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Abstract

Uncertainty representation is a major issue in pattern recognition. In many applica-

tions, the outputs of a classifier do not lead directly to a final decision, but are used

in combination with other systems, or as input to an interactive decision process. In

such contexts, it may be advantageous to resort to rich and flexible formalisms for rep-

resenting and manipulating uncertain information. This paper addresses the issue of

uncertainty representation in pattern classification, in the framework of the Dempster-

Shafer theory of evidence. It is shown that the quality and reliability of the outputs

of a classifier may be improved using a variant of bagging, a resample-and-combine

approach introduced by Breiman in a conventional statistical context. This technique

is explained and studied experimentally on simulated data and on a character recog-

nition application. In particular, results show that bagging improves classification

accuracy and limits the influence of outliers and ambiguous training patterns.

Keywords: Supervised pattern recognition, K-Nearest Neighbor rule, Decision fu-

sion, Dempster-Shafer theory, Evidence theory, Bootstrap, Bagging, Character recog-

nition.



1 Introduction

Supervised pattern recognition, or classification, is concerned with the design of de-

cision rules whereby entities, described by feature vectors, are assigned to predefined

categories. Whereas classification systems are sometimes used directly to trigger spe-

cific actions, it is often the case that the outputs from a classifier are used in combi-

nation with other sources of information, or are presented to a human decision maker

via an interactive decision-aid system. Such situations occur, for example, in medical

or technical diagnosis, weather forecasting, financial decision making, and even in cer-

tain character recognition applications in which ambiguous patterns are rejected for

further interactive processing. In such contexts, it is particularly important to provide

not only an indication of the most plausible class, but also a faithful description of

the plausibility (taken here in a broad sense) of various hypotheses regarding the class

of the pattern under consideration. Uncertainty representation and management thus

play an important role in pattern recognition.

In the last thirty years, the issue of uncertainty representation has received con-

siderable attention in the computer science and electrical engineering communities.

New theoretical frameworks such as possibility theory [27] and evidence theory [17]

have been proposed as alternatives to Bayesian probability theory to describe, manip-

ulate, and reason with partial knowledge and unreliable information. In particular,

the so-called Dempster-Shafer (D-S) theory of evidence, first proposed by Shafer [17]

and further elaborated by many authors (see, e.g., reviews in Refs. [18, 21, 23]) has

been shown to constitute a rich and flexible framework, in which the concepts of a

probability and possibility measures are recovered as special cases of the more general

concept of belief function. This theory has been successfully applied in many areas

such as diagnosis [22], sensor fusion [2, 12] and pattern classification [4, 8, 16, 26].

When applying D-S theory to classification tasks, the construction of belief func-

1



tions from observation data is a crucial step. Typically, a training set of patterns

{xi}N
i=1 with known classification is given, and one wishes to quantify one’s beliefs

concerning the category of a new pattern x submitted to the system. A method for

inferring a belief function in this context is the evidential K-NN rule previously in-

troduced by one of the authors [4, 15, 28]. In this method, each training example xi

is treated as an item of evidence regarding the unknown class of the pattern x under

consideration. The strength of this evidence is assumed to be a decreasing function

of the distance between x and xi. A belief function is constructed by pooling the

evidence from the K nearest neighbors of x in the training set.

In this paper, it is proposed to improve this method using a variant of a technique

proposed by Breiman [3] in a conventional statistical context to improve the stability of

classification rules. In this technique, known as “bagging”, B “bootstrap” samples are

generated by drawing instances with replacement from the original data set. Each of

these samples is then used separately as a training set, resulting in the construction of

B distinct classifiers which are then combined using the majority rule. In the present

paper, a modification of this technique is proposed, in which each bootstrap sample

yields a belief function, and the B belief functions are combined in an appropriate way

before a decision is made. This method is shown experimentally to provide a more

“realistic” description of the uncertainty pertaining to the classification task, leading

to improved classification performances.

The paper is organized as follows. After an introduction to the main concepts

of evidence theory and their use in pattern recognition (Section 2), the central idea

of this paper, i.e., the adaption of the bagging approach to evidential classifiers, is

explained in Section 3. The rest of the paper is then devoted to the presentation

and discussion of experimental results obtained in an artificial learning task (Sections

4-6) and in an optical character recognition application (Section 7). In particular, the

latter experiment investigates the effect of bagging in an information fusion context,
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the classifier outputs being combined with a rule expressing prior knowledge. Finally,

Section 8 concludes the paper and presents directions for further research.

2 Background

2.1 Theory of Belief Functions

Only the main concepts of the Dempster-Shafer theory of belief functions will be re-

called here. The reader is referred to Shafer’s book [17] for a detailed exposition of the

mathematical background, and to more recent papers such as, e.g., Refs. [23, 24, 25]

for up-to-date presentations of the latest developments in both the theoretical aspects

and practical applications of belief functions. Note that debates on the relevance

of the Dempster-Shafer model, and particularly on its relationship with probability

theory have sometimes been obscured by misunderstandings regarding the nature of

belief functions at the semantic level [20, 21]. Although our approach is not tied to a

particular interpretation of belief functions, we shall adopt the non-probabilistic view

of Smets’ Transferable Belief Model (TBM), which constitutes a coherent and justified

approach [23, 25].

In short, the main assumptions underlying the TBM are that (1) degrees of belief

are quantified by numbers between 0 and 1; (2) there exists a two-level structure

composed of a credal level where beliefs are entertained, and a pignistic level where

decisions are made; (3) beliefs at the credal level are quantified by belief functions,

while decisions at the pignistic level are based on probability functions; (4) when a

decision has to be made, beliefs are transformed into probabilities using the so-called

pignistic transformation.
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The credal level

Let Ω = {ω1, . . . , ωM} be a finite possibility space containing all the possible answers

to a certain question (the truth lies necessarily somewhere in Ω). In the type of

applications envisaged here, Ω is the set of possible classes for an object with unknown

class membership. It is assumed that any item of evidence can be represented by a

belief structure, or basic belief assignment, defined as a function m from 2Ω (the power

set of Ω) to the [0,1] interval, verifying

∑

A⊆Ω

m(A) = 1. (1)

and m(∅) = 0. The value of m(A) can be interpreted as the “mass” of belief that is

given to A and that cannot be given to any other subset without further information.

In particular, m(Ω) = 1 represents total ignorance (m is then called the vacuous belief

structure), and m({ω1, ω2}) = 1 means complete certainty that either hypothesis 1 or

hypothesis 2 is true (with no evidence in favor of any one of them individually).

The information conveyed by a new source of belief can be incorporated to the

current belief structure by use of the Dempster’s rule of combination [19]. This can be

done only if the sources of belief are independent and non-totally contradictory (that

is, two belief structures m1 and m2 can be combined if there is A ⊆ Ω and B ⊆ Ω

with A ∩ B 6= ∅, such that m1(A) > 0 and m2(B) > 0). This combination creates a

new belief structure m on Ω that represents the new state of knowledge, defined, for

each C ⊆ 2Ω \ ∅, as:

m(C) =
1

1− κ

∑

A∩B=C

m1(A)m2(B) (2)

κ =
∑

A∩B=∅
m1(A)m2(B). (3)

The normalizing factor κ is interpreted as a degree of conflict between the two sources:

when κ = 1, the conflict is total and the sources cannot be combined.
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The pignistic level

Given a belief structure, different criteria can be used to choose one hypothesis, such

as the maximum of plausibility [2], or the minimization of some given risk. We will

use here the pignistic risk minimization as defined and justified by Smets [25] on an

axiomatic basis.

Let PBet be the so-called pignistic probability distribution, defined by uniformly

distributing the mass of belief given to each subset of Ω among its elements:

PBet(ω) =
∑

{A⊆Ω|ω∈A}

m(A)
|A| ∀ω ∈ Ω, (4)

where |A| is the number of elements in A.

In the TBM, the pignistic probability function is used for decision making accord-

ing to the Bayes decision theory. Let A denote a set of actions, and λ(α|ω) the loss

incurred if action α ∈ A is selected, ω ∈ Ω being the true state of nature. Then, the

expected cost (or risk) when choosing action α, relative to the pignistic distribution,

is:

RBet(α) =
∑

ω∈Ω

λ(α|ω) PBet(ω) (5)

=
∑

A⊆Ω

m(A)
|A|

∑

ω∈A

λ(α|ω). (6)

The Bayes decision rule then recommends the action α with the lowest expected

cost RBet(α).

2.2 Application to pattern classification

In the first applications of D-S theory to pattern recognition problem, the outputs from

conventional, probabilistic classifiers were converted into belief structures for more

effective combination [13, 16]. This was usually done through the use of classification
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error rates [26], distances to class centers [13], or class-conditional density estimates

[2].

More recently, Denœux proposed an evidence-theoretic pattern recognition scheme,

named the evidential K-NN rule [4, 8], although it may be more accurately described

as an evidential kernel classifier. It takes fully advantage of the extensive represen-

tation of beliefs, without resorting to any intermediate probabilistic representation.

The outline of this approach is summarized below.

Let x be the sample to be classified, Ω = {ω1, . . . , ωM} the set of classes, and

L = {(xi, yi)}N
i=1 the learning set of known patterns, where yi ∈ Ω is the class of

pattern xi. Each example xi is considered as an item of evidence about the class of x.

If yi = ωq, this evidence induces a belief structure mi with focal elements {ωq} and Ω:

mi(A) =





α exp(−γq‖xi − x‖2) if A = {ωq}
1− α exp(−γq‖xi − x‖2) if A = Ω

0 otherwise

(7)

where ‖xi−x‖ is the Euclidean distance between xi and x, and α and γq (q = 1, . . . ,M)

are positive parameters.

This basic belief assignment is thus defined by a radially symmetric function cen-

tered on xi. Each parameter γq ∈ R+ adjusts the influence of the patterns of class q

according to their distance to x, while the certainty expressed by training patterns is

limited by parameter α ∈ [0, 1] setting the minimum belief mass given to Ω. These

coefficients can be determined from data by a fully automatic procedure [28].

The belief induced by the training examples far from x is almost vacuous (knowing

the label of examples far away from the query point is not informative). Hence, for

computational reasons, only the belief structures provided by the K-nearest neigh-

bors of x are evaluated. As they are independent from each other, these K belief

structures are simply combined into a single structure by means of Dempster’s rule
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(2-3). This structure represents the available information about the class of x. It is

used to compute pignistic probabilities PBet(ωj |x), from which class assignment can

be performed, using the approach described in Section 2.1 [5]. In this context, the set

of actions may be defined as A = {α0, α1, . . . , αM}, where αi for i = 1, . . . , M is the

decision to classify x in class ωi, and α0 denotes rejection. In this paper, the loss is

assumed to be 1 in case of a wrong classification and 0 for correct classification. The

rejection loss is assumed to be constant, and equal to some value λ0 ∈ [0, 1]. We thus

have:

λ(αi|ωj) = 1− δij ∀i, j ∈ {1, . . . ,M} (8)

λ(α0|ωj) = λ0 ∀j ∈ {1, . . . , M}, (9)

where δij is the Kronecker symbol (δij = 1 if i = j, and 0 otherwise).

With these costs, the risks are defined, for each action, as follows :

RBet(αi|x) = 1− PBet(ωi|x), i = 1, . . . , M (10)

RBet(α0|x) = λ0. (11)

Each pattern is thus assigned to the class with highest pignistic probability, provided

this probability is greater that 1 − λ0. Otherwise, it is rejected. Consequently, pa-

rameter λ0 allows to control the rejection rate of the classifier.

3 Sampling, Learning and Uncertainty

3.1 Problem

The basic belief assignment defined by Eq. (7) handles the uncertainty that stems from

the possibly novel characteristics of the query sample. However, additional causes of

uncertainty exist. First, the known instances xi are usually not “prototypical” pat-

terns, such as measurement vectors obtained from some careful experimental design.
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They are records of past solved cases, which are supposed to be representative of

future unsolved cases. In probabilistic terms, they may be considered as randomly

sampled from the distribution of future cases. This random sampling is responsible

for some uncertainty in the global belief assignment. This “sampling” uncertainty

cannot be represented by a basic belief assignment conditioned on a single realization

of the training set.

Additionally, when the parameters of the basic belief assignment are tuned by

minimizing some performance criterion on the training set, the learned parameters

are also random variables, whose variability is responsible for another part of uncer-

tainty. This is why we propose here the use of bagging, introduced in the probabilistic

framework by Breiman to limit the effects of sampling on a learned decision rule.

3.2 Bagging Decision Rules

Bagging is a procedure for improving a classification procedure using a resample-

and-combine technique [3]. Breiman argues that its main effect is to decrease the

variance of the estimator, and advocates its use for unstable classification methods,

i.e. methods which are sensitive to perturbations of the training set.

“Bagging” is an acronym for “bootstrap aggregating”. From the original decision

rule, the bagged estimator is produced by aggregating, using a majority vote, several

replicates of the rule, trained on bootstrap resamples of the learning set. A bootstrap

sample [11] is created by drawing with replacement N examples from the learning set

L = {(xi, yi)}N
i=1. It has thus the same size as the original sample but may contain

replicates of some given examples, while other ones are not represented. The draw-

ing with replacement in L simulates the original sampling from the distribution that

generated L. Several empirical evaluations showed that the method almost systemat-

ically improves the original predictor [3, 9, 10]. In situations with substantial noise,
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its performance is also comparable to other ensemble methods such as boosting or

randomization [9].

3.3 Bagging in the TBM

In pattern classification, bagging is usually applied to the decisions. In this paper,

however, we propose to use it upstream, at the credal level. The main goal is to better

take into account the uncertainty attached to the finite training set, in order to allow

steadier decisions and, consequently, to improve the result of further combinations

when new sources are available.

Practically, B bootstrap learning sets Lb (b = 1, . . . , B) are obtained by drawing

with replacement N examples from the original learning set L. Here, the bootstrap is

balanced, which means that each sample (xi, yi) is globally drawn B times over the B

resamples. Then, for a given unknown sample x, each training set Lb produces a belief

structure mb through a given evidential K-NN classifier. These are finally aggregated

into the average structure mB, defined as:

∀A ⊆ Ω, mB(A) =
1
B

B∑

b=1

mb(A). (12)

The usual bagging combines votes by the majority rule on the B decision rules.

Since we are interested in uncertainty representation, aggregation takes place here at

the credal level, using the average operator. Note that the Dempster’s rule of combi-

nation cannot be used here, because the belief sources are obviously not independent.

Although other operators could be used (this is a subject of on-going research),

averaging seems to be a good candidate as it is idempotent, commutative and linear:

first, getting B times the same structure should lead to this same structure after

aggregation (idempotency), second, the resulting structure should be independent

from the aggregation order (commutativity), and third, the linear relationship between
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credal and probabilistic levels, introduced by Smets [25] in the decision process, also

supports linear aggregation (linearity).

4 Experimental Settings

4.1 The Problem

In a first attempt to investigate the benefits of bagging, we will focus on an artificial

learning task. For easy problems, with well-separated classes and large training sets,

many different algorithms usually yield similar results. A learning task of interest

should therefore involve overlapping class distributions and a small learning set. Ad-

ditionally, it should contain outliers as these are frequently encountered in real data

sets. Finally, we chose a bidimensional problem so as to easily represent and interpret

the results.

In the experiments reported in the sequel, we considered three bidimensional Gaus-

sian distributions with common covariance matrix Σ = 2.25I and mean vectors (0, 0),

(3, 0) and (0, 5). Each training set L was constructed by drawing 15 points from

each distribution. Additionally, to simulate the contamination of the training set

by outliers, 6 points with randomly selected class labels were drawn from a uniform

distribution on [−5, 9]× [−3, 8].

To exhibit general trends, 15 training sets were generated from the same distribu-

tion. Fig. 1 shows an example of such a generated set.

4.2 Evaluation

For each training set, the decision rule was evaluated on a single independent test

set T generated from the same distribution as L with NT = 2000 × 3 + 800 items:

2000 patterns in each class and 800 “outliers”. The mean classification cost C was
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estimated by the average of the classification costs on the NT test points of T :

C =
1

NT

∑

(x,y)∈T
λ(D(x)|y) (13)

where D(x) ∈ A = {α0, . . . , αM} denotes the decision made by the classifier for pattern

x. The costs were defined according to Eqs (8) and (9): zero for correct classification,

one for wrong classification and λ0 for rejection.

The classification error rate E was estimated by the proportion of bad predictions

(rejection is not an error) and the rejection rate R was defined as the proportion of

rejected items. We thus have the following relation between C, E and R:

C = E + λ0R (14)

The mean classification cost was also computed for the Bayes classifier, whose

optimal solution provides a baseline to compare results with and without bagging. Its

performances also characterize the intrinsic difficulty of the task.

4.3 Implementation

The evidential K-NN rule described in Section 2.2 requires the setting of M + 2

parameters: K (number of neighbors), α and γ = (γ1, . . . , γM ). The bagged estimate

requires an additional parameter B for the number of bootstrap resamples of the

learning set.

In the evidential K-NN rule, the influence of a neighboring vector decreases with

its distance to the query point. Setting K = 8 was found to result in near-asymptotic

behavior while limiting the computational expense. The influence of training patterns

depends on parameters α and γ (see Eq. 7). As the influence of α on the classification

is low, it was set to the default 0.95 value [4]. Regarding γ, we will proceed here in

two steps. First, all γq are fixed (Section 5); they are set to the same value (0.5) since
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the three classes have the same shape and the same number of items. Then, different

learning strategies are tested in Section 6.

Finally, the average structure mB estimates the expected structure over training

sets. The expectation over training samples is ideally estimated by the expectation

over bootstrap samples. Hence, the number B of bootstrap samples should tend

towards infinity. In fact, the effect of bagging is quite visible for values as low as

B = 10. We used B = 50, as the small improvement achieved by higher values is not

worth the computation cost. Note that Breiman recommends values around 25.

5 Results without Learning

In this section, the results with and without bagging, for the problem described in

Section 4.1, will be compared from three successive viewpoints: (1) the quality of

the decisions, (2) the closeness of the pignistic probabilities to the class posterior

probabilities, and (3) the ability of the output belief structures to adequately represent

the classification uncertainty.

5.1 Decision Level

Figure 2 shows mean classification costs vs. rejection costs for the 15 experiments.

The horizontal segments in boxplots represent the lower quartile, median, and up-

per quartile over the 15 simulations. Minimal and maximal values are indicated by

the whiskers, and the plotted curve itself is the average over experiments. Bagging

clearly improves classification for low classification costs, which correspond to higher

rejection rates (the difference in the average mean classification cost is significant to

the 5% level for 0 < λ0 ≤ 0.5 according to the exact Wilcoxon signed ranks test for

matched samples). Its cost is half-way between the original algorithm and the Bayes

classifier. However, this benefit vanishes for high values of λ0 (low rejection rates).
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The improvement due to bagging is thus linked to its higher capacity to reject truly

ambiguous patterns. In fact, the class with maximum pignistic probability PBet(ωj |x)

is generally not modified by the bagging procedure, but the pignistic probabilities

values may be significantly modified so that rejection is more frequent.

In agreement with what intuition suggests, taking into account the uncertainty

due to the finite size of the training sample hardly modifies the rank of the highest

pignistic probability. Its value is however properly lowered, which is interpreted as

a more uncertain outcome. Bagging is thus beneficial when the values attached to

belief assignments are of interest. Besides rejection, all applications where a measure

of uncertainty should be attached to the decision are concerned.

Remark: In our method, each bootstrap resample of the training set generates a

belief structure for each x. These B structures are first aggregated by averaging, and

the decision is then based on this average belief structure. The faithful transposition

of the original proposition of Breiman would have been to perform a majority vote

between the decisions provided by the B classifiers. Experimental results (not shown

here) show that this strategy is a poor choice in the TBM framework. This suggests

that the evidential K-NN procedure already provides stable decision rules, a finding

in agreement with Breiman’s results concerning the standard K-NN [3].

5.2 Pignistic Level

While it may be possible to display the effect of bagging at the credal level, there is no

satisfactory criteria for measuring the relevance of a belief structure. We thus resort

to the study of pignistic probabilities which give more information on beliefs than the

decisions themselves.

The results regarding mean classification cost suggest that, with bagging, the

pignistic probabilities PBet(·|x) should be closer to the posterior probabilities p(·|x).
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The latter can be computed exactly from the densities

f(x|ωj) =
15
17

fN (x; µj , Σ) +
2
17

fU (x) (15)

where fN (·; µ,Σ) is the Gaussian density of mean µ and covariance matrix Σ and

fU (·) is the uniform distribution on [−5, 9] × [−3, 8] (see Section 4.1). Knowing that

all priors p(ωj) are equal to 1/3, the posterior probabilities are directly obtained by

Bayes’ rule.

The overall mean quadratic error on posterior class probabilities is 40% lower when

bagging is applied. As our two-dimensional example allows us to visualize probability

surfaces, it is possible to characterize situations where bagging incurs significant mod-

ifications of probabilities. An example is given in Fig. 3, which shows that bagging

performs a data-dependent smoothing, highly effective in regions where data is scarce,

and otherwise less marked. Hence, the main differences occur at class boundaries and

for outliers (one is situated at the left-hand side of the graph).

In terms of estimation errors, the result is beneficial, as displayed in Fig. 4.

Bagging thus yields a better representation of uncertainties, stemming either from

ambiguity (where classes overlap) or from lack of information (in regions of low density

of training patterns).

5.3 Credal Level

At each point x, the aggregated belief structure is the average of 50 belief structures.

The distribution of these structures indicates the relevance of the average operator for

aggregating beliefs regarding uncertainty representation.

At the credal level, the effect of bagging is again visible in the regions where

outliers were present in the learning set or where classes overlap. Fig. 5 shows the

mass distributions of the B structures associated to two test examples. These are

given to each of the four hypotheses ω1, ω2, ω3 and to the reference set Ω.
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In the low-probability density regions, the masses on the three hypotheses ωj

are small because the neighbors are far from x. Much of the mass then goes to Ω,

which is always fully compatible with any more precise hypothesis; the remaining

mass is usually given to the nearest neighbor class. In the absence of conflict in the

neighborhood, the average structure is a good summary of the distribution, providing

a good representation of uncertainty.

In ambiguous regions, some belief structures that were produced on bootstrapped

training sets assigned most of the mass to one hypothesis or another (in our example

ω1 or ω3) because of high heterogeneity in the neighborhood. The resulting mass dis-

tributions m({ω1}) and m({ω3}) are bimodal. Bagging through averaging distributes

the belief mass between the classes in conflict, and provides a good compromise at

the pignistic level. However, the average is not a faithful summary of multimodal

distributions. As a consequence, no trace of the individual conflicts remains at the

aggregated credal level. Possible answers to this problem will be mentioned in the

concluding section.

6 Results with Learning

In the previous section, the parameters α and γ of the basic belief assignments were

set to arbitrary values. The effect of bagging regarding uncertainty due to the finite

sample size was thus isolated. This section depicts the effect of bagging regarding the

uncertainty pertaining to the learning of parameters. In the following simulations, α

was fixed at 0.95 as it was shown to have only marginal influence on the classification

results [4, 28].
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6.1 Influence of γ

As explained in Section 2.2, the influence regions of training patterns are controlled

by γ (Eq. (7)). Fig. 6 shows the mean classification cost as a function of γ for the

original classifier and its bagged version. Note that these curves, computed on the

test set, could not have been drawn in a real problem. Our goal here is to understand

why bagging works, not to propose a method for choosing γ.

The bagged K-NN mean classification cost is always lower than that of the original

algorithm, for all values of γ and all rejection costs. Thus, the results presented in

the previous sections are representative of what would be obtained for any value of γ.

The comparison of the two plots in Fig. 6 also shows that the differences between the

two methods are larger for small rejection costs, regardless of γ.

Looking now at both plots in Fig. 6, we see that bagging is more effective in

improving the original method for small values of γ, i.e., when all neighbors have

almost the same influence, regardless of their distance to the query sample. In this

case, the resulting belief is too confident, and bagging neatly corrects it.

In comparing the two graphs, it may be noted that, for the bagged algorithm, the

optimal γ value is identical for both rejection costs, while it depends on λ0 for the

standard algorithm. Indeed, these two values should ideally not interact, as beliefs

should not be affected by the consequences of actions. These consequences should

only be taken into account in the decision process.

Finally, the lower variability of C provides a steadier optimal γ value and a lower

sensitivity to errors in γ, in terms of misclassification cost. This stability results in an

improvement of γ estimation methods, as shown in the sequel.
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6.2 Estimation of γ

Although the fine tuning of γ is less important with bagging, we need a practical

way of estimating a relevant value. Here, we use the learning scheme of Zouhal and

Denœux [28], which minimizes the leave-one-out cross-validation estimate of the mean

quadratic error on posterior probabilities.

Fig. 7 shows the mean classification cost as a function of the rejection cost for

the 15 experiments. As in the fixed-γ case, bagging is beneficial mostly for low clas-

sification costs (the difference in the average mean classification cost is significant to

the 5% level for 0 < λ0 ≤ 0.35 according to the exact Wilcoxon signed ranks test

for matched samples). The improvement is higher, which means that the outcome

of bagging regarding learning is also beneficial, and that it does not counteract the

effect regarding sampling. The comparison of box sizes here and in Fig. 2 also illus-

trates that the learning of γ induces an additional variability of performances which

is lowered, and even almost suppressed with bagging.

The mean quadratic difference between pignistic probabilities and true posterior

probabilities confirms the benefit of bagging at this level. Bagging significantly reduces

the average error from 0.61 to 0.30. The variability with respect to the learning sets

is also lowered (the standard deviation drops from 0.22 to 0.09).

7 Combination of Beliefs: an Application

We now turn to real data in order to illustrate and study the benefits of bagging,

from the point of view of combination with external sources of beliefs. Indeed, there

does not seem to be any direct way to measure how well a belief structure represents

the available information (for example, pignistic probabilities do not allow the rep-

resentation of ignorance, which can be coded in a belief structure). We thus tackle

the problem by combining both the bagged and non-bagged K-NN structures with
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the same simple rule, decide, and only then compare the results to assess the effect of

bagging at the credal level.

7.1 The problem

Alpaydin and Kaynak [1] proposed a multistage recognition method, which was applied

to a handwritten digit recognition problem. Their database consists of scanned digits

(0 to 9) represented as 32 × 32 normalized black-and-white bitmap images [14]. A

group of 30 subjects contributed to the 3823 images of the training set and another

group of 13 subjects was used to generate the 1797 test images. The images were

reduced to 8×8 gray scale bitmaps using a low-pass filter. A standard 1-NN classifier

based on a simple distance between images then leads to 98% correct classification1.

With such a large training set, there is no room for significant improvement using

more sophisticated procedures such as the evidential K-NN rule. To assess the useful-

ness of bagging when combining with external sources of beliefs, the original training

set was therefore subsampled to 10 items by class, resulting in a total of 100 items

(Fig. 8). The test set was left unchanged. Given the small number of items per class,

we chose K = 4. Here again, the experiments were repeated 15 times, resulting in 15

different learning sets.

7.2 Combination with a rule

The evidence-theoretic framework allows the combination of different sources of infor-

mation as long as they are represented by belief structures. This example is intended

to illustrate that information stemming from pattern recognition systems and com-

plementary sources of belief such as rules can easily be combined by Dempster’s rule.

The benefits of bagging at the credal level in the pattern recognition system are then
1More elaborate distances are usually proposed, but this is not the point in this paper.
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highlighted by the performances at the decision level of the combined classifier.

Let Ω = {0, . . . , 9} be the hypothesis space and H = {0, 6, 8, 9} the set of digits

whose handwritten representation has usually at least one hole. Let R be the simple

rule:

If the bitmap image x of a digit has at least one hole, then it is highly

probable that it represents a digit of H, y ∈ H, and y /∈ H otherwise.

We wish to use R as an additional source of belief concerning the class of bitmap

images. The presence of a hole in the bitmap representation can easily be computed

by applying mathematical morphology operators to the original 32×32 binary images.

In the TBM, y ∈ H translates to m(H) = 1 and m(H) = 0, and y 6∈ H translates

to m(H) = 0 and m(H) = 1. However, R cannot be completely trusted, as some digits

may have both holed and non-holed representations (e.g. some people write digit 4

like it is typeset, with a hole). Let Phole and Phole be respectively the proportion of

bitmap images with and without hole. The rule error rate E can be decomposed in

two parts E = PholeEhole + PholeEhole, where Ehole is the classification error rate for

bitmaps with a hole, and Ehole is the error rate for bitmaps without holes.

In this regard, Ehole and Ehole can be considered as measures of distrust in R.

For example, Ehole = 0.5 means that R is completely useless in predicting digits for

bitmaps with holes (as random guess achieves the same error rate). This should be

represented by the vacuous belief structure mR(Ω) = 1. On the other hand, Ehole = 0

means that R is fully reliable concerning bitmaps without holes, and should then lead

to the belief structure mR(H) = 1. Consequently, we define the belief structure mR

associated to R as shown in Table 1. Note that a similar method for defining belief

settings based on error rates was proposed by Xu [26]. The values of Ehole and Ehole

can directly be computed with the unused items of the training set.

The belief structure mR is a distinct source of belief: it can therefore be combined
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with the belief structures produced by the evidential K-NN rule and its bagged version.

7.3 Combination results

The error rates computed from unused samples in the original training set are Ehole =

5.6% and Ehole = 1.7%. Note that these low error rates should not be compared to

the ones obtained by evidential K-NN technique, since only two subsets of classes are

discriminated by the rule. The belief structure produced by the evidential K-NN rule

is combined with mR, by use of the Dempster’s rule of combination (Eqs. 2-3).

Table 2 gives the mean classification error rates averaged over 15 different learn-

ing sets. These are given with and without bagging, with and without the use of

rule R. The multiplicative coefficients associated to the horizontal arrows give the

improvement rate when rule R is taken into account. The factors corresponding to

vertical arrows are the improvement linked to the use of bagging (all differences in

mean error rates are significant, with p-values smaller than 0.05% according to the

exact McNemar test for matched samples).

7.4 Discussion

Looking at horizontal arrows in Table 2, we see that both the bagged and unbagged

K-NN rules are improved when combining with R. The reduction of the mean error

rate by a factor of 2/3 illustrates the usefulness of such a simple classification rule in

this context. The improvement related to bagging is shown by factors associated to

vertical arrows. Bagging also leads to significant improvements.

The observation of vertical arrows on a single particular dataset can also be inter-

esting, as depicted in Table 3. In this example, the improvement due to bagging before

applying the rule is not significant (at the 5% level). However, it becomes important

(significant up to the 0.2% level) when the rule is used.
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As the rule is the same with and without bagging, this can only be explained by

better belief representation before combination. The bagged method yields roughly

the same ranking of pignistic probabilities (as shown by the similar error rates before

combination), but its belief structure is less confident and, consequently, it may be

highly improved by additional information.

This application demonstrates that the combination of a pattern recognition tech-

nique with an external source of belief is more profitable when uncertainty is faithfully

represented. On the one hand, when a query example is very similar to a known proto-

type, the output of the case-based classifier should be able to contradict the imperfect

rule-based classifier. Hence, digit 4 may be recognized as being a 4 with or without

a hole. On the other hand, when the query point is far from all prototypes, the final

decision process should be more trustful in the rule classifier. Once the classifiers are

constructed, Dempster’s rule of combination entails the weighting between more or

less confident opinions. We have presented empirical evidence that resampling and

combination techniques provide a fully automatic, yet very efficient means to correct

overconfident beliefs, thus improving the performances of evidence-based multi-source

classification schemes.

8 Conclusion

In the framework of pattern recognition, belief structures allow to represent uncer-

tainty stemming from lack of information (small sample size) or from doubtful items

of information (unvalidated data). As for probabilistic classifiers, evidential classifiers

predict the plausibility of each outcome. Besides, their ability to provide imprecise

predictions can be used as a reliability index by the final decision process. This feature

is extremely attractive in information fusion.

Bagging combines B belief structures given by the evidential classifier applied to
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bootstrap samples. This modification of the belief structure construction process aims

at improving uncertainty representation when the sample size is small.

The method was tested on controlled artificial datasets. Classification error was

shown to be significantly reduced when rejection was allowed. The improvements

were even higher when the belief assignment parameters were estimated, due to the

stabilization of the estimation process. The influence of bagging was also visible when

looking at pignistic probabilities, which estimate posterior probabilities. Among all

quantities which can be computed and evaluated objectively in the TBM, pignistic

probabilities are the closest we can get to belief structure. There is thus evidence that

the belief structures provided by bagging are more relevant.

Another clue supporting this conjecture was provided by an application to hand-

written character recognition, where the pattern recognition classifier was combined

with another source of belief expressed as a rule. After combination of the two in-

formation sources, error rates were reduced, even when bagging had no perceptible

effect before combination. Bagging thus turns out to be beneficial at the credal level,

since the relevance of a belief structure can be defined by its capacity to be specified

by additional trustful pieces of evidence.

Beyond the evidential K-NN, this paper illustrates the necessity to build generic

tools for inferring accurate beliefs. It provides, up to our knowledge, one of the

first attempts to take into account the uncertainty due to the presence or absence

of an information source upon which beliefs are constructed. In the classical pattern

recognition paradigm, in which information sources are data points assumed to be

sampled from some fixed distribution, resample and combine techniques provide a fully

automatic means to correct undue certainty in inferred beliefs. In our experiments,

this correction was shown to have more important outcomes for classifiers making

a more intensive use of data (with learned parameters). The improvements should

thus be more effective with more sophisticated inference methods such as the neural-
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network based evidential classifier described in [8]. This should be confirmed in a

further experimental study.

Another extension of this work concerns the investigation of other operators to

combine the belief structures in the bagging procedure. More general mathematical

objects such as interval-valued or fuzzy belief structures [6, 7] could even be used

to keep track of the discord within the B structures. This could further improve the

quality of belief representation at the credal level, which was shown to be an important

issue in an information fusion context.
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Tables

Table 1: Belief defined by R for a digit d.

Case mR(H) mR(H) mR(Ω)

hole 1− 2Ehole 0 2Ehole

no hole 0 1− 2Ehole 2Ehole

Table 2: Averaged misclassification rate (%) over 15 different training sets, K = 4.

All differences in misclassification rates are all significant up to the 0.05% level.

K-NN bare with R

Original 12.9 ×0.67−−−−→ 8.6

↓×0.88 ↓×0.83

Bagged 11.3 ×0.64−−−−→ 7.2

Table 3: Example of misclassification rate changes (%) for one training set, K = 4.

The improvement due to bagging before applying the rule is not significant at the 5%

level; after the rule is applied the difference is significant up to the 0.2% level.

K-NN bare with R

Original 11.3 ×0.70−−−−→ 8.0

↓×0.95 ↓×0.68

Bagged 10.7 ×0.51−−−−→ 5.4
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Figure 1: Example of a generated learning set. The intersections of dotted

lines indicate the class means.
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Figure 2: Mean classification cost C as a function of rejection cost λ0 for

original (thin line) and bagged (bold line) methods (γ fixed). The dotted

line corresponds to the minimum cost.
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Figure 3: Contour plots of true posterior probabilities p(ω2|x) (left) and

estimated pignistic probabilities PBet(ω2|x) without bagging (center) and

with bagging (right). Each symbol represents a training example of class

1 (¦), class 2 (◦) or class 3 (2).
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Figure 4: Contour plots of absolute error on posterior probabilities

|PBet(ω2|x) − p(ω2|x)| without bagging (left) and with bagging (right).

Each symbol represents a training example of class 1 (¦), class 2 (◦) or

class 3 (2).
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Figure 5: Histograms of the 50 belief structures obtained before averaging:

for an outlier (top) and a point in ambiguous ω1–ω3 region (bottom). The

vertical dotted line indicates the value of the average (combined structure).
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Figure 6: Mean classification cost C as a function of γ for λ0 = 0.15

(top) and λ0 = 0.3 (bottom) for original (thin line) and bagged (bold line)

methods. The dotted line represents Bayes’ classification cost.
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Figure 7: Mean classification cost C as a function of rejection cost λ0

for original (thin line) and bagged (bold line) methods (γ learned). The

dotted line represents the minimum cost.
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Figure 8: Example of a learning set of size N = 100.
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