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Abstract 

 

Field data describing the height growth of trees or stands over several decades are very 

scarce. Consequently, our capacity of analyzing forest dynamics over large areas and 

long periods of time is somewhat limited. This study proposes a new method for 

retrospectively reconstructing plotwise average dominant tree height based on a time 

series of high-resolution canopy height maps, termed canopy height models (CHMs). The 

absolute elevation of the canopy surface, or digital surface model (DSM), was first 

reconstructed by applying image-matching techniques to stereo-pairs of aerial 

photographs acquired in 1945, 1965, 1983, and 2003. The historical CHMs were then 

created by subtracting the bare earth elevation provided from a recent lidar survey from 

the DSMs. A method for estimating average dominant tree height from these historical 

CHMs was developed and calibrated for each photographic year. The accuracy of the 

resulting remote sensing height estimates was compared to age–height data reconstructed 

based on dendrometric measurements. The height bias of the remote sensing estimates 

relative to the verification data ranged from 0.52 m to 1.55 m (1.16 m on average). The 

corresponding root-mean-square errors varied between 1.49 m and 2.88 m (2.03 m 

average). Despite being slightly less accurate than historical field data, the quality of the 

remote sensing estimates is sufficient for many types of forest dynamics studies. The 

procedures for implementing this method, with the exception of the calibration phase, are 

entirely automated such that forest height growth curves can be reconstructed and 

mapped over large areas for which recent lidar data and historical photographs exist. 
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1. Introduction 

 

Changes in the height of forest canopies over time represent a key aspect of forest 

dynamics as they give indications of site quality, fluctuations in above-ground biomass, 

as well as the rate of gap opening and closure. Precise data on forest height dynamics are 

also required to run and verify dynamic models such as 3PG, CBM-CFS3, and TRIPLEX 

(Apps et al., 1999; Coops & Waring, 2001; Zhou et al., 2005) to estimate annual 

allowable cuts based on predictions of future yields (Nelson, 2003; Peng, 2000; Vanclay, 

2003). More recently, they were employed to understand the past and future fluctuations 

of forest carbon stocks. However, methods for acquiring high-resolution and accurate 

spatio-temporal data on forest heights over large areas are still lacking. Traditionally, tree 

height has been measured on permanent sample plots as part of forest inventory programs 

(Pothier & Savard, 1998; Raulier et al., 2003). Age–height relationships were then 

developed using these data (e.g. Barnes et al., 1997; Clutter et al., 1983), reflecting the 

growth of individual trees that have remained dominant or co-dominant over their entire 

lifespan. However, long-term time series (i.e. over several decades) of such 

measurements are rare (Pothier & Savard, 1998; Ung et al., 2001; Vanclay et al., 1995) 

and constitute a very sparse spatial sample of forest ecosystems. Forest inventory maps 

(Gillis & Leckie, 1993) do provide spatially continuous data on height, and in many 

areas, short time series of these maps may be found. However, the height information 

they contain may not be suitable for scientific studies as it originatesfrom an error-prone 

photo-interpretation method that is generalized both spatially (stand averages) and 

quantitatively intomore or less imprecise height classes (Fournier et al., 2003). These 



limitations impede scientific progress on forest dynamics as well as our capacity to 

develop better policies for sustainable management and yield (Chen & Popadiouk, 2002).  

New techniques for high-resolution stand height mapping have recently emerged. 

Airborne scanning laser altimetry, hereafter referred as “lidar” (for “Light Detection And 

Ranging”, see Lim et al. (2003) and Dubayah and Drake (2000) for reviews on lidar 

remote sensing of forests) and digital photogrammetry (Gagnon et al., 1993; Miller et al., 

2000) are now considered to be among the most precise remote sensing means for 

mapping the height of forest canopies. Repeated acquisition of such data represents a 

promising solution for spatio-temporal growth estimates and the mapping of gap 

openings (Itaya et al., 2004; St- Onge & Vepakomma, 2004; Yu et al., 2005). Lidar 

allows the acquisition of dense and accurate ground elevation and vegetation height data 

owing to the capacity of lidar pulses to penetrate even dense canopies. The precise 

geolocation of each emitted pulse is calculated based on the laser range, and the position 

and attitude of the sensor. The first returns represent the elevation of the first intercepted 

surface, i.e. the canopy surface in forest environments. Interpolating the first returns 

yields a digital surface model (DSM). The last returns can be classified into ground or 

non-ground categories using geometrical rules (Sithole & Vosselman, 2004). 

Interpolating the ground-classified last returns provides a bare earth digital terrain model 

(DTM) with an altimetric accuracy of 30 cm or better (Ahokas et al., 2003; Hodgson & 

Bresnahan, 2004; Hodgson et al., 2003; Reutebuch et al., 2003). Subtracting the DTM 

from the DSM yields a canopy height model (CHM), i.e. a high-resolution map of the 

forest canopy from which individual tree height or plotwise or stand-wise average height 

can be extracted (Næsset, 2002; Næsset et al., 2005; Persson et al., 2002). For any local 



neighbourhood, the average CHM height underestimates the corresponding average tree 

height becauseCHM points or pixels fall everywhere on the surface foliage, not just on 

tree apices that define tree height. Therefore, extracting single or average tree heights 

from lidar CHMs always requires a calibration phase to produce unbiased estimates.  

Various approaches have been proposed for recovering average tree height from lidar 

CHMs. In fine-scale studies, individual tree crowns are first delineated using image 

segmentation methods (Brandtberg et al., 2003; Hyyppä et al., 2001; Persson et al., 

2002). The maximum lidar height within each crown is taken as an initial estimate of tree 

height and corrected for bias. Single tree heights are then averaged plotwise or stand-

wise. For very dense lidar coverages, downward height biases of 1 m or less have been 

reported (Persson et al., 2002). However, methods requiring very high return densities are 

impractical for large areas. At a coarser scale, plot-level studies rely on statistical 

relationships between plot-wise lidar height distribution quantiles and field-measured 

mean plot height (e.g. Magnussen & Boudewyn, 1998). Such methods were applied 

successfully for measuring the height of coniferous (Næsset et al., 2004) or deciduous 

stands (Lim et al., 2003) with sub-metre accuracies. Lidar is therefore generally 

recognized as the most accurate remote sensing means for estimating structural forest 

parameters (Lefsky et al., 2001). However, due to the recentness of airborne laser 

sensors, multitemporal lidar datasets enabling the study of forest dynamics are still rare 

(St-Onge & Vepakomma, 2004; Yu et al., 2004). Lidar by itself therefore does not 

constitute an immediate solution for obtaining longterm retrospective time series of forest 

height maps. 



Historical aerial photographs have been employed to analyze and map forest dynamics 

retrospectively (Kadmon & Harari-Kremer, 1999; Swetnam et al., 1999), and solutions 

for determining the orientation parameters of old photographs were proposed (e.g. 

Korpela, 2006). Most retrospective studies using aerial photographs concerned two-

dimensional attributes such as species composition (Rhemtulla et al., 2002). However, it 

has long been demonstrated that, with spatial intersection of the conjugate rays, 

individual tree height can be measured on stereopairswhen both the top and base of the 

trees are visible (Andrews, 1936; Spurr, 1960). According to the authors' experience, the 

photogrammetric quality of historical photographs has been high enough in Canada to 

allow accurate elevation measurements of surfaces since at least the middle of the 20th 

century. Because it has never been possible to measure the elevation of the tree bases 

when the ground is covered by dense forests, reliable photogrammetric height 

measurements are however only possible in open forests or for very flat lands. Solutions 

to this problem have occasionally been sought and applied to small areas on an 

experimental basis. Field topographic surveys (Fujita et al., 2003; Itaya et al., 2004), or 

derivations of the DTM from sparse photogrammetric measurements of ground elevations 

(Bar Massada et al., 2006; Næsset, 2002), among others, were used.  

Combining stereo-photogrammetric measurements made from historical photographs 

with lidar DTM data offers a promising solution for measuring and mapping forest height 

retrospectively. For brevity, we shall henceforth refer to this approach as “photolidar”. It 

consists of measuring the tree top elevation using the spatial intersection of the stereo 

rays and of subtracting the tree base elevation extracted from the lidar DTM at the tree 

location. A previous study demonstrated that the error of manual photo-lidar 



measurements, inwhich the tree top positionwas identified visually in the left and right 

photographs, does not exceed 1.51 min 90%of cases (St-Onge et al., 2004). However, the 

photogrammetric height measurements were done manually, excluding the use of this 

approach over large areas. The full automation of retrospective height mapping requires 

that the image correspondence problem central to stereo-matching be solved, i.e. that the 

conjugate points be identified. Using object- or surface-based methods, automated image-

matching algorithms can establish correspondence by extracting conjugate points from a 

stereo-model (Barnard & Fischler, 1982; Brown et al., 2003). The elevation of these is 

then calculated from their parallax (Hartley & Sturm, 1997). Interpolating such 

automatically computed elevations yields a digital surface model (DSM) similar to those 

obtained from the first lidar returns. In forest environments, the photogrammetric DSM 

can be locally affected by matching errors caused by left–right image dissimilarities. The 

average error of automatically extracted elevations reported in previous studies lies 

between 0.5 m and 5.5 m (Miller et al., 2000; Næsset, 2002; St-Onge et al., in press), but 

can reach ±20mlocally, particularly in shaded gaps (Halbritter, 2000). However, as we 

have recently shown, the plot-wise average height of dominant trees predicted that using 

the photo-lidar approach is highly correlated to estimates obtained with highly accurate 

lidar-only methods (r up to 0.95 St-Onge et al., in press). For even-aged canopies the 

photo-lidar CHM underestimated the lidar CHM by 0.49 min average. That study thus 

showed that even ifminute variations of the canopy height are notwell-represented in a 

photo-lidar CHM, the average plot height can be predicted with good accuracy.  

Our general goal was to introduce a new method for mapping forest height in the past 

over a relatively long term. Based on the well-demonstrated altimetric accuracy of lidar 



DTMs as well as the capacity of stereo-matching algorithms to map forest canopy surface 

elevations, we hypothesize that forest height changes can be reconstructed by applying 

the photo-lidar approach to time series of stereo aerial photographs and a single lidar 

DTM (assuming constant ground elevations several decades back). Therefore, the 

objectives of this study are to develop methods to 1) co-register multitemporal 

photogrammetric DSMs to a lidar DTM, 2) generate unbiased retrospective estimates of 

the average height of dominant trees at the plot level using the photo-lidar approach, and, 

3) assess the error of the reconstructed height using independent retrospective field data.  

 

2. Study area and remote sensing data 

 
2.1. Study area 

 

The 2 km2 study site falls within the managed part of the Training and Research Forest of 

Lake Duparquet (TRFLD), approximately 75 km north of Rouyn-Noranda, Quebec, 

Canada (79° 22′ W, 48°30′ N). This forest lies on the Canadian Shield and is 

characterized by soils dominated by argillaceous deposits of lacustrine origin (Brais & 

Camiré, 1992). The undulating topography varies between 237 and 295 m and bears a 

vegetation characteristic of the balsam fir-paper birch (Abies balsamea [Mill.]–Betula 

papyrifera [Marsh.]) climate domain. The studied forest stands are mainly populated by 

jack pine (Pinus banksiana [Lamb.]), black spruce (Picea mariana [Mill.]), white spruce 

(Picea glauca L. [Moench]), paper birch (Betula papyrifera [Marsh.]), and trembling 

aspen (Populus tremuloides [Michx.]). The site burned in 1923 and the stands are mostly 



even-aged. The current dynamics are mostly driven by human activities initiated during 

the late 1970s.  

 

2.2. Remote sensing data 

 

The dataset was composed of a lidar coverage and four sets of aerial photographs taken 

between 1945 and 2003. The lidar data (Table 1) was acquired by LaserMap Image Plus 

Inc. (Boisbriand, Canada) between August 14 and 16, 2003 with an Optech ALTM2050 

sensor flown at 1000 m above-ground level. The 50,000 Hz sensor recorded the first and 

last return of each laser pulse. Lidar strips were acquired with a 15° maximum scan angle 

and 50% side overlaps. An automated strip-matching algorithm (TerraMatch, from 

Terrasolid Ltd., Helsinki) was applied to improve the geometric registration between 

adjacent swaths. The last returns were classified into ground and nonground categories 

using Terrasolid's Terrascan by the survey provider. The first returns (3 points/m2) and 

the ground-classified last returns (0.19 points/m2) were interpolated using a TIN model 

and then converted to a regular grid at 50 cm resolution to create a lidar DSM and DTM 

respectively.  

Diapositives of 1945, 1965, 1983, and 2003 panchromatic aerial photographs were 

acquired. Three or four photographs were needed each year to cover the study area, 

resulting in two or three stereo-models per year. They were scanned at 16 µm (1600 dpi) 

using an Epson Expression 1640XL scanner. The resulting digital images had a nominal 

ground pixel size varying between 19.1 and 25.1 cm respectively for the 1:12,000 and 

1:15,840 photographic scales (Table 2). The overlap between images yielded a base–



height ratio of 0.3 in 1945 and approximately 0.6 for the other years. The theoretical 

spatial intersection error based on the ground pixel size and the base to height ratio 

ranged from 40 cm (1983) to 56 cm (1945). The image quality varied greatly between 

each dataset, being best for the years 1965 and 1983. The stereo-pairs acquired in 2003 

were taken in early spring when almost half of the deciduous trees were in leaf-off 

conditions. They were grainy and had rather poor contrasts. The 1945 images were of 

good quality but slightly blurry. The internal orientation parameters (focal length, 

coordinates of the principal point, and fiducial marks) were obtained from calibration 

reports except in the case of the 1945 photographs where only the nominal focal length 

could be recovered. For this set only, the coordinates of the fiducial marks were 

established using precise manual measurements made on the scanned diapositives. We 

assumed that no offset existed between the principal point and the fiducial centre. 

 

3. Methods 

 

3.1. Collection of field data 

 

Individual tree height measurements of 134 dominant trees were made in the field in 

2003 to calibrate manual photogrammetric measurements. The selected trees were 

marked on image printouts taken to the field to ensure that the same trees could afterward 

be measured photogrammetrically in the laboratory. They were selected to represent a 

very large range of heights for both conifers and deciduous (Table 3). Their height was 

measured using a Vertex III clinometer from Haglöf (Sweden). Two or more successive 



height measurements were made for each tree to avoid gross errors. Measurements were 

repeated until the difference between two successive measurements was 20 cm or less. 

The average of the two valid successive measurements was taken as the tree height.  

Twenty-three 400 m2 square plots located in jack pine stands were inventoried during the 

summer of 2005. The plots were selected in areas where no apparent or known 

disturbances had interrupted growth over the period 1945–2003. For each plot, three 

dominant trees corresponding to the three largest DBH were felled. A slice of wood was 

collected at a height of one metre and at heights corresponding approximately to each 

third of the remaining length, resulting in four slices per tree. The total height of each tree 

was measured with a distance tape immediately after felling. The position of the slices 

along the bole was established with a tape and converted to height. Each slice was sanded 

and the number of growth rings was counted to produce age–height pairs. This 

information was later used to reconstruct an age–height curve for each tree. Field plots 

were positioned along a topograpical gradient to capture various growth and site index 

conditions. Their geolocation was established using an SXBlue differential GPS (Geneq 

Inc., Montreal) with an accuracy of 2–3 m under canopy. 

 

3.2. Generation of the photo-lidar CHMs 

 

A photo-lidar canopy height model was generated for each of the four photographic 

coverages. For each year, automated stereo image matching was employed to generate a 

photogrammetric DSM (hereafter called “photo DSM”) from which the lidar DTM 

elevations were subtracted to compute the photo-lidar CHM. The digital photogrammetric 



work was carried out using Virtuozo 3.5 from Supresoft Inc. (Bejing, China). This 

software performs a global image-matching technique based on relaxation (Büyüksalih & 

Li, 2003). First, feature-based matching is done during the relative orientation process 

using a Förstner operator and a cross-correlation approach. The epipolar geometry is then 

computed and an area-based matching algorithm is run to identify a large number of 

conjugate points along a regular grid. These are interpolated to create a highresolution 

raster photo DSM.  

The absolute orientation of the photogrammetric stereomodels was computed based on 

ground control points (GCPs) read from the lidar DSM and tied to conjugate points of the 

stereo-pairs. This method was designed to avoid the need for GCPs collected in the field 

as these are rarely available for old photographs. As a first approximation, features of the 

lidar DSM were manually associated to photographic positions based on a visual 

interpretation. Due to the difficulty of pinpointing lidar features, this procedure is 

expected to generate errors of a few metres. A special-purpose co-registration algorithm 

was developed to improve the automated selection of GCPs. After an initial photo DSM 

is computed based on the approximate GCPs, windows extracted from this photo DSM 

are then moved over the lidar DSM within a restricted search space and the correlation is 

calculated between the two DSM subsets for each window position. Locations with the 

highest correlation are taken as the exact photo DSM window position. There are then 

used to correct the initial absolute orientation, thus providing a precise value for the 

planimetric part of each GCP. The lidar Z is read at the centre of the repositioned photo 

DSM window and employed to adjust the control point vertically. Details of this 

procedure can be found in St-Onge et al. (2004) and St-Onge et al. (in press). In most 



cases, photo DSM windows were matched by correlating them to the corresponding lidar 

DSM subset, often in bare areas with topographical features. In some instances where 

GCPs were needed in areas devoid of bare patches, changes in the forest surface 

precluded the use of the above procedure. Therefore, some photo DSM windows were 

matched with other already precisely registered photo DSM (instead of lidar DSM). We 

proceeded backwards in time, registering the 2003 stereo-models first. The absolute 

orientation root-mean-square error (RMSE) was calculated with Virtuozo for the 

approximate and precise registrations respectively. In addition, orthophotos where 

generated based on the precisely registered stereo-models and corresponding DSMs. We 

checked that the planimetric fit between the orthophotos of different years was accurate 

by visually verifying that the geoposition of fixed, well-defined objects remained 

constant. This entire procedure was applied independently to each stereomodel. Checks 

were made to verify that there were no elevation discrepancies in the overlapping areas of 

adjacent DSMs of a given year. Finally, we compared elevation values of the photo 

DSMs with the corresponding lidar elevations at points located in bare areas to ensure 

that no vertical discrepancy existed between the precisely registered stereo-models and 

the lidar DSM. For this purpose, the elevation of 30 checkpoints was read on each photo 

DSM and lidar DSM. The small detected biases were removed by adding a constant value 

to all pixels of a given photo DSM. This corrected version of the photo DSMs was used 

to calculate the historical photo-lidar CHMs. 

 

3.3. Prediction of plot-wise mean dominant height 

 



Fig. 1 gives an overview of the entire procedure used to predict the plot-wise mean 

dominant height and to verify these predictions. This procedure is required mainly 

because photo-lidar or all-lidar CHMs do not represent the height of trees per se but 

rather an approximation of the continuous height variations of the canopy surface. 

However, they can be used to predict well-defined height attributes (mean tree height, 

Lorey's height, etc.) on a plot-wise or stand-wise basis (Means et al., 2000; Næsset, 

2002). Because dominant tree height is a widely used variable, for example in site index 

estimates, and because dominant trees are visible on aerial photographs, we chose to 

estimate the plot-wise mean dominant tree height. We developed a prediction method that 

comprises two calibration stages (boxes 1 and 2 of Fig. 1) and verified its accuracy in a 

third, independent stage (box 3 of Fig. 1). The first stage consists of calibrating manual 

photo-lidar measurements with field data (St-Onge et al., 2004) so that these can be used 

retrospectively as unbiased, accurate estimates of individual tree height within chosen 

plots. This provides a solution to the absence of historical ground truth data. Bias-

corrected, manual photo-lidar measurements are then used in the second stage to create 

pseudo-reference data on mean plot-wise dominant height for 40 arbitrary plots per 

photographic year. This is achieved by measuring and averaging the height of three trees 

per pseudo-reference plot. Photo-lidar CHM metrics extracted from these plots are 

calibrated based on the pseudo-reference data and can then be used as estimates of mean 

plot-wise dominant height anywhere on the CHMs. These estimates were then 

independently verified (see Section 3.4).  

In the following we provide further details about certain aspects of this two-stage method. 

In the first stage, manual photo-lidar measurements made on the 2003 photographs were 



compared to corresponding individual heights measured in the field in 2003. Preliminary 

tests showed that the measurement error was similar for both conifer (n=89) and 

deciduous (n=45) samples (Student t-test: p=0.40). A single linear regression model was 

built to estimate field height from the manual photolidar measurements as follows: 

 

Ĥ mpf Hbb 10 +=          (1)  

 

where Ĥf represents field height, Hmp the manual photo-lidar height, and b0 and b1 the 

regression coefficients. The aerial photographs of 1965 and 1983 had approximately the 

same scale and base–height ratio characteristics as those of 2003 (Table 2). Therefore, 

Eq. (1) was also used to correct the manual photo-lidar measurements for these three 

photographic datasets. However, the 1945 photographs possessed a much smallerbase–

height and a larger scale (Table 2) similar to the characteristics of the photographs used in 

St-Onge et al. (2004). We therefore chose to use their equation (R2 =0.95) to correct the 

manual photo-lidar measurements performed on the 1945 aerial photographs. To account 

for the remaining scale difference between their study (1:8000) and the scale of the 1945 

photographs (i.e. the amount of additional downward bias caused by the smaller scale of 

the 1945 photographs compared to that of St-Onge et al., 2004), an additional correction 

factor based on the estimated bias from Spurr (1960) was applied.  

In the second stage (Fig. 1, box 2), we calibrated the photolidar CHMs using 40 plots (20 

respectively for conifers and deciduous) selected arbitrarily for each photographic year 

across different forest strata representative of the forest conditions in the study area. 

Three manual photo-lidar measurements of dominant trees were made for each plot. They 



were then corrected based on the equations developed in stage one and averaged plot-

wise. This value was used as the pseudo-reference for plot-wise mean dominant height 

(H ). Various photo-lidar CHM metrics (plotwise CHM mean maximum height at the 

50th, 75th, 95th, and 99th percentiles) were extracted. The difference of each metric to 

the corresponding H  values was computed to identify the best estimator for conifers and 

deciduous trees respectively. The metric yielding the lowest variance of the difference 

was selected. The average difference between the chosen metric and H  was taken as the 

expected bias (b) of this photo-lidar CHM metric. A value of b was calculated separately 

for each photographic year and forest type (i.e. deciduous and coniferous). The following 

equation was used to estimate the plot-wise mean dominant height (Ĥ) at any location of 

a photo-lidar CHM once the bias values were obtained: 

 

Ĥ  = CHMm + bi         (2) 

 

where CHMm is the chosen photo-lidar plot height metric for a given photographic year 

and forest type, and bi is the corresponding bias value. Note that for the 2003 

photographs, deciduous plotswhere not considered because more than half of the stands 

where still in leaf-off conditions, a situation that led to poor image-matching results and 

unreliable photo-lidar CHM values. 

 

3.4. Verification of retrospective height estimates 

 



In stage three (Fig. 1, box 3), values of Ĥ were compared to the “true” average heights 

derived from verified age–height curves. First, the site index (SI) was calculated for each 

tree based on the age at 1 m and the total height for the three felled trees using the 

following Pothier and Savard (1998) equation: 
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where SI represents the site index,Hd is the dominant height, Ac is the age corrected at 1 

m, and b1 to b5 are specific values (see Table 6) published by Pothier and Savard (1998). 

Based on this SI value, the following model was employed to predict the height at the 

years corresponding to the slice and photographic years (Pothier & Savard, 1998, 

coefficient values appear in Table 6): 
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The height predictions for the slice years (Hd) were compared to the actual height of the 

slices measured in situ to ensure that Eq. (4) could be used reliably to verify the photo-

lidar predictions. This verification was made by computing the overall average difference 

(bias) and RMSE between the slice heights and the corresponding Hd values. After 

checking the accuracy of theseHd values, the average SI for each plot was input into Eq. 

(4) to estimate the height of dominant trees at photographic years for all verification 

plots. Because of their accuracy, these estimates were considered as reference data and 

used to check the photo-lidar height values. To do so, the bias and RMS error of Ĥ values 



(Eq. (2)) was assessed by comparing them to the corresponding plot-wise Hd values. This 

comparison was made for conifer trees only, as slices could not be extracted from 

deciduous tree stems to reconstruct retrospective height growth reliably. 

 

4. Results 

 

4.1. Generation of the photo-lidar CHMs 

 

Photo-lidar CHMs and orthophotos were generated for the years 1945, 1965, 1983, and 

2003 (Fig. 2). The RMSE of the GCPs selected visually for a first approximation of the 

absolute orientation of the stereo-models was generally around 2 m. After correction 

using the automated co-registration method, the registration RMS errors dropped to 

values between 0.25 m and 0.78min planimetry, and between 0.27mand 1.01min 

altimetry (Table 4). The worst fits were observed for the two oldest stereomodels. Small 

discrepancies were found for each photographic year between the lidar and the photo 

DSM in bare areas. The vertical bias e of 30 sample bare ground points ranged from 0.03 

m for the 2003 stereo-model, to −0.35 m for that of 1965 (Table 4). The standard 

deviations calculated on the same points varied between 0.37 m and 0.94 m. Corrections 

for biases were made before canopy height measurements were performed. 

 

4.2. Height calibration 

 



For the 134 trees measured, the manual photo-lidar measurements made on the 2003 

aerial photographs underestimated field height by 0.49 m on average. The mean absolute 

error was 0.98 m, and the minimum and maximum absolute values were respectively 0.03 

and 2.96 m. The regression model linking field and photo-lidar measurements yielded an 

R2 of 0.96 with a standard error of estimate of 1.09 m (Eq. (5)). Eq. (5) was used to 

predict field height from the manual photo-lidar measurements for the three most recent 

photographic years, while Eq. (6) was used for 1945. 

 

Ĥt = 0.83 + 0.98 HMPLM         (5)  

 

Ĥt = 1.72 + 0.98 HMPLM          (6) 

 

Table 5 shows the difference between the average of three corrected manual photo-lidar 

per-plot measurements and the value of the chosen photo-lidar metrics for the 40 arbitrary 

plots for each photographic year. The selected photo-lidar metric varied between forest 

type and year. The differences (bias) ranged from 2.35 m to 4.0 m, and RMSEs from 1.30 

to 3.68 m. These bias values were then used to correct the corresponding metric values of 

the 23 plots used for independent verification. For this purpose, the plot-wise average 

dominant height estimated using the above corrected photo-lidar metrics was compared to 

the “true” height reconstructed from the slices taken from the felled trees for the 23 

verification plots. The age–height curves were established based on the site index values 

and Eqs. (3) and (4) from Pothier and Savard (1998) with the coefficients presented in 

Table 6. Comparing the height values derived from Eq. (4) to those estimated from the 



slices, we found that the former underestimated the latter reference heights by 0.41 m on 

average (with a standard deviation of 1.47 m, see Table 7). This level of error was 

deemed acceptable, and the height at photographic years was computed with Eq. (4). The 

resulting plot-wise dominant height values were then compared to the prediction of 

average dominant height obtained from the corrected photo-lidar metrics (Table 8). 

Results show that the dominant height was always underestimated by the corrected 

photo-lidar metric to some degree. The largest average downward bias, 1.55 m, was 

observed in the 1945 data, while the 1983 photo-lidar CHMs yielded the smallest one at 

0.52 m. The RMSE did not exceed 2.88 m.  

 

5. Discussion 

 

This paper presents, to the best of our knowledge, the first attempt to measure forest 

canopy height retrospectively and to reconstruct the changes in average dominant tree 

height per plot using photo-lidar canopy height models. A small bias affected the photo-

lidar measurements (0.52 to 1.55 m) and the RMSE was also low (1.49 to 2.88 m), i.e. 

significantly lower than the typical height class intervals of forest inventory maps. A 

number of factors may have caused these small discrepancies. Although the window-

based co-registration method implemented in this study allowed to produce sub-metric 

XYZ accuracy for all photographic years (see Table 4), analyzing the RMS errors 

revealed a higher altimetric registration uncertainty in 1945 and 1965. Due to the quasi-

absence of canopy gaps during that period, reliable points were only found in open areas 

located on hill slopes of the northern part of the stereo-models, leading to less stability of 



the models. In 1983 and 2003, however, roads and clear cuts allowed a better distribution 

of ground control points and greater registration accuracy. To increase the possibilities of 

finding good control points in densely forested areas, we plan to use aerotriangulation 

methods applied to blocks of photographs. This approach increases coverage, thus 

augmenting the probability of finding good control points and improving the error 

analysis of the models (Kasser & Egels, 2001; Krauss & Waldhäusl, 1998).  

The use of manual photo-lidar measurements to correct the photo-lidar CHMs may also 

explain part of the error. The measurements were particularly difficult in 1945 due to a 

lower resolution (the photographs were slightly blurred compared to more recent ones) 

and a small average tree height (most trees were 6 to 8 m high). Pinpointing the apex of 

the trees in these conditions was subject to greater uncertainty. This is supported by the 

results of St-Onge et al. (2004) that showed that the clarity of the tree crowns on the 

photographs has a significant impact on the height error. We also suspect that the 

downward bias of the manual photo-lidar measurements on the 1945 photographs was 

higher than the values obtained for the other years due to the lesser quality of this dataset.  

The stereo-matching process tends to lead to uncertainty of the overall results. In conifer 

stands for example, elongated crown shapes, gaps, and a higher vertical variability create 

matching difficulties that usually result in the underestimation of the canopy surface 

height (Korpela & Anttila, 2004). A few local blunders caused by a complex canopy 

surface (Halbritter, 2000) may also have affected the overall statistics by influencing the 

calibration of the photo-lidar CHMs. Matching quality was best for even-aged and dense 

deciduous stands and lower for heterogeneous conifers stands (Næsset, 2002). 

Preliminary statistical tests made early in this study (results not shown) had indicated 



matching quality differences between years that could be explained by the changing 

canopy height and structure.  

Finally, part of the RMSE of the retrospective height estimates might be due to the 

sampling procedure. Since only three trees were sampled per plot (for calibration or 

validation), and because the photogrammetrically measured trees did not necessarily 

correspond to those that were felled to extract slices, discrepancies between these two 

samples for the same plot might arise. There are also no means of ensuring that the felled 

trees were in dominant position over the entire time period covered by this study. 

Representativeness tends to be a more acute problem for plots located on very poor sites. 

The height and density of these plots was low and variable, increasing the risk of 

sampling nonrepresentative trees in addition to creating more difficult matching 

conditions. What is more, the reference heights at the time the photographs were taken 

contain some uncertainty as revealed by comparing Eq. (4) estimates to the height of 

slices.  

In summary, the errors reported in Table 8 most likely result from a combination of co-

registration, manual measurement calibration, and stereo-matching errors, as well as 

sampling and averaging artefacts. Nevertheless, the overall error appears sufficiently low 

to allow a relatively accurate retrospective reconstruction of dominant tree height at a 

fairly high resolution (here 20 m×20 m). To the best of our knowledge, combining 

existing lidar and photographic datasets is currently the only way to produce historical 

maps of tree height to analyze forest dynamics over several decades. Time series of the 

CHMs can reveal the spatially-explicit evolution of tree height and the occurrence of 

small or large gaps created by disturbances such as tree falls, fires, windthrow or 



harvesting. The potential for improving our understanding of forest dynamics using this 

means appears to be high. Care will however have to be taken to carefully calibrate all 

models and to verify that the ground topography did not change significantly due to 

factors such as erosion, fluvial dynamics, or peat accumulation. Where change is 

suspected, manual photogrammetric measurements of ground elevation can be performed 

to check the stability of ground elevation over time if the targeted areas are bare or 

covered by sparse vegetation. Finally, recent advances in matching algorithms specific to 

forested conditions (Baltsavias et al., 2006; Lai, 2000; Sheng et al., 2001, 2003) suggest 

that improvements in the photo-lidar CHMs can be expected and that the overall accuracy 

of the proposed method could improve proportionally. 

 

6. Conclusions 

 

This study's objectives were to reconstruct the average height of dominant trees 

retrospectively at the scale of 400 m2 plots by combining a DTM and historical stereo-

models of aerial photographs. The independent verification of results lead to the 

conclusion that, at least in the case of even-aged coniferous trees (jack pine), the 

dominant height can be recovered with a bias not exceeding 1.55 m and a RMSE below 

2.88 m, under the conditions of this study. The method required that manual 

photogrammetric measurements of tree height used as pseudo-reference data be 

calibrated using in-situ data. However, it can be assumed that this procedure will no 

longer be necessary once measurements biases are known for various photo scales and 

base-to-height ratios. Therefore, it would be possible to apply this method without the 



need for field information, unless verification is sought as well. Using aerotriangulation 

techniques, large blocks of photographs could be registered to lidar DTMs to create 

historical photo-lidar CHMs over large areas. By dividing a territory in 20 m×20 m cells 

for example, retrospective maps of dominant height could be produced. As the lidar 

coverage is rapidly increasing, and because historical aerial photographs can be found 

over many regions, the historical reconstruction of forest dynamics will become feasible 

in many areas. In addition, ongoing efforts to improve stereo-matching algorithms 

specific to the complex structure of forest canopies will likely lead to an increase in the 

accuracy of photo-lidar reconstruction.  

The photo-lidar method needs to be verified on other sites that have different 

topographical and forest conditions. In particular, the success of stereo-matching in more 

difficult environments such as uneven-aged or open forests needs to be carefully 

evaluated. Moreover, the ability to detect the opening and closing of smaller gaps will 

have to be verified. However, the possibility exists of using the historical photo-lidar 

CHMs to map other important forest attributes, such as biomass, in order to better 

understand the dynamics of carbon sequestration in forest environments. In the long term, 

the proposed method may also serve to study the effect of climate change on the forest 

over long time intervals starting in the mid 20th century. 
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Figure legends 

Fig. 1. Summary of the processing steps. 

Fig. 2. PCHMs for the four stereo-models with the corresponding orthoimages (note that 

the 2003 PCHM was computed in partly leaf-off conditions). 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 



 

 

 

 

 



Table 1 

Lidar characteristics 

Lidar system ALTM2050 
Power (uJ) 200 
AGL Flight Altitude (m) 1000 
Divergence (mrad) 0.2 
Nadir footprint diameter (m) 0.2 
Pulse frequency (Hz) 50,000 
Max. scan angle (degree) 15 
First return density (point/m2) 3 
Last return density (point/m2) 0.19 



Table 2 

Aerial photograph characteristics 

Acquisition 
year 

Acquisition 
date 

Camera 
type 

Focal 
length 
(mm) 

Photo 
scale 

Ground 
pixel size 
(cm) 

Base-
height 
ratio 

Image 
quality 
rank* 

2003 22 May Wild 
RC10 

153.51 1:15000 23.8 0.58 4 

1983 17 June Wild RC8 152.29 1:15000 23.8 0.60 1 
1965 17 July Wild RC8 152.29 1:15840 25.1 0.56 2 
1945 24 August Fairchild 200.9 1:12000 19.1 0.34 3 
* Best (1) to worst (4) image quality based on visual appraisal 



Table 3 

Summary of the 2003 field reference data for individual tree heights (only for the trees 

later linked to photo measurements) 

Height 
characteristics 
(m) 

Conifers 
(N=89) 

Deciduous 
(N=45) 

Min 5.6 9.4 
Mean 22.3 26.4 
Max 29.3 33.1 
SD 4.96 4.46 
 



Table 4 

RMS error of the lidar to stereo-model co-registration and average altimetric differences 

(e) between lidar and photogrammetric elevations for 30 sample points on bare areas 

 Co-registration error (m) Average elevation difference in bare areas (m) 
 X RMS YRMS Z RMS e | e | Min Max SD 
1945 0.78 0.65 0.85 -0.07 0.48 -0.96 2.29 0.66 
1965 0.36 0.25 1.01 -0.35 0.79 -2.58 1.44 0.94 
1983 0.63 0.59 0.49 0.04 0.3 -0.68 0.84 0.37 
2003 0.37 0.25 0.27 0.03 0.29 -0.77 0.78 0.38 
 



Table 5 

Average bias (ε ) (m), standard deviation and corresponding quantile metrics for conifer 

and deciduous plots for each year 

 Conifers Deciduous 
 ε  Metric SD RMSE ε  Metric SD RMSE 
1945 2.35 95th 1.23 1.91 2.46 mean 1.53 2.88 
1965 3.72 75th 0.95 2.97 2.48 max 1.99 2.50 
1983 4.00 mean 0.89 3.59 2.39 99th 1.30 2.30 
2003 3.51 50th 1.13 3.68 - - - - 

 
 



Table 6 

SI and dominant height coefficients for jack pine (Pothier and Savard, 1998) 

 b1 b2 b3 b4 b5 b6 
Eq. (3) 0.8661 0.9734 0.02840 -0.8925 0.04827 - 
Eq. (4) -0.03293 1.1486 1.0271 0.03077 0.9838 0.04563 
 



Table 7 

Field versus modelled (Pothier & Savard, 1998) mean dominant tree heights 

Min Mean Max SD RMSE 
-4.48 0.41 4.67 1.47 1.53 
 



Table 8 

Field versus PCHM heights compared for 23 plots in 2003 

 
Bias 
(m) 

Min 
(m) 

Max 
(m) 

RMSE 
(m) 

Relative 
RMSE 
(%) 

1945 1.55 -2.73 5.94 2.88 34.42 
1965 1.41 -1.51 3.39 2.12 13.68 
1983 0.52 -1.03 4.20 1.49 8.11 
2003 1. 1 -0.95 3.58 1.64 7.92 
 
 


