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Abstract

The paper reviews several methods to convert discharge into gate opening. A control
algorithm for one or several reaches of an irrigation canal sometimes uses a discharge as
the control action variable even though the device to be manipulated is a gate or a weir.
In this case a slave controller has to convert the discharge into a gate opening or a sill
elevation in case of a weir. This is usually done by inverting the static relation between
discharge and gate opening. An improved method can be based on the characteristics
theory to estimate the water levels deviations. However, both methods underestimate the
gate opening deviations required to deliver a desired discharge deviation, because water
levels vary continuously along time when the gate is operated. The paper proposes a
method to take account of this dynamic behavior of the pool-gate interaction by using a
simple linear model for the pools dynamics, the IDZ model. The proposed method enables
to better estimate the gate opening necessary to get a desired average discharge. The
method is evaluated in simulation and on a gate of the Gignac Canal, located in the South
of France. A dimensionless analysis of the problem is finally performed to evaluate the
methods’ applicability.

Introduction

In the design of controllers for irrigation canals, it is well-known that using the discharge as the
control variable enables to partially decouple the pools (Malaterre, 1995; Schuurmans, 1997;
Malaterre et al., 1998; Malaterre and Baume, 1999). With such a choice as control variable,
one needs to use a master-slave structure, where the master controller computes a discharge
that is delivered by a local slave controller operating the gate. The functioning of this local
slave controller is rarely mentioned in scientific publications, because it appears at first sight
as a simple problem. Indeed, if the water levels upstream and downstream of the gate are
measured, it seems sufficient to invert the gate discharge equation in order to compute the
required gate opening to let a desired discharge flow through the gate. However, this is only
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true if it is possible to measure the water levels and to operate the gate continuously along time.
For computer controlled system, i.e. in the vast majority of cases, this is not possible, because
the controller only operates at given sampling time steps. It may be objected that the local
slave controller used to manipulate the gate is usually designed to operate at a smaller time
step than the master controller which controls the discharge. However, even if this is the case,
the gates motors have mechanical constraints which limit the possible number of operations per
hour. As an example, some large gates may not be operated more than a few times an hour,
which directly limits the operation of a local slave controller. A limited number of operations
of the slave local controller is also advisable to limit the power consumption of the control
system.

Therefore, the ‘natural’ solution to the discharge-gate opening conversion (i.e. invert the
gate equation continuously along time or with a very small time step, say a few seconds) is
usually not applicable in this case. The slave controller is a priori not able to provide the
required discharge as specified by the master controller. Indeed, when the gate is operated, the
water levels immediately upstream and downstream of the gate change instantaneously, and
therefore modify the discharge, which is then no longer equal to the desired one.

Then a static inversion may not be an efficient method. To our knowledge, despite its poor
performance as demonstrated in this paper, the static method is the only one used for the
moment in the field for controllers with a master-slave structure.

To overcome this limitation, De Leon Mojarro (1986) proposed to use the characteristics
approximation to predict the water levels variations due to a discharge change at a gate. This
solution improves the static inversion method by taking into account the initial deviations in
water levels due to the gate operation as calculated using the characteristics theory. But the
model remains quasi-static, because the water levels and the discharge are supposed to stay
constant after the gate movement, which is not true.

Because it is not possible to ensure a constant discharge through the gate during the whole
sampling period Ts, we suggest to calculate the gate opening deviation so as to ensure that the
average discharge flowing through the gate during Ts corresponds to the desired one.

We propose in this paper a way to take account of the full dynamic behavior of a canal
when a gate is operated. The proposed method uses a simplified linear dynamic model for each
pool, the IDZ model presented by Litrico and Fromion (2004b), which enables to compute a
closed-form linear approximation of the discharge flowing through the gate along time. This
gives us a way to better approximate the gate opening necessary to get a desired average
discharge during the sampling time period Ts. A nonlinear version of this dynamic method is
also proposed to cover for the gate nonlinearities.

The paper is structured as follows:

• The dynamic behavior of gate-channel interaction is first examined, and three approxi-
mations are compared for estimating the discharge flowing through a gate after a step
gate opening or closing: the static approximation, the one based on the characteristics,
and the dynamic one, based on the IDZ model. Both a linear and a nonlinear version of
each method are presented.

• The problem of the conversion from discharge to gate opening is then considered, and
the three methods are compared in simulation.

• A field experiment is reported where the three methods are compared on a gate of the
Gignac Canal, located in the South of France, near Montpellier.
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• A dimensionless linear analysis is performed to get a priori evaluation of the methods’
applicability.

Dynamic Behavior of Gate-Channel Interaction

We consider the hydraulic behavior of two canal pools interconnected with a hydraulic cross-
structure, as depicted in Fig. 1 in the case of a gate. The methods developed in the paper
are also applicable in the case of a moveable weir, or a more complex structure, provided the
discharge flowing through this structure can be estimated via a static nonlinear equation (the
discharge equation).

Figure 1: Schematic representation of a gate between two canal pools

Let us denote Q the discharge flowing through the gate, Y1 the water level upstream of the
gate (i.e. the water level downstream of pool 1), Y2 the water level downstream of the gate
(i.e. the water level upstream of pool 2) and W the gate opening. The gate equation writes:

Q = f(Y1, Y2,W ) (1)

Typically, for a submerged orifice, the function f is given by :

f(Y1, Y2,W ) = Cd

√

2gLgW
√

Y1 − Y2

where Cd is a discharge coefficient, Lg the gate width, and g = 9.81 ms−2 the gravitational
acceleration.

In the following, the methods will be developed using a nonlinear and a linear version. The
linear approximation is derived by assuming small deviations in gate opening, water levels and
discharge, which leads to the linearized gate equation:

q = kuy1 − kdy2 + kww (2)

where q is the discharge deviation from reference value Q, yi are the water level deviations
from reference values Yi (i = 1, 2), w is the deviation from the reference gate opening W , and
coefficients ku, −kd and kw are respectively obtained by differentiating function f of Eq. (1)
with respect to its first, second and third arguments, respectively.

Let us now suppose that the gate is suddenly opened or closed at a time instant t = 0,
changing the opening from W to W + w0. We compare below three different approximations
for evaluating the discharge flowing through the gate after this operation.
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Static Approximation

In the static approximation, it is assumed that the water levels Y1 and Y2 do not vary along time
during the sampling period Ts. The nonlinear static approximation of the discharge deviation,
denoted qnl

s is therefore:

qnl
s = f(Y1, Y2,W + w0) − f(Y1, Y2,W ) (3)

The linearized version of Eq. (3) leads to the linear static approximation of the discharge
deviation, denoted ql

s:
ql
s = kww0 (4)

which means that change in flow is proportional to change in gate opening. This is a static
approximation because the water levels are supposed to stay constant.

Approximation with the Characteristics

This method uses the characteristics for zero slope rectangular frictionless channels to approxi-
mate the effect of the gate opening on the water levels. Let us denote qv

c the discharge deviation
resulting from the gate opening, with v = l for the linear version, and v = nl for the nonlinear
version.

The deviations in water levels due to this discharge deviation qv
c can be approximated by the

characteristics method for a horizontal rectangular frictionless channel, leading to (De Leon Mo-
jarro, 1986):

yv
1c = −

qv
c

T1(C1 − V1)
(5)

yv
2c =

qv
c

T2(C2 + V2)
, (6)

where Ci, Vi, Ti are respectively the celerity, the velocity and the top width in pool i (i = 1, 2).
For the nonlinear characteristics approximation, the resulting discharge deviation qnl

c is
obtained as the solution of the equation:

qnl
c = f(Y1 + ynl

1c, Y2 + ynl
2c,W + w0) − f(Y1, Y2,W ), (7)

which is implicit, because ynl
1c and ynl

2c depend on the unknown qnl
c .

For the linear characteristics approximation, an explicit solution can be found. The lin-
earized gate equation (2) is rewritten for convenience:

ql
c = kuyl

1c − kdy
l
2c + kww0. (8)

Then, combining Eqs. (5–6) with Eq. (8) yields ql
c given by:

ql
c =

kww0

1 + ku

T1(C1−V1) + kd

T2(C2+V2)

. (9)

The nonlinear and linear characteristics approximations are quasi-static, because the water
levels are supposed to change instantaneously with the gate opening at time t, and then to stay
constant.

Let us note that in the case of subcritical flow in pool 1 (C1 > V1), the discharge deviation
qv
c computed with the linear or nonlinear characteristics approximation is always smaller in

absolute value than the discharge deviation qv
s computed with the static approximation: |qv

c | <
|qv

s |.
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Dynamic Approximation with the IDZ model

We now propose a new approach based on linear dynamic models for predicting the water levels
deviations in each pool. These linear dynamic models are derived from linearized Saint-Venant
equations (Litrico and Fromion, 2004a) and are expressed as transfer functions in the Laplace
complex variable s. The Laplace transform of a given function f(t) is denoted f̂(s).

Interconnection with Linear Models

We first give the general expression of the interconnection of the pools with the intermedi-
ate gate. We denote ql

d(t) the linear version of the dynamic approximation of the discharge
deviation. Pool 1 is modelled by the linear dynamic equation:

ŷ1(s) = g1(s)q̂
l
d(s) (10)

And pool 2 is modelled by a similar equation:

ŷ2(s) = g2(s)q̂
l
d(s) (11)

where gi(s) denote the input-output transfer functions of linearized Saint-Venant equations,
relating the discharge to the water levels of pool i (i = 1, 2). See Litrico and Fromion (2004a)
for detailed expressions of transfer functions g1(s) and g2(s).

Combining the equations (10–11) with the linearized gate equation (2) leads to the linear
equation describing the dynamic behavior of the gate discharge as a function of the gate opening:

q̂l
d(s) =

kw

1 − kug1(s) + kdg2(s)
ŵ(s) (12)

This equation provides a dynamic approximation of the discharge flowing through a gate when
the gate is operated. It can be computed numerically using accurate approximations of transfer
functions g1(s) and g2(s). Moreover, it is possible to derive an analytical solution for step gate
movement (opening or closing) using a simple approximation for both transfer functions, the
IDZ model approximation proposed by Litrico and Fromion (2004b).

Analytical Solution with the IDZ Model

As demonstrated hereafter, using the IDZ model approximation for g1(s) and g2(s) can lead
to an analytical expression of the discharge ql

d(t) for a step opening. The IDZ model gives the
following approximations of transfer functions g2(s) and g1(s) (Litrico and Fromion, 2004b):

g1(s) = −
a1s + b1

s
(13)

g2(s) =
a2s + b2

s
(14)

where a1, a2 are the high frequency gains in sm−2 and b1, b2 are the integrator gains in m−2.
Using these approximations in Eq. (12) gives:

q̂l
d(s) =

kws

as + b
ŵ(s) (15)

with
a = 1 + kua1 + kda2 (16)
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and
b = kub1 + kdb2. (17)

The inverse Laplace transform of the step response (input ŵ(s) = w0/s) of this first order
linear dynamic system is given by (see appendix for details):

ql
d(t) =

(

kw

a
w0 + q0

)

e−
b

a
t (18)

which is the dynamic linear model approximation ql
d(t) of the discharge flowing through the

gate after a step gate operation of amplitude w0 at time t = 0, with an initial condition
q0, corresponding to the deviation between the actual discharge and the discharge used for
linearization.

This model also gives analytical expressions for the variations of water levels. Using Eqs.
(10–11), the water levels deviations are given by:

y1(t) = −a1q
l
d(t) − b1

∫ t

0
ql
d(v)dv (19)

y2(t) = a2q
l
d(t) + b2

∫ t

0
ql
d(v)dv (20)

Finally, we obtain:

y1(t) = −a1

(

kw

a
w0 + q0

) [

ab1

ba1
+

(

1 −
ab1

ba1

)

e−
b

a
t

]

(21)

y2(t) = a2

(

kw

a
w0 + q0

)[

ab2

ba2
+

(

1 −
ab2

ba2

)

e−
b

a
t

]

(22)

Link with the Characteristics Method

It is easy to show that the linear characteristics method solution corresponds to the high
frequency gains component of the linear dynamic method. In this case, only parameter ai

(i = 1, 2) is used in the IDZ model approximation (13–14) and parameter bi (i = 1, 2) is
assumed to be null.

For a canal pool at uniform flow, the parameters a1 and a2 are obtained by the following
equations (Litrico and Fromion, 2004b):

a1 =
1

T1(C1 − V1)

√

√

√

√

(

1−F1

1+F1

)2
+ eα1X1

1 + eα1X1

(23)

a2 =
1

T2(C2 + V2)

√

√

√

√

(

1+F2

1−F2

)2
+ eα2X2

1 + eα2X2

(24)

where αi is a positive constant linked to the pool characteristics and Xi is the length of pool i.
When Xi (i = 1, 2) tends towards +∞, the square roots in Eqs. (23–24) tend towards

1, and the high frequency gains of the IDZ model tend towards the gains computed with the
characteristics method in Eqs. (5–6):

a1 →
1

T1(C1 − V1)
; b1 = 0 (25)

a2 →
1

T2(C2 + V2)
; b2 = 0. (26)
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Therefore, the linear characteristics method corresponds to the linear dynamic method with
IDZ models where only the high frequency elements are considered, i.e. where the integrators
are not taken into account (b1 = b2 = 0).

Let us note that the time behavior is consistent the frequency domain analysis. Indeed, the
high frequency behavior corresponds to the initial value of ql

d(t) at t = 0. According to Eq.
(18), for canals such that Eqs. (25–26) are fulfilled, and for a zero initial condition (q0 = 0),
we have:

ql
d(0) =

kww0

a
= ql

c, (27)

where ql
c is given by Eq. (9).

We recover the fact that the high frequency dynamic approximation and the characteristics
one yield the same discharge deviations.

Nonlinear Dynamic Method

It is unfortunately not possible to explicitly compute a nonlinear version of the dynamic method.
This would mean solving the complete Saint-Venant equations coupled with the gate equation.
A simplified problem consists in solving the nonlinear dynamic interaction between linear IDZ
models of the pools and the nonlinear model of the gate. Even this problem is complex to solve
directly, because the resulting equation is an algebraic nonlinear differential equation.

We denote by Ts the sampling time interval. Our objective is to better approximate the
discharge when hydraulic conditions deviate from the ones used for linearization, e.g. the ones
encountered Ts seconds after a gate movement.

We therefore propose an approximate nonlinear version of the dynamic method that uses
two linear approximations: one at the beginning and one at the end of the sampling time
interval [0, Ts].

The first one is given by Eq. (18), and the second one is given by the same equation, but
where the parameters a and b are computed with the new gate linearized parameters ku, kd,
kw, corresponding to the new hydraulic state. This hydraulic state is based on the initial linear
simulation, using Eqs. (21–22) to evaluate the water levels deviations.

Finally, the nonlinear dynamic approximation of the discharge deviation is given by:

qnl
d (t) =

1

2

(

ql
d,0(t) + ql

d,Ts
(t)

)

, (28)

where ql
d,0(t) and ql

d,Ts
(t) are given by Eq. (18) with parameters a and b respectively computed

for the hydraulic state at time t = 0 and t = Ts.

Comparison of the Responses to a Step Gate Opening

The three approximations are compared to the exact solution obtained from a full nonlin-
ear simulation with software SIC (Simulation of Irrigation Canals) developed by Cemagref,
Montpellier, France (Malaterre, 2006). SIC uses a semi-implicit Preissmann scheme to solve
Saint-Venant equations, and includes the nonlinear hydraulic structures equations in the reso-
lution.

For illustration purposes, a hypothetical canal is simulated in SIC. This canal, corresponding
to a part of the Cemagref benchmark canal N.1 (Baume and Sau, 1997), has two identical pools
separated by a sluice gate. Each pool is 3000 m long, with a trapezoidal shape, a bottom width
of 7 m, a side slope of 1.5, a bottom slope of 0.0001, and a Manning coefficient of 0.02. A
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bottom step of 0.24 m is present between the pools at the gate location. The canal pools are
supposed to be at normal depth Y = 2.12 m for the discharge Q = 14 m3s−1.

These two identical canal pools are interconnected with a gate, of width Lg = 10.18 m,
discharge coefficient Cd = 0.82, gate opening W = 0.654 m. This leads to the following
linearized gate coefficients: ku = 22.12 m2s−1, kd = 26.74 m2s−1 and kw = 35.41 m2s−1.

The simulation in SIC is done with a time step of ∆t = 60 s, a spatial sampling of ∆x = 200
m, which leads to a Courant number close to one. This ensures a correct simulation of oscillating
waves.

Discharge Approximations

We first evaluate the discharge approximations with the three methods for a step gate opening
of 0.03 m.

Static Method

Following Eq. (4), the static method gives an estimate of the discharge deviation equal to
qnl
s = 3.60 m3s−1 in the nonlinear case, and ql

s = 3.54 m3s−1 in the linear case.

Characteristic Method

For the characteristics method, we have the following values for the velocities, the celerities and
the top widths of each pool: V1 = V2 = 0.74 ms−1, C1 = C2 = 3.82 ms−1 and T1 = T2 = 12.76
m. The nonlinear characteristics method Eq. (7) provides the following estimate of discharge
deviation qnl

c = 1.488 m3s−1, and the linear characteristics method of Eq. (9) gives ql
c = 1.559

m3s−1.

Dynamic Method

Using the canals parameters, the IDZ model parameters are given by a1 = 0.022 sm−2, b1 =
3.22 × 10−5 m−2, a2 = 0.017 sm−2, b2 = 1.89 × 10−5 m−2.

Following Eqs. (16–17) the parameters for the linear dynamic method are given by a = 1.936
and b = 1.2 × 10−3 s−1. The discharge deviation for the linear dynamic method is then given
by Eq. (18).

For the nonlinear dynamic method, we choose a time interval of Ts = 1 h, and we compute
the water levels deviations predicted by the linear model: y1(Ts) = −0.06 m and y2(Ts) = 0.038
m. The new linearized gate coefficients are then given by ku = 53.17 m2s−1, kd = 56.54 m2s−1

and kw = 20.45 m2s−1. This leads to aTs
= 3.119 and bTs

= 2.8 × 10−3 s−1.
The final discharge approximation obtained with the nonlinear version of the dynamic

method is given by Eq. (28).

Comparison of Results

Figure 2 depicts the discharge along time after this step opening, comparing the result of the
nonlinear simulation using SIC software to the three methods described in the previous sections.

The oscillation observed at the beginning of the simulation is due to the reflection of prop-
agating waves on the boundary conditions. Indeed, this canal is rather flat, and presents an
oscillatory behavior in high frequencies (Litrico and Fromion, 2004a).
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Figure 2: Time variation of discharge deviation q(t) for w0 = 0.10 m. Comparison with linear
and nonlinear versions of dynamic, characteristic and static approximations.

It is clear that the linear and nonlinear versions of the dynamic method lead to a very
good approximation of the discharge flowing through the gate along time. The characteristics
method gives a good approximation of the peak discharge just after the gate opening. The static
method gives the worst approximation. The nonlinear versions usually improve the discharge
estimation compared to the linear ones, but it appears that the main source of discrepancy
comes from the fact that static and characteristics methods neglect the dynamic behavior of
the discharge.

Effect of the Sampling Period Ts

Based on the step response results of Fig. 2, we now evaluate the precision of the volume
flowing through the gate according to the various approximations. The initial control objective
is to deliver a desired discharge during the sampling period Ts. Because it is not possible to
keep the discharge constant between two gate operations, we consider an alternative objective,
which is to deliver a desired volume during the sampling period.

To evaluate the precision of the volume estimation of the three methods, we compare the
volume effectively flowing through the gate (computed with SIC model) to the one predicted
by each method. The relative error depends on the chosen sampling time, and is defined by:

ev
s,c,d(Ts) = 100 ×

∫ Ts

0 qv
s,c,d(t)dt −

∫ Ts

0 qSIC(t)dt
∫ Ts

0 qSIC(t)dt
(29)

where the subscript s, c, d refer to the static, characteristic, and dynamic method, respectively,
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the superscript v refers to the linear or nonlinear version of the method, and qSIC(t) denotes
the discharge deviation computed using SIC model.

Figure 3 depicts the relative error between the deviation in delivered volume computed by
SIC, and computed by the various approximations as a function of Ts. It appears clearly that
when the sampling period increases, the characteristics and the static methods give an error
which increases linearly with the sampling period. On the contrary, the dynamic method gives
an error which is almost constant, even for large sampling periods Ts.

The static method gives a relative error which is always higher than 150 %, and the charac-
teristic method is better, but its relative error increases with the sampling period, and becomes
larger than 50 % when the sampling time is larger than 18 minutes. The linear dynamic method
leads to an error of 50 % when Ts = 1 h, but this error is not very sensitive to the increase of
Ts compared to the other two methods. The nonlinear dynamic method has an error always
lower than 10 %.
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Figure 3: Percentage error between delivered volumes. Comparison of linear and nonlinear
versions of static, characteristic and dynamic approximations.

This confirms the fact that an accurate method for discharge-gate opening conversion may
improve the performance of computer controlled irrigation canals.

Methods for Discharge/Gate Opening Conversion

Based on the previous analysis, we derive a new method for discharge/gate opening conversion.
The objective is now to compute the gate opening deviation w so that the discharge deviation
is equal, if possible, to the desired discharge denoted q during the sampling period Ts.
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Static Conversion

In the static conversion method, the calculation of the gate position is made assuming that the
water levels on both sides of the gate are staying constant, equal to their initial value at the
time of the gate operation.

Therefore, in the nonlinear version, the gate opening deviation wnl
s is obtained by inverting

Eq. (3), which leads to solve the following problem:

find wnl
s such that q = f(Y1, Y2,W + wnl

s ) − f(Y1, Y2,W ) (30)

For the linear version, the gate opening deviation wl
s to obtain a desired discharge deviation

q is derived by inverting Eq. (4):

wl
s =

q

kw

(31)

Conversion with the Characteristics

In the characteristics approximation method, the water levels are supposed to instantly move
according to the characteristics of each pool. Therefore, for the nonlinear version, the gate
opening deviation wnl

c is obtained by solving the following problem using Eq. (7):

find wnl
c such that q = f(Y1 + ynl

1c, Y2 + ynl
2c,W + wnl

c ) − f(Y1, Y2,W ) (32)

with ynl
1c and ynl

2c given by Eqs. (5–6) where qnl
c = q.

The linear version leads to an explicit solution because the gate opening deviation wl
c is

derived by inverting Eq. (9):

wl
c =

(

1 +
ku

T1(C1 − V1)
+

kd

T2(V2 + C2)

)

q

kw

(33)

One may show that the gate opening deviation obtained with the characteristics method
is larger than the one obtained with the static method in absolute value, in the linear as in
the nonlinear case |wv

c | > |wv
s |. This is due to the fact that, as seen above, for the same gate

opening deviation, the water levels deviations decrease the discharge deviation compared to
the static case. Therefore, a larger gate opening deviation is necessary to deliver the same
discharge deviation.

Dynamic Conversion

Using the dynamic linear approximation of the discharge (18), we can compute the volume
flowing through the gate after a step operation of wl

d:

∫ Ts

0
ql
d(t)dt =

(

kw

a
wl

d + q0

)
∫ Ts

0
e−

b

a
tdt (34)

=

(

kw

a
wl

d + q0

)

a

b

(

1 − e−
b

a
Ts

)

(35)

The objective is to compute wl
d such that the average delivered discharge over the sampling

period Ts equals the required discharge q, i.e.:

∫ Ts

0
ql
d(t)dt = Tsq (36)
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Combining Eqs. (35–36) and solving for wl
d leads to

wl
d =

a

kw

[

bTsq

a(1 − e−
b

a
Ts)

− q0

]

(37)

which is the result of the linear version of the dynamic approximation method, computing the
gate opening deviation in order to deliver an average discharge q during the period Ts, taking
into account the initial discharge deviation q0.

In the nonlinear dynamic approximation method, the volume can also be expressed explicitly
with Eq. (28):

∫ Ts

0
qnl
d (t)dt =

1

2

[(

kw,0

a0
wnl

d + q0

)

β0 +

(

kw,Ts

aTs

wnl
d + q0

)

βTs

]

(38)

with a0 and aTs
denoting the parameter a corresponding to values computed at t = 0, and at

t = Ts, and parameters β0 and βTs
given by:

β0 =
1

p0
(ep0Ts − 1) (39)

βTs
=

1

pTs

(epTs
Ts − 1) (40)

where p0 = −b0/a0 is the pole of the transfer function obtained in Eq. (15) for the initial
condition and pTs

= −bTs
/aTs

the pole for the final condition.
The result of the nonlinear version of the dynamic approximation method is then:

wnl
d =

2a0aTs

kw,0aTs
β0 + kw,Ts

a0βTs

[

Tsq −
(β0 + βTs

)

2
q0

]

(41)

Effect of the Sampling Period Ts

Let us compare the gate opening deviations (wv
s , wv

c , wv
d) obtained by the three methods for

various sampling time steps Ts. We use the three approximations (both in linear and non-
linear case) to compute the gate opening deviations necessary to deliver a discharge deviation
of 1 m3s−1 during the sampling period Ts. The results are depicted in Fig. 4 (note that the
linear and nonlinear versions of the static conversion method lead to very close gate openings,
which explains why the two lines are difficult to distinguish). The static and the characteristics
approximations lead to constant values whatever the size of the sampling period, while the
dynamic approximation leads to a larger gate opening deviation when the sampling period
increases. Therefore, one should preferably use the dynamic method for large sampling periods,
in order to deliver the proper volume.

We now compare the three methods for discharge/gate opening conversion, first in simu-
lation using SIC software, second with a real-life experiment on a gate of the Gignac Canal,
located in the South of France, close to Montpellier.

Simulation Results

The simulations are done on the same system with two identical pools presented above.
We evaluate the ability of the three methods to follow a set-point variation. The required

set-point is a step increase in discharge deviation of 0.5 m3s−1 during 2 hours. The simulation
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Figure 4: Gate opening deviations to deliver 1 m3s−1. Comparison of linear and nonlinear
versions of dynamic, characteristic and static approximations for various sampling periods Ts.

time step is equal to 60 seconds in order to accurately represent the flow dynamics at the gate,
and the total simulation time is equal to 10 h.

We compare the three methods (for both linear and non-linear case) for different values of
the sampling period Ts: Ts = 10, 20, 30, and 60 minutes. The performance of each method is
evaluated by computing the relative error of the delivered volume as defined in Eq. (29). The
results are given in table 1.

Table 1: Percentage error of delivered volume for the set-point following scenario for different
values of the sampling time Ts

method version Ts = 10 min Ts = 20 min Ts = 30 min Ts = 60 min

static linear 48.1 % 63.0 % 70.9 % 83.5 %
nonlinear 50.1 % 64.5 % 72.0 % 84.0 %

characteristics linear 24.8 % 39.1 % 47.2 % 66.0 %
nonlinear 24.0 % 37.7 % 45.5 % 64.4 %

dynamic linear 9.2 % 13.8 % 15.2 % 8.0 %
nonlinear 5.7 % 6.5 % 3.4 % 7.4 %

It clearly appears that the dynamic method outperforms the other methods for delivering
the required discharge. An interesting feature of the dynamic method is that its performance
does not significantly decrease when the sampling time increases. It also appears that, even
for small sampling times, both linear and nonlinear versions of the dynamic method leads to
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much better results than the other methods, because it delivers at least 85 % of the desired
volume, while the static method always delivers less than 50 % of the desired volume. The
characteristics method is in between, with an error ranging from 24 % to 65 % for the considered
sampling time periods.

An example of this dynamic behavior is depicted in Fig. 5, where the three methods are
compared for Ts = 60 min. Due to the dynamic behavior of the discharge, one needs to open
the gate much more than predicted by the static or even the characteristics method in order
to deliver a given discharge. This is what the dynamic method does, by taking into account a
good approximation of upstream and downstream water levels fluctuations.
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Figure 5: Discharge deviations for set-point following. Comparison of the linear and nonlinear
versions of dynamic, characteristic and static conversion methods for Ts = 3600 s.

Experimental Results

The experiments are performed on the Gignac Canal, located 40 km North-West of Montpellier,
in the South of France.

Description of Gignac Canal

The main canal is 50 km long, with a feeder canal (8 km long) and two branches on the left and
right banks of the Hérault river (resp. 27 and 15 km long). The canal is concrete lined, with
trapezoidal cross sections on the two branches, with average slopes of respectively, 0.00035 and
0.00050 m/m. The design flows are 3.5 m3s−1 for the common trunk, 2.0 m3s−1 for the left
bank and 1.5 m3s−1 for the right bank. The canal has been equipped with sensors, actuators
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and a SCADA system interfaced with the SIC-SCADA real-time module of the SIC software,
which enables the monitoring and control of the cross-regulators of the right bank main canal.

Experimental Setup

The SCADA equipment has been designed to enable real-time monitoring and control of the
canal, through a radio communication network and a real-time SCADA interface. The measured
data is stored in a database, localized in the central control station.

The system has been configured to enable real-time control via the SCADA interface of SIC
software. This interface, already presented in Litrico et al. (2007), enables real-time control
of an irrigation canal using SIC software. This very generic method can easily be extended to
work on any SCADA system.

The considered regulation gate is the gate at Avencq cross regulator, where water level
sensors are installed upstream and downstream of the gate. An ultrasonic velocity sensor is
also present a few meters downstream of the gate, which enables to compute the discharge
flowing through the gate with a good accuracy. This measurement will only be used as a
reference for evaluating the inversion methods.

Experimental Results

A scenario similar to the one used in simulation is tested at Avencq regulation gate. This gate
is 1 meter large, with a discharge coefficient of 0.465.

We compared the three methods, in their linear and nonlinear versions, for a sampling time
step Ts = 15 min. The discharge flowing through the gate is measured independently with an
acoustic velocimeter located a few meter downstream of the gate. This sensor is able to deliver
an accurate discharge measurement every minute. This discharge measurement is only used to
validate the various methods. The measurements are done every minute, but only the water
levels measured at the sampling time instants (every Ts) are used to compute the gate opening.

The initial discharge was around 0.32 m3/s, and we tested the nonlinear static, character-
istics and dynamic conversion methods, requiring an increase of 0.15 m3/s, in order to deliver
a discharge equal to 0.47 m3/s during 30 minutes. The results are displayed in Fig. 6.

The results are very similar to the ones obtained in simulation (Cf. Fig. 5). The static
method gives the worse results, since only 53 % of the desired volume is delivered by the gate.
The characteristics method is better, but the total volume is still only 79 % of the desired one.
The dynamic method delivers 97 % of the desired volume.

The experimental results therefore validate the interest of using a dynamic approximation
to compute the gate opening in order to deliver a desired discharge at a gate.

Discussion

The simulation and experimental results show the interest of developing a dynamic method.
Indeed, for large sampling time steps, the classical static method leads to a very low perfor-
mance. The characteristics methods improves the conversion, but also tends to underestimate
the opening to deliver a given discharge for larger sampling time steps.

Such conversion methods (static, characteristics or dynamic) may be viewed as proportional
controllers for the dynamical system relating the gate opening to the discharge flowing through
the gate. Being calculated at each sampling period Ts in incremental form (a discharge deviation
generates a gate opening variation), all methods would converge asymptotically towards the
good solution with zero steady state error. But, at each previous instant, the error magnitude
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Figure 6: Experimental results: comparison of the delivered discharge at Avencq regulation
gate for the nonlinear version of dynamic, characteristic and static conversion methods for
Ts = 15 min.

depends on the gain of the proportional controller. This gain (obtained from the relation
between the gate opening and the discharge) is better calculated in the case of the dynamic
method than for the characteristic method and for the static method. This explains why the
dynamic method behavior is better than the two others.

When such a conversion method is used in conjunction with a master controller, the error in
the delivered discharge may be compensated by the master controller. However, this discharge
error will affect the overall performance of the controlled system. The better the slave controller
performance, the closer the performance of the overall system will be to the performance of the
master controller.

Therefore, we emphasize the fact that using an accurate conversion method such as the
one proposed in this paper for the slave controller may improve the performance of master
controllers using the discharges at regulation gates as control inputs. It is also possible to
use more complex dynamical slave controllers, but the stability analysis of the master-slave
structure should then be carefully studied.

Dimensionless Analysis of the Linear Conversion Methods

We now examine the domain of applicability of the static and characteristics linear methods,
taking the linear dynamic method as a reference. As we have seen above, the dynamic method
provides a very good approximation for the discharge flowing through a gate, and the static
and characteristics methods lead to poor approximations, especially for large sampling times.
However, this result depends on the physical characteristics of each pool, of the gate, and of
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the value of the sampling time.
In the following, we develop a dimensionless approach to evaluate the volume error between

the static method (or the characteristics method) and the dynamic one. This leads to generic
results that apply for any pool and gate, in order to decide which method should be used,
accepting a certain error level.

Dimensionless Formulation

We define the reference time as Tr = a/b, with a and b given by Eqs. (16–17), and the reference
discharge as qr = kww0. Now, with the dimensionless time t∗ = t/Tr, we get the dimensionless
discharge estimated by the three linear methods:

ql∗
s (t∗) = 1 (42)

ql∗
c (t∗) =

1

a
(43)

ql∗
d (t∗) =

e−t∗

a
(44)

According to these equations and Eq. (35), the volume flowing through the gate during
T ∗

s = Ts/Tr after a unit step gate operation is approximated by:

V ∗
s (T ∗

s ) = T ∗
s (45)

V ∗
c (T ∗

s ) =
T ∗

s

a
(46)

V ∗
d (T ∗

s ) =
1 − e−T ∗

s

a
(47)

Let us note that these expressions only depend on the dimensionless parameter a and the
dimensionless sampling time T ∗

s .
Now, we use the volume given by the dynamic method as a reference, and compute the

volume error when using the static or the characteristics method. Then, the volume errors are
defined as:

e∗s(T
∗
s ) = 100

(

V ∗
s

V ∗
d

− 1

)

(48)

e∗c(T
∗
s ) = 100

(

V ∗
c

V ∗
d

− 1

)

(49)

These equations enable us to evaluate the volume error of the static or the characteristics
method according to the dimensionless parameter a and the dimensionless parameter T ∗

s .

Validity of Conversion Methods

The volume error due to using the static or the characteristics method is now evaluated using
the previous dimensionless expressions.

Figure 7 depicts the volume errors as a function of both dimensionless parameters a and
T ∗

s . It appears that for a given T ∗
s , the characteristics method leads to a constant volume error

whatever the value of parameter a. On the contrary, the static method leads to an increasing
error as parameter a increases. For values of parameter a larger than 1.5, the volume error
with the static method is always larger than 50 %, even for small T ∗

s .
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Figure 7: Volume error as a function of the dimensionless parameter a and the dimensionless
sampling time Tsb/a: static method (dotted lines) and characteristics method (solid lines).

Applicability of the methods

It should also be mentioned that the data requirements are not the same for the different
methods. In the static method, only the gate characteristics is needed. In the characteristics
method, one also needs the channel local geometry. In the dynamic method, the complete
channel geometry with the friction coefficient are needed.

Therefore, in a given application, one may use one or another method according to the
available data.

Conclusion

The paper considered the problem of converting discharge into gate opening for the control
of an open-channel equipped with regulation gates. We have reviewed the existing static
and characteristics methods and we have proposed a new method that takes into account the
dynamics of each pool. This dynamic method uses the IDZ model to get a closed form analytical
solution for the discharge and the water levels deviations after a step gate opening or closing.
It is then used to compute the necessary gate opening to deliver a desired average discharge
during the sampling time step. Both a linear and a nonlinear version of each method has been
developed.

The methods have been applied in simulation on an hypothetical canal, and in reality on
a gate of the Gignac canal. The results have shown the performance of the dynamic method,
which appears as a very effective means to determine the gate opening in order to deliver
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a desired discharge during a given sampling time period. Such a method can be used for
automatic control, but also for manual control of an irrigation canal.

Finally, a dimensionless study has quantified the applicability of the static and character-
istics methods compared to the dynamic one, which provides an effective tool to determine
which method to use in practice.

Appendix: Step Response of a First Order Linear Dynamic Sys-
tem

Let us compute the step response of a first order system, with transfer function:

f̂(s) =
1

s − p

and p 6= 0 is the pole of the system.

Impulse response The impulse response corresponds to the time response to an impulse
input δ(0), with δ(t) the Dirac impulse. The time impulse response is given by the inverse
Laplace transform of f̂(s) (see Abramowitz and Stegun (1972)):

f(t) = ept

Step response The step response is obtained as the inverse Laplace transform of f̂(s)/s:

f(t) =
1

p
(ept − 1)

Response to non zero initial condition The effect of nonzero initial condition f(0) is
similar as the one of the impulse response:

f(t) = f(0)ept

Finally, using the linear superposition principle, these effects can be computed separately
and combined to obtain the response of the dynamic system for different conditions.
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Notations

The following symbols are used in this paper:
∗ = superscript for dimensionless values;

αi = parameter linked to the characteristics of pool i;
a = dimensionless parameter;
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b = parameter in s−1;
ai = high frequency gain of IDZ model for pool i in sm−2;
bi = integrator gain of IDZ model for pool i in m−2;
Cd = discharge coefficient;
Ci = celerity in pool i in ms−1;
es,c,d = relative volume error in % for static, characteristics and dynamic method, respectively;
f = nonlinear function for the gate equation;
g = gravitational acceleration;
j = complex number j2 = −1;
ku, kd, kw = linearized gate coefficients in m2s−1;
Lg = gate width in m;
gi(s) = Saint-Venant transfer functions for pool i;
p = pole of the system in s−1;
Q0 = steady state discharge in m3s−1;
q = discharge deviation in m3s−1;
ql
s, ql

c, ql
d = discharge deviations with the linear version of static, characteristic and dynamic

methods, respectively, in m3s−1;
qnl
s , qnl

c , qnl
d = discharge deviations with the nonlinear version of static, characteristic and dy-

namic methods, respectively, in m3s−1;
q = average discharge deviation in m3s−1;
qmax = maximum average discharge deviation in m3s−1;
s = Laplace variable in s−1;
Ti = top width in pool i in m;
Tm = time period in s;
Tr = reference time in s;
Ts = sampling time in s;
t = time in s;
Vi = water velocity in pool i in m;
Vs, Vc, Vd = volume deviations with static, characteristic and dynamic method, respectively,
in m3;
W = absolute gate opening in m;
w = gate opening deviation in m;
wmax = maximum gate opening deviation in m;
wl

s, wl
c, wl

d = gate opening deviations for the linear version of static, characteristic and dynamic
method, respectively, in m;
wnl

s , wnl
c , wnl

d = gate opening deviations for the nonlinear version of static, characteristic and
dynamic method, respectively, in m;
Xi = length of pool i in m;
Yi = steady state water depth in m for pool i;
yi = water level deviation in m for pool i;
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