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Bloch equation models the evolution of the state of electrons in a matter
described by an Hamiltonian. In order to model more physical phenomena
we have to introduce phenomenological relaxation terms. The introduction
of these terms has to conserve some positiveness properties. The aim of this
paper is to give a review of possible relaxation models as well as an insight

of how to discretize them properly in view of numerical computations.
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1. INTRODUCTION

Nowadays laser sources allow to produce light pulses that are increasingly power-
ful and shorter. The propagation of such beams through a medium induces nonlin-
ear light-matter interactions. Moreover as the pulse duration may be of the same
order or even much smaller than the time response of the medium, transient phe-
nomena have to be considered. Thus models will take place in the time-domain.

The classical description of the propagation of an electromagnetic wave will be
done by Maxwell equations, the influence of the matter being expressed through
the polarization. A simple description involving the refractive index is not suffi-
cient, even when frequency and intensity dependent. Here a very precise modeling
is required for matter. This is performed by Bloch equations which are derived
in the context of quantum mechanics. These equations deal with the probabilistic
description of the population of each energy level of atoms that constitutes the
matter as well as the coherence between these levels. These variables are gathered
in a so-called density matrix. The statistical averaging over atoms is taken into
account by the introduction of relaxation terms. These terms are also necessary
to model some important physical phenomena as spontaneous emission, collisions,
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etc. There are different classical ways to introduce them [3, 4, 6] but we present
here “Pauli’s master equation” model which happens to be the more general one.

The relaxation terms that we introduce should preserve some important prop-
erties that would be valid without these additional terms. First populations have
to be positive and less than 1. Coherences should not be greater than the related
populations and density matrices should be positive matrices. As will be stressed
below, in the absence of statistical averaging (and therefore relaxation) all these
properties are straightforward.

We do not know of any existing literature about this specific problem of conser-
vation of positiveness properties when adding relaxation terms. The reasons may
be the following. As we show, positiveness is conserved in all classical physical
contexts, hence this is not a problem for physicists. From the numerical point of
view, Bloch codes were up to now involving only two-level atoms [5, 8, 10] and
problems occur with at least three levels. Such a study is useful for our multi-level
code and the simulation of physical contexts that involve more than two levels and
different relaxation terms, like a laser cavity for example. The scope of this article
is limited to the Bloch equations with a given electromagnetic field, the problem of
the coupling with a propagation model being postponed for further articles.

In section 2 we give a brief description of Bloch equations. Section 3 is devoted to
the introduction of “Pauli’s master equation” model. A time semi-discretization of
Bloch equation is dealt with in section 4. This discretization conserves positiveness
and is tractable for real numerical computations.

2. BLOCH EQUATIONS

In quantum mechanics, matter is defined by state vectors |¢), the time evolution
of which is given by the Schrédinger equation

ihdy 1) = H ) .

The Hamiltonian H is composed of the unperturbed Hamiltonian Hy and the per-
turbation V induced by the electromagnetic field : H = Hy + V. Following a
standard approach we decompose [1)) on the basis of eigenstates of the unper-
turbed Hamiltonian Hy. These quantum states |j) are the eigenfunctions of Hy
that correspond to the jth level of energy £; = hw; of unperturbed atoms. The
set of all these (suitably normalized) quantum states forms a basis of all quantum
states. We therefore may set 1)) = > a; |j) and the (infinite dimensional) density
matrix p is defined by pjr = ¢ a;%at® where S is a statistical set. Tt is solution
to

ihatp = [Hv p]7 (1)

where [, -] denotes the commutator of two operators. Keeping only N relevant lev-
els, pis a N x N hermitian non negative matrix. Its diagonal elements p;; represent
the population of levels |j) and its off-diagonal elements p;;, the coherences between



levels |j) and |k).

To express the perturbation V', we restrict ourselves to dipole moments because
they induce the larger order in the perturbation series. Perturbation V reads V =
—e¢E-R having taken into account the fact that E does not significantly vary over
atomic distances. The dipole moment matrix is defined by its elements pjp =
(k| eR |j). With these notations equation (1) reads

. L
Oipjr = —iWjkPjr — ﬁE - [, P]jk, (2)

where wj; = w; — wy, is the frequency associated to the transition from level |k) to
level |5).

In the expression of V, E may be a given field or may be the solution of Maxwell
equations. In the latter case there is a couphng between Bloch equations and
Maxwell equations via the constitutive relation D= EUE + P where the polarization
Pis given in terms of the density matrix by P= N,Tr(pp) and N, is the density
of atoms.

3. “PAULI’'S MASTER EQUATION” MODEL

To derive the Bloch equations the following hypothesis is made: the stochastic
process for driving the statistical distribution S is stationary. This is however not
the case and besides it is not possible to obtain any information about this process.
Other phenomena are not included in the original model, the main of which being
spontaneous emission of light, but also collisions, vibrations in crystal lattices or
thermal perturbations in fluids. The only way to take all these phenomena into
account is to add phenomenological relaxation terms to equation (2) that becomes

ol + Qo ®

Oipjk = —iWjkpjk —
The addition of relaxation terms for a coherence only involves this variable and
therefore for j # k, Q(p)jr = —7vjrpjr- Models for diagonal relaxation terms are
more various but may be shown to be sub-models of “Pauli’s master equation”

model where

(05 =Y Wipu = > _ Wispi; = > Wipu —Tjpjj- (4)

I#j I#j I#j

The relaxation to equilibrium states is obtained by imposing
W = leeﬁ(fj—&) (5)

(see e.g. Bloembergen [3]). Here § = 1/kT, where & is Boltzmann’s constant and
T is the temperature.

In what follows we will always suppose that some physical properties are satisfied
for the initial data and try to find conditions on the relaxation operator to propagate
them for all time.



3.1. Physical properties
The most obvious property for p is that it should be hermitian (i.e. it is an
observable quantity from the quantum mechanical point of view). The only way to
ensure this property is that equations for pj; and py; are conjugate. Therefore ;i
and v;; should be equal, which is indeed the choice that is always made.

All relevant energy levels are supposed to be kept in the model which may
be expressed as Tr(p) = 1. This property is conserved since (3) yields a priori
0:Tr(p) = Tr(Q(p)) and the specific relaxation operator @) given by (4) ensures
that Tr(Q(p)) = 0.

The other properties we want to preserve while adding relaxation terms are posi-
tiveness properties. First of all populations have to be nonnegative. They also have
to be less than one but this is a consequence of positiveness and the above trace
property. The coherence of two levels has also to be controlled by the population
of both levels or more precisely |pjx|* < pjjprk. Finally the whole matrix has to be
nonnegative.

3.2. Positiveness
In order to study positiveness we note that it is preserved by the relaxation-free
model (see section 4.1 below) and we use Trotter-Kato formula that ensures that

t tQ n
p(t) = et(L+Q)p(0) = lim (eTLe n p(O)) ,

where Lpji = —iwjkpjr — E[V’ pljr- Therefore it is sufficient that the equation

orp = Q(p) (6)

preserves positiveness properties. In the sequel of this section proofs address this
equation. Besides all the proofs suppose that the quantities we study are nonneg-
ative at time ¢ = 0.

Positiveness of populations. Given a level k, we consider the initial data p;; =
d;k- For j # k, we have 0,p;;(0) = Wj. Since p;;(0) = 0, its derivative should not
be negative and therefore a necessary condition is Wj; > 0.

This is also a sufficient condition: if at some time to, pj; (to) = 0 then 9;p;;(to) =
Zk# Wijpkk(to). Since there exists kg # j such that pgx(to) # O (see the trace
property), we show that if Wj,, > O either ¢, = 0 and for ¢ > 0, but small,
p;j(t) > 0 either ¢y # 0 and it is not possible that p;;(to) = 0. Thus if W is
a matrix with positive coefficients, p;;(t) is positive for ¢ > 0. Besides p(t) is
continuous with respect to the matrix W, hence if W is only nonnegative p;;(t)
remains nonnegative for all time ¢ > 0. The first condition on matrix W is the
following.

ConDITION 3.1. A necessary and sufficient condition for populations to be non-
negative (and less than 1 via the trace property) is that matrix W has nonnegative
coefficients.



We notice that this first condition is always verified from a physical point of
view.

Estimate for the coherences. We set f(t) = pj;(t)pri(t) — pjr(t)pr;(t) and sup-
pose that f(tg) is zero for some time to but are not interested in the case when
pij(to)prr(to) = 0, ie. pjr(to) = 0, for which p;r = 0 for all time. We notice that
p;j (&) prx (t) > 0 is the consequence of condition 3.1. Computing f' we obtain for a
general time ¢

(&) = 29 f(@) + 2vik — Tj = T + /Wi Wi ) pjj (8) pren (
+ (Wikpre — Wijpji)* + pj;(t Z Whipu(t) + prr(t Z Wiipu(t)
I#£35,k I#£5,k

If 2y, = Tj = T + /W Wg; > 0 we show (in the same way than above) that
f(t) is positive for all positive time. A continuity argument gives the following
condition.

ConpITION 3.2. A necessary and sufficient condition to have the estimate

lpjk ()] < \/piji(t)prr(t)

for all time t > 0 is that 2 > T + T — /Wi Wi;.

The fact that the condition is necessary is proved supposing that p; = 0 for | #
J, k. Condition 3.2 is also a physical condition (see e.g. [7]). Off-diagonal decay rates
have the same source than diagonal decay rates plus some extra sources like elastic

1
collision broadening, ... Therefore v;; is often written as v, = E(Fj +T%) + 7]61’:”,

where y£2!" > 0. In many physical contexts we even have y5¢!! > I'; +T.. Moreover
YR very often does not depend on j and k.

For the sequel we are unable to treat a condition including the expression
/Wi Wy, but we give a specific form for v;; that covers all physical models:

1
(T +T%)+ 7]”” + 7};0” Aj - Ay, (7)

'ij:2

where 7;"” € Rand 4; € RV.

Positiveness of the density matriz. Let X = (z1,...,2x5) € CV and g(t) =
X*p(t)X. We suppose that o is the first time for which g(t9) = 0. For this time
p(to) is a hermitian nonnegative matrix and we may state that p(to)X = 0 and
X*p(to) =0.

g'(t) = ZZWa‘kPkkIMZ—ijpjjlﬂfjlz— D vk pikwn
i ki j Jk.i#k

= Y Wikprela;|? +Z 295 — | 4;11%)py; ;)

J k#j



_Z F + coll Zp]kxk Z ;F _|_,Ycoll Zx;P]k)l'k
. -

j
=0 =0

+ O3> laba)  pi(af k)
k ] k

~

e

ZZWJkpmm +Z2 coll || 451*)pjj ;1>

J k#j
+Y YN 'Yk(ajmj)*pjk(akxk) -
Tk

e

>0

A sufficient condition for g(t) to be positive is therefore ¢! > 1|4;]|? for all j and
it is relaxed by continuity to the condition for g(t) to be nonnegative 750” > 1| 4|1

ConpiTioN 3.3. With the hypothesis (7) on collisional decay mtes, a sufficient
condition for p to be a nonnegative matriz for all time is 'y“” > L[| 411 for all j.

We note that condition 3.3 is more general than 3.2. Besides the most widely
used physical model corresponds to A4; = 0 and v = 2y ie. vy = (T +
Fk) + ,Ycoll

Remark. Condition 3 may be written 27, = T'; + ['y + ||B; — Bg|| for B; € CV.

4. NUMERICAL ISSUES

The most commonly used time discretization for the Bloch equations is the
Crank-Nicolson scheme. For example Ziolkowski, Arnold and Gogny [10], who
study the Maxwell-Bloch equation, use this scheme coupled to a Yee scheme for the
Maxwell equation. Nagra and York [9], when studying a coupling between Maxwell
equations and rate equation (involving only populations), use also this centered
scheme. We show that this approach is indeed valid when dealing with two-level
Bloch equations. But for a greater number of energy levels positiveness is no longer
preserved and for example negative populations may be actually observed numeri-
cally.

Some other methods are also present in the literature. Martin et al. [8] use
a multigrid approach with a leap-frog scheme in the case of two level atoms and
in the slowly varying envelope approximation for the electromagnetic field. There
would be at least two ways to write their scheme in our context, since for two level
equations the coherences do not appear in the expression of the interaction terms
in the evolution equation for the coherences. This scheme is also not positiveness
preserving.

We give an alternative discretization for the Bloch equation that do apply in a
general framework. We do not comment on how the Bloch equations may be coupled
to a model for the propagation of the electromagnetic field. Indeed this problem
which is important for full Maxwell-Bloch simulations is not directly connected



to the introduction of relaxation terms and to the conservation of positiveness
properties. We refer to [1] for a discussion on the time coupling of Maxwell and
Bloch equations.

4.1. Analysis of the Crank-Nicolson scheme
The problem for the Crank-Nicolson is not connected with the relaxation operator
therefore we explain it on the relaxation free model (1). Given a time step 0t, the
Crank-Nicolson scheme reads

n+1

M _ i (Hn+1/2pn+1 +o" p
h

+p" Fnt1/2
ot

2 2

where p" and H"+1/2 are respectively approximations of p(ndt) and H(ndt + ).
We choose approximations such that H"+1/2 is hermitian and therefore we may
diagonalize it in some basis yielding H"T1/2 = dlag(/\n+1/2, cen /\nN+1/2). Writing
p™ in this basis gives p™ that is solution to

- J 2 k 2

ntl o~ .
P = i (Anﬂ/zpjk Y +p]k>
5t 7

or explicitly

+1/2 +1/2
~n+1 1 126; (An / An / )p
jk i +1/2 +1/2\ Fik-
/ 1+ —25,; ()\;L 2 _ /\" / )

This does not lead to a positive matrix p"*! provided p" is positive. To understand
this point we have to compare with the continuous case. We may diagonalize the
system (1) for all time ¢ and obtain

ih (t) = (N (8) = Ae(£) A (1)

and for all X = (z1,...,zn) € CV, ok @iz = 325, vipik(0)yr where

y; = xjexp(— 7 / s)ds). The discrete multiplicator is an approximation of

¢
exp(—%/ (Aj(s) — Ak(s))ds) but does not have the property to split in a j and a

k contribution. In [10] they only treat two-level atoms and this problem does not
occur since there is only one off-diagonal term.

4.2. An alternative method
The alternative method we introduce is based on a splitting procedure, i.e. we
solve separately

atp = Lpa (8)
where (Lp)jx = —iwjkpjk + Q(p)jx and

In equation (8) the linear operator is constant and p(t + dt) = exp(Ldt)p(t). There-
fore we may compute exp(Ldt) once and for all and apply it at each time step.



Equation (9) is solved exactly by p(t + dt) = exp(4-6t)p(t) exp(—L-6t), but it
would be too expensive to implement the diagonalization that is used for the proof
above at each time step since V' depends a priori on time (and space if the sys-
tem is coupled to a model for the field). We replace the exact solution by the
approximate solution p(t+ 6t) ~ (I — BLV)=L(I+ BLV)p(t)(I — ZBLV)(I 4 BLy)~L
where V is linear with respect to E and the inverse matrices may be computed
via Fadeev formula. This leads to a very efficient implementation of the scheme.
The advantage of this splitting is that it preserves positiveness for each of these
equations. Indeed each step (8) and (9) preserves positiveness. The numerical
solution of the first step is exact since we compute matrix exp(Ldt) and the ap-
proximation of the second step preserves positiveness: X*p(t + 6t)X = Y*p(t)Y
with Y = (I — g‘s—gV)(I + ?—gV)*lX. Last, with these two steps it is possible to
design methods with any order of accuracy, although it is not worthwhile to do so
if the model for the electromagnetic field that might be coupled with it has a low
order of accuracy.
If we write, for example the second order scheme, we have

ist
2h

V)elot2 pn () (I — @V)(I + @V)—l.

10t
ntt _ JLot/2p _ V-1
p e V)T I+ 5T, 5%

2h

The appendix shows that My = (I — 8LV (I + 8LV)~! reads I + 5t¢(V, 6t) where
#(V,6t) is bounded for 6t < 0ty for any 8tg. The operator e*/? also reads I +
dt1p(dt) where ¢ (0t) is bounded for 6t < dtg. Let us gather all the real variables (the
diagonal elements, the real and imaginary parts of the off-diagonal elements) of the
density matrix p™ in a vector y™. Therefore, we may write the splitting scheme as
Yyt =y + 5td(t,, y™, 6t) where for all dtg, ®(t,,y",dt) is Lipschitz in the second
variable uniformly with respect to 6t < dty. The dependence in ¢, = ndt comes
from V' which is supposed to be Lipschitz in time as well (it is a sine function in

our test cases). This is a sufficient condition for stability.

4.3. Some applications
We present here some computations for Bloch equations with a given electric
field. We focus our interest on performances and the illustration of the use of dif-
ferent relaxation terms. Coupling with a Maxwell solver leads to richer physical
phenomena and we refer to [2] for examples in a one-dimensional space. Research
about higher dimensions is in progress.

Comparison of different numerical schemes.

In this paragraph we compare three schemes. The first one is the Crank-Nicolson
scheme which is also the scheme which is the most widely used. We also tried a
relaxation scheme where diagonal terms (p;) are computed at times ndt and off-
diagonal terms (poq) at time (n + 1)dt, namely

n—1/2 . n+1/2 n—1/2

ob— + pil,

n+1/2 _ n—1/2 n+1/2

od 5 od — RTL( od +pod _E[Vn’pod

)
5 h
Pt =i R N Ty
Bl e e TR

+p
2



Such a scheme is of no interest in the case of a forced electromagnetic field but
leads to less coupled equations in the case of Maxwell-Bloch equations (see [1]).
Last we tested the splitting scheme that we describe in section 4.2. In a two-
level Bloch code one diagonal variable is usually not computed and replaced by
the trace conservation law. This would lead to unnecessary complications in the
implementation of a multi-level code and therefore we test the different methods
with respect to trace conservation, positiveness conservation and CPU times. To
show the differences we have to run a large number of iterations, figure 1 shows
iterations 24000 to 25000 for a given relaxation-free test. The time step is chosen
to be lower than 1/(10f) where f = max(|wi2|, 7).

Crank-Nicolson method Relaxation method
1.2 1.2
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1 11 ‘ ym : iHl sl 1 L e
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FIG. 1. Comparison of different numerical schemes The three first plots represent the

time evolution of populations for three-level atoms and for different numerical schemes. The last
plot represents the time evolution of the trace for the Crank-Nicolson scheme (dash-point), the
relazation scheme (points) and the splitting scheme (solid).

The details of the evolution is not important for our demonstration. Solutions are
highly oscillatory due to the fact that the field is monochromatic and its frequency
is exactly matching the matter transitions. The important point is the range of
the values for the populations. We see that the Crank-Nicolson method and the
relaxation method do not preserve positiveness (i.e. populations do not lie in the
interval [0, 1]) as well as the trace property while the splitting method does. Esti-
mates on coherences are not presented here but are wrong too. Besides CPU times
are 23 seconds for the Crank-Nicolson scheme, 27 seconds for the relaxation scheme
(and indeed no improvement was expected with a given field) and 11 seconds for
the splitting scheme. Last the dynamics seems to be the same (up to a small shift)
for the Crank-Nicolson method and the splitting method but qualitatively different



for the relaxation scheme. For all these reasons the splitting method is used for the
next tests.

Sitmulations with different relaxzation rates. This paragraph is devoted to the
demonstration that being able to handle different relaxation rates helps to describe
the wide variety of transient behavior of systems. In figures 2 and 3 is represented
the transient and long time evolution of a medium (where initially p;; = 1) under
the influence of a wave paquet with leading frequency 5ws;. Dipole matrix elements
are pio = 0, p13 = 1072% and pas = 1072°. In both simulations W3 = 0 and
,Ycoll =0.

Populations
1 T T T T T
08§ 8
0.6 i
]
0.4} B
0.2 B
0 R — ST L | I | | [ 1 1 1
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
x 107"
Coherences

1.2 1.4 1.6 1.8 2 2.2
x 10

-12

FIG. 2. Different relazation rates. Relazation rates are Wa1 = 1012 and W3z = 1013,

The long time behavior is of course also slightly affected by the change of the
matrix W according to equation (5).

5. CONCLUSION

The introduction of more than two levels in a Bloch model induces some new
modeling problems. Multi-level codes are however necessary to model physical
phenomena as, for example, coherence transfer [2] or Raman effects. Numerical
models that were used up to now for two-level atoms are not able to preserve natural
properties for three or more level atoms, the main (or more visible) of which being
that populations may not lie between 0 and 1. We found out an alternative method
that has not only the advantage of preserving positiveness properties but also allows
some gain in computational time. In the case of a coupling with Maxwell equations
it also allows to decouple the computation of the field and the density matrix
thus leading to substantial gains in computational time but also to the efficient
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FIG. 3. Different relaxzation rates. Relazation rates are Wa1 = 1013 and W3z = 1012,

parallelization of the code, which could be useful for one-dimensional codes but
even more for two or three-dimensional codes.

APPENDIX: FADEEV FORMULAE FOR TWO, THREE AND
FOUR LEVEL ATOMS

We use Faddev formula to compute matrix My = (I — ZLV)(I + £LV)~! for N-

level atoms. This formula gives an algorithm to compute matrix inverses. Indeed,
given a matrix A, A= = pLNBN_l where

A =4, p1 = TrA;, By = A1 —pi1,
A2 = ABl, p2 = %TI"AQ, By = A2 _pQIa

AN = ABn,, pn = §TrAy, By = Ay —pnI =0.

In our case A = I +ep and ¢ = ?—;E) (in the case of multidimensional spaces,
contributions in each direction should be added). Some simplifications are due to
the fact that Trp = 0. Computations lead to

e2Trp?l — 2ep
1-— %EQTrp2 ’
—%83Trp3l — 2ep + 2e%p?
1— 1e2Trp? + Le3Trp?

My, = T+

Ms = T+



(—2&%Trp® — 3e*(Trp?)? + L' Tap*)I
1 — 3e2Trp? + 3 Trp? + ge(Trp?)? — 1e*Trpt
_ (2 — e2Trp?)ep + 2e2p? — 2e3p?
1 — £e2Trp® + £e3Trp? + e*(Trp?)? — 14 Trp*’
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