 €0y P s ()

s(t
/\Hzo<]s(t )| Nyl = b
r(S(im))
N ﬂ < nl<p<p( (tm)|z/ tm) U?np (Ez//<z/ p(s(Em) |1 Tm))+p N (H cd XZ) N Q(ww)d
DI
e s ()~ Vg
(i) = i s(m) 20 At ¢ 0 oy Pty (EW)
A i< |s(fm)| is maximal W|thtm z%ni’”“ €Mvci Puiy ooy (5EMIT)

1,

A Fig <1t N >

lio =

UrN (Wieq X;) if s(tm) £0 At S%"> (s(tm) ")

€M <ism) Loy

(t )
. SN
A Vig <|s(tm)| Ny fio = O
r(S(EM)) N (Mieq X;) N Qe if s(t?n)7é(z) R
s(tm

At &M <iaimny Do (8 (@)W)
A i< |s(tm)| is maximal Wlthtm zt%”)“ €Mirci Puityiny(o) (M)
A Vig<i s @mhlio =0.

T1

By the claim \I/(tm) is 7i-dense iU,

s(tm) lig

N (IT;eq X;) in the 2nd and in the 3rd cases.
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0

) —
— =

In these cases, am1 ctc Wz andR(tL) is distinguished irR(

(tm)|zo s(tm)lio s(tm)|io
(1) ng
tms(tm)lm s(tm)|io t
andU;C U ™ by induction assumption. Therefore
s(tm)]ig

S - —
UpN (Wiea Xi) CU ' 0 (Thiea Xi) S U (tm).
s(tm)lig

Using similar arguments, one can prove that this also holdss last two cases.

Let us look at the first case. iy > 1, then using arguing as in the claim one can prove that
T — . - Ty T1 .
U%g(@m) N ﬂl<p<p(®,tﬁ) U%g "N (ILeq X;) isT1-dense wUWIé N (IL;eq Xi). Now we can write

U .ty S r(S(l?ng‘D)) —r(S(tm)) and we can repeat the previous argument siges0. If 7 =0,
™o

then we getmg@ =t, andU; N (I;eq X;) Cr(S(E)) N (Wi X) :r(S(Wz)) N (T;eq X;) and we
are done.

Now we can write( )ica € Ur N (ILieq X;) C T (¢m), and we conclude as in the proof of
Theorem 4.4.1. O

The rest of this section is devoted to the proof of Theorem(2)8henA(T") is a Wadge class.
Recall Theorem 5.2.8. We will say thatc Al N A is suitable if A(T()) is @ Wadge class and
one of the following holds:

(1) There isai € A} N A° normalized with
Fc(a) = {(AO N Co) U (A1 N Cl) | A, Ay Grc(a) A Cp, C1 62(1] ANCoNnCy :(Z)}

(2) There isa/ € Al such that(a),, € A is normalized for each > 1, (I‘c((a/)p))p>1 is strictly
increasing, and’(,) :{ Ups1 (ApNCp) [ Ap €T ((ar),) NCpE SOANC,NCy=0if p;«éq}.
Assume that is suitable andiy,a; € Al satisfy Ag N A; = (. Then Lemma 6.7.(b) gives

r(@, ap,a1) andr (@, ar,ap), or r((a')p, ap,a1). We setR(a,ag,ar) := y in the same
fashion as before, and

r(@,a0,a1

R(@,ag,a1) NR(@,ai,a0)  if we are in Casél),
Rl(a,a9,a1):=

Nys1 B((@)p,a0,a1) " if we are in Casd2).
We now give the self-dual version of Lemma 6.8.

Lemma 6.24 Leta suitable, andi, a; € Al such thatdonA; = 0. We assume that/(«, ag, a1 ) =0.
Then4, is separable frond; by aA{ N A(T.,))(71) Set.
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Proof. (1) As R(@, ag,a1) N R(@,a1,a0) =0, there isC € AY(r;) separatingR(@, ao, a; ) from
R(@,a1,a9). As R(a,ap,a;) and R(@, a1, ap) are X}, we may assume th&t € Al, by Theorem
4.2.2. A double application of Lemmas 6.7.(b) and 6.8 giv@ses setsBy, B; € Al N L@ (m)
such thatBy (resp.,B;) separatesiy N C (resp.,A;\C) from A; N C (resp.,Ap\C). Now the set
(BonC)U (=B; N —=C) is suitable.

(2) The proof is similar, but we have to make somg-selection. A9 is II}' andr((a),, ag,a1)
is A} and completely determined ki), ap anday, the sequencér((a’)p, ao, al)) . is Al As
p=

Np>1 R((a')p,a0,a1) ' =0, there is aAl-recursive mapf : (w*)* — w such thatf (@) > 1 and
&géR((a’)f(&),ao,al)ll for eacha € (w*)?.

We setlU, := f~!({p}), so thatU, and R((c),,, ap, a1) are disjointL} sets and separable by a
T1-open set. By Theorem 4.2.2, therdjjse AINXY () separating them. Moreover, we may assume
that the sequend@/,) is Al. We reduce the sequenB,) into a A{-sequencéC,,) of Al N=9(r)
sets. Note thatC,) is a partition of(w~)? into A9(r;) sets. AsR((c/)p, agp,a1) N Cp=0, Lemma
6.8 givess’, 7' ew® such that((a/),,, (8'),, (7)) € Y°° andC,, separatest; N C, from Ay N C,
for eachp > 1. Moreover, we may assume that 1’ € Al. Now the selU,>1 (=C(y, NCyp) is
suitable.

We now give the self-dual version of Theorem 6.9.

Theorem 6.25 Let T, be a tree withA} suitable levelsq suitable,3, ¢ € w* with (o, 8%, 7%) € T$°,
Se = j;l(Cifaw) N [Ty], andag, a1, ag,a;,r € w* such thatv' := («, ag, a1,a9,a;,7) € ©F. We
assume thas® and S* are disjoint. Then one of the following holds:

(@) R (v, ag,a1)=0.

(b) The inequality( (I} [T;])ica, S°, S1) < ((w*)icd, Ao, A1) holds.

Now we can state the version of Theorem 4.2.2 for the self\d@ge classes of Borel sets.

Theorem 6.26 LetT, be a tree withAl suitable levelsq suitable,3¢, ¢ € w* with (o, 3, ~°) € T$°,

S = jd_l(C;éw) N [Ty], andag, a1, ay,a;,r € w* such thatv' := («, ag, a1, a9, a;,7) € OF. We

assume thas", S! are disjoint and not separable by a §a¥(I',))) set. Then the following are
equivalent:

(a) The set4, is not separable fronal; by a po{ A(T'(,))) set.

(b) The set4, is not separable fromi; by aA{ N pot(A(T,,))) set.

(c) The setA, is not separable fromt; by aA(T' () (71) set.

(d) R' (e, ap,a1) #0.

(e) The inequality( (d*);eq, S°, S*) < ((w“)ied, Ao, A1) holds.

Proof. We argue as in the proof of Theorem 6.10, using Lemma 6.24.(rédeorem 6.25) instead
of Lemma 6.8 (resp., Theorem 6.9). O

Proof of Theorem 1.8.(2).We argue as in the proof of Theorem 1.8.(1). Theorem 5.2.8sgivor
((u’)p)p>1. The equalities in Theorem 5.2.8 holddrt, but also in any-dimensional Polish space
(we argue like in Lemma 5.2.2 to see it). Using Definition 3, e can build. € D with ' =T",,.
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Using Lemmas 6.2 and 6.4, we get A normalized withl',y =T, anda € A* (or o/ € A
such thata'),, is) normalized withl'z =T .5 (0r '), =T c((a),))-

By Theorem 4.1.3 in [Lo-SR2] there B¢ € T'(w®) with S¢ = j;(B%) N [T,]. To simplify the
notation, we may assume thB§ has Al levels,a, as well asy (or o), are Af, and Ay, A; are X}
By Lemma 6.5 there arg®, v¢ € w® such that«, 5°,~°) € T9° andC;““ = B¢. Lemma 6.7.(b) gives
ay, ay,r With (o, ag, a1, ay,a,,7) € ©°°. Lemma 6.24 implies thak’(«, ag, a1) # (. So (b) holds,
by Theorem 6.26. O

Proof of Theorem 6.25.(1) Let C%, € X0([Ty]), A§ € L) ([T4]), A5 € L) ([T4]) such that
Se=(A5NCE)U(ANCE). We reduce the familyCy, CY, C3, C1) into a family (O3, OY, O}, O1) of
open subsets dff;]. Note thatS® C 7= := (A5N05)U(A5NO5)U(=AF N0 ) )U(=A]¢N0O; ).
We will in fact ensure thaf (I1/ [T4] )ica, T°, T") < ((w*)ica, Ao, A1) if (a) does not hold, which
will be enough.
Subcase 1|(a)o|=0.

We setof, := h[[T;]\O%], so thatof, e II9([C]). We also set

D:={5€T, | =0V V(s,c)e2? IBeoS, 5B},

DS :={3eT,; | 540 AVBEoS, §¢B AV(",e")e2\{(e,¢')} Beot, 5B},

so that(D, DY, DY, D}, D}) is a partition ofT;. The proof is very similar to the proof of Theorem
4.4.2 wher¢ = 1. The changes to make in the conditions (1)-(7) are as follows

(4) UggR/(Oé, ap, al) :A_oTl N A_lTl if §¢ D,
(5) UsC A if 5€ DY U D},
(6) UsC Ay if 5e DJU D1,
(7) (5,te D Vv 5,te D5,) = UrCUs.
We conclude as in the proof of Theorem 4.4.2.
Subcase 2|(a)| > 1.

We will have the same scheme of construction as in the proBhebrem 6.9. As long ase D,
we will haveU;C R'(a, ag, a1). If £ € D%, then all the extensions éfwill stay in DZ,, and we will
copy the construction of the proof of Theorem 6.9, sincedimshe clopen set defined byve want
to reduce a paifS?, S) to (Ao, A1).

As Af € T @) ([Ta]), there isBj € T'.@)(w®) with Ag :j;l(Bgz N [Ty]. Asa e Al N A,
Lemma 6.5.(b) givegj, 75 € w such that(a, 55,v5) € T1° and C,% = B§. Similarly, there are
B, 7% €w such thal@, 55, 75) € T5° and A] = (~Cs) N [T4].
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We can associate with arfy, <) € 22 the objects met before, among which the functi&i’, the
ordinalsni’e/, the resolution familie$R(p) the ordinalg (e, €', s, 5). Instead of considering

s pni
the setP,(s), we will consider =< () N Dg,. If te D%, then we setdi(# ) :=1%,. This allows us to
defines(t) € T (a(¥)) andS(F) € M ;5. We also set

{ (av a’Ova’vaOlevT) if {ED(()] U D:1L!

(aa alaGOaQOaglaT) If EGD(I) U Dé

The other modifications to make in the conditions (1)-(6)asdollows. In condition (4), we ask for
the inclusionU-C R(S(¢)) only if £¢ D. If t€ D, then we want thal/;C R'(a, ag, a1). Condition
(6) was described whef t € Dg,. If 5,#€ D, then we also want thdf-C Us.

The sequenc# () is defined if5 € CYUCOUCLUCT. If B¢ CYUCOUCUCT, thenf|k e D for
each integek, and]—“(ﬁ) is also defined. The definition o17) ensures thal® C (IL;cq fi) ' (A:).

The defintion of\If(Wz) is done ifﬁzgé D. If tme D, then we simply set
U(tm) :=Uy N (Tieq X;).
Then we conclude as in the proof of Theorem 6.9.

(2) Let Cg € 20([Ty]) and A5 € T'((o),)([T4]) such thatS® = Ups1 (45 N Cp). We reduce the
family (C?,CY,...,Ct,C4,...) into a family (09, 09, ..., 0}, 0O, ...) of open subsets dfT;;]. Note
thatS*CTe:= (AT NO7)UU,>; ((FA,°N0,9) U (A5, NO;, ). We will in fact ensure that
(I [T4))ica, T°, T") < ((w*)ica, Ao, A1) if (@) does not hold, which will be enough.

The proof is similar. We can assume tljué([a’)p)0| > 1 for eachp > 1, since(T((a),))p>1 IS
strictly increasing. So there is no Subcase 1. We set

. (av a’OvavaOlevT) if FGUle DZO)’
(t):= .
(@, a1,a0,a9,a1,7) if t€U,5, Dzl,.

We conclude as in Case 1. O

7 Injectivity complements

In the introduction, we saw that G. Debs proved that we cae kia@f;'s one-to-one in Theorem
1.3 whend=2, T € {II¢, %2} and¢ > 3.

e This cannot be extended to higher dimensions, even if wacepti*)? with 11,4 Z;, whereZ; is
a sequence of Polish spaces.
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Indeed, we argue by contradiction. Recall the proof of TeeoB.1. We saw that there (% in
32(2¢)\ILY such thaS}:={@ e [T3] | S(awAar) € Ce} is not separable froril3]\S? by a potI1y)
set. We set

BY:={a@€3“x3*x1 | S(apAay) €Ce},
Bl:={a@e€3“x1x3% | S(apAas) € Ce},
B2%.= {O_ZE 1x3%x%x3% ’ S((XlAaQ) € Cg}

Let0:3% —1. AsS{:=(Idz. xIdz. xO) " (B%) N [T3], BY ¢ poy(I1Y). Similarly, B*, B* ¢ pot(I1L).
This implies that theZ;’s have cardinality at most one, aSd< AY. ThusS, is separable fror§; by
a po(I1}) set, which is absurd.

elfd=w,I'= Hg and¢ > 3, then we cannot ensure that at least two oftf&are one-to-one. Indeed,
we again argue by contradiction. Considér:=w, and Bg € 32(w*)\ILY. ThenB; is not pofILY)
since the topology ow is discrete. This implies that two of th&'s at least are countable, say, 7
for example. Consider now, :=S¢ and A, := [T,,]\S¢. Then(f; o IL;)[So] is countable for each
i €2. Thus P := (I;eq f;)[So] C S¢ C [1.,] is countable since an element [df,, | is completely
determined by two of its coordinates. This: pot(9) C pot(I1Y). Therefore(Ilicq f;)~'(P) is a
pot(l‘[g) set separatin§, from S, which is absurd.

e However, ifT" € {Hg, 22, Ag} and¢ > 3, then we can ensure théllicq f;)s,us, iS one-to-one,
using G. Debs’s proof and some additional arguments. Thatsstrue ifl" =T, is a non self-dual
Wadge class of Borel sets witl{0) > 3. This leads to the following notation. Lé¥;);cq, (Xi)icd
be sequences of Polish spaces, ApdS; (resp.,A4g, A1) disjoint analytic subsets di;-4 Z; (resp.,
IT;cq X;)- Then

((Zi)ica, S0, 51) T ((Xi)icd, Ao, A1) & Vied 3fi:Z;— X; continuous such that
(Iica fi)jsus, IS one-to-one and/e€2 S, C (ieq fi) *(Ae).

Theorem 7.1 There is no tupIe{(Zi)ieg, So, S1), where theZ;’s are Polish spaces anf), S, disjoint
analytic subsets dfl;c5 Z;, such that for any tupIe{:(Xi)ieg, By, Bl) of the same type exactly one of
the following holds:

(@) The setB is separable fromB; by a potI1)) set.
(b) The inequality((Zl-)Z-eQ, So, Sl) C ((XZ')Z'GQ, By, Bl) holds.

One can prove this result using the Borel digrdph:=J,,.,, Gr(gn‘Qw\M) considered in [L5]
(see Section 3), which has countable vertical sectionssouabi locally countable. We give here
another proof which moreover shows that we cannot hope fasdiye result, even i3, is locally
countable. This has to be noticed, since the locally colmtatts have been considered a lot in the
last decades.

Lemma 7.2 LetT be a Borel class, and(Z;)ic2, So, S1) as in the statement of Theorem 5.1 such

that Sy is not separable fron$; by a potI') set. Ther, N (11§51 xII{.S;) is not separable frons,;
by a potI') set. MoreoverS; is not separable frons; N (I Sy x I1.Sy) by a pofT') set.
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Proof. We prove the first assertion by contradiction, which giveg pot(I'). The first reflection
theorem gives Borel setSy, C; such thaflI.S; C C; andSy N (Cp x Cy) C P. Now

SoCP U (=Cox Zy) U (Zyx—~Cp) S-S,
which contradicts the fact tha&, is not separable fror; by a pofI") set.
We prove the second assertion using the first one, passirantplements. O

Lemma 7.3 Let ((Z;)ic2, So, S1) and ((X;)ie2, Bo, B1) be as in the statement of Theorem 5.1 such
that ((Z;)ic2, S0, S1) T ((Xi)ie2, Bo, B1), (fi)ie2 Witnesses for this inequality, ard € 2 such that

B, is Borel locally countable. Theffi ;.5 is countable-to-one for eache 2 and S, is locally
countable.

Proof. The inequality((Z;)ic2, S0, S1) T ((Xi)ie2, Bo, B1) gives f;: Z; — X; continuous such that
(Iiea fi)|sous, is one-to-one, and alsg: C (Il;e2 f)~1(B.) for eache € 2.

e By the Lusin-Novikov theorem and Lemma 2.4.(a) in [L2] we dand Borel one-to-one partial
functionsb,, with Borel domain such thaB., =J,,c,, Gr(b,). Let us prove that

fiIHi[Sfom(HiEQ fl)il(Gr(bn))}
is one-to-one for eache 2.

Assume for example that=0. Let z # 2’ €11y [Se, N (Wicz f5) ' (Gr(by))], andy, y’ € Z; such
that(z,y), (2/,4') € S, N (Tiez fi) ' (Gr(bn))- As(2,y) # (2, y'), we get

(f0(2)7 fl(y)) 7é (fO(Z/)7 fl(y,))

But b, (fo(2)) = f1(), bu(fo(2')) = f1(¥/), so thatfo(z) # fo(2') sinceb, is a partial function.
If - =1, then we use the fact thaf, is one-to-one to see th{:ffgmi[Ssom(ni62 £)-1(GIbn))] 1S also
one-to-one.

o This proves thaf; g, is countable-to-one sinc&, =,,c,, Se N (ie2 fi) ™' (Gr(bn)).

e Now S, is locally countable sincé., C (Il;co fi‘H<,SEO)—1(B€O), B, is locally countable and
iy s, is countable-to-one for eagke 2. 0

Lemma 7.4 LetY be a Polish space(' a Borel subset ol and (m,,),c. @ sequence of Borel
partial functions from a Borel subset ¢f into C. We assume thal/ :=J,,,, Gr(m,) is disjoint
from A(C), but not separable from(C) by a potTI{) set. Then there are integers< p andy € C
such thatm,, (y) andm, (m,(y)) are defined.

Proof. We may assume thaf is recursively presented aid M and them,,’s are Al. We put
V= J{De A}(Y) | D* N M has finite vertical sections

ThenV e IIL(Y).
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Case 1V =Y.

We can find a sequené®,, ),c., of A} subsets o” such that =J,,.,, D, andD2 N M has
finite vertical sections. By Theorem 3.6 in [Lo2D2 N M is pot(T1?), so thatD2\ M is potx?).
ThusA(C) CU,e, DE\M C—M andA(C) is separable from/ by a pot=9) set, which is absurd.

Case 2V #Y.

The first reflection theorem proves that for each nonemiptysubsetS of Y contained iny \ V/
there isy € S such tha(S% N M) is infinite. So there is an integersuch thatY'\V)2 N Gr(m,,) # 0.
In particular,S:= (Y \V) nm,(Y'\V) is a nonemptyZ| subset ofy’, which givesy € S such that
(S2N M), is |nf|n|te This proves the existence pf- n such that(y, m,(y)) € 5*. Note thaty € C
sinceY' \C CV. Now itis clear that:, p andy are suitable. O

Lemma 7.5 Leti € 2, Y; a Polish space); a Borel subset of;, ¢: 6y — d; a Borelisomorphismy € w,
¢, a Borel one-to-one partial function frofr, into Y7 with Borel domain, and’y :=J,,, Gr(c,).
We assume that, N (6o x d1) is disjoint from GKc), but not separable from Gt) by a potTI{) set.
Then there are integers < p andy € Y, such that(cc;,'c,) (o) and (ec;,'c)(yo) are defined and
different.

Proqf. We setd, := Cnisorest (s SO thatCo N (o x d1) = Uy, Gr(c),). Now we consider the
pre-images
A(61)=(c" " x1ds,) 1 (Gr(c))

and G(c};) = (¢! xIds, )1 (Gr(c,)), wherec], :=c}, o C|c[16()ﬂ 1y NOte thatc/’ is a Borel one-to-

one partial function with Borel domain and th@f :=J,,,, Gr(c;) is not separable from(d;) by
a po(I1?) set. This implies that),,,, Gr((c;;)~") is not separable from\(61) by a potI1?) set.

new

By Lemma 7.4 there are integers< p andy; € d; such that(};) " (y1) and(c,) ~* ((¢)) " (y1))
are defined. We sefy := (¢},) ! (y1), 0 that(c(c’n)—lc;)(yo) and (c(c},)~'c) (yo) are defined and
equal respectively tdcc, 'c,)(yo) and (cc’ ¢)(yo). Now note thaty; # (cj)~* (1) for eachy in
the range ot/). This implies thatc},) = (y1) # (c)})~ 1((cg)—1(y1)),

(c(e)™) %(c c(cp) ™) (W),
(e(cn) ™ ep) (wo) # (e(c) ) (o) and (ec; ) (wo ( o) (o). O

Lemma 7.6 Let Y be a Polish spacep € w, ¢ and ¢,, continuous open partial functions froii
into Y with open domaing € 2, C° := |J,,c, Gr(contc). We assume that? is disjoint from
C' U Gr(c), but® # Gr(c) € C% N CL. ThenC? is not separable fronC'! by a potAY) set, and
CY is not separable from Gr) by a potI1?) set. If moreover the domains D¢m) are dense, then
C° N (Nyew DOM(c,,) x 2¢) is not separable fron®! N ()., Dom(c,,) x 2¢) by a pot AY) set.
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Proof. We argue by contradiction, which give3 € pot(AY). Let G; be a densés subset ofY;
such thatP N (Gy x G1) € AY(Go x G1). The proof of Lemma 3.5 in [L1] shows the inclusion
Gr(c) CGr(c) N (Go x Gy), and similarly withc,,. Thus

Gr(c)CCONCTN (GyxG1)CCIN (GoxG1)NCTN (GyxG1) N (GoxGy)

- (Pﬂ (GQXGl))\(Pﬂ (GOXGl)) =,

which is absurd. The last assertion follows since we mayrasshatGy C (), ., Dom(c,). The
proof of the second assertion is similar and simpler. O

Lemma 7.7 There is a tuplg(Y;)ic2, Co, C1) such that

(a) Yy andY; are Polish spaces.

(b) Co=U, e, Gr(cn)ClIlic2 Y;, for some Borel one-to-one partial functions with Borel domain.

(c) C1=Gr(c), for some Borel function: Yy — Y;.

(d) Cy is disjoint fromC1, but not separable fror®’; by a potII}) set.

(e) We seC§ := (U,,c., Gr(can+e)) N (Npew DOM(en)x2¢), for e €2. ThenCy is disjoint fromCg,

but not separable frond’} by a potA?) set, andCd N CE N (N, Dom(e,) x 22) CGr(c).

(f) The equality(cc,, ' ¢,) (y0) = (ccy, 'c) (yo) holds as soon as the two members of the equality are
defined andh < p.

Proof. We setY; :=2“ andc(a)(k) := a(2k).

e We first build an increasing sequenGg, ),,c., of co-infinite subsets af, a sequencéy,,),c., of
bijections, and a sequen¢k,, )., of homeomorphisms & onto itself. We do it by induction on.
We setSy:=0, ¢ :=1d,, andhg :=Ida.. Assume thatS,),<n, (¥q)q<n and(hq),<, are constructed,
which is the case fon=0. We define a map,, :w—w by

{ Wyt (k) if k¢ 25y,

kif ke2S,.

on (k)=

Note thaty,, is a bijection. We seb,,; := ¢,[2w] U (n+1), which is co-infinite. The sequence
(Sn)new IS increasing sincé,, = ¢,,[25,] C Sp+1. As S,,41 is co-infinite we can build the bijection
Ypt1 1w\ Spt1 = w\ 25,41 In such a way that),, 1(k) # 1,(k) for infinitely manyk ¢ S, 41, for

eachg <n. We set
{ cla)(k) if k€ Spi1,

OZ(T,Z)nJrl(k)) |f k/’¢ Sn+1.
As h, 1 permutes the coordinates, it is an homeomorphism.

hnt1(a)(k):=

e We setD,, :={a €2¥ | ¢(a) # hn(a) AVg<n h,(a)#he()}, so thatD,, is an open subset of
2¥. We setc,,:=hy,|p,,, SO thatc,, is an homeomorphism fror,, onto its open range’; is disjoint
from C1, andCy is disjoint fromCy.

e



Let us prove thaD,, is dense for each integer Note thatDy={a€2¥ | Ik cw a(2k)#a(k)},
which is clearly dense. Now,,, ; contains

{0 €2 | ¢ Sur1 a(2k) (st (K)} N () {a€2° | Tk Surt a (k) £a(iy (k) }-

q<n

The set{o € 2 | 3k ¢ Shy1 a(2k) # a(¢¥ns1(k))} is open dense since the odd integers are

iN V1w \ Spt1]. The set{ar € 29 | Tk ¢ Spy1 a(¥nt1(k)) # a(ig(k))} is open dense by
construction of),, 1. This proves thaD,, is dense.

« Note that Gfc) C CQ N CL sincec(a)|n = h,()|n, D, is dense and is continuous. Lemma 7.6
proves the non-separation assertions. We also 6§ve C; N (N Dom(c,,) x 2¢) C Gr(c) since
c(a)ln=hy,(a)|n ande, is continuous.

new

e Now it is enough to prove that., 1 h,=ch, cif n<p. We have
{ B(k) if j=2ke2S,,

B (5)) if 5¢2Sh.
Thus

c(a)(k) if ke Sy,
(chy, o) () (k) =c((hy ) (@) (k) = (hy, ¢) (@) (2k) =
() (67 (28)) If Kt Sy

Similarly,

hp(0) (k) if k€S,
(chy ' p) () (k) = {

(@) (1, (2K) if k¢S,
Note thatS,, = ¢,[25,] C S,,+1, S0 thatS,, C S,. Thus(ch,*h,)(a)(k) = (ch, tc)(a)(k) if k€ S,,.
If k¢S, then2k ¢2S,, andep,,(2k) =1, (2k) € S, 11 CS,. Thus
(chy hy) (@) (k) = hy (@) (v, (2k)) = c(a) (¥, 1 (2k)) = (chy, ' e) (@) (k).
This finishes the proof. 0

Proof of Theorem 7.1.We argue by contradiction. Note thgy is not separable frorfi; by a potII?)
set since (b) holds. By Lemma 7.2 we may assume that the ifigggaC IT{ Sy x IT] Sy holds.

e Recall the digraph; in [L5]. If we take X, :=2%, By:= A, andB; := A(2¥), then by Corollary
12 in [L5], By is Borel locally countable, not pdf?), and B; = By \ By. It follows that By is not
separable fronB; by a potI1?) setQ, since otherwise we would havé, = Q N B, € pot(I1?).

This implies thal((XZ-)iez, By, Bl) satisfies condition (b) in Theorem 7.1. By Lemma Zﬂ%,yso is

countable-to-one for eaake 2 and.S; is locally countable.
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e Lemma 7.7 gives a tupl€(Y;)ic2, Co, C1). Note that((Y;)ie2, Co, C1) satisfies condition (b) in
Theorem 7.1, which giveg; : Z; — Y;. Lemma 7.3 implies thagﬂngso is countable-to-one for each
i€ 2. The first reflection theorem gives a Borel 6§D I1/ .S, such thatf; o, andg; o, are countable-
to-one, for eachi € 2. By Lemma 2.4.(a) in [L2] we can find a partitidi®?, ),.c,, of O; into Borel
sets such thaf;o: andg; : are one-to-one, for eagke 2.

e We setS” := (Il;c filoi)*l(Bg) N (2 g;)~(Ce), for eache € 2, so thatS” is a Borel subset
of IT;e2 Z; containingS.. In particular, Sy is not separable frony; by a potII{) set. We choose
integersno andn, such thatSy N (I;e2 O},) is not separable frons N (ILiep O},) by a potTI?)
set. We setD, := (Il;c2 fq%i)[sg’ N (Iie2 O}))], so thatDy is a Borel subset of3y which is not
separable fromD; by a potI1?) set. Note thatD; is a Borel subset of3; = A(2¥). In particular,
there is a Borel subsé? of 2@ such thatD; = A(D). By Lemma 7.2,Dy N D? is not separable from
Dy by a potIIY) set. Leth;: D — Y; be defined byh;(a) := (g; o fifolgl )(ar). Thenh; is Borel,

one-to-one, and. N D? C B. N (I;e2 hy)~H(C:).

¢ Note that(IL;c2 h;)[A(D)] is a Borel subset of’;, which proves the existence of a Borel subset
of ¥; such thaILicy hi)[A(D)]=Gr(cps). If y#y' €6, then(y, c(y)) = (ho(d), h1(d)) and

(v, e(y) = (ho(d'), b1 (d'))

for somed#d’' € D. As h; is one-to-one we get(y) #c(y'), c|5 is one-to-one and’d is Borel.

As Dy D? C (Ilieg hy)~*(Co) and Dy € (Iiea hy) ' (Gr(c;5)), Co is not separable from Gs)
by a potII?) set. By Lemma 7.20:=C N (0x¢”0) is not separable from Gt;5) by a potII?) set.

e By Lemma 7.5 applied té :=d andé; := ¢’ there aren < p andyy € Yy such that(cc, *c,) (yo)
and(cc;, tc)(yo) are defined and different, which contradicts Lemma 7.7.(f). O

Remark. We recover the algebraic relatiop,,'= g,, o g, if n <p” that was already present in Section
3 of [L5] mentioned just after the statement of Theorem 7.1.

Theorem 7.8 There is no tuple{(Zl-)iez, So, S1), where theZ;’s are Polish spaces an$}), S; disjoint
analytic subsets dfi;c5 Z;, such that for any tupIé(Xi)ieg, By, Bl) of the same type exactly one of
the following holds:

(@) The setB is separable fronB; by a pot A?) set.
(b) The inequality((Zi)ieg, SQ, Sl) C ((XZ‘)Z‘627 BQ, Bl) holds.

Proof. Let us indicate the differences with the proof of Theorem This time, S, is not separable
from S; by a potA?) set.

e Note thatd, =J,,,, Gr(H,), whereH,,: Ny, 0 — N, is a partial homeomorphism with clopen
domain and range. The crucial propertie$9f),c. C 2<% is that it is dense an@d,,| =n. We can eas-
ily ensure this in such away th@ts,, )new and(s2n+1)new are dense. We sét. :=J,,c,, Gr(Hap ).
The previous remark implies that(2«) = B.\ B.. By Lemma 7.6 B is not separable fron; by a
pot(A?) set. So here agaif) 1175, is countable-to-one for eagke 2, andSy, S are locally countable
by Lemma 7.3.
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eLemma7.7 gives atuplé( Nhew Grlcn),2¢),CY, C&) . Note that(( N
satisfies condition (b) in Theorem 7.8.

Gr(cn),2¢), CY, Cg)

new

¢ We change the topology @ into a finer Polish topology so that the setﬁi”OiLi become clopen
and the mapsfﬂoﬁ)*l become continuous. Now

_7_2 _7_2 - N
Dy ND; gBoﬂBlz(B()UA(Qw)) N (BlUA(Qw)):A(2w)
— 2 2 )
So there is a Borel subsét of 2« such thatD, N D; =A(D),andDC ()., f]0;,..

e Let us prove thaD, N D? is not separable fromd; N D? by a potAY) set.

We argue by contradiction, which givésc pot(AY) such thatDy N D2 C PC D?\ D;. The sets
—7-2 —7'2 e . .
Dy N(=Dx2*)andD; N (=D x2¥) are disjoint, pofI{), so that they are separable By in

— 72 — 2
pot(A?). Similarly, there isA, € pot(AY) which separate®, N (2“x-D)from D;" N(2“x-D).
Now

Dy CPU(DyN(=Dx2¥))U(DyN(2x=D)) CPU (AN (=Dx2¥)) U (A, N(2%=D)) C-Dy
which is absurd sinc® U (A; N (=D x2¥)) U (A, N (2 x D)) € pot(AY).
e Let us prove thaD, N D? is not separable from\ (D) by a potII?) set.

We argue by contradiction, which givés< pot(ITY) such thatDy N D2 C Q C D?>\ A(D). The
sets@Q andA(D) are disjoint, poff1{), so that there is? in pot(AY) such that) C R C D*\ A(D).
2 2

The setsD,” N R andD; N R are disjoint, poff1?), so that there isS in pot(A?) such that

___ 2 2
Doy NRCSC R\DlT . But S separate), N D? from D; N D?, which contradicts the previous
point.

e Note that(IL;co h;)[A(D)] € C N CH N (Nhew DOM(cy) x2¢) € Gr(c). We conclude as in the
proof of Theorem 7.1. O
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