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Introduction

Modern cosmology [START_REF] Wainwright | Dynamical Systems in Cosmology[END_REF] has led to a strong development of models based on Bianchi cohomogeneity one metrics. A large amount of information was gathered, mainly for Ricci-flat Bianchi type A metrics (see [START_REF] Stephani | Exact solutions of Einstein's field equations[END_REF]) either in minkowskian or in euclidean signature. However the need for a cosmological constant leads to consider rather Einstein metrics and not just Ricci-flat ones, leading to more difficult problems.

For the minkowskian signature a complete list of the algebraically special and hypersurface-homogeneous Einstein metrics, using spinors, is given in [12] and many others appear in [13]. For the euclidean signature the most impressive progresses came from Weyl tensor self-duality and culminated with the tri-axial Bianchi type IX self-dual Einstein metrics of Tod and Hitchin [START_REF] Tod | [END_REF], [START_REF] Hitchin | [END_REF]. However these ideas give only limited results for the type B metrics as observed in [START_REF] Tod | Cohomogeneity-one Kähler metrics with self-dual Weyl tensor[END_REF]. Another difficulty linked to the type B studies is that even for Ricci-flat geometries there is no need for the metric to be diagonal in the invariant one-forms. Despite these difficulties, quite recently new results were derived for type III [6], type V [START_REF] Christodoulakis | [END_REF] and type VII h [START_REF] Terzis | [END_REF] for which the most general vacuum minkowskian metrics, i. e. non-diagonal ones, were derived.

Our aim is to give very simple derivations of some Einstein metrics, for both euclidean and minkowskian signatures, under the simplifying hypothesis that the metric is diagonal with respect to the invariant spatial one-forms. These metrics are examined for Bianchi metrics of type II, III and V. As we shall see they both exhibit interesting features: the types II and III have an integrable geodesic flow and the type V presents an interesting "bifurcation" between the minkowskian and the euclidean regime.

As pointed out by a Referee, the basic integrability of the Einstein equations in the cases considered in this article, which results in our work from an appropriate fixing of the time coordinate, is best understood in a unified and systematic approach if one uses the hamiltonian formalism developed by Uggla et al in [START_REF] Uggla | [END_REF]. They have shown that the existence of Killing tensors is a key tool leading to a sytematic display of the cases leading to integrability, even if one considers matter and not merely a cosmological constant. This approach is in some sense reminiscent of Carter's derivation of Kerr metric by imposing that it must have a Killing tensor [START_REF] Carter | Black Holes[END_REF].

The content of this article is the following: in Section 2 we present background informations and the field equations for the bi-axial Bianchi type II metrics (they have one extra Killing vector). The metrics are then constructed and, being of type D, their geodesic flow is shown to be integrable.

In Section 3 we present the corresponding construction for the type III metrics. They all share one extra Killing vector. All these metrics are of type D with an integrable geodesic flow. However, in some special cases, there is a strong symmetry enhancment leading to de Sitter, anti de Sitter and H 4 in somewhat unusual coordinates

In section 4 we present the corresponding construction for the type V metrics. Special cases include again de Sitter, anti de Sitter and H 4 . However in general one needs elliptic functions to express the minkowskian metrics whereas for the euclidean ones only elementary functions appear.

We give in Appendix A more details on the curious forms of de Sitter metric encountered in the analysis of the Bianchi type III and V Einstein metrics, in Appendix B some technicalities related to elliptic functions and in Appendix C some checks involving curvature computations.

Type II metrics

The Bianchi type II Lie algebra is defined as

[L 1 , L 2 ] = 0, [L 2 , L 3 ] = L 1 , [L 3 , L 1 ] = 0. (1) 
One can choose "spatial" coordinates (x, y, z) such that

L 1 = ∂ x , L 2 = ∂ y -z ∂ x , L 3 = ∂ z , (2) 
and the invariant 1-forms

σ 1 = dx + ydz, σ 2 = dy, σ 3 = dz. (3) 
We will look for diagonal metrics of the form

g = β 2 σ 2 1 + γ 2 (σ 2 2 + σ 2 3 ) + ǫ α 2 dt 2 . ( 4 
)
The bi-axial character of this metric gives a fourth Killing vector

L 4 = y ∂ z -z ∂ y - 1 2 (y 2 -z 2 )∂ x , (5) 
and the algebra closes according to

[L 4 , L 2 ] = -L 3 , [L 4 , L 3 ] = L 2 . (6) 

Integration of the field equations

The Einstein equations1 Ric ν µ = λ δ ν µ give 4 independent equations

(I) β β + β β 2 γ γ - α α -ǫ α 2 β 2 2γ 4 + ǫλα 2 = 0, (II) γ γ + γ γ β β + γ γ - α α + ǫ α 2 β 2 2γ 4 + ǫ λ α 2 = 0, (III) β β + 2 γ γ - α α β β + 2 γ γ + ǫλα 2 = 0.
The last relation, using the first two, simplifies to

(IV ) 4 β γ βγ + 2 γ2 γ 2 + ǫ α 2 β 2 2γ 4 + 2ǫλα 2 = 0.
Subtracting (IV) to twice (II) we get

2 γ γ -2 γ γ β β + α α + ǫ α 2 β 2 2γ 4 = 0, (7) 
which suggest to fix up the time coordinate arbitrariness by imposing α β = 1. The previous relation decouples to the integrable equation

γ γ + ǫ 4γ 4 = 0 =⇒ γ2 - ǫ 4γ 2 = E. (8) 
Defining ρ = β 2 γ 2 , and combining (I) with (II) we get

ρ = -4ǫλ γ 2 , (9) 
and relation (IV) reduces to ρ ρ

(γ 2 ) γ 2 + ǫ 2γ 4 + 2ǫλ γ 2 ρ = 0. ( 10 
)
So we need to integrate (8) for γ, then compute ρ and impose [START_REF] Hitchin | [END_REF]. Let us discuss separately the two signatures.

Minkowskian signature

In this case E cannot vanish. One gets

γ 2 = E t 2 + 1 4E 2 , ρ = ρ 0 + mt + λE t 2 2E 2 + t 4 3 . (11) 
Imposing [START_REF] Hitchin | [END_REF] we get ρ 0 = -λ 16E 3 and m remains free. In order to get rid of the factor E in λE it is sufficient to divide the metric by E. To compare to previous work let us define 4l 2 E 2 = 1. After obvious algebra we end up with

       g = 4l 2 u c σ 2 1 - c u dt 2 + c(σ 2 2 + σ 2 3 ), c = t 2 + l 2 , u = mt + λ -l 4 + 2l 2 t 2 + t 4 3 . (12) 
First obtained by Cahen and Defrise [3], see formula (13.48) with e = k = 0 in [START_REF] Stephani | Exact solutions of Einstein's field equations[END_REF]. It has Petrov type D.

Euclidean signature

In this case E = 0 is possible. Let us first dispose with this case. Using t = γ 2 as a new variable we have ρ = l + mt -2 3 λ t 3 . This time [START_REF] Hitchin | [END_REF] requires m = 0. So the metric can be written

g = ∆ σ 2 1 + dt 2 ∆ + t(σ 2 2 + σ 2 3 ), ∆ = l t - 2λ 3 t 2 . ( 13 
)
This metric was obtained by Dancer and Strachan [START_REF] Dancer | Twistor Theory ed. S. Hugget[END_REF]. It is Kähler, with complex structure

J = dt ∧ σ 1 + t σ 2 ∧ σ 3 .
For E = 0 there are 2 cases, according to its sign. Since the derivations are rather similar to the minkowskian case, let us just state the results. For E > 0, with the same relation between l and E, we obtain

       g = 4l 2 u c σ 2 1 + c u dt 2 + c(σ 2 2 + σ 2 3 ), c = t 2 -l 2 , u = mt + λ l 4 + 2l 2 t 2 - t 4 3 . (14) 
The metric for E < 0 follows from ( 14) by the changes c → -c and λ → -λ.

Let us first observe that the parameter l is not essential: one can get rid of it by the changes

g → g l 4 , τ = t l , x → x l 2 , y → y l , z → z l .
Therefore the metric displays two essential constants: m and λ which are expected for the general solution.

The metric (14) was first derived by Lorenz-Petzold in [11]. The Weyl tensor is

W + = 3m + 8λl 3 6(t -l) 3 M, W -= 3m -8λl 3 3(t + l) 3 M, M = diag (-2, 1, 1), ( 15 
)
so there is room for metrics with self-dual Weyl tensor. Let us consider the case

W + = 0 → u = - λ 3 (t + 3l)(t -l) 3 , t ≥ l. (16) 
Positivity requires λ < 0, so that defining

s l = t -2b t + 2b , -8b = 3 2|λ|l 2 ,
the metric becomes

g SD = 3 2|λ|(t + 2b) 2 t + b t σ 2 1 + t t + b dt 2 + t(σ 2 2 + σ 2 3 ) , (17) 
which was derived in [22], and shown to be complete for b = -1.

Integrable geodesic flow

It is known [START_REF] Walker | [END_REF], [8] that most Petrov type D vacuum metrics (the C metric being a notable exception) exhibit at least one Killing-Yano tensor, the square of which induces a Killing-Stäckel tensor (following the same terminology as in [22]) and this last one is essential to the integrability of the geodesic flow. However we suspect that this property could remain true for many type D Einstein metrics. Writing the metric

g = 4l 2 u c σ 2 1 + ǫ c u dt 2 + c(σ 2 2 + σ 2 3 ), (18) 
with

c = t 2 -ǫ l 2 , u = mt + λ ǫl 4 + 2l 2 t 2 -ǫ t 3 3 , (19) 
and taking the obvious tetrad, we found the following Killing-Yano tensor

Y = ǫ l e 0 ∧ e 1 + t e 2 ∧ e 3 , (20) 
the square of which produces the Killing-Stäckel tensor

S = c (e 2 ) 2 + (e 3 ) 2 . ( 21 
)
Taking for hamiltonian

2H = g ij Π i Π j = 1 4l 2 c ǫ u ǫ Π 2 x + ǫ u ǫ c ǫ Π 2 t + 1 c ǫ Π 2 y + (Π z -yΠ x ) 2 , (22) 
the Killing vectors induce observables linear in the momenta

L 1 = Π x , L 2 = Π y -zΠ x , L 3 = Π z , L 4 = y Π z -z Π y - 1 2 (y 2 -z 2 )Π x , (23) 
which are conserved {H, L i } = 0, i = 1, . . . 4, (24) 
while the Killing-Stäckel tensor induces a conserved observable which is quadratic in the momenta

S = Π 2 y + (Π z -yΠ x ) 2 , {H, S} = 0, (25) 
which is not reducible to a bilinear form with respect to the Killing vectors ( 23). This dynamical system is therefore integrable since H, S, Π x , Π z are in involution for the Poisson bracket. Writing the action as

S = Et + p x + q z + A(t), p = Π x , q = Π z , (26) 
the Hamilton-Jacobi equation separates and we end up with

ǫ u c dA dt 2 = c u p 2 4l 2 + S c -2E. ( 27 
)
3 Type III metrics

In this case the Lie algebra is defined as

[L 1 , L 2 ] = 0, [L 2 , L 3 ] = 0, [L 3 , L 1 ] = L 3 . (28) 
A representation by differential operators is

L 1 = ∂ x + z ∂ z , L 2 = ∂ y , L 3 = ∂ z , (29) 
and the invariant Maurer-Cartan 1-forms are

σ 1 = dx, σ 2 = dy, σ 3 = e -x dz, =⇒ dσ 1 = dσ 2 = 0, dσ 3 = σ 3 ∧ σ 1 . (30) 
We will look for diagonal metrics of the form

g = β 2 σ 2 1 + γ 2 σ 2 2 + δ 2 σ 2 3 + ǫα 2 dt 2 . ( 31 
)
If β 2 = δ 2 the metric exhibits a fourth Killing vector

L 4 = z ∂ x + 1 2 (z 2 -e 2x )∂ z , (32) 
and the algebra closes up to

[L 1 , L 4 ] = L 4 , [L 3 , L 4 ] = L 1 . (33) 

Flat space

For future use let us look for flat space within our cooordinates choice. An easy computation shows that it is given by

g 0 = σ 2 2 + t 2 (σ 2 1 + σ 2 3 ) -dt 2 = dy 2 + t 2 (dz 2 + dr 2 ) r 2 -dt 2 , r = e x . ( 34 
)
The flattening coordinates are

x 1 = y, x 2 = tz r , x 3 = t 2r (-1 + z 2 + r 2 ), τ = t 2r (1 + z 2 + r 2 ),
which gives

g 0 = d r • d r -dτ 2 , r = (x 1 , x 2 , x 3 ).

Integration of the field equations

Following the same procedure as for the type II case, we obtain for independent equations

(I) δ δ = β β , (II) β β + β β β β + γ γ - α α + ǫ 1 β 2 + λ α 2 = 0, (III) γ γ + γ γ 2 β β - α α + ǫ λ α 2 = 0, (IV ) β2 β 2 + 2 β γ βγ + ǫ 1 β 2 + λ α 2 = 0.

Relations (I) and (II)-(IV) integrate up to

2 β = c α γ, c ∈ R, δ = β. (35) 
The time coordinate choice

α = β γ =⇒ δ = β = β 0 e ct .
To determine γ we have to use (III) which becomes

γ γ + γ2 γ 2 + c γ γ + ǫλβ 2 0 e 2ct γ 2 = 0. ( 36 
)
This equation does linearize in γ2 to

(γ 2 ) + c (γ 2 ) + 2ǫλβ 2 0 e 2ct = 0, (37) 
and the remaining relation (IV) becomes

c (γ 2 ) + c 2 γ 2 + ǫ(1 + λ β 2 ) = 0. ( 38 
)
Let us organize the discussion according to the values of c.

The metrics

We will consider first the special case c = 0. Relation (38) gives β 2 = -1/λ and ( 37) is easily integrated to γ 2 = γ 0 + γ 1 t + ǫt 2 . By a translation of t we can set γ 1 → 0 and by a rescaling of z we can set c 2 → 1, so we can write the metric

g = 1 |λ| σ 2 1 + σ 2 3 + γ 2 σ 2 2 + ǫ dt 2 γ 2 , γ 2 = γ 0 + ǫt 2 , λ < 0. ( 39 
)
Let us emphasis that all the metrics will have negative Einstein constant.

For the minkowskian signature we must have γ 0 > 0. By a scaling of the variables y and t we can set γ 0 = 1. This leaves us with

g = 1 |λ| dx 2 + e -2x dz 2 + (1 -t 2 ) dy 2 - dt 2 (1 -t 2 ) . ( 40 
)
The change of coordinates

µ = 1 2 e x + (1 + z 2 ) e -x , tan φ = 1 2z e 2x -(1 -z 2 ) , (41) 
leads to

g = 1 |λ| dµ 2 µ 2 -1 + (µ 2 -1) dφ 2 g 0 + 1 |λ| (1 -t 2 ) dy 2 - dt 2 1 -t 2 g 1 , (42) 
on which we recognize a product of 2-dimensional Einstein metrics with the same scalar curvature: the euclidean g 0 = H 2 and the lorentzian g 1 = AdS 2 , so we end up with 6 Killing vectors. Let us notice that this it is a well known fact [START_REF] Besse | Einstein manifolds[END_REF][p. 44] that for a product to be Einstein, it is mandatory that both two dimensional metrics in the product have the same Einstein constant. For the euclidean signature, according to the sign of γ 0 we have 3 cases:

γ 0 > 0 g = 1 |λ| σ 2 1 + σ 2 3 + 1 cos 2 τ σ 2 2 + dτ 2 , γ 0 = 0 g = 1 |λ| σ 2 1 + σ 2 3 + 1 τ 2 σ 2 2 + dτ 2 , γ 0 < 0 g = 1 |λ| σ 2 1 + σ 2 3 + 1 sinh 2 τ σ 2 2 + dτ 2 , λ < 0.
We have again decomposable Einstein metrics made up of two copies of H 2 . Let us consider the more general case for which c does not vanish. We obtain

f (t) ≡ c 2 2 γ 2 = -ǫ + γ 1 e -ct - ǫλβ 2 0 3 e 2ct . ( 43 
)
Taking as variable s = β 0 e ct , and cleaning up the irrelevant parameters, we eventually obtain the Einstein metric

g = s 2 (σ 2 1 + σ 2 3 ) + f (s) σ 2 2 + ǫ ds 2 f (s) , f (s) = -ǫ + γ 0 s - ǫλ 3 s 2 . ( 44 
)
The metric exhibits the extra Killing vector (32) but is no longer decomposable. It contains two essential constants: γ 0 and λ which are expected for the general solution.

For ǫ = -1 it was first obtained by Stewart and Ellis [15] and by Cahen and Defrise [3] and re-discovered later on in [14], [13] and more recently in [7]. In [START_REF] Stephani | Exact solutions of Einstein's field equations[END_REF] the metric is given by formulas (13.9)and (13.48) in which one has to take e = l = 0 and k = -1. The Weyl tensor has a single non-vanishing component Ψ 2 = -c 2s 3 giving Petrov type D. For ǫ = +1, this metric was obtained by Lorenz-Petzold [11]. Using the obvious vierbein, we obtain for the Weyl tensor

W + = W -= γ 0 2s 3 M, M = diag(1, -2, 1), ( 45 
)
giving Petrov type (D + , D -).The Weyl tensor is self-dual if and only if γ 0 = 0. In this case, for negative λ, we obtain a complete Einstein metric in the following way: let us change the variable s into u = |λ| s. Then

f (s) → h(u) = 1 3u (u 3 -3u + 2c), 2c = 3 |λ| γ 0 ,
so that the choice c = -1 gives a double root and for metric :

g = 1 |λ| u 2 (σ 2 1 + σ 2 3 ) + |λ| h dy 2 + du 2 h , h(u) = (u -2) 3u (u + 1) 2 . ( 46 
)
Positivity requires u > 2 and the metric becomes singular for u = 2. That this singularity is only apparent follows from a local analysis. If we take as new variables:

ξ ≈ 8 3 (u -2) → 0, ỹ = 3 4 |λ| y,
the local form of the metric becomes a product metric

H 2 × R 2 g ≈ 1 |λ| 4(σ 2 1 + σ 2 3 ) + ξ 2 dỹ 2 + dξ 2 , ỹ ∈ [0, 2π].
The u = 2 singularity is therefore a removable polar-like singularity.

3.4

The special case γ 0 = 0 From (45) we see that for γ 0 = 0 the metric is conformally flat, so we must recover symmetric spaces with 10 Killing vectors instead of 4.

Let us first consider the minkowskian signature for λ > 0. We can write the metric

g + M = 3 λ t 2 (dx 2 + e -2x dz 2 ) - dt 2 1 + t 2 + (1 + t 2 ) du 2 , t = λ 3 s, u = λ 3 y. ( 47 
)
The coordinates

   z 1 = tz e -x , z 2 = t(sinh x + e -x z 2 /2), z 3 = √ 1 + t 2 cos u, z 0 = t(cosh x + e -x z 2 /2), z 4 = √ 1 + t 2 sin u, (48) 
are constrained by (z 1 ) 2 + (z 2 ) 2 + (z 3 ) 2 -(z 0 ) 2 + (z 4 ) 2 = 1 and

g + M = 3 λ (dz 1 ) 2 + (dz 2 ) 2 + (dz 3 ) 2 -(dz 0 ) 2 + (dz 4 ) 2 , (49) 
which is de Sitter metric, with isometry group enhanced to O(4, 1). For λ < 0 we start from

g - M = 3 |λ| t 2 (dx 2 + e -2x dz 2 ) - dt 2 1 -t 2 + (1 -t 2 ) du 2 , t = |λ| 3 s, u = |λ| 3 y. ( 50 
)
The coordinates

   z 1 = tz e -x , z 2 = t(sinh x + e -x z 2 /2), z 3 = √ 1 + t 2 cosh u, z 0 = t(cosh x + e -x z 2 /2), z 4 = √ 1 + t 2 sinh u, (51) 
are constrained by (z

1 ) 2 + (z 2 ) 2 -(z 3 ) 2 -(z 0 ) 2 + (z 4 ) 2 = 1 and g - M = 3 λ (dz 1 ) 2 + (dz 2 ) 2 -(dz 3 ) 2 -(dz 0 ) 2 + (dz 4 ) 2 , ( 52 
)
and the isometry group is enhanced to O(3, 2). For the euclidean signature, positivity requires λ < 0. We start from

g - E = 3 |λ| t 2 (dx 2 + e -2x dz 2 ) - dt 2 t 2 -1 + (t 2 -1) du 2 , t = |λ| 3 s, u = |λ| 3 y. ( 53 
)
The coordinates

   z 1 = tz e -x , z 2 = t(sinh x + e -x z 2 /2), z 3 = √ t 2 -1 cos u, z 0 = t(cosh x + e -x z 2 /2), z 4 = √ t 2 -1 sin u, (54) 
are constrained by (z

1 ) 2 + (z 2 ) 2 + (z 3 ) 2 -(z 0 ) 2 + (z 4 ) 2 = -1 and g - M = 3 λ (dz 1 ) 2 + (dz 2 ) 2 -(dz 3 ) 2 -(dz 0 ) 2 + (dz 4 ) 2 , (55) 
and the metric lies on the manifold H 4 . The de Sitter metric (53) is written in quite "exotic" coordinates. Since this metric is of some importance, we give in appendix A, the explicit form of its Killing vectors.

Integrable geodesic flow

With the obvious tetrad, we found the following Killing-Yano and Killing-Stackel tensors

Y = s e 3 ∧ e 1 , ⇒ S = s 2 (e 1 ) 2 + (e 3 ) 2 . ( 56 
)
Let us consider the geodesic flow induced by the Hamiltonian

2H ≡ g ij Π i Π j = 1 f (s) Π 2 y + Π 2 x + e 2x Π 2 z s 2 + ǫ f (s) Π 2 s . (57) 
The KS tensor S gives for conserved quantity

S = Π 2 x + e 2x Π 2 z , {H, S} = 0. ( 58 
)
It cannot be obtained from symmetrized tensor products of Killing vectors because their corresponding linear conserved quantities are

L 1 = Π x + z Π z , L 2 = Π y , L 3 = Π z , L 4 = z Π x + 1 2 z 2 -e 2x Π z , {H, L i } = 0.
The dynamical system with hamiltonian H is therefore integrable, since it exhibits 4 independent conserved quantities: H, S, Π y , Π z in involution for the Poisson bracket.

Writing the action as

S = E t + p y + q z + A(s), p = Π y , q = Π z (59) 
we get for separated Hamilton-Jacobi equation

dA ds 2 = ǫ 2E f - S s 2 f - p 2 f 2 . ( 60 
)
Let us consider now the Bianchi V case.

Type V metrics

In this case the Lie algebra is

[L 1 , L 2 ] = L 2 , [L 2 , L 3 ] = 0, [L 3 , L 1 ] = -L 3 , (61) 
with the Killing vectors

L 1 = ∂ x -y∂ y -z∂ z , L 2 = ∂ y , L 3 = ∂ z , (62) 
and the invariant Maurer-Cartan 1-forms

σ 1 = dx, σ 2 = e x dy, σ 3 = e x dz, ⇒ dσ 1 = 0, dσ 2 = σ 1 ∧ σ 2 , dσ 3 = σ 1 ∧ σ 3 . (63) 
We will look again for a diagonal metric of the form (31).

The flat space

Let us first determine the flat space Bianchi V metric. It is easy to check that it is given by

g 0 = t 2 (σ 2 1 + σ 2 2 + σ 2 3 ) -dt 2 = t 2 γ -dt 2 , ( 64 
)
where the metric γ is the Poincaré metric for H 3 :

γ ≡ σ 2 1 + σ 2 2 + σ 2 3 = dy 2 + dz 2 + dρ 2 ρ 2 , ρ = e -x ,
which has 6 Killing vectors. The flattening coordinates for (64) are

x 1 = ty ρ , x 2 = tz ρ , x 3 = t 2ρ (-1 + y 2 + z 2 + ρ 2 ), τ = t 2ρ (1 + y 2 + z 2 + ρ 2 ), (65) 
leading to

g 0 ≡ t 2 (σ 2 1 + σ 2 2 + σ 2 3 ) -dt 2 = d r • d r -dτ 2 , r = (x 1 , x 2 , x 3 ). ( 66 
)

Integration of the field equations

The independent equations are now

(I) β β + β β γ γ + δ δ - α α + ǫ(2 + λ β 2 ) α 2 β 2 = 0, (II) γ γ + γ γ β β + δ δ - α α + ǫ(2 + λ β 2 ) α 2 β 2 = 0, (III) δ δ + δ δ β β + γ γ - α α + ǫ(2 + λ β 2 ) α 2 β 2 = 0, (IV ) β γ βγ + γ δ γδ + β δ βδ + ǫ(3 + λ β 2 ) α 2 β 2 = 0, (V ) δ δ -2 β β + γ γ = 0. ( 67 
)
The differences (I)-(II) and (I)-(III) integrate to

γ γ - β β = c α βγδ , δ δ - β β = c 2 α βγδ ,
and (V) implies c 2 = -c. This suggests to fix up the time coordinate by imposing

α = βγδ =⇒ γ = γ 0 e ct β, δ = δ 0 e -ct β, α = γ 0 δ 0 β 3 .
By a rescaling of the coordinates y and z, we may set γ 0 = δ 0 = 1 and relation (I) becomes

D t β β + ǫ β 4 (2 + λ β 2 ) = 0, =⇒ β2 
β 2 + ǫ β 4 (1 + λ β 2 /3) = E.
Eventually relation (IV) gives E = c 2 /3 ≥ 0. Summarizing, we have obtained for the Einstein metric

g = β 2 σ 2 1 + e 2ct σ 2 2 + e -2ct σ 2 3 + ǫ β 4 dt 2 , β2 β 2 = c 2 3 -ǫ β 4 (1 + λ β 2 /3). (68) 
For the minkowskian signature, this result was first obtained by Schücking and Heckmann [START_REF] Heckmann | World models[END_REF] and written, in [START_REF] Stephani | Exact solutions of Einstein's field equations[END_REF][p. 192] as

g = -dτ 2 + S 2 (τ ) σ 2 1 + F √ 3 σ 2 2 + F - √ 3 σ 2 3 ,
with the relations

3 dS dτ 2 = 3 + Σ 2 S 4 + λ S 2 , F √ 3 = exp 2Σ dτ S 3 (τ )
.

Upon the identifications

dτ = β 3 (t) dt, S(τ ) = β(t), Σ = c,
the differential equation for S(τ ) gives the differential equation for β(t) and for F we get

F √ 3 = e 2ct
showing full agreement with (68).

The special case E = c = 0

This special case leads to metrics with enhanced symmetries, namely non-compact symmetric spaces with 10 Killing vectors. Among these, as mentioned in [START_REF] Stephani | Exact solutions of Einstein's field equations[END_REF], we expect de Sitter metrics.

The differential equation ( 68) becomes

dt = dβ β 3 -ǫ -ǫλβ 2 /3 . ( 69 
)
Taking β → s as a new variable, we get the metric

g = s 2 σ 2 1 + σ 2 2 + σ 2 3 - ds 2 1 + λ s 2 3 . ( 70 
)
The minkowskian or euclidean character of the metric does depend solely on the range taken by the variable t, and in the λ → 0 limit we recover, as it should, the flat space metric (64).

For λ > 0, we can have only a minkowskian metric. As explained at the beginning of this section, we expect a higher symmetry. Defining λ 3 s = 2t 1 -t 2 we can write the metric:

g + M = 12 λ 1 (1 -t 2 ) 2 t 2 (σ 2 1 + σ 2 2 + σ 2 3 ) -dt 2 ,
on which we recognize a symmetric space, since by using the flattening coordinates (65), we have

g + M = 12 λ d r • d r -dτ 2 (1 + r 2 -τ 2 ) 2 .
Indeed, using the constrained coordinates

z 0 = 1 -r 2 + τ 2 1 + r 2 -τ 2 , z = 2 r 1 + r 2 -τ 2 , z 4 = 2τ 1 + r 2 -τ 2 , z 2 0 + z 2 -z 2 4 = 1,
we see that we end up with de Sitter metric

g + M = 3 λ dz 2 0 + d z • d z -dz 2 4 ,
and the isometry group enlarges to O(4, 1). As for Bianchi type III, we get de Sitter metric in some "exotic" coordinates. Since this could be perhaps useful for other applications, we give in Appendix A the form of its Killing vectors. For λ < 0 we have, for Minkowskian signature, anti de Sitter metric

g - M = 12 |λ|(1 + t 2 ) 2 t 2 (σ 2 1 + σ 2 2 + σ 2 3 ) -dt 2 .
For the euclidean signature we get

g - E = 3 |λ| ch 2 θ(σ 2 1 + σ 2 2 + σ 2 3 ) + dθ 2 ,
which is also a locally symmetric space. To give the embedding in R 5 let us first define a set of 4 coordinates ( r, x 0 ) by r = e x y, e x z,sinh x + e x (y 2 + z 2 )/2 , x 0 = cosh x + e x (y 2 + z 2 )/2, which are constrained by r 2 -(x 0 ) 2 = -1. One can check that

σ 2 1 + σ 2 2 + σ 2 3 = dx 2 + e 2x (dy 2 + dz 2 ) = d r • d r -(dx 0 ) 2 .
Then, defining the coordinates ( z, z 0 , z 4 ) by

z = cosh θ r, z 0 = cosh θ, z 4 = sinh θ,
we conclude to

g - E = 3 |λ| d z • d z -(dz 0 ) 2 + (dz 5 ) 2 , z 2 -(z 0 ) 2 + (z 4 ) 2 = -1, (71) 
which shows that the metric g - E lives on the manifold H 4 .

The general case E = 0

In relation ( 68), let us introduce as a new variable

ρ = |c| β 2 > 0 =⇒ ρ dρ P (ρ) = ± 2c dt √ 3 , P (ρ) ≡ ρ(ρ 3 -3ǫ ρ -ǫλ|c|), (72) 
which gives for the metric

g = |c| ρ σ 2 1 + γ 2 σ 2 2 + 1 γ 2 σ 2 3 + 3 4 ǫ dρ 2 P (ρ) , γ 2 ≡ e 2|c|t . (73) 
Remark: Due to the symmetric role played by (σ 2 , σ 3 ), the coefficients of σ 2 2 and of σ 2 3 may be interchanged and this corresponds to the exchange (c ↔ -c) or γ ↔ 1 γ . This means that if the metric (73) is Einstein, then

g = |c| ρ σ 2 1 + 1 γ 2 σ 2 2 + γ 2 σ 2 3 + 3 4 ǫ dρ 2 P (ρ) , (74) 
will be Einstein too. We will use this observation to get rid of the sign in relation (72) and to take c > 0.

Minkowskian signature

In [START_REF] Heckmann | World models[END_REF] the results are given up to the quadrature for β(t). For the Einstein metric of interest this quadrature requires the use of elliptic functions. The technical details are given in the appendix; using these results we get the final form of the metrics, according to the sign of the Einstein constant.

We have to take ǫ = -1. In this case the cubic polynomial P (ρ) = ρ(ρ 3 + 3ρ + λc) has, no matter what the value of c is, always 2 real and 2 complex conjugate roots (recall that we exclude λ = 0). So we fix c = 1 and, to express most conveniently the roots of P , we parametrize the Einstein constant according to λ = 2 sinh(θ), θ ∈ R\{0}.

We will use now the results from appendix B to give the explicit form of the metric.

1. For λ < 0 :

In this case the roots are

a = -2 sinh(θ/3) > b = 0, a 1 = √ 3 cosh(θ/3), b 1 = sinh(θ/3), so we have      A = 3 + 12 sinh 2 (θ/3), B = 3 + 4 sinh 2 (θ/3), k 2 = (A + B) 2 -4 sinh 2 (θ/3) 4AB and sn v 0 = 2B A + B -2 sinh(θ/3)
.

In formula (73) we have to transform dρ into dv to get eventually

g M = 1 ρ σ 2 1 + γ 2 σ 2 2 + 1 γ 2 σ 2 3 - 3 AB (dv) 2 , v ∈ [0, v 0 ), (75) 
where ρ and γ 2 are given respectively by

ρ = aB cn 2 v B cn 2 v -A sn 2 v dn 2 v , (76) 
and by

γ 2 = e -ξv H(v 0 + v) Θ 1 (v 0 + v) H(v 0 -v) Θ 1 (v 0 -v) √ 3 , ξ = 2 Θ ′ Θ (v 0 ) + H ′ 1 H 1 (v 0 ) . (77) 
2. For λ > 0 :

In this case the roots are

a = 0 > b = -2 sinh(θ/3), a 1 = √ 3 cosh(θ/3), b 1 = sinh(θ/3), so we have      A = 3 + 4 sinh 2 (θ/3), B = 3 + 12 sinh 2 (θ/3), k 2 = (A + B) 2 -4 sinh 2 (θ/3) 4AB .
The parameter k 2 remains unchanged while A and B are interchanged and v 0 becomes

sn v 0 = 2B A + B + 2 sinh(θ/3) .
The metric is still given by (75), where now ρ and γ 2 are respectively

ρ = |b|A sn 2 v dn 2 v B cn 2 v -A sn 2 v dn 2 v , (78) 
and by

γ 2 = e -ξv H(v 0 + v) Θ 1 (v 0 + v) H(v 0 -v) Θ 1 (v 0 -v) √ 3 , ξ = 2 |b| AB + Θ ′ Θ (v 0 ) + H ′ 1 H 1 (v 0 ) . (79) 
Using the complex null-tetrad

3 m = 1 √ 2 (e ct β σ 2 + ie -ct β σ 3 ), k = 1 √ 2 (β 3 dt -β σ 1 ), l = 1 √ 2 (β 3 dt + β σ 1 ), (80) 
and defining µ = 1/β 2 , one has to use the differential equation (68) which gives

μ2 4 = c 2 3 µ 2 + 1 + λ 3 1 µ . (81) 
Just using these informations one can check, computing the curvature, the Einstein property of this metric. For the Weyl tensor we have obtained

Ψ 0 = c µ 2 1 - μ 2 , Ψ 2 = c 2 3 µ 3 , Ψ 4 = -c µ 2 1 + μ 2 , Ψ 1 = Ψ 3 = 0, (82) 
which establishes the Petrov type I of the metric.

Euclidean signature

In this case P (ρ) = ρ(ρ3 -3ρ -λc). It has two real roots for λc ∈ (-∞, -2) ∪ (+2, +∞), four real roots for λc ∈ [-2, 0)∪(0, +2] and a double root for λc = ±2. Since the parameter c is free, we can collapse (-∞, 0) ∪ (0, +∞) to two points by taking c = 2/|λ|. Therefore in this case elliptic functions are no longer required! We have to discuss two cases:

1. λ < 0 :

We have

P (ρ) = ρ(ρ + 2)(ρ -1) 2 and 2c √ 3 dt = ρ dρ |ρ -1| ρ(ρ + 2)
.

The change of variable ρ = 2s 2 3 -s 2 simplifies to

2c dt = 4s 2 ds (1 -s 2 )(3 -s 2 )
.

We obtain

γ 2 ≡ e 2ct = 1 + s |1 -s| √ 3 -s √ 3 + s √ 3 , (83) 
and the Einstein metric

g E = (3 -s 2 ) |λ| s 2 σ 2 1 + γ 2 σ 2 2 + 1 γ 2 σ 2 3 + ds 2 (1 -s 2 ) 2 .
(84)

In fact we have two different metrics, according to the interval taken for s: either s ∈ (-1, 1) or s ∈ (1, √ 3).

2. λ > 0 :

We have

P (ρ) = ρ(ρ -2)(ρ + 1) 2 and 2c √ 3 dt = ρ dρ (ρ + 1) ρ(ρ + 2) , ρ > 2.
The change of variable ρ = 2 1 -s 2 simplifies to

2c √ 3 dt = - 4 ds (1 -s 2 )(3 -s 2 )
, s ∈ (-1, +1).

Deleting the sign we obtain

γ 2 ≡ e 2c t = √ 3 -s √ 3 + s 1 + s 1 -s √ 3 (85) 
and the Einstein metric

g E = (1 -s 2 ) λ σ 2 1 + γ 2 σ 2 2 + 1 γ 2 σ 2 3 + 3 ds 2 (3 -s 2 ) 2 . ( 86 
)
Some remarks are now in order:

1. We have checked, using the obvious vierbein, the vanishing of the matrix B and that Tr A = λ, which proves the Einstein character of both metrics and computed the Weyl tensor: it has Petrov type (I + , I -) and is never self-dual.

2. It is interesting to compare with the results in [START_REF] Tod | Cohomogeneity-one Kähler metrics with self-dual Weyl tensor[END_REF] for the Bianchi type A Einstein metrics with self-dual Weyl tensor: except for Bianchi type II, they all involve Painlevé transcendents.

3. Let us observe that the difference in structure between the minkowskian and euclidean type V case is quite unusual. Indeed we have seen for the Bianchi type II and III metrics that the change in the signature brings rather small variance.

Conclusion

We have been giving very simple derivations of the "diagonal" Bianchi type II, III and V Einstein metrics. The first two exhibit an integrable geodesic flow, while the third one gives rise to new euclidean metrics which can be expressed in terms of elementary functions. Let us observe that there is little room for diagonal type B euclidean metrics with self-dual Weyl tensor: we have seen that the corresponding metrics are conformally flat, in agreement with [START_REF] Tod | [END_REF]. A question of interest is to what extent one could work out the tri-axial type II metric or the more general Bianchi VI h and Bianchi VII h metrics, a rather difficult aim to say nothing of the non-diagonal ones! A.2 de Sitter from Bianchi type V

We have shown that the metric

g = s 2 σ 2 1 + σ 2 2 + σ 2 3 - ds 2 1 + λ s 2 3 , λ > 0, (89) 
is de Sitter. Taking sinh θ = λ 3 s and v = e -x as new variables the metric becomes

g = 3 λ sinh 2 θ dy 2 + dz 2 + dv 2 v 2 -dθ 2 , λ > 0. ( 90 
)
The first 3 dimensional piece in the metric is H 3 in Poincaré coordinates, so we have 2 sub-algebras:

A 1 = P 1 , P 2 , M 3 , A 2 = Q 1 , Q 2 , L 3 . (91) 
The first one is e(2) (M 3 is a rotation)

P 1 = ∂ y , P 2 = ∂ z , M 3 = -z ∂ y + y ∂ z , (92) 
and the second one is ẽ

(2) (L 3 is a dilatation)      Q 1 = 1 2 -y 2 + z 2 + v 2 ∂ y -yz ∂ z -yv ∂ v , Q 2 = -zy ∂ y + 1 2 y 2 -z 2 + v 2 ∂ z -zv ∂ v , L 3 = -y ∂ y -z ∂ z -v ∂ v , (93) 
We need 4 extra Killing vectors to get the 10 dimensional so(4, 1) Lie algebra for de Sitter metric. They are given by

C 1 = - 1 tanh θ ∂ v - 1 v ∂ θ , C 2 = 1 tanh θ (v ∂ y -y ∂ v ) - y v ∂ θ , C 3 = 1 tanh θ (v ∂ z -z ∂ v ) - z v ∂ θ , C 4 = - v tanh θ (y ∂ y + z ∂ z ) + (y 2 + z 2 -v 2 ) 2 tanh θ ∂ v + y 2 + z 2 + v 2 2v ∂ θ . (94) 

B Elliptic functions: some tools

There are plenty of books on elliptic function theory, but we used mainly the books by Byrd and Friedman [START_REF] Byrd | Handbook of elliptic integrals for engineers and scientists[END_REF] and by Whittaker and Watson [START_REF] Whittaker | A Course of Modern Analysis[END_REF]. We use Jacobi rather than Weierstrass notation for elliptic functions. Similarly we use earlier Jacobi notation for the theta functions which is best adapted to our purposes. They are related to the more symmetric notations used in [START_REF] Whittaker | A Course of Modern Analysis[END_REF] according to

H(v) = θ 1 (w), H 1 (v) = θ 2 (w), Θ 1 (v) = θ 3 (w), Θ(v) = θ 4 (w), w = πv 2K .
Let us start from the relation (72

) 2dt √ 3 = ρ dρ P (ρ) . (95) 
If the quartic polynomial P (ρ) has 2 real roots, and therefore two complex conjugate ones, we will write it

P (ρ) = (ρ -a)(ρ -b)[(ρ -b 1 ) 2 + a 2 1 ], a > b.
In this case, the positivity of ρ and P (ρ) requires ρ ≥ a. One defines

A = (a -b 1 ) 2 + a 2 1 > B = (b -b 1 ) 2 + a 2 1 , k 2 = (A + B) 2 -(a -b) 2 4AB < 1,
where k 2 will be the parameter of the elliptic functions involved. Let us define the change of variable

sn 2 v = 2B(ρ -a) D + , cn 2 v = D - D + , dn 2 v = D - 2A(ρ -b) , (96) 
with

D ± = A(ρ -b) ± B(ρ -a) + (a -b) (ρ -b 1 ) 2 + a 2 1 , (97) 
and the parameters

s 0 ≡ sn v 0 = 2B A + B + a -b < 1, s 1 ≡ sn v 1 = 2B A + B -a + b > 1,
for which the reader can check that v 

1 = K + iK ′ + v 0 . The change of variable (96) transforms ρ ∈ [a, +∞) into v ∈ [0, v 0 ) ⊂ [0, K 0 ). The inverse relation is 4 ρ = aB c 2 -bA s 2 d 2 B c 2 -A s 2 d 2 . ( 98 
) Using ρ -a a -b = A s 2 d 2 B c 2 -A s 2 d 2
The relation

c 2 0 s 2 -s 2 0 = - c 0 2s 0 d 0 H ′ H (v 0 -v) + H ′ H (v 0 + v) -2 Θ ′ Θ (v 0 ) ,
and a similar one, obtained by the substitution v 0 → v 1 = K + iK ′ + v 0 :

c 2 1 s 2 -s 2 1 = c 0 2s 0 d 0 Θ ′ 1 Θ 1 (v 0 -v) + Θ ′ 1 Θ 1 (v 0 + v) -2 H ′ 1 H 1 (v 0 ) ,
allow us to integrate up to

γ 2 ≡ e 2t = e -ξv H(v 0 + v) Θ 1 (v 0 + v) H(v 0 -v) Θ 1 (v 0 -v) √ 3 , ξ = 2 - b √ AB + Θ ′ Θ (v 0 ) + H ′ 1 H 1 (v 0 ) .
(100) As the reader may notice, in [START_REF] Byrd | Handbook of elliptic integrals for engineers and scientists[END_REF] As a consequence we get in the metric (73) the term

- 3 4 
dρ 2 P (ρ) = - 3 AB du 2 2 .
To avoid the 1/2 factor we have used a duplication transformation to switch to our variable by u = 2v, having in mind that in the limit λ → 0 we have 3/AB → 1.

C Curvature computations

Taking the obvious vierbein e A , we define the connection ω and its self-dual components by The self-dual components of the curvature follow from 3 ,

R + a = dω + - 1 2 ǫ abc ω + b ∧ ω + c , R - a = dω -+ 1 2 ǫ abc ω - b ∧ ω - c . (102 
( √ 3s 3 -3 √ 3s -2) (1 -s 2 )
w 33 = - 2λ 3 ( √ 3s 3 -3 √ 3s + 2) (1 -s 2 ) 3 , (106) 
The eigenvalues are all different hence we have a "Petrov-like" type of the form (I + , I -). The conclusions are the same for the case λ < 0 for which we have (107)

, ρ -b a -b = B c 2 B c 2 - 2 -bA s 2 d 2 B c 2 -

 22222 A s 2 d 2 , (ρ -b 1 ) 2 + a 2 1 = AB d 2 -c 2 + c 2 d 2 B c 2 -A s 2 d 2 ,It remains to give the explicit form of γ 2 = e 2t as a function of v by integrating (95)A s 2 d 2 dv.

  [p. 135] a different change of variables is given, which differs from ours. It is cn u = (A -B)ρ -bA + aB (A + B)ρ -bA -aB .

2 ǫ

 2 de A + ω AB ∧ e B = 0, A = 0, 1, 2, 3 ω ± a = ω 0a ± 1 abc ω bc , a, b, c = 1, 2, 3. (101)

) Using the 2-forms λ ± a = e 0 ∧ e a ± 1 2 ǫ

 2 abc e b ∧ e c , the curvature can be expressed in terms of a triplet of 3 × 3 matrices self-dual components of the Weyl tensor, defined byW + a = W + ab λ + a , W - a = W - ab λ - a , are W + = A -tr A 3 I, W -= C -tr C 3 I.(104)For the diagonal Bianchi type V metrics considered here the matrices W ± have the general structure

3 (

 3 2s 3 + 9s 2 -9) (3 -s 2 ) 3.

In our notations the spheres have positive curvature.

The coefficient between β and δ can be set to 1 by rescaling the coordinate z.

We follow strictly the notations of[START_REF] Stephani | Exact solutions of Einstein's field equations[END_REF].

From now on we will use the simplified notations s ≡ sn (v, k 2 ), c ≡ cn (v, k 2 ), d ≡ dn (v, k 2 ) as well as s 0 = sn v 0 , s 1 = sn v 1 etc...
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Appendix

A De Sitter metric re-visited A.1 de Sitter from Bianchi type III Let us consider the de Sitter metric (47) written as

The four standard Killing vectors are now

The remaining ones appear by pairs

and

Despite the simple form of the metric in these coordinates, the symmetries are somewhat wild.