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Abstract 

Bayesian analysis is becoming increasingly popular in a number of fields, including 
hydrology. It appears to be a convenient framework for deriving complex models in 
agreement with both physical reality and statistical requirements. The aim of this paper is to 
present an application to the regional frequency analysis of extremes in a non-stationary 
context. A non-stationary regional model is thus proposed, together with the related 
hypotheses. The Bayesian inference of this model is then described. Markov chain Monte 
Carlo (MCMC) methods are needed for this purpose, because of the dimensionality of the 
model, and are described in this paper. The usefulness of such a model is then illustrated on a 
hydrological case study concerning annual maximum discharges of several sites. The 
advantage of regional analysis compared to at-site estimation is thus highlighted. Moreover, 
the Bayesian framework allows for a direct and comprehensive inference based on the 
posterior distribution, and is able to take into account modeling uncertainties, which is 
particularly useful when the stationarity of a series can neither be ensured nor be totally 
rejected. 

 



 - 3 - 

I. Introduction 

Bayesian analysis has become increasingly popular in recent years, and has shown its 

practical benefits in a number of applied problems. As an example, publications dealing with 

Bayesian inference are now usual in the field of hydrology (Coles and Tawn, 1996; Khodja et 

al., 1998; Lu and Berliner, 1999; Perreault et al., 1999, 2000a, b, c; Thyer and Kuczera, 2000, 

2003a, b; Wang, 2001; Thyer et al., 2002; Coles and Pericchi, 2003; Coles et al., 2003; Parent 

and Bernier, 2003; Perreault and Fortin, 2003; Tapsoba et al., 2004; Moyeed and Clarke, 

2005; Reis and Stedinger, 2005; Renard et al., 2006). This popularity can be primarily 

explained by the rediscovery of the usefulness of Markov chain Monte Carlo (MCMC) 

algorithms in the early 1990s (Gelfand and Smith, 1990). The aim of this article will be to 

describe an application of the Bayesian analysis and the MCMC methods to the estimation of 

a regional trend in the distribution of annual maximum discharges of several sites. 

The basis of the Bayesian paradigm is to use the posterior distribution of parameters for 

inference. Suppose X is a vector (or a matrix) of observed data, whose probability distribution 

is parameterized by θ . The parameters are here considered as random quantities. Let ( )π θ  

denote the prior distribution of θ , which reflects the knowledge about the parameters before 

observing the data, and ( | )p X θ  be the likelihood of the data. The posterior distribution is 

then defined by the Bayes relationship: 

( | ) ( )( | )
( | ) ( )

pp
p d

π
π

=
∫

X θ θθ X
X θ θ θ

 (1) 

Except for a small number of dimensions (d≤3), the posterior distribution is not easily 

tractable. First of all, a high dimensional distribution cannot directly be used to simply 

summarize the parameters’ properties. Moreover, the denominator of equation (1), which is 

called the marginal likelihood of observations, can generally not be computed, which means 
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that the posterior distribution is only known up to a constant of proportionality. In order to 

overcome these difficulties, one way is to use a multivariate sample from the posterior 

distribution. Marginal distributions will then be easily estimated using marginal samples, 

leading to classical point, interval or distribution estimates.  

MCMC methods are tools for simulating data from an arbitrary distribution. The principle 

is to create a Markov chain ( )( )tθ  which converges to a stationary distribution that is the 

desired distribution. Some general schemes exist to achieve this simulation, namely the Gibbs 

(Geman and Geman, 1984) and the Metropolis (Metropolis and Ulam, 1949; Metropolis et al., 

1953) samplers. A more general version of the latter is known as the Metropolis-Hastings 

algorithm (Hastings, 1970). The interest of MCMC methods lies in the fact that the preceding 

samplers are usable for sampling from a very wide range of distributions. Despite this quasi-

universality, some problems can arise during the algorithm implementation, in particular 

numerical overflows, slowness of the runs, or difficulties in convergence assessment. The 

books by Gelman et al. (1995) and Tanner (1996) provide some guidelines to improve the 

algorithms’ performances. Recently, El Adlouni et al. (2006) compared different methods to 

check the convergence of the chains. 

An interesting application of the Bayesian framework lies in the estimation of changes in 

hydrological series. For at-site Gaussian data, such an application has been developed by Lee 

and Heghinian (1977) and Bernier (1994). Perreault et al. (2000a; b) generalized this approach 

by dealing with both change detection and frequency analysis in a non-stationary context. 

Renard et al. (2006) adapted the latter approach in the case of extreme data. In some 

situations, it can be anticipated that the cause of change has an impact at a wide spatial scale 

(e.g., climate-related change). In such cases, it would be relevant to search for consistent 

changes within a sample of several sites in a homogeneous region. Perreault et al. (2000c) 

therefore proposed a model for estimating a simultaneous single change in the mean of 
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several Gaussian series. Unfortunately, the adaptation of this approach to the extreme values 

context is far from obvious, both for practical and theoretical reasons. 

The aim of this article is to describe a Bayesian regional model for annual maximum 

discharges in a non-stationary context. It is organized as follows. Firstly, the Bayesian 

framework is described (section 2). Models used at local and regional scales are presented, 

together with the hypotheses we made. The use of the posterior distribution for parameter 

estimation, change detection and frequency analysis is also explained. In section 3, the 

strategy we adopted to sample from the posterior distribution is described, based on the 

combined use of two MCMC algorithms. A hydrological case study involving six gauging 

stations in France is finally presented in section 4, before drawing some conclusions and 

discussing perspectives (section 5). 

All the algorithms used in this study are available at the following address: 

http://www.lyon.cemagref.fr/hh/PNRH-NS/. 

II. Bayesian inference 

II.1. Non-stationary regional model 

Let ( )i
tX  denote the annual maximum discharge of a station i (i=1,…,p) for a year t. 

Extreme value theory provides asymptotic arguments to the use of the generalized extreme 

value (GEV) distribution (Fisher and Tippett, 1928; Jenkinson, 1955), whose probability 

density function (pdf) can be written as follows: 

1 111( ; , , ) 1 exp 1x xGEV x
ξ ξβ βα β ξ ξ ξ

α α α

− ⎧ ⎫
⎡ − ⎤ ⎡ − ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞= − − −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

, 

with 0 and 1 0x βα ξ
α
−⎛ ⎞> − >⎜ ⎟

⎝ ⎠
. 

(2) 
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,   and α β ξ  are the scale, position and shape parameters. In the stationary case, the annual 

maxima series can thus be modeled with the GEV distribution, 

( ) ( )
0~ ( , , ) (  model)i i

t i i iX GEV Mα β ξ . If the stationarity of the series can not be ensured, a 

pragmatic approach suggested by Coles (2001) consists in assuming that for a given year, the 

annual maximum still arises from a GEV distribution, but that the parameters of this 

distribution will be a function of time. In this paper, it will be assumed that the location 

parameter is a function of time, whereas the scale and shape parameters remain constant. This 

leads to the  ( )
1

iM  model, ( ) ~ ( , (1 ), )i
t i i i iX GEV tα β δ ξ+ . Alternative models may be used, 

for instance polynomial trends, step changes, trends on the scale or the shape parameter, etc. 

The methodology presented in this paper can be used for the inference of such models. 

However, because extreme discharges series are known to be affected by a strong natural 

variability together with large measurement uncertainties, we favored a parsimonious 

description of the temporal changes in the annual maxima distribution. 

The approach applied at the regional scale consists in deriving a regional model 

comprising local parameters, which are related to a given site, and regional parameters, which 

are assumed to be equal for all sites within the region, as suggested by Katz et al. (2002). In 

the stationary case, it was therefore assumed that the shape parameter is identical for all sites, 

which leads to the M0 regional model ( ) ~ ( , , )i
t i iX GEV α β ξ . A non-stationary model was 

derived by applying a regional trend to the location parameter, which leads to the M1 regional 

model ( ) ~ ( , (1 ), )i
t i iX GEV tα β δ ξ+ . It should be noticed that the assumptions we made 

about the data distribution, notably the hypothesis of identical shape and trend parameters for 

all sites within the region, may be irrelevant in heterogeneous regions. Methods for creating 

homogeneous regions have been extensively studied (e.g. Hosking and Wallis, 1997, or 
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Ouarda et al., 1999), and will not be described in this paper. However, the adequacy between 

the data and the model will have to be properly checked.  

The estimation of the parameters of the M1 model is the main objective of this paper. For a 

given year, data thus consist of a vector of annual maxima. Consequently, the multivariate 

distribution of this vector will be needed for estimation. Multivariate extreme value 

distributions constitute an area of active research for statisticians, but remain difficult to 

handle in practice, especially with more than two or three dimensions. Although some 

promising approaches have been proposed (Coles and Tawn, 1990; Bortot et al., 2000; Favre 

et al., 2004), this aspect of the problem is beyond the scope of this paper. We thus make the 

hypothesis of independence between stations. As noted by Katz et al. (2002), this should have 

little effect on point estimates, but could result in an underestimation of the parameter 

variances. The effect of ignoring spatial dependence will be discussed in more detail in a later 

section. 

II.2. Bayesian inference 

The first step in performing the Bayesian inference of the M1 model is to compute the 

likelihood. Let ( ) ( )
1,...,( )i i

t t nx ==X  be the column vector of annual maxima for a particular site 

i, and (1) ( )( ,..., )p=X X X  be the data matrix. Let 1 1( , ,..., , , , )p pα β α β ξ δ=θ  denote the 

parameters vector of size 2p+2 arising from the M1 model with p sites. Under the hypothesis 

of spatial independence between sites, the likelihood is computed as follows: 

( )
( )

( )

(1) ( )
1 1

(1) ( )
1 1

1

( )

1 1

( | ) ,..., | ( , ,..., , , , )

,..., | ( , ,..., , , , )

; ( , (1 ), )

p
p p

n
p

t t p p
t

pn
i

t i i
t i

p p

p x x

GEV x t

α β α β ξ δ

α β α β ξ δ

α β δ ξ

=

= =

=

=

= +

∏

∏∏

X θ X X

 (3) 
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The next step is to specify a prior distribution ( )π θ  for the parameters, without using the 

data. Several approaches can be considered for this purpose: prior knowledge of an expert 

(Coles and Tawn, 1996), additional data (Perreault et al., 2000c), empirical relationships with 

explanatory variables (Renard et al., 2006), regional information (Ribatet et al., 2006), etc. 

The lack of information about the phenomenon studied sometimes leads to the use of 

improper priors. However, such distributions can be problematic in the context of Bayesian 

model choice which will be described later. Consequently, it will be supposed in this paper 

that prior information is available and can be translated into a proper prior distribution. 

Given the likelihood of the data and the prior distribution of the parameters, the posterior 

distribution of the parameters can be computed from the Bayes’ theorem (equation 1). 

Because of the limitations explained in the introduction, a sample simulated from this 

distribution using a MCMC algorithm is needed in practice. This sample is used to estimate 

the marginal posterior distribution of each parameter and related characteristics (mean, 

variance, probability intervals, etc.).  

An attractive characteristic of Bayesian analysis is the possibility of computing model 

probabilities. Suppose that { }1 ,..., qM MΛ =  is a collection of models possibly suitable for 

describing the data. Assume that π(.) is a prior probability distribution on Λ, which means that 

a prior probability can be assigned to each model without using the data. The posterior 

probability of a model Mj can then be computed with the Bayes theorem: 

1

( | ) ( )
( | )

( | ) ( )

j j
j q

i i
i

p M M
p M

p M M

π

π
=

=

∑

X
X

X
 

(4) 

This equation requires the computation of the marginal likelihood of observations for each 

model, which is equal to the normalizing factor of equation (1): 
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( | ) ( ) ( | , ) ( | )p M p M d p M M dπ= =∫ ∫X X,θ | θ X θ θ θ  (5) 

As stated previously, this integration is generally intractable with a large number of 

dimensions. Alternative methods therefore have to be used. The approach proposed by Chib 

(1995) was used in this paper, and is described in Appendix 1. 

The posterior probabilities of the models considered can be helpful in a decision-making 

process. Bayes factors (Kass and Raftery, 1995) can be used for this purpose, as they provide 

a measurement of the pertinence of one model compared to another. The Bayes factor 

between model Mi and model Mj is defined as follows:  

,
( | )( | ) ( )

( | ) ( ) ( | )
ii i

i j
j j j

p Mp M MB
p M M p M

π
π

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

XX
X X

 (6) 

This quantity is then compared to 1, with stronger confidence in model Mi for high values. 

Kass and Raftery (1995) furnished guidelines for interpreting Bayes factors, together with 

additional developments. For instance, composite Bayes factors can be used to compare two 

sets of models (e.g. several stationary models and several trend models).  

Hydrologists involved in flood risk assessment are interested in p-quantiles of the annual 

maxima distribution, that is the value which is exceeded with a probability of 1-p. For a GEV 

distribution, the quantile qp can be computed as: 

( )1 ( log( ))pq p ξαβ
ξ

= + − −  (7) 

Given a model Mk, the posterior distribution of the quantile can thus easily be obtained 

from the posterior distribution of the parameters. Of course, in the case of a non-stationary 

model, the quantile posterior distribution will also depend on time. For instance, in the case of 

the M1 model, the p-quantile for a given site i at year t will be:  

( )( ) (1 ) 1 ( log( ))i
p iq t t p ξαβ δ

ξ
= + + − −  (8) 
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An alternative to the selection of a model using Bayes factors or any other criterion is to 

average over all the models considered. This can be done using the following equation: 

1
( ( ) | ) ( ( ) | , ) ( | )

q

p p k k
k

p q t p q t M p M
=

=∑X X X  (9) 

This approach is known as Bayesian model averaging. It allows the uncertainty related to the 

choice of a model to be taken into account. An underlying assumption is that the data arise 

from one of the models considered. Of course, as a model is a simplification of reality, this 

hypothesis is unlikely to be strictly fulfilled. However, by considering contrasting models, a 

more realistic quantification of the uncertainties can be obtained, compared to the approach 

consisting in choosing a single model on the basis of a given criterion. The paper by Hoeting 

et al. (1999) provides a comprehensive review of Bayesian model averaging. 

III. MCMC methods 

The principle of MCMC methods is to create a random walk in the parameters space which 

converges to a stationary distribution that is the joint posterior distribution (Gelman et al., 

1995). Several algorithms have been proposed for this purpose, and have been described and 

compared by Tierney (1994a; b). Whatever the method used, an important feature is to check 

that the algorithm has been run for long enough to ensure the simulated sample to be 

representative of the target distribution. Consequently, the first iterations are usually not used 

for inference, and are considered as burning time. Moreover, the simulated values are not 

independent: a large number of iterations may thus be needed to obtain an acceptable 

accuracy.  

In the following section, the MCMC strategy used in this paper is exposed. ( )p θ | X  

denotes the target posterior distribution of a d-dimensional parameter vector ( )1 ,..., dθ θ=θ . 
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III.1. Use of a combined algorithm 

Metropolis sampler 

The Metropolis algorithm (Metropolis and Ulam, 1949; Metropolis et al., 1953) has been 

widely used in Bayesian applications, because of its simplicity and its efficiency. Its principle 

can be summarized as follows: starting from a vector generated at iteration i-1, a new 

candidate vector is generated thanks to a symmetric jump distribution. If this new vector leads 

to an increasing value of the target distribution, it is accepted as the generated value at 

iteration i. Otherwise, the ratio between the new and the previous value of the target 

distribution is computed, and used as the acceptance probability of the candidate vector. In 

case of rejection, the generated vector at iteration i remains equal to that of iteration i-1. 

The Metropolis algorithm was used in this paper with a Gaussian jump distribution with 

variance matrix Σ . Appendix 2 describes the way the algorithm was implemented. To start a 

Metropolis simulation, a starting point and a jump variance are therefore needed. The choice 

of a suitable starting point can be made in different ways: as an example, if informative priors 

are used, the prior mode can be chosen. Other methods for deriving a rough estimate of the 

posterior mode are available, and are described by Gelman et al. (1995). The choice of a jump 

variance is more delicate and can be problematic in practice, whereas it is the most important 

task to derive an efficient algorithm. More accurately, if the jump variance is too high, most 

of the candidate vectors will be generated far from the high-density area of the posterior 

distribution, thus leading to rejection of the candidate vector. The algorithm will then generate 

a great number of tied values (i.e. successive identical values), and the number of iterations 

necessary to visit the whole parameters space will be unacceptable. Alternatively, with a too 

small jump variance, almost all candidate vectors will be accepted, because each new vector 

will be generated very close to the precedent, leading to a ratio of target distributions close to 

one. Once again, the parameters space will be visited too slowly. 
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Several solutions can be considered for deriving an adequate variance matrix. As an 

example, it may be possible to use the observed Fisher information matrix as a first 

approximation. This may be relevant for large samples, because of the predominant influence 

of the likelihood compared to the prior distribution. Alternatively, if a proper prior 

distribution is specified, it can also be used to approximate the variance matrix. The most 

efficient solution may be to use a Taylor series expansion of the posterior density. However, 

an analytical computation of the derivatives will often be intractable, and numerical 

approximates will have to be computed. 

Gibbs/Metropolis sampler 

In order to overcome these difficulties, a possibility is to modify the characteristics of the 

algorithm during the iterations, by using the previously simulated values. For instance, it may 

be possible to periodically update the variance matrix of the jump distribution. This leads to 

the construction of adaptive algorithms. Gelman et al. (1995) provide some guidelines for this 

purpose. Some examples of adaptive Metropolis samplers can be found in the papers by 

Haario et al. (2001), Thyer et al. (2002) or Marshall et al. (2004).  

The adaptive MCMC algorithm used in this paper is based on the Gibbs sampler (Geman 

and Geman, 1984). This sampling scheme is based on the principle of alternating conditional 

sampling: within an iteration i, each component of the parameters vector is updated 

successively, by sampling in the full conditional densities. More accurately, at iteration i, the 

component q is updated by sampling from the distribution 

( )( ) ( ) ( 1) ( 1)
1 1 1| , ..., , ,..., ,i i i i

q q q dp θ θ θ θ θ− −
− + X . Unfortunately, this full conditional density does 

generally not have the form of a standard distribution. It is thus necessary to add a new 

simulation step for each of the d conditional samplings. Several authors have proposed tools 

for this purpose. As an example, the Griddy-Gibbs sampling algorithm introduced by Ritter 

and Tanner (1992) is based on the inversion of the cumulative distribution function (cdf) of 
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the full conditional distribution, this cdf being estimated on a discrete grid of points. 

Alternatively, Gilks and Wild (1992) proposed using an acceptation-rejection (AR) method to 

sample from log-concave full conditional distributions, or the joint use of AR and Metropolis-

Hastings algorithms if the log-concavity cannot be ensured (Gilks et al., 1995). 

The approach applied in this paper is based on the suggestion of Gelman et al. (1996) and 

Coles and Tawn (1996) to use a Metropolis algorithm on the one-dimensional distribution 

( )( ) ( ) ( 1) ( 1)
1 1 1| , ..., , ,..., ,i i i i

q q q dp θ θ θ θ θ− −
− + X . If a univariate Gaussian distribution is used as the 

jump distribution, a jump variance is needed at each iteration of the Gibbs algorithm, and for 

each of the d conditional samplings. Choosing a constant jump variance for each conditional 

sampling may lead to a poor performance of the algorithm. Moreover, given the large number 

of Gibbs loops, it is not possible to manually check the convergence of the one-dimensional 

Metropolis runs. An automated procedure is therefore needed to compute an adequate jump 

variance for each conditional distribution. 

To this end, it is possible to use the assumption that the distribution to sample from is 

roughly normal. This is not a drastic restriction in the Bayesian context, because the posterior 

distribution is asymptotically Gaussian under some regularity conditions. It is then possible to 

use the following property of the multivariate Gaussian distribution: the full conditional 

distribution is still Gaussian, and its variance does not depend on the values used for 

conditioning. This implies that, for each parameter, the variance can be transmitted between 

two iterations of the Gibbs algorithm. Moreover, this variance can be updated after each 

Metropolis run, in order to comply with an adequate acceptance rate. Gelman et al. (1995) 

recommended keeping the acceptance rate between 0.23 with a large number of dimensions 

(d>5) and 0.44 (d=1). Consequently, at the end of each one-dimensional Metropolis run, the 

acceptance rate τ  is computed on the generated values. If 0.44τ > , the jump variance is 

increased in order to decrease the acceptance rate. Similarly, if 0.23τ < , the jump variance is 
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decreased. This leads to the implementation of an adaptive Gibbs/Metropolis sampler, which 

is described in Appendix 3.  

Compared to the Metropolis sampler, this adaptive algorithm has a larger complexity. In 

order to simulate a sample of length N, the Metropolis sampler will thus execute N loops 

including computations of the target distribution, while this number will be dNMetroN for the 

Gibbs/Metropolis sampler, where NMetro is the length of the one-dimensional Metropolis runs. 

However, it is anticipated that the adaptation rules will improve the efficiency of the 

algorithm, by decreasing the sensitivity to starting point or jump variance misspecification.  

Combining samplers 

Although very useful from a practical point of view, adaptive algorithms suffer from an 

important theoretical drawback: because the Markov chain properties of the simulated values 

are changed during the iterations, the stationarity of the target distribution is no longer 

ensured and has to be proven. Examples where an adaptive algorithm fails to generate values 

from the desired distribution have been provided by Tierney and Mira (1999) or Haario et al. 

(2001). At the opposite, the latter authors succeed in establishing the correct ergodic 

properties of their AM adaptive sampler. The adaptive Gibbs/Metropolis used in this paper 

was empirically tested on a number of cases, and gave so far acceptable results. However, we 

are not able to prove its ergodic properties. 

Based on these considerations, should the use of adaptive algorithms be avoided? Actually, 

a number of such algorithms have been developed (Gilks and Wild, 1992; Roberts and Gilks, 

1994; Gilks et al., 1995; Tierney and Mira, 1999; Haario et al., 2001, 2005) and have given 

acceptable results in most applications. As an illustration, Haario et al. (2001) noted 

concerning their adaptive AP sampler that “for many practical applications, the error 

produced by the AP algorithm is, however, ignorable”, although a counter-example can be 

constructed. Nevertheless, in order to avoid errors due to particular target distributions, the 
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following two-step procedure was adopted: the adaptive Gibbs/Metropolis algorithm is first 

used for a limited number of iterations. The simulated values are then used to compute a mean 

vector µ  and a variance matrix Σ , but will not be used for inference. As a second step, a 

traditional Metropolis algorithm without adaptation, whose starting point is equal to µ , is 

used in order to simulate the sample which will be used for inference. The jump distribution is 

a Gaussian distribution with variance matrix ²c Σ , with 2.4 /c d= , as suggested by Gelman 

et al (1995). Because no adaptation is made on this latter sampler, the theoretical properties of 

the simulated Markov chain are ensured. 

III.2. Influence of starting characteristics on algorithm performance 

The aim of this section is to highlight some properties of the Metropolis, the adaptive 

Gibbs/Metropolis and the combined samplers previously described, based on simplified target 

distributions. This comparison does not aim at deriving general conclusions about the sampler 

performances, but just at illustrating some issues which can be encountered in practice.  

Samples were generated from the three following target distributions: 

9 1 1 5 1( ,..., ) ( ) ( | ; )f x x f N= =x x 0 Σ , where the variance matrix has the form 

| |( , ) 0.8 i ji j −=Σ , for , 1,...,5i j = .  

9 { }
5

6 5
2 1 5

1
( ,..., ) [1 0.2 ] exp [1 0.2 ]i i

i
f x x x x− −

=
= + − +∏ , i.e. f2 is a multivariate distribution 

with independent GEV marginal distributions, whose location parameters are 0, scale 

parameters are 1 and shape parameters are –0.2. 

9 3 1 5 3( ,..., ) ( ) 0.5 ( | ; ) 0.5 ( | ; )f x x f N N= = +x x 0 I x 8 I , i.e. f3 is a mix of two 

multivariate normal distributions with independent marginal distributions and mean 

vectors equal to 0=(0;0;0;0;0) and 8=(8;8;8;8;8). 
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Inadequate starting characteristics were specified in order to evaluate the samplers’ 

robustness. Starting vectors are equal to -10 for the f1 and f3 distributions, and –4 for the f2 

distribution (in order to ensure that 1 0x βξ
α
−⎛ ⎞− >⎜ ⎟

⎝ ⎠
). The variance matrix Ω  of the 

Gaussian jump distribution used in the Metropolis algorithm is equal to: 

0.01 0 0 0 0
0 0.1 0 0 0
0 0 1 0 0
0 0 0 10 0
0 0 0 0 100

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Ω  (10) 

In this way, some components will have an underestimated variance, and some others an 

overestimated one. Similarly, the starting variances used in the Gibbs/Metropolis sampler are 

equal to (0.01;0.1;1;10;100). 

The Metropolis algorithm was used to simulate 50 000 values from the target distribution. 

The first 20 000 iterations were considered as burning time. The remaining 30 000 values 

were then used for inference. The Gibbs/Metropolis algorithm was used with NMetro=100, and 

a sample of length 5000 was simulated, with 2000 iterations of burning time. The 

combination of these two samplers was made as follows: the Gibbs/Metropolis sampler was 

used during 1000 iterations, with the starting points and the jump variance previously 

described. The mean vector and the variance matrix were then computed on the last 500 

values, and used to derive the starting point and the variance matrix of the jump distribution 

of a Metropolis algorithm. 50 000 values were thus simulated, and the last 30 000 were used 

for inference. 

The results presented in Figure 1 are related to the first components of the target 

distributions, whose jump variances were strongly underestimated. In the Metropolis case, it 

can be observed that the simulated values are a very poor representation of the expected 

distributions. In fact, both the burning time and the number of iterations are too low to 



 - 17 - 

provide an adequate description of the target distribution, because of the small size of the 

jumps. Thereby, for the f1 distribution, the chain is still influenced by the too low starting 

value. In the f2 case, the algorithm seems unable to sample a value from the tail of the 

distribution. In the f3 case, the algorithm is locked up in the first mode, which can be 

explained by the fact that the jump variance is too low to be able to reach the other mode with 

a significant probability. In contrast, the samples arising from the adaptive Gibbs/Metropolis 

algorithm provide an adequate representation of the three target distributions. Consequently, 

the combined algorithm appears useful for overcoming the issues observed with the 

Metropolis sampler for the f1 and the f2 distributions. The f3 case is more mitigated: although 

the combined algorithm is able to sample in the two modes of the target distributions, the 

accuracy of the estimates is not satisfactory. This accuracy is however likely to be enhanced 

by increasing the number of iterations of the Metropolis part of the combined algorithm. 

Similarly, results for the last components of each target distribution, whose jump variances 

were strongly overestimated, are presented in Figure 2. In the Metropolis case, the influence 

of the starting value is still observable for the f1 target distribution. The fact that the marginal 

distributions are strongly positively correlated can explain this phenomenon: while the first 

components remain in the left tail of the distribution because of a too low jump variance, the 

other components are unlikely to reach the center or the right tail of the distribution. 

Conversely, in the f2 and the f3 cases, the values simulated with the Metropolis algorithm 

provide an adequate representation of the target distributions. Once again, the 

Gibbs/Metropolis sampler behaves satisfactorily, whatever the target distribution considered, 

while the accuracy of the values simulated by the combined sampler is adequate in the f1 and 

the f2 cases, but is not satisfactory with the f3 distribution. 

These results show that the combined sampler is able to overcome some issues observed 

with a simple Metropolis algorithm, by deriving acceptable starting characteristics. However, 
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because the inference will still be conducted using a Metropolis sample, the limitations related 

to the use of a Gaussian jump distribution may remain. As an illustration, the shape of the 

strongly multimodal distribution f3 is too different from that of the jump distribution, which 

prevents the algorithm from behaving satisfactorily. A more subtle implementation, including 

a non-Gaussian instrumental distribution, is thus necessary to avoid these problems. 

Consequently, the Metropolis-Hastings algorithm is likely to be a more suitable tool in this 

case, because of the possibility of using an asymmetrical jump distribution. Moreover, this 

example also emphasizes the importance of monitoring convergence of the chain, preferably 

by several methods, as suggested by El Adlouni et al. (2006). In a real-life problem, as the 

target distribution would be unknown, a convergence assessment based on a single chain is 

likely to arrive at a false convergence in the case of a sampler locked up in one of the two 

modes. Conversely, by using several independent chains, obtained with overdispersed starting 

points (Gelman et al., 1995), the existence of several modes is more likely to be detected. 

IV. Case study 

IV.1. Data and prior elicitation 

Six undisturbed hydrological stations located in the center of France were used (Figure 3). 

A description of the general characteristics of the watersheds is provided in Table 1. Daily 

discharges are available for various periods. Only years for which all series are free from 

missing values were considered, which leads to 34 years of data between 1961 and 2002, with 

1981, 1982, 1983, 1988, 1992, 1996, 1997 and 2001 as missing years. For each station, the 

annual maximum value is extracted from the daily discharges series. 

The M1 model detailed in section II.1 is used to describe these data, with a minor 

modification to account for the beginning of the study period: 

( ) ~ ( , (1 ( 1960)), )i
t i iX GEV tα β δ ξ+ − . A prior distribution is specified as follows. Firstly, 
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empirical knowledge is used for the regional parameters. The shape parameter is assumed to 

follow a Gaussian distribution with zero mean and standard deviation 0.3, which implies that 

the interval [-0.6;0.6] encompasses more than 95% of the density. This prior distribution can 

be compared with the Martins and Stedinger (2000) geophysical prior, which is less variable 

and is entirely included in the interval [-0.5;0.5]. We also assume that the regional trend 

parameter follows a Gaussian distribution. Because no evidence of climate-related changes 

has been reported for high flows in France, the mean is set to zero. Moreover, we consider 

that it is very unlikely that a change of more than 100% could have affected the location 

parameter , (1 ( 1960))j t j tβ β δ= + −  between 1960 and 2000. More accurately, the prior 

variance is computed in order to meet the following specification: 

( )
( )

,2000 ,1960

,1960
Pr 100% 0.95

(1 (2000 1960)) (1 (1960 1960))
Pr 100% 0.95

(1 (1960 1960))

Pr 40 100% 0.95

Pr 1/ 40 0.95

j j

j

j j

j

β β
β

β δ β δ
β δ

δ

δ

⎛ ⎞−
⎜ ⎟≤ =
⎜ ⎟
⎝ ⎠

⎛ ⎞+ − − + −
⎜ ⎟⇔ ≤ =
⎜ ⎟+ −⎝ ⎠

⇔ ≤ =

⇔ ≤ =

 (11) 

This leads to the prior standard deviation for δ being set to 1/80, so that the change in 40 

years, expressed as a percentage, lies in the interval [-100%;100%] with a probability larger 

than 0.95.  

Empirical knowledge for the local location and scale parameters is harder to derive, 

because these parameters are more closely related to the specific characteristics of the 

watershed (area, topography, geology, etc.). Consequently, the data derived from non-shared 

years are used for this purpose. Maximum likelihood (ML) estimates of the local stationary 

GEV distributions are computed. Because of the limited sample size available for some sites, 

the use of the Fisher information matrix to derive the distribution of the estimates may lead to 
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biased results. Consequently, bootstrap samples of length 10 000 were generated for each site, 

and a Gamma distribution was fitted to the sample of ML estimates obtained: 

( ) 1; , exp( ),  0
( )

a
abGa x a b x bx x

a
−= − >

Γ
 (12) 

Table 2 gives details of the values obtained, and the number of data available for prior 

elicitation. 

Finally, the prior independence of all parameters is assumed, which leads to the following 

prior distribution: 

( )( ) ( ) ( )
1 1 6 6

6
22 ( ) ( ) ( ) ( )

1

( ) ( , ,..., , , , )

( ;0,0.3 ) ;0, 1/ 80 ; ,  ; ,j j j j j j
j

N N Ga a b Ga a bα α β β

π π α β α β ξ δ

ξ δ α β
=

=

= ∏

θ
 (13) 

MCMC simulations were performed on the non-normalized posterior distribution 

( | ) ( )p πX θ θ  using NGibbs=1000 iterations of the Gibbs/Metropolis sampler (NMetro=100) 

followed by Niter=100 000 iterations of the Metropolis one, as explained in section III. For 

each parameter, the starting point was set to the prior mean and the starting variance was set 

to the prior variance, which allows the first 1000 Gibbs/Metropolis iterations to be performed. 

The Metropolis sampler was then used with a starting point and a starting variance matrix 

derived from the last 500 Gibbs/Metropolis iterations. 

IV.2. Assessment of MCMC runs convergence 

As a first step, convergence of the MCMC simulations toward the posterior distribution has 

to be assessed. Unlike section III.2, the target distribution is here unknown, thus preventing 

any conclusion to be made concerning convergence by simply examining a single output of 

the MCMC runs. Gelman et al. (1995) suggested using parallel simulations performed with 

different starting points. Ten Gibbs/Metropolis simulations of length 1000 were thus used 

with overdispersed starting points. Figure 4 shows the random walks of parallel sequences in 
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the planes formed: (a) by scale and position parameters of the first station and (b) by shape 

and trend regional parameters. It can be observed that simulated points join the same area 

after a few iterations, which indicates that mean and variance characteristics computed from 

the last 500 Gibbs/Metropolis iterations will give rather good starting characteristics for the 

subsequent Metropolis iterations.  

In order to quantify the minimum number of iterations needed to reach convergence, the 

approach suggested by Gelman et al. (1995) was applied. It is based on the computation of the 

R̂  statistic, where R̂  estimates the ratio of total variance by within-sequences variance. If 

convergence is reached, then the between-sequences variance should be negligible, thus 

leading to a ratio close to one. For a simulation of length n, this ratio is estimated thanks to 

the second half of simulated values. Figure 5a shows the results for the 4 preceding 

parameters. It confirms that the Gibbs/Metropolis algorithm is very fast in reaching 

convergence, as the R̂  statistic declines to an acceptable value with only 50 iterations 

(values below 1.2 are usually considered as acceptable). Because only the last 500 generated 

values will be used for computing the mean and the variance matrix, it can be considered that 

these estimates will be adequate as starting characteristics of the subsequent Metropolis 

iterations. 

Once this first step has been achieved by Gibbs/Metropolis sampling, additional 

Metropolis runs have to be performed. A high number of values is required here, firstly 

because of the tied values generated, secondly because this sample will be used to perform the 

inference on the posterior distribution. Once again, the approach of Gelman et al. (1995) was 

applied, with ten overdispersed starting points, and a starting variance matrix computed on the 

last 500 Gibbs/Metropolis iterations. Figure 5b shows the value of the R̂  statistic for 

different run lengths. After 9000 iterations, it can be considered that convergence is reached. 

As the total number of iterations is equal to 100 000, this will give a sufficient number of 
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values to perform inference on quantities of interest. More accurately, the following 

computations will be performed with the last 50 000 generated values. 

IV.3. Regional trend estimation 

Figure 6 shows the estimated posterior marginal distributions of two local parameters, 

namely the scale and the location parameters of the first station. Vertical lines represent 

locally-estimated parameters using the maximum likelihood method on the shared 34 years, 

and the thin lines represent the prior distributions. It can be observed that the results are 

consistent for the two parameters, although the Bayesian estimate of α1 is larger than the 

corresponding ML-estimate, because of the influence of the prior distribution. Moreover, the 

posterior distribution of α1 shows a slight departure from normality, which can easily be taken 

into account with the Bayesian framework, because no Gaussian asymptotic assumption is 

made. Figure 7 deals with the two regional parameters. Local and regional estimates are 

consistent for the trend parameter δ  (right panel), which indicates that the assumption of a 

shared regional trend is plausible. This is also illustrated by Figure 8, which shows for each of 

the six stations the 34 years of data used for inference, together with the estimated regional 

trend. Moreover, the variance of the regional parameter is small compared to the range of 

locally-estimated values. This indicates that such a regional model is likely to reduce the 

estimation uncertainty. Focusing on the shape parameter estimate ξ , the assumption of an 

identical shape parameter over the region may appear doubtful (Figure 7, left panel). 

However, only the point estimates are shown, and the uncertainty is known to be very large 

for this parameter, especially with only 34 data points. 

In order to derive a more accurate comparison between local and regional estimates, the 

posterior distribution in the regional model is compared to the posterior distributions of the 
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local models ( )
1

iM . The prior distributions are specified as explained in section IV.1, which 

means that for a particular site i: 

( )( ) ( ) ( )22 ( ) ( ) ( ) ( )

( ) ( , , , )

( ;0,0.3 ) ;0, 1/ 80 ; , ; ,

i i i i

i i i i i i i iN N Ga a b Ga a bα α β β

π π α β ξ δ

ξ δ α β

=

=

θ
 (14) 

For each site, MCMC simulations are performed on the non-normalized posterior 

distribution ( | ) ( )p πX θ θ , as explained in section IV.1: the starting point and the starting 

variances of the Gibbs/Metropolis sampler are derived from equation (14) as the prior means 

and variances of each parameter. After 1000 iterations, the empirical mean and the empirical 

variance matrix are computed from the last 500 generated values, and are used to derive the 

starting characteristics of the Metropolis sampler, which will be run for 100 000 iterations. 

Figure 9 shows the box plots of the local trend and shape parameters, compared with the 

regional ones. Boxes extend from the first up to the third quartile, and the median is denoted 

by a line inside the box. The whiskers denote the quantiles with probabilities 0.05 and 0.95. 

The median values obtained for the shape parameters display a variability which is 

comparable to that obtained with the ML-estimates (vertical lines of Figure 7). However, the 

great uncertainty associated with the estimation of this parameter implies that all the 90% 

probability intervals are overlapping. A more complete investigation is therefore needed in 

order to evaluate the plausibility of the hypothesis of a regional shape parameter: this will be 

done in the next section IV.4. By contrast, the estimated median values of the trend 

parameters seem more consistent for the six stations. However, the uncertainty associated 

with each of the six at-site estimates remains strong, which explains the difficulty of detecting 

a trend in extreme data. For both parameters, the posterior variability of the regional estimates 

is strongly reduced compared to the local estimates: this emphasizes the benefit of a regional 

model, which increases the estimates precision by combining data from different locations. 
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This benefit may need to be mitigated by the assumption of independence between stations, 

which was made for convenience. This issue will be addressed in the discussion section. 

IV.4. Model checking 

In order to assess the plausibility of the hypotheses used to construct the 1M  model (GEV 

distribution, regional trend and shape parameters, independence between stations), the present 

section compares the posterior predictive distribution to the observed distribution of the data. 

If the model is appropriate, a new sample of data simulated from this model should be similar 

to the observed data. More accurately, a sample can be replicated from the posterior 

predictive density, which is defined as follows:  

( | ) ( | ) ( | )p p p d= ∫y* X y* θ θ X θ , (15) 

where y* is an unknown but observable future value. By simulating a large number of 

samples arising from the model, the observed data can thus be located within the overall 

distribution of data that could have been observed (Gelman et al., 1995). In order to quantify 

how different the observed and the replicated data are, both having an identical sample size, 

the characteristics of their distributions are summarized in a test statistic T(y). It is then 

possible to compute the p-value corresponding to the observed statistic T(X), once replaced in 

the sample of ( )( )
1,...,

( )
rep

r
r N

T
=

y  replicated from the posterior predictive distribution. More 

accurately, this p-value is estimated as the proportion of ( )( )
1,...,

( )
rep

r
r N

T
=

y  which exceeds the 

observed statistic T(X). An extension of this method involves discrepancy measures, i.e. 

statistics depending both on the data and parameters, rather than classical test statistics. 

In the present case study, the problem is multivariate. The computation of the p-values will 

thus be made for each station. The choice of the test statistic has to reflect the departures from 

the model that can be expected. In the present case study, the main hypotheses are as follows: 
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9 The local data follow a GEV distribution: this is a standard hypothesis when 

dealing with block maxima, because this distribution arises from extreme value 

theory. Test quantities related to the first three empirical moments are computed, 

namely the empirical mean, standard deviation and skewness. 

9 All the shape parameters are identical: this implies that all sites should have a 

comparable tail behavior. The skewness, which only depends on the shape 

parameter for GEV data, will be a first indicator. The maximum value of the 

sample is also computed, because it is very sensitive to the value of the shape 

parameter. 

9 All the stations are affected by a common trend: Kendall’s tau coefficient between 

time and annual maxima is computed. 

9 The stations are independent: Kendall’s tau coefficient between the annual maxima 

of two sites is derived. 

The results are presented in Table 3. Values smaller than 0.05 or larger than 0.95 are 

denoted by an asterisk. The first three moments of the generated data are consistent with the 

observed ones. Moreover, the skewness and the maximum have acceptable p-values, which 

indicates that the regional shape parameter hypothesis is compatible with the observations. 

The regional trend hypothesis seems acceptable for five of the six stations. At the first station, 

the observed values lead to a larger trend than that simulated by the model. In contrast, the 

independence between stations is clearly doubtful: as an illustration, three of the five 

Kendall’s tau coefficients between the first station and the others have a p-value smaller than 

0.05. This is not surprising, as choosing a homogeneous region generally implies selecting 

dependent sites. The potential effect of this hypothesis, which is made for convenience, will 

be addressed in the discussion section.  
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IV.5. Frequency analysis 

Although the model seems acceptable for describing the data, this does not imply that other 

models would not be able to do as well. The regional trend model M1 is therefore compared 

with the corresponding stationary model M0, which means that at-site annual maxima are 

assumed to arise from stationary GEV distributions, ( ) ~ ( , , )i
t i iX GEV α β ξ . 

Marginal likelihoods were first computed for models M0 and M1, thanks to the Chib 

approach presented in Appendix 1. The logarithm of the marginal likelihood was 

approximately equal to –863.2 for the stationary model and –859.8 for the regional trend 

model. Secondly, when equal prior probabilities for each model were assumed, the posterior 

probabilities were equal to (Equation (4)): 

0
0

0 1 1 0

1

0.5 ( | ) 1ˆ ( | ) 0.03
0.5 ( | ) 0.5 ( | ) 1 exp(log ( | ) log ( | ))

ˆand ( | ) 0.97

p Mp M
p M p M p M p M

p M

= = ≈
+ + −

≈

XX
X X X X

X
(16) 

The model assuming a consistent regional trend has a high probability, which means that a 

stationary regional model is far less suitable for describing these data. The Bayes factor 

between the two models is thus approximately equal to 30, which suggests, according to the 

scale of Kass and Raftery (1995), a strong evidence for the regional trend model. 

The posterior distribution of the 0.9-quantile was then derived for each of the six sites, by 

using the model averaging procedure described in section II.2. The temporal changes in the 

posterior means are shown in Figure 10, together with 90% probability intervals. The quantile 

has decreased by approximately 10% for these six stations between years 1960 and 2000. 

Extrapolation to the future has to be considered with caution, because it implicitly assumes 

that the estimated trend will persist for ever. If the cause of the change is suspected, the use of 

a more suitable covariate than time may be able to deliver more realistic extrapolations. 
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The frequency analysis obtained with a regional model was finally compared with local 

analyses performed on each site. More accurately, for a given site i, the posterior distributions 

of the parameters in models ( )
0
iM  and ( )

1
iM  were estimated, leading to the posterior 

probabilities of each model and to the related Bayes factor. The results are presented in Table 

4. It can be observed that the posterior probability of the stationary model remains far from 

zero or one, which indicates that at the at-site scale, there is no clear evidence for one model 

or the other. Consequently, Bayes factors are close to one, except for site 6, where the 

evidence for stationarity can be considered as “positive”, according to the scale of Kass and 

Raftery (1995). This result emphasizes the advantage of regional analysis: by increasing the 

accuracy of regional estimates, several weak but consistent changes within a homogeneous 

region can result in a regional trend with high significance. The temporal changes of the 0.9-

quantile were also studied at the local scale, and are shown in Figure 11. Bayesian model 

averaging is especially useful in this case: because of the difficulty of choosing between the 

two concurrent models, it leads to a more realistic quantification of the uncertainties, 

especially when extrapolating to the future. Compared to the quantiles obtained with the 

regional model, the probability intervals are thus wider, which reflects the stronger 

uncertainty related to local estimates. It can also be noticed that the posterior mean values of 

the quantiles obtained with the regional model remain inside the probability intervals obtained 

with the local models: regional and local estimates are thus consistent, which illustrates the 

adequacy of the regional model to describe these data. 

IV.6. Discussion 

The preceding case study provides an illustration of the usefulness of the Bayesian 

framework and the MCMC methods for the estimation of complex models. Estimation and 

detection of a trend in extreme data is generally acknowledged to be a difficult problem, 

because of the strong variability of such variables. The approach proposed here uses the 
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paradigm of regional analysis, which maintains that the estimation can be improved by 

gathering data from several sites in a homogeneous region. The more basic regional 

estimation scheme is based on the well-known index flood method (Dalrymple, 1960): within 

a homogeneous hydrological region, all scaled annual maxima series are assumed to have the 

same distribution. In practice, scaling is performed by dividing data by the sample means, as 

an example. In a second step, a unique distribution is fitted to this sample of normalized data. 

Unfortunately, this method implies a strong underestimation of the uncertainties. The 

alternative method is to translate the index flood assumption onto the local distributions 

parameters, as suggested by Katz et al. (2002). An example of such a study can be found in 

Buishand (1991), who used a two-steps estimation procedure. A more efficient estimation 

scheme would be to simultaneously estimate all parameters, which can be done by means of 

MCMC methods. 

Moreover, a common drawback of almost, if not all the regional methods for extremes in 

hydrology, is that the spatial dependence of the data is ignored. This issue has been addressed 

by several authors, namely by Stedinger (1983), Hosking and Wallis (1988; 1997), or Madsen 

and Rosbjerg (1997). All these studies aim at quantifying the effect of inter-site dependence 

on the estimates’ accuracy, rather than including it in a formal statistical model. A shared 

conclusion is that the existence of spatial dependence increases the variance of the estimates, 

but leaves the bias unchanged. Moreover, the estimates accuracy, in terms of RMSE, remains 

larger in the case of a regional analysis with dependent sites than in the case of at-site 

analysis. This conclusion is even valid in moderately heterogeneous regions, i.e. regions 

where the regional distribution is mis-specified. However, these conclusions have to be 

mitigated in the present case study. First of all, these authors used a different estimation 

method, namely the probability-weighted moments or the L-Moments. Secondly, these results 

have been obtained using Monte Carlo simulations, and their validity needs to be verified in 
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other simulation contexts. More accurately, dependent data have been simulated with a 

Gaussian copula: a multivariate Gaussian data set is first generated, and marginal data are 

transformed in order to fit an extreme value distribution. Although this dependence structure 

seems well-supported by some real-world data, it can not be considered as universal: for 

instance, Hosking and Wallis (1988) provide an example where very high flood events are 

more dependent than moderate ones. They explain this structure by the tendency of extreme 

floods to be generated by meteorological conditions that affect large areas. Based on a 

simulation study which mimics this structure, they found that the loss of accuracy is larger 

than in the case of the constant correlation produced by the Gaussian copula. Notice that in 

some regions, the opposite structure might be observed (smaller dependence for very high 

flood events), because of the tendency of extreme floods to be generated by convective 

storms, which only affect a limited area. Finally, a major difference between these studies and 

the case study presented in this paper is the existence of a trend. This additional parameter has 

a strong variability, which may affect the influence of the spatial dependence. Consequently, 

additional studies involving contrasting dependence structures in a non-stationary context 

would be of great interest. 

V. Conclusion and perspectives 

The aim of this article was to explore a non-stationary regional model for describing 

annual maximum discharges of several gauging stations within a homogeneous region. The 

estimation of the parameters was achieved by means of the Bayesian framework and MCMC 

methods, which are convenient tools for overcoming the issues related to such complex 

models. 

The regional approach adopted in this study consists in considering that some parameters 

should be identical for all sites within the region. The existence of such regional parameters 
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can be viewed as a consequence of standard regional methods (e.g. the index flood method). 

A regional model has the advantage of avoiding a normalization step, which leads to an 

underestimation of the uncertainty. Moreover, in a non-stationary context, prior beliefs about 

the structure of a change are often available. For instance, if a change is related to a large-

scale climatic phenomenon, it is natural to search for consistency within a homogeneous 

region. Finally, from a statistical point of view, regional analysis is a way of decreasing the 

estimation uncertainties, by combining data from different locations. This is particularly 

useful in the case of extreme value models, whose parameters are known to be particularly 

difficult to estimate. The case study described in this paper illustrates the benefit of a regional 

inference compared to at-site analyses, especially in terms of trend detection. 

The Bayesian framework appears as a suitable method for the inference of this kind of 

model, because it presents several advantages compared to classical likelihood-based 

approaches. Firstly, the prior distribution is a convenient way to incorporate all the available 

data and knowledge in the analysis. Secondly, the posterior distribution allows a complete and 

comprehensive inference to be derived, without using any asymptotical assumption, which 

may be irrelevant for small samples. Moreover, in the case of extreme value distributions, the 

end-point of the density is a function of the parameters, because of the condition 

1 0x βξ
α
−⎛ ⎞− >⎜ ⎟

⎝ ⎠
. Consequently, some parameter values are incompatible with the data. A 

blind application of the asymptotic normality argument may thus lead in some cases to the 

assignment of a significant non-zero density to impossible parameters values. This drawback 

does not exist in the Bayesian framework, because the posterior density would be strictly 

equal to zero for such parameter values. Finally, an interesting characteristic of the Bayesian 

analysis is the possibility of taking into account modeling uncertainties thanks to the Bayesian 

model averaging approach. 
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In spite of these advantages, the development of Bayesian models used to be limited by 

numerical difficulties. Much progress on MCMC methods has been achieved since then, and 

has provided a number of tools for overcoming the numerical issues. Consequently, MCMC 

methods can find applications in a very wide range of situations, and are especially useful in 

problems with a large number of dimensions, where standard optimization methods can fail. 

However, some care is needed in order to assess the algorithms’ convergence or to prevent 

numerical errors. Accordingly, the use of MCMC methods requires familiarity with the 

algorithms’ functioning, as using them as a “black box” tool can lead to misinterpreted 

results. In this paper, both an adaptive sampler and a Metropolis algorithm were used. The 

adaptive Gibbs/Metropolis algorithm might suffer from theoretical limitations, and should 

therefore be used with caution.  

The usefulness of the regional model studied in this paper has been illustrated by the case 

study. However, several improvements may be achieved, in order to consider less restrictive 

hypotheses. Firstly, the equality of some parameters over the whole region is a strong 

assumption. A more plausible hypothesis consists in assuming that such parameters are the 

realization of a spatial process. In this way, these parameters do not need to be equal 

anymore, but should respect structural relationships which ensure smooth variations in the 

region. Once again, the Bayesian approach is a suitable tool for deriving such models, by 

means of a Bayesian hierarchical model. Perreault (2000) developed this approach in the 

Gaussian case in order to model consistent step-changes in several sites. The model proposed 

by Cooley (2005) is a hierarchical regional model for extreme precipitations, where the 

variation of the parameters in the region is viewed as the result of a spatial process, which 

includes covariates such as altitude. The application of this kind of model to a non-stationary 

context would be a very interesting development. 
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As discussed in the case study, the spatial independence hypothesis is also a restrictive 

assumption, whose impact is not obvious to anticipate, especially in a non-stationary context. 

A major improvement would thus be to model dependence explicitly. Unfortunately, a 

number of problems still remain from a theoretical point of view in the case of extreme data. 

Multivariate models for extremes are still challenging, as most of the existing approaches are 

based on a too poor description of dependences, or are too difficult to handle in real-life 

problems. Specific methods have thus been studied for modeling spatial extremes (Schalther 

and Tawn, 2003; Naveau et al., 2005; De Haan and Pereira, 2006). It has to be explored how 

these approaches can be included in regional models.  

More generally, recent developments in statistics of extremes provide a number of tools for 

hydrological applications. Deriving adequate and explicit statistical models together with 

convenient inference methods is likely to comply with more statistical rigor and to greatly 

improve the description of hydrological phenomena. 
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Appendix 1: the Chib method 
Marginal likelihood estimation will be based on the following observation, which holds for 

every 1( ,..., )dθ θ=θ  where π  and p are defined: 

( ) ( | ) ( )( | )
( | ) ( | )
p fp M

p p
π= =θ X θ θX

θ X θ X
 (17) 

In this equation, f is the non-normalized target distribution, which can always be computed 

at an arbitrary θ . The problem thus consists in estimating the posterior density of θ , by using 

samples generated by MCMC methods.  
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Chib (1995) proposed using the following equation: 

* * * * * * * * *
1 1 2 1 1 2 1

* * *
1 1

( ,..., | ) ( | ) ( | , )... ( | , ,..., , )

... ( | ,..., , )

d q q

d d

p p p p

p

θ θ θ θ θ θ θ θ θ

θ θ θ

−

−

=

×

X X X X

X
, (18) 

where * * *
1( ,..., )dθ θ=θ  is a given parameter vector with dimension d, preferably lying in a 

high density area. Each of the terms in equation (18) is a marginal density: for instance, 

* * * *
1 2 1( | , ,..., , )q qp θ θ θ θ − X  is the first marginal of the multivariate distribution 

* * *
1 1 2 1( , ,..., | , ,..., , )q q d qp θ θ θ θ θ θ+ − X , evaluated at *

qθ . MCMC methods can therefore be 

applied to the non-normalized posterior density with the first q-1 components being fixed, that 

is * * *
1 2 1 1( , ,..., , , ,..., )q q q df θ θ θ θ θ θ− + , in order to generate a sample from this distribution. The 

problem then reduces to univariate density estimation using a sample of values. In this paper, 

a Gaussian kernel is used for this purpose. 

Appendix 2: the Metropolis sampler 
The Metropolis sampler was implemented as follows: 

9 Choose a starting point (0)θ  and a variance matrix Σ . 

9 Do 1,..., iteri N=  

9 Generate a candidate vector * ( 1)~ (. | , )iN −θ θ Σ  

9 If * ( -1)( ) ( )ip p≥θ | X θ | X , set ( ) *i =θ θ , else accept the candidate vector 

( ( ) *i =θ θ ) with probability 
*

( 1)
( | )

( | )i
pr

p −= θ X
θ X

 or reject it ( ( ) ( 1)i i−=θ θ ) with 

probability 1-r.  

In order to avoid numerical overflows, it is useful to consider the logarithm of the posterior 

distribution, and to compute the posterior ratio as 
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( ) ( )( )* ( 1)exp log ( | ) log ( | )ir p p −= −θ X θ X . Moreover, this ratio is invariant by multiplying 

the posterior distribution by a constant, which implies that the Metropolis can be applied to a 

non-normalized target distribution. 

Appendix 3. The Adaptive Gibbs/Metropolis sampler. 
This algorithm is implemented as follows: 

9 Choose a starting point ( )(0) (0) (0)
1 ,..., dθ θ=θ , and starting variances for each 

component ( )(0) (0) (0)
1 ,..., dV V=V  

9 Do 1,..., Gibbsj N=  : 

9 Do q=1,…,d 

9 Let (0) ( 1)j
qγ θ −=  and ( )( ) ( ) ( ) ( 1) ( 1)

1 1 1( ) | , ..., , ,..., ,j j j j j
q q q df x p x θ θ θ θ− −

− += X  

9 Do i=1,…,NMetro 

9 Generate a candidate value * ( 1) ( 1)~ (. | , )i j
qN Vγ γ − −  

9 If ( ) * ( ) ( -1)( ) ( )j j i
q qf fγ γ≥ , set ( ) *iγ γ= , else accept the candidate vector 

( ( ) *iγ γ= ) with probability 
( ) *

( ) ( 1)

( )
( )

j
q
j i

q

f
r

f
γ

γ −=  or reject it ( ( ) ( 1)i iγ γ −= ) 

with probability 1-r.  

9 Set ( )( ) MetroNj
qθ γ=  

9 Compute the acceptance rate τ on the previous NMetro iterations 

9 If τ<0.23, set ( ) ( 1)j j
q qV V −<  

9 If τ>0.44, set ( ) ( 1)j j
q qV V −>  
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Site Number River / Station Drainage area 
(km²) 

Mean annual 
flow (m3.s-1) 

10-year daily 
discharge 
(m3.s-1) 

1 Dordogne / Saint Sauves d'Auvergne 87 3.6 43 
2 Santoire / Condat 172 4.71 74 
3 Vézère / Bugeat 143 4.43 47 
4 Vézère / Uzerche 601 15.1 136 
5 Corrèze / Corrèze 168 5.6 61 
6 Corrèze / Brive-la-Gaillarde 947 21.2 268 

Table 1 
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Location parameter Scale parameter Site 

number 
Sample size used for 

prior specification a b a b 
1 39 20.03 2.46 41.88 2.68 
2 20 21.09 1.72 84.11 2.42 
3 18 28.39 2.20 65.12 2.26 
4 51 66.96 2.10 244.19 3.19 
5 26 21.51 1.32 51.40 1.47 
6 48 72.73 1.39 346.00 2.22 

Table 2 
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 Bayesian p-value 
 Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 

Mean 0.547 0.202 0.741 0.911 0.749 0.922 
Standard deviation 0.400 0.154 0.711 0.936 0.919 0.939 

Skewness 0.156 0.185 0.346 0.801 0.851 0.542 
Maximum value 0.288 0.127 0.724 0.914 0.920 0.807 

Kendall's tau with time 0.976 * 0.786 0.398 0.622 0.372 0.670 
Kendall's tau with site 1 / 0.003 * 0.068 0.042 * 0.036 * 0.119 

Table 3 
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 Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 

Posterior probability 
p( ( )

0
iM |X) 0.66 0.30 0.38 0.53 0.28 0.79 

Bayes factor B0,1 1.95 0.43 0.61 1.11 0.39 3.86 

Table 4 
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