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We associate with every Renner monoid R a generic Hecke algebra H(R) over Z[q] which is a deformation of the monoid Z-algebra of R. If M is a finite reductive monoid with Borel subgroup B and associated Renner monoid R, then we obtain the associated Iwahori-Hecke algebra H(M, B) by specialising q in H(R) and tensoring by C over Z, as in the classical case of finite algebraic groups. This answers positively to a long-standing question of L. Solomon.

Introduction

Consider the group G = GL n (F q ) of invertible matrices over the finite field F q . Denote by B its subgroup of upper triangular matrices, and by T its subgroup of diagonal matrices. Set

ε = 1 |B| b∈B b in C[G].
The quotient group N G (T)/T is isomorphic to the symmetric group S n . Moreover, the Iwohori-Hecke C-algebra H(G, B) = εC[G]ε is isomorphic to ⊕ w∈Sn Cw as a C-vector space, and the structure constants in the multiplicative table lie in Z[q]. More generally, if G is a finite reductive group over F q , B is a Borel subgroup of G, and T a maximal torus included in B, then N G (T )/T is a Weyl group and the above results extend to the Hecke algebra H(G, B). Now, consider a finite reductive monoid M over F q as defined by Renner in [START_REF] Renner | Finite reductive monoids. Semigroups, formal languages and groups[END_REF]. Such a monoid is a unit regular monoid and its unit group is a finite reductive group G. Solomon introduced in [START_REF] Solomon | The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field[END_REF] the notion of a Iwahori-Hecke algebra H(M, B) of a finite reductive monoid M . Here, B is a Borel subgroup of G. This C-algebra is defined by H(M, B) = εC[M ]ε where as before ε = 1 |B| b∈B b in C[M ]. In this framework, the Weyl group is replaced by an inverse monoid R, which is called the Renner monoid of M . Its turns out that H(M, B) is isomorphic to ⊕ r∈R Cr as a C-vector space. An isomorphism is given by r → Tr = x∈BrB x. Therefore, this is natural to address the question of the existence of a normalisation T r = a r Tr of the basis ( Tr ) r∈R such that in this new basis (T r ) r∈R , the structure constants in the multiplicative table lie in Z[q] as in the case of finite reductive groups. Solomon considered this question in [START_REF] Solomon | The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field[END_REF] and answered in the positive in the specific case where M = M n (F q ). In [START_REF] Solomon | An introduction to reductive monoids. Semigroups, formal languages and groups[END_REF], he announced that in a forthcoming paper, he was going to extend his result and its proof to every finite reductive monoid that arises as the set of fixed points of a reductive monoid over F q (see Section 2.1 for a definition) by the Frobenius map σ defined by σ(x i,j ) = x q i,j . But it seems that this result has never be published. In [START_REF] Putcha | Monoid Hecke Algebras[END_REF] Putcha proves that for every finite reductive monoid, one can normalised the basis ( Tr ) r∈R such that the structure constants become rational in q. Howewer, the question remained open, and Renner concluded in [22, sec. 8.3] that "the delicate part here is obtaining integral structure constants". The main object of this article is to answer Solomon's question in the positive for every finite reductive monoid. We prove: Theorem 0.1. Let M be a finite reductive monoid over F q . Denote by R the associated Renner monoid. There exists a normalisation of the basis ( Tr ) r∈R of the Iwahori-Hecke algebra H(M, B) such that the structure constants in the multiplicative table lie in Z [q]. Moreover, the coefficients of the polynomials depend on R only.

In Section 2, we provide explicit formulae (see Theorem 1.27), which are related to the existence of a length function on R. Moreover, we deduce a finite presentation of H(M, B) in the spirit of the classical presentation of H(G, B) (see Corollary 2.22 in Section 2.3).

Mokler, Renner and Putcha consider families of monoids that are closed to reductive monoids (see [START_REF] Mokler | An analogue of a reductive algebraic monoid, whose unit group is a Kac-Moody group[END_REF][START_REF] Mokler | The maximal chains of the extended Bruhat orders on the W × W -orbits of an infinite Renner monoid[END_REF][START_REF] Mokler | Actions of the face monoids associated to a Kac-Moody group on its buildings[END_REF][START_REF] Putcha | Monoids on groups with BN-Pairs[END_REF][START_REF] Putcha | Monoids of Lie type. Semigroups, formal languages and groups[END_REF][START_REF] Putcha | Morphisms and Duality of Monoids of Lie type[END_REF] for instance. They are called finite monoids of Lie type and face monoids. Indeed, finite reductive monoids are special cases of finite monoids of Lie type. To each of these groups can be associated a so-called Renner monoid, whose properties are closed to Renner monoids of (finite) reductive monoids (See Examples 1.8 and 1.9 below). This explains why these monoids are still called Renner monoids in the latter references. However, there is some differences between these monoids (see Remark 1.10 for a discussion). We introduce here the notion of a generalised Renner monoid. All Renner monoids are examples of generalised Renner monoids. One motivation for this definition is to introduce a notion that plays for these various Renner monoids the role of the notion of a Coxeter system for Weyl group. We prove that all the properties shared by the various Renner monoids hold for generalised Renner monoid. In particular, it is a factorisable monoid and its unit group G is a Coxeter group. The crucial point regarding Solomon's question is that we can associate with each such generalised Renner monoid R a generic Hecke algebra H(R) which is a ring on the free Z[q]-module with basis R. It turns out that Theorem 0.1 is a consequence of Theorem 0.2. Let M be a finite reductive monoid over F q with Renner monoid R. The Iwahori-Hecke algebra H(M, B) is isomorphic to the C-algebra C ⊗ Z H q (R), where H q (R) is the specialisation of the generic Hecke algebra H(R) at q.

The second main ingredient used in the proof of Theorem 0.1 is the existence of a length function ℓ on every generalised Renner monoid R. This length function is related to the canonical generating set S ∪Λ, which equips every generalised Renner monoid. In the case of reductive monoids, we investigate the relation of this length function with the product of double classes. We prove in particular that Proposition 0.3. Let M be a reductive monoid with unit group G and Renner monoid R. Fix a maximal torus T and a Borel subgroup B that contains T in G. (i) Let r lie in R and s lie in S, then

BsBrB =    BrB, if ℓ(sr) = ℓ(r); BsrB, if ℓ(sr) = ℓ(r) + 1; BsrB ∪ BrB, if ℓ(sr) = ℓ(r) -1.
(ii) Let r lie in R and e lie in Λ, then then BeBrB = BerB and BrBeB = BreB This result extends results obtained in [START_REF] Godelle | The Braid rook monoid[END_REF][START_REF] Godelle | A note on Renner monoid[END_REF], and leads to a similar result for finite reductive monoids.

The paper is organised as follows. In Section 1, we introduce the notion of a generalised Renner monoid, provide examples and investigate properties of such monoids. In particular, we define the length function ℓ and prove that a generic Hecke algebra can be associated with every generalised Renner monoid. In Section 2, we first recall the notion of a reductive monoid and prove Proposition 0.3. Then we introduce the notion of a Iwahori-Hecke algebra in the context of monoid theory. We prove some motivating general results for such algebras. These results are probably well-known by semigroup experts, but we have not be able to find references for them. Finally, we turn to finite reductive monoids and conclude with the proof of Theorem 0.1 and 0.2.

Generic Hecke algebra

The notion of a Coxeter group has been introduced in order to study Weyl groups. Our objective in this section is to develop a similar theory for Renner monoids. We need first to recall some standard notions and introduce useful notations.

1.1. Basic notions and notations. We refer to [START_REF] Howie | Fundamentals of semigroup theory[END_REF] for a general introduction on Semigroup Theory, and to [START_REF] Fitzgerald | Factorizable invers monoids[END_REF] for a survey on factorisable inverse monoids. We refer to [START_REF] Bourbaki | éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie, Chapitres IV-V-VI[END_REF] for general theory and proofs on Coxeter systems. 1.1.1. Background on Semigroup Theory. If M is a monoid, we let E(M ) and G(M ) its idempotent set and its unit group. We see a (lower ) semi-lattice as a commutative idempotent semigroup where a ≤ b iff ab = ba = a. In particular, a ∧ b = ab. A semigroup is unit regular if M = E(M )G(M ) = G(M )E(M ), and it is factorisable if it is unit regular and E(M ) is a semi-lattice. In this latter case M is invertible, that is for every x in M there exists a unique y in M such that xyx = x (and therefore yxy = y).

Background on Coxeter Group Theory.

Definition 1.1. Let Γ be a finite simple labelled graph whose labels are positive integers greater or equal than 3. We let denote S the vertex set of Γ. We let E(Γ) denote the set of pairs ({s, t}, m) such that either {s, t} is an edge of Γ labelled by m, or {s, t} is not an edge of Γ and m = 2. When ({s, t}, m) belongs to E(Γ), we let |s, t m denote the word sts • • • of length m. The Coxeter group W (Γ) associated with Γ is defined by the following group presentation

S s 2 = 1 s ∈ S |s, t m = |t, s m ({s, t}, m) ∈ E(Γ)
In this case, one says that the pair (W (Γ), S) is a Coxeter system, and that W is a Coxeter group. The Coxeter graph is uniquely defined by the Coxeter system. (ii) For every I, J ⊆ S and every element w ∈ W there exists a unique element ŵ of minimal length in the double-class W J wW I . Furthermore there exists w 1 in W I and w 2 in W J such that w = w 2 ŵw 1 with ℓ(w) = ℓ(w 1 ) + ℓ( ŵ) + ℓ(w 2 ).

Note that (ii) holds, in particular, when I or J are empty. The element ŵ is said to be (I, J)-reduced. In the sequel, we let Red(I, J) denote the set of (I, J)-reduced elements. Note also that the pair (w 1 , w 2 ) is not unique in general, but it becomes unique if we require that w 2 ŵ is (∅, J)-reduced (or that ŵw 1 is (I, ∅)-reduced). 

W (e) = {w ∈ G(R) | we = ew} W ⋆ (e) = {w ∈ G(R) | we = ew = e}.
The unit group G(R) acts on E(R) by conjugacy. Definition 1.4. (i) An generalised Renner-Coxeter system is a triple (R, Λ, S) such that (ECS1) R is a factorisable monoid; (ECS2) Λ is both a transversal of E(R) for the action of G(R) and a sub-semilattice; (ECS3) (G(R), S) is a Coxeter system; (ECS4) for every pair e 1 ≤ e 2 in E(R) there exists w in G(R) and f 1 ≤ f 2 in Λ such that wf i w -1 = e i for i = 1, 2; (ECS5) for every e in Λ, the subgroups W (e) and W ⋆ (e) are standard Coxeter subgroups of G(R); (ECS6) the map e ∈ Λ → λ ⋆ (e) = {s ∈ S | se = es = e} is not decreasing: e ≤ f =⇒ λ ⋆ (e) ⊆ λ ⋆ (f ). In this case, we say that R is a generalised Renner monoid. Following the standard terminology for Renner monoids, we call the section Λ the cross section lattice of R, and we define the type map of R to be the map λ : Λ → S defined by W (e) = W λ(e) . Notation 1.5. for e in Λ, we set

λ ⋆ (e) = {s ∈ S | se = es = e} W ⋆ (e) = W λ ⋆ (e)
Remark 1.6. Assume (R, Λ, S) is a generalised Renner-Coxeter system. (i) Since W ⋆ (e) is a standard Coxeter subgroup of W (e), we have

W ⋆ (e) = W λ⋆(e) .
Moreover, This is clear that W ⋆ (e) is a normal subgroup of W (e). As a consequence, W (e) = W ⋆ (e) × W ⋆ (e) and λ(e) = λ ⋆ (e) ∪ λ ⋆ (e).

(ii) Below, several results can be proved without assuming Property (ECS6). However this is a crucial tool in the proof of Theorem 1.27 and Proposition 1.17. (iii) If E(R) is finite and a lower semi-lattice, then it has to be a lattice. This is so for Renner monoids associated with reductive monoids. (iv) the map λ ⋆ is not increasing: [START_REF] Renner | Linear algebraic monoids[END_REF].

e ≤ f =⇒ λ ⋆ (f ) ⊆ λ ⋆ (e). (v) We can have λ ⋆ (e) = λ ⋆ (f ) and λ ⋆ (e) = λ ⋆ (f ) for e = f (
Example 1.8. Let M be a abstract finite monoid of Lie type (see [START_REF] Putcha | Monoids on groups with BN-Pairs[END_REF], [START_REF] Putcha | Morphisms and Duality of Monoids of Lie type[END_REF] or [START_REF] Renner | Linear algebraic monoids[END_REF] for a definition. Note that these groups are called regular split monoids in [START_REF] Putcha | Monoids on groups with BN-Pairs[END_REF], and finite monoids of Lie type in [START_REF] Putcha | Morphisms and Duality of Monoids of Lie type[END_REF]). The associated Renner monoid R(M ) of M is a generalised Renner monoid. Property (ECS6) follows from [START_REF] Putcha | Monoids on groups with BN-Pairs[END_REF]Cor. 3.5(i)]. The other defining properties hold by [START_REF] Putcha | Monoids of Lie type. Semigroups, formal languages and groups[END_REF]Sec. 2]. The seminal examples of an abstract finite monoid of Lie type is a Renner monoid of a finite reductive monoid [START_REF] Renner | Finite reductive monoids. Semigroups, formal languages and groups[END_REF]. In Section 3 we focus on these monoids.

Example 1.9. Let G be a Kac-Moody group over a field F of characteristic zero whose derived group is the special Kac-moody group introduced in [START_REF] Kac | Infinite flag varieties and conjugacy theorems[END_REF][START_REF] Kac | Defining relations on certain infinite-dimensional groups[END_REF]. Denote by (W, S) the associated Coxeter system. The Coxeter group W is infinite. Let F a(X) be the set of faces of its associated Tits cone X (see [START_REF] Mokler | An analogue of a reductive algebraic monoid, whose unit group is a Kac-Moody group[END_REF] for details). The action of W on X induces an action on the lattice F a(X). The Renner monoid R is the monoid W ⋉ F a(X)/ ∼ where ∼ is the congruence on W ⋉ F a(X) defined by (w, R) ∼ (w ′ , R ′ ) if R = R ′ and w ′-1 w fixes R pointwise [START_REF] Mokler | An analogue of a reductive algebraic monoid, whose unit group is a Kac-Moody group[END_REF]. Then R is a generalised Renner monoid. Properties (ECS1), (ECS2), (ECS3) and (ECS5) are proved in [START_REF] Mokler | An analogue of a reductive algebraic monoid, whose unit group is a Kac-Moody group[END_REF] (see also [START_REF] Mokler | Actions of the face monoids associated to a Kac-Moody group on its buildings[END_REF]). The cross section lattice Λ can be identified with the set of infinite standard parabolic subgroups of W that have no finite proper normal standard parabolic subgroups. The semi-lattice structure is given by W I ≤ W J if J ⊆ I. If Θ belongs to Λ, then λ ⋆ (Θ) = Θ and λ ⋆ (Θ) = {s ∈ S | ∀t ∈ Θ, st = ts}. The latter equality clearly implies (ECS6). Finally, Property (ECS4) can be deduced from [START_REF] Mokler | Actions of the face monoids associated to a Kac-Moody group on its buildings[END_REF]Theorem 2 and 4].

Remark 1.10. In Examples 1.7, 1.8 and 1.9 we provide examples of generalised Renner monoids that are all called Renner monoid in the literature. From our point of view, this is not a suitable terminology since there is crucial differences between these monoids. Therefore, using the same terminology may be misleading. For instance, for Renner monoids of reductive monoids one has λ ⋆ (e) = f ≤e λ(f ) and λ ⋆ (e) = f ≥e λ(f ). This is not true in general for Renner monoids associated with abstract finite monoids of Lie type (see [START_REF] Putcha | Morphisms and Duality of Monoids of Lie type[END_REF] for a details). In Renner monoids of reductive monoids and of abstract finite monoids of Lie type, all maximal chains of idempotents have the same size. This is not true for Renner monoids of example 1.9, as explained in [START_REF] Mokler | An analogue of a reductive algebraic monoid, whose unit group is a Kac-Moody group[END_REF].

1.2.2. Presentation for generalised Renner monoids. For all this section, we fix a generalised Renner-Coxeter system (R, Λ, S). We let W denote the unit group of R. Our objective is to prove that important properties shared by Renner monoids of Examples 1.7, 1.8, 1.9 can be deduced from their generalised Renner-Coxeter system structure. In particular, we extend to this context the results obtained in [START_REF] Godelle | A note on Renner monoid[END_REF]. By Proposition 1.3, For every w in W and every e, f in Λ, each of the sets wW (e), W (e)w, wW ⋆ (e), W ⋆ (e)w and W (e)wW (f ) has a unique element of minimal length. In order to simplify notation, we set Red(•, e) = Red(∅; λ(e)), Red(e, •) = Red(λ(e), ∅); Red ⋆ (•, e) = Red(∅, λ ⋆ (e)); Red ⋆ (e, •) = Red(λ ⋆ (e), ∅); Red(e, f ) = Red(λ(e), λ(f )).

Proposition 1.11. For every r in R, (i) there exists a unique triple (w 1 , e, w 2 ) with e ∈ Λ, w 1 ∈ Red ⋆ (•, e) and w 2 ∈ Red(e, •) such that r = w 1 ew 2 ; (ii) there exists a unique triple (v 1 , e, v 2 ) with e ∈ Λ, w 1 ∈ Red(•, e) and w 2 ∈ Red ⋆ (e, •) such that r = v 1 ev 2 Following [START_REF] Renner | Linear algebraic monoids[END_REF], we call the triple (w 1 , e, w 2 ) the normal decomposition of r.

Proof. Let us prove (i). The proof of (ii) is similar. Let r belong to the monoid R. By Property (ECS1), there exists e in E(R) and w in W such that r = ew. By Property (ECS2) there exists e 1 in Λ and v in W such that e = ve 1 v -1 . Then r = vew 1 with w

1 = v -1 w. By Remark 1.6(i), we can write v = v 1 v ′ 1 and w 1 = w ′ 2 w ′′ 2 w 2 with v 1 , w 2 , v ′ 1 , w ′ 2 and w ′′ 2 in Red ⋆ (•, e),
Red(e, •), W ⋆ (e), W ⋆ (e) and W ⋆ (e), respectively. Then we have r = v 1 w ′ 2 ew 2 , and [START_REF] Fitzgerald | Factorizable invers monoids[END_REF]. As a consequence, e = f and v 2 w -1 2 lies in W (e). Since v 2 and w 2 both belong to Red(e, •), we must have v 2 = w 2 . Now, it follows that w 1 e = v 1 e and w -1

v 1 w ′ 2 belongs to Red ⋆ (•, e), still by Remark 1.6(i). Now assume r = w 1 ew 2 = v 1 f v 2 with e, f in Λ, w 1 , v 1 in Red ⋆ (•, e) and Red ⋆ (•, f ), respectively, and w 2 , v 2 in Red(e, •) and in Red(f, •), respectively. Then (w 1 w 2 )w -1 2 ew 2 = (v 1 v 2 )v -1 2 f v 2 . This implies w -1 2 ew 2 = v -1 2 f v 2 by
1 v 1 lies in W ⋆ (e). This implies

w 1 = v 1 in Red ⋆ (•, e).
Lemma 1.12. Let e, f belong to Λ and w lie in Red(e, f ).

(i) There exists h in Λ such that w belongs to W (h) and ewf = wh. (ii) The element w lies in W ⋆ (h). Therefore, wh = h.

Note that in the above lemma we have h ≤ e ∧ f = ef . In the sequel the element h is denoted by e ∧ w f . Proof. The proof is similar to [START_REF] Godelle | A note on Renner monoid[END_REF]Prop 1.21]. (i) Consider the normal decomposition (w 1 , h, w 2 ) of ewf . By definition w 1 belongs to Red ⋆ (•, h) and w 2 belongs to Red(h, •). The element w -1 ewf is equal to w -1 w 1 hw 2 and belongs to E(R). Since w 2 lies in Red(h, •), this implies that w 3 = w 2 w -1 w 1 lies in W ⋆ (h), and that f ≥ w -1 2 hw 2 . By Property (ECS4), there exists w 4 in W and

f 1 , h 1 in Λ, with f 1 ≥ h 1 , such that w -1 4 f 1 w 4 = f and w -1 4 h 1 w 4 = w -1 2 hw 2 .
Since Λ is a cross section for the action of W , we have f 1 = f and h 1 = h. In particular, w 4 belongs to W (f ). Since w 2 belongs to Red(h, •), we deduce that there exists r in W (h) such that w 4 = rw 2 with ℓ(w 4 ) = ℓ(w 2 ) + ℓ(r). Then w 2 lies in W (f ), too. Now, write w 1 = w ′ 1 w ′′ 1 where w ′′ 1 lies in W ⋆ (h) and w ′ 1 belongs to Red(•, h). One has ewf = w ′ 1 hw ′′ 1 w 2 , and w 1 w ′′ 2 lies in Red ⋆ (h, •). By symmetry, we get that w ′ 1 belongs to W (e). The element

w ′ -1 1 ww -1 2 is equal to w ′′ 1 w -1
3 and belongs to W (h). But, by hypothesis w lies in Red(e, f ). Then we must have

ℓ(w ′′ 1 w -1 3 ) = ℓ(w ′ -1 1 ) + ℓ(w) + ℓ(w -1 2 ). Since w ′′ 1 w -1 3 belongs to W (h), it follows that w ′
1 and w 2 belong to W (h) too. This implies w 2 = w ′ 1 = 1 and w = w ′′ 1 w -1 3 . Therefore, ewf = hw ′′ 1 = hw = wh. (ii) This is a direct consequence of the following fact: for h, e in Λ such that h ≤ e, we have W (h) ∩ Red(e, •) ⊆ W ⋆ (h) and W (h) ∩ Red(•, e) ⊆ W ⋆ (h). Assume w lies in W (h) ∩ Red(•, e), then we can write w = w 1 w 2 = w 2 w 1 where w 1 lies in W ⋆ (h) and w 2 lies in W ⋆ (h). Since h ≤ e, we have λ ⋆ (h) ⊆ λ ⋆ (e) and W ⋆ (h) ⊆ W ⋆ (e). Since w belongs to Red(•, e), this implies w 2 = 1. The proof of the second inclusion is similar.

Corollary 1.13. (i) For every chain e 1 ≤ e 2 ≤ • • • ≤ e m in E(R) there exists w in G(R) and a chain f 1 ≤ f 2 ≤ • • • ≤ f m in Λ such that wf i w -1 = e i for every index i. (ii) If Λ has an infimum e, then λ(e) = S.
(iii) For all e, f in Λ and w in Red(e, f ), one has

ewf = max{h ∈ Λ | h ≤ e, h ≤ f, w ∈ W (h)} = f w -1 e.
In the case of Renner monoids of reductive monoids, the lattice Λ has an infimum e and λ(e) = λ ⋆ (e) = S. In other words, e is a zero element of R.

Proof. (i) Assume w 1 e 1 w -1 1 ≤ • • • ≤ w m e m w -1 m .
We prove the result by induction on m. For m = 2 this is true by Property (ECS4). Assume m ≥ 3. By induction hypothesis, we can assume w 2 = • • • = w m . We can also also assume that w 1 belongs to Red(•, e 1 ). By hypothesis, we have w 1 e 1 w -1

1 w 2 e 2 w -1 2 = w 1 e 1 w -1 1 . We can write w -1 1 w 2 = v 1 v 3 v -1 2 with v 1 in W (e 1 ), v 2 in W (e 2
) and v 3 in Red(e 1 , e 2 ). Then

w 1 e 1 w -1 1 w 2 e 2 w -1 2 = w 1 v 1 e 1 v 3 e 2 v -1 2 w -1 2 . If v 3 = 1
, then we get a contradiction by Lemma 1.12(i) and Proposition 1.11. Then v 2 = 1 and e 1 e 2 = e 1 . It follows that

w 1 v 1 = w 2 v 2 . Write v 1 = v 1⋆ v ⋆ 1 and v 2 = v 2⋆ v ⋆ 2 with v i⋆ in W ⋆ (e i ) and v ⋆ i in W ⋆ (e i ). We have w 1 v 1⋆ v -1 2⋆ = w 2 v ⋆ 2 v ⋆ 1 -1 . Since λ ⋆ (e 2 ) ⊆ λ ⋆ (e 1
) and λ ⋆ (e 1 ) ⊆ λ ⋆ (e 2 ), we get

that v 1⋆ v -1 2⋆ and v ⋆ 2 v ⋆ 1 -1 lie in W (e 1 )
and W (e 2 ), respectively. Then w 1 e 1 w -1

1 = we 1 w -1 and w 2 e 2 w -1 2 = we 2 w -1 with w = w 1 v 1⋆ v -1 2⋆ . But W (e 2 ) ⊆ W (e j ) for j ∈ {2, • • • , m}. Therefore, w 2 e j w -1 2 = we j w -1 for every j ≥ 2. (ii) if s ∈ S does not belong to λ(e), then ese < e in Λ. (iii) This is clear that e ∧ w f lies in {h ∈ Λ | h ≤ e, h ≤ f, w ∈ W (h)}. Now, if h ∈ Λ verifies h ≤ e, h ≤ f , and w ∈ W (h), then h(e ∧ w f ) = hw -1 (ewf ) = w -1 hwf = hf = h. Therefore, h ≤ ewf .
The last equality follows form the fact that w -1 belongs to Red(f, e). Proposition 1.14. For every w in W , we fix an arbitrary reduced word representative w. We set Λ • = Λ \ {1}. The monoid R admits the monoid presentation whose generating set is S ∪ Λ • and whose defining relations are:

(COX1) s 2 = 1, s ∈ S; (COX2) |s, t m = |t, s m , ({s, t}, m) ∈ E(Γ); (REN1) se = es, e ∈ Λ • , s ∈ λ ⋆ (e); (REN2) se = es = e, e ∈ Λ • , s ∈ λ ⋆ (e); (REN3) ewf = e∧ w f , e, f ∈ Λ • , w ∈ Red(e, f ).
Proof. This is clear that the relations stated in the proposition hold in R. Conversely, every element r in R has a unique representing word wev such that (w, e, v) is its normal decomposition, and this is immediate that every representing word of r on S ∪ Λ • can be transformed into wev using the given relations only.

Remark 1.15. (i) The above presentation is not minimal in general. Some of the relations of type (REN3) can be removed (see the proof of [6, Theorem 0.1] and Remark 1.32 below).

(ii) The reader may verify that the result of Proposition 1.14 and its proof still hold if we do not assume Property (ECS6), except that Relation (REN3) must be replace by (REN3') ewf = w(e ∧ w f ), e, f ∈ Λ • , w ∈ Red(e, f ). Indeed, Lemma 1.12(i) still hold.

One may wonder whether every monoid defined by a monoid presentation like in Proposition 1.14. The answer is positive under some necessary assumptions:

Definition 1.16. A generalised Renner-Coxeter data is 4-uple (Γ, Λ • , λ ⋆ , λ ⋆ ) such
that Γ is a Coxeter graph with vertex set S, Λ • is a lower semi-lattice and λ ⋆ , λ ⋆ are two maps from Λ • to S that verifies (a) for every e in Λ • , the graphs spanned by λ ⋆ (e) and λ ⋆ (e) in Γ are not connected, and

e ≤ f ⇒ λ ⋆ (f ) ⊆ λ ⋆ (e) and λ ⋆ (e) ⊆ λ ⋆ (f ). (b) for every f, g in Λ • and every w ∈ Red(f, g) the set e ∈ Λ • | e ≤ f, e ≤ g and w ∈ W λ(e)
has a greatest element, denoted by f ∧ w g. with λ(e) = λ ⋆ (e)∪λ ⋆ (e) for e ∈ Λ • and Red(e, f ) = Red(λ(e), λ(f )) in the Coxeter group W (Γ) associated with Γ.

Note that properties (a) and (b) hold in every generalised Renner-Coxeter system. Actually, if Λ • is any lower semi-lattice such that all maximal chains are finite, then Assumption (b) is necessarily verified.

Theorem 1.17. Assume M is a monoid. There exists a generalised Renner-Coxeter system (M, Λ, S) if and only if there exists a generalised Renner-Coxeter data (Γ, Λ • , λ ⋆ , λ ⋆ ), where S is the vertex set of Γ, such that M admits the following monoid presentation (COX1)

s 2 = 1, s ∈ S; (COX2) |s, t m = |t, s m , ({s, t}, m) ∈ E(Γ); (REN1) se = es, e ∈ Λ • , s ∈ λ ⋆ (e); (REN2) se = es = e, e ∈ Λ • , s ∈ λ ⋆ (e); (REN3) ewf = e∧ w f , e, f ∈ Λ • , w ∈ Red(e, f
). Where w is an arbitrary fixed minimal representing word of w ∈ W (Γ). In this case, W (Γ) is canonically isomorphic to the unit group of M , and

Λ • embeds in M with Λ = Λ • ∪ {1}.
Note that given a generalised Renner-Coxeter data (Γ, Λ • , λ ⋆ , λ ⋆ ), Relations (COX1) and (COX2) implies that the monoid M defined by the presentation stated in Theorem 1.17 does not depend on the chosen representing words w. Theorem 1.17 follows from the following lemmas.

Lemma 1.18. Consider a generalised Renner-Coxeter data (Γ, Λ • , λ ⋆ , λ ⋆ ) and the monoid M defined by the presentation stated in Theorem 1.17. Then for every f, g in Λ • and every w ∈ Red(f, g),

(b 1 ) e ∧ 1 f = e ∧ f and e ∧ w f ≤ e ∧ f ; (b 2 ) e ∧ w f = f ∧ w -1 e; (b 3 ) w ∈ W λ⋆(e∧wf ) .
Proof. Properties (b 1 ) and (b 2 ) are immediate consequences of Assumption (b). Properties (b 3 ) follows from Assumption (a). The main argument is like in the proof of Lemma 1.12(ii). If w doesnot belong to W λ⋆(e∧w f ) , then we can write

w = w ⋆ w ⋆ with w ⋆ ∈ W λ⋆(e∧w f ) and w ⋆ ∈ W λ ⋆ (e∧wf ) . But W λ ⋆ (e∧wf ) ⊆ W λ ⋆ (f )
and w lies in Red(e, f ). Therefore, w ⋆ = 1.

Lemma 

u i of µ i in W (Γ) belongs to Red(f i-1 , f i ) with µ i = u i and ω =µ 1 f 1 • • • µ i-1 (f i ∧ ui f i+1 )µ i+1 f i+2 • • • f j µ j+1 then e ≤ f i-1 ∧ ui f i . Conversely, if ω = µ 1 f 1 µ 2 • • • f i-1 µ i e i u i e i+1 µ i+1 • • • µ j f j µ j+1
where f i = e i ∧ ui e i+1 for e i , e i+1 in Λ • and some u i in Red(e i , e i+1 ), then e ≤ f i ≤ e i and e ≤ f i ≤ e i+1 ; Moreover, u i belongs to W λ⋆(fi) , which is included in W λ⋆(e) . In all these cases the words ν 1 ν 2 

. Write w -1 v = v 1 v 2 v 3 with v 2 in Red(e, f ), v 1 in W λ(e) and v 3 in W λ(f ) . Then ev 2 f = e ∧ v2 f and v 2 lies in W λ⋆(e∧v 2 f ) . We get, wew -1 vf v -1 = wv 1 e ∧ v2 f v 3 v -1 = wv 1 f ∧ -1 v2 ev 3 v -1 = wv 1 v 2 f v -1 2 ev 2 v 3 v -1 = wv 1 v 2 v 3 f v -1 3 v -1 2 v -1 1 ev 1 v 2 v 3 v -1 = vf v -1 wew -1 .
It is easy to see that every representing word ω on S ∪ Λ • of en element w of M can be transformed into a word ω 1 eω 2 ≡ ω 1 eω -1

1 ω 1 ω 2 where e belongs to Λ = Λ • ∪ {1} and ω 1 , ω 2 represent words in W (Γ). Moreover, if ω contains some letter in Λ • , then e has to be in Λ • . Therefore, M is unit regular and G(M ) = W (Γ). In particular Property (ECS3) holds. Assume w = w 1 ew 2 lies in E(M ) with w 1 , w 2 in W (Γ) and e in Λ. If e = 1 then w 1 w 2 has to be equal to 1 in W (Γ). Assume e = 1. Then w 1 ew 2 w 1 ew 2 = w 1 ew 2 , and ew 2 w 1 e = e. By Lemma 1.19(ii), w 2 w 1 belongs to W λ⋆(e) and w = w

1 ew -1 1 . Thus E(M ) = {wew -1 | e ∈ Λ, w ∈ W (Γ)} is a semi-lattice and Property (ECS1) holds. Let w 1 , w 2 , v 1 , v 2 be in W (Γ) and e, f be in Λ such that w 1 ew 2 = v 1 f v 2 in M . Then e = w -1 1 v 1 f v 2 w -1
2 and e ≤ f . By symmetry, e = f and the elements w -1

1 v 1 and v 2 w -1

2
belong to W λ(e) . This implies that Λ is a transversal of E(M ) for the action of W (Γ) and a sub-semilattice of E(M ). Therefore, we get Property (ECS2). Furthermore, if w 2 = v 1 = 1 and v 2 = w 1 , then w 1 lies in W λ(e) . If w 2 = v 1 = v 2 = 1, then w 1 lies in W λ⋆(e) by Lemma 1.19(ii). Property (ECS5) follows. If wew -1 ≤ vf v -1 , then wew -1 vf v -1 = wew -1 and ew -1 vf v -1 w = e Then w -1 v lies in W λ⋆(e) × W λ ⋆ (e) , which is included in W λ⋆(e) × W λ ⋆ (f ) . As a consequence, Property (ECS4) holds. Finally, Property (ECS6) holds by hypothesis.

Length function for generalised Renner-Coxeter systems.

As explained in the introduction, to answer Solomon's question, we need to define a length function on finite reductive monoids. Here we introduce this length function in the general context of generalised Renner-Coxeter systems. This extends results obtained in [START_REF] Godelle | The Braid rook monoid[END_REF] and [START_REF] Godelle | A note on Renner monoid[END_REF]. As before, (R, Λ, S) is a generalised Renner-Coxeter system. The unit group of R is denoted by W , and we set Λ • = Λ \ {1}. Proof. This is direct consequences of the definition of the length function. Proof. Using the relations of the monoid presentation of R stated in Proposition 1.14, every representative word of r can be transformed into w 1 ew 2 without increasing the length. Therefore ℓ(r) = ℓ(w 1 ) + ℓ(e) + ℓ(w 2 ) = ℓ(w 1 ) + ℓ(w 2 ).

From the proof of the above proposition, we also deduce that ). In this case, ℓ(sr)ℓ(r) = ℓ(sw 1 )ℓ(w 1 ).

(ii) ℓ(sr) = ℓ(r) if and only if sr = r if and only if sw 1 = w 1 u for some u in λ ⋆ (e).

In this case, ℓ(sw 1 ) = ℓ(w 1 ) + 1.

(iii) ℓ(rt) = ℓ(r) ± 1 if and only if the normal decomposition of rt is either (w 1 , e, w 2 t) or (w 1 u, e, w 2 ) for some u in λ ⋆ (e). Furthermore, in the former case ℓ(rt)ℓ(r) = ℓ(w 2 t)ℓ(w 2 ), and in the latter case w 2 t = uw 2 with ℓ(w 2 t) = ℓ(w 2 ) + 1.

(iv) ℓ(rt) = ℓ(r) if and only if r = rt if and only if w 2 t = uw 2 for some u in λ ⋆ (e).

(v) If ℓ(srt) = ℓ(r) and ℓ(sr) = ℓ(rt) = ℓ(r), then there exists u in λ ⋆ (e) such that sw 1 = w 1 u and uw 2 = w 2 t. As a consequence, sr = rt.

Proof. Recall that |ℓ(sr)ℓ(r)| ≤ 1 and |ℓ(rt)ℓ(r)| ≤ 1. The normal decomposition of sr is (sw 1 , e, w 2 ) if and only if sw 1 belongs to Red ⋆ (•, e). Since w 1 belongs to Red ⋆ (•, e), this is clearly the case if ℓ(sw 1 ) = ℓ(w 1 ) -1. Assume ℓ(sw 1 ) = ℓ(w 1 ) + 1 and sw 1 does not belong to Red ⋆ (•, e). Then we can write sw 1 = w ′ 1 u for some u in λ ⋆ (e) such that ℓ(sw 1 ) = ℓ(w ′ 1 ) + 1. In particular, ℓ(sw 1 u) = ℓ(w ′ 1 ) = ℓ(w 1 ). On the other hand, ℓ(w 1 u) = ℓ(w 1 ) + 1 = ℓ(sw 1 ) because w 1 belongs to Red ⋆ (•, e), and u lies in λ ⋆ (e). By Lemma 1.24, we get sw 1 = w 1 u and sr = sw 1 ew 2 = w 1 uew 2 = w 1 ew 2 = r. This proves (i) and (ii) since the other implications are obvious. The normal decomposition of rt is (w 1 , e, w 2 t) if and only if w 2 t belongs to Red(e, •). Since w 2 belongs to Red(e, •), this is clearly the case if ℓ(w 2 t) = ℓ(w 2 )-1. Assume ℓ(w 2 t) = ℓ(w 2 )+1 and w 2 t does not belong to Red(e, •). Then we can write w 2 t = uw ′ 2 for some u in λ(e) such that ℓ(w 2 t) = ℓ(w ′ 2 ) + 1. As before we can conclude that w 2 t = uw 2 . If u lies in λ ⋆ (e) then rt = r. Otherwise, u belongs to λ ⋆ (e) and w 1 u belongs to Red ⋆ (•, e). This is true since u belongs to λ ⋆ (e) and therefore commutes with each element of λ ⋆ (e). Then the normal decomposition of rt is (w 1 u, e, w 2 ). This proves (iii) and (iv). Now assume ℓ(srt) = ℓ(r) and ℓ(sr) = ℓ(rt) = ℓ(r). We claim that ℓ(w 2 t) = ℓ(w 2 ) + 1 and there exists u in λ(e) such that uw 2 = w 2 t. If it was not the case, by above arguments, the normal decomposition of srt would be (sw 1 , e, w 2 t) and ℓ(srt) = ℓ(r) ± 2. Since we assume ℓ(rt) = ℓ(r), the element u has to belong to λ ⋆ (e). Finally, using that ℓ(sr) = ℓ(rt) = ℓ(r) = ℓ(srt) we deduce that ℓ(sw 1 ) = ℓ(w 1 u) and ℓ(w 1 ) = ℓ(sw 1 u), which in turn implies sw 1 = w 1 u by Lemma 1.24.

Lemma 1.26. Let r belong to R, s belong to S and f belong to Λ. Let (w 1 , e, w 2 ) be the normal decomposition of r.

(i) If ℓ(rf ) = ℓ(r) then w 2 belongs to W (f ). (ii) If ℓ(f r) = ℓ(r) then w 1 = w ′ 1 w ′′ 1 where w ′ 1 lies in W (f ) and w ′′ 1 lies in W ⋆ (e). (iii) If ℓ(sr) = ℓ(r)-1, then ℓ(srf ) ≤ ℓ(rf ). If ℓ(sr) = ℓ(r)+1, then ℓ(srf ) ≥ ℓ(rf ). (iv) If ℓ(rs) = ℓ(r)-1, then ℓ(f rs) ≤ ℓ(f r). If ℓ(rs) = ℓ(r)+1, then ℓ(f rs) ≥ ℓ(f r).
Proof. By definition of the normal decomposition, w 2 belongs to Red(e, •). Write

w 2 = w ′ 2 w ′′ 2 with w ′ 2 , w ′′ 2 in the unit group W of R such that ℓ(w 2 ) = ℓ(w ′ 2 ) + ℓ(w ′′ 2 ), w ′′
2 belongs to W (f ) and w ′ 2 belongs to Red(•, f ). Then w ′ 2 lies in Red(e, f ). By Relation (REN3), we have rf = w 1 (e ∧ w ′ 2 f )w ′′ 2 . It follows that ℓ(w ′ 2 ) = 0, and w 2 = w ′′ 2 . This proves (i). The prove of (ii) is similar except that we need first to decompose w 1 in w ′ 1 w ′′ 1 where w ′′ 1 lies in W ⋆ (e) and w ′ 1 lies in Red(•, e). (iii) Assume ℓ(sr) = ℓ(r) -1. Write w 1 = sv 1 with ℓ(w 1 ) = ℓ(v 1 ) + 1, and write

w 2 = w ′ 2 w ′′ 2 v ′′′ 2 with w ′ 2 , w ′′ 2 , w ′′′ 2 in W such that ℓ(w 2 ) = ℓ(w ′ 2 ) + ℓ(w ′′ 2 ) + ℓ(w ′′′ 2 )
, where w ′′ 2 belongs to W ⋆ (f ), w ′′′ 2 belongs to W ⋆ (f ) and w ′ 2 belongs to Red(e, f ). Then (v 1 , e, w 2 ) is the normal decomposition of sr.

One has srf = v 1 ew ′ 2 f w ′′ 2 = v 1 e ′ w ′′ 2 where e ′ = e ∧ w ′ 2 f belongs to Λ. Write w ′′ 2 = v ′′ 2 v ′ 2 v 2 such that ℓ(w ′′ 2 ) = ℓ(v ′′ 2 ) + ℓ(v ′ 2 ) + ℓ(v 2 ) with v ′′ 2 ∈ W ⋆ (e ′ ), v ′ 2 ∈ W ⋆ (e ′
) and v 2 ∈ Red(e ′ , •). We claim that v ′′ 2 = 1. Indeed w ′ 2 belongs to W ⋆ (e ′ ) by Lemma 1.12(ii), and

w 2 = w ′ 2 v ′′ 2 v ′ 2 v 2 w ′′′ 2 = v ′ 2 w ′ 2 v ′′ 2 v 2 w ′′′ 2 with ℓ(w 2 ) = ℓ(v 2 ) + ℓ(v ′ 2 ) + ℓ(w ′ 2 ) + ℓ(v ′′ 2 ) + ℓ(w ′′′ 2 ). But v ′ 2 ∈ W ⋆ (e ′ ) ⊆ W ⋆ (e)
, since e ′ ≤ e by Property (ECS6), whereas w 2 belongs to Red(e, •) by definition of the normal decomposition. Hence,

v ′ 2 = 1. Now, write v 1 = v ′ 1 v ′′ 1 such that ℓ(v 1 ) = ℓ(v ′ 1 ) + ℓ(v ′′ 1 ) with v ′ 1 ∈ Red ⋆ (•, e ′ ) and v ′′ 1 ∈ W ⋆ (e ′ ). Then srf = v ′ 1 e ′ v 2 and (v ′ 1 , e ′ , v 2 ) is the normal decomposition of swf . Since ℓ(ssr) = ℓ(sr) + 1, we have ℓ(sv ′ 1 v ′′ 1 ) = ℓ(sv 1 ) = ℓ(v 1 ) + 1 by Lemma 1.25(i). This implies ℓ(sv ′ 1 ) = ℓ(v ′ 1
) + 1 and we cannot have ℓ(ssrf ) = ℓ(srf ) -1, still by Lemma 1.25(i). Assume ℓ(sr) = ℓ(r)+1. let (v 1 , e, w 2 ) be the normal decomposition of r, and (v ′ 1 , e ′ , v 2 ) be the normal decomposition of rf . It follows from above arguments that v ′ 1 left divides v 1 . We conclude using Lemma 1.25:

ℓ(sr) = ℓ(r) + 1 ⇒ ℓ(sv 1 ) = ℓ(v 1 ) + 1 ⇒ ℓ(sv ′ 1 ) = ℓ(v ′ 1 ) + 1 ⇒ ℓ(srf ) ≥ ℓ(rf ).
The proof of (iv) is similar.

1.3. Free module over R. For all this section, we assume (R, Λ, S) is a generalised Renner-Coxeter system. We let W denote the unit group of R, and set Λ • = Λ\{1}. We fix an arbitrary unitary associative ring A. We let V denote the free A-module with basis elements T r for r ∈ R.

Theorem 1.27. Fix q in A. There exists a unique structure of unitary associative A-algebra on V such that T 1 is the unity element and the following conditions hold for every x in S ∪ Λ • and every r in R:

T x T r = T xr , if x ∈ S and ℓ(xr) = ℓ(r) + 1; T x T r = qT r , if x ∈ S and ℓ(xr) = ℓ(r); T x T r = (q -1)T r + qT xr , if x ∈ S and ℓ(xr) = ℓ(r) -1; T x T r = q ℓ(r)-ℓ(xr) T xr , if x ∈ Λ • .
We follow the method explained in [10, Sec. 7.1] for the Hecke algebra of Coxeter groups. Let E = End A (V ) the A-algebra of endomorphisms of the A-module V . For s in S and r in R, we define ρ s in E by

ρ s (T r ) = T sr , if ℓ(sr) = ℓ(r) + 1; ρ s (T r ) = qT r , if ℓ(sr) = ℓ(r); ρ s (T r ) = (q -1)T r + qT sr , if ℓ(sr) = ℓ(r) -1.
For e in Λ and r in R, we define ρ e by ρ e (T r ) = q ℓ(r)-ℓ(er) T er Similarly, for s in S and r in R, we define ρ s in E by

ρ s (T r ) = T rs , if ℓ(sr) = ℓ(r) + 1; ρ s (T r ) = qT r , if ℓ(r) = ℓ(rs); ρ s (T r ) = (q -1)T r + qT rs , if ℓ(sr) = ℓ(r) -1.
For e in Λ and r in R, we define ρ e by ρ e (T r ) = q ℓ(r)-ℓ(re) T re .

The key tool in the proof of Theorem 1.27 is the following result.

Lemma 1.28. For every x, y in S ∪ Λ,

ρ x ρ y = ρ y ρ x .
Proof. Let r belong to R and x, y belong to S ∪ Λ. We prove that ρ x (ρ y (T r )) = ρ y (ρ x (T r )). Clearly we can assume x = 1 and y = 1. By Proposition 1.21, ℓ(xry) ≤ ℓ(x) + ℓ(r) + ℓ(y) ≤ (r) + 2. We provide case by case as in [START_REF] Humphreys | Linear algebraic groups[END_REF]. Case 1: ℓ(xry) = ℓ(r) + ℓ(x) + ℓ(y). We must have ℓ(xr) = ℓ(r) + ℓ(x), ℓ(ry) = ℓ(r) + ℓ(y) and ℓ(xry) = ℓ(ry) Lemma 1.29. Let L be the sub-algebra of E generated the ρ x for x in R. The map ϕ from L to V which sends ρ to ρ(T 1 ) is an isomorphism of A-modules.

+ ℓ(x) = ℓ(xr) + ℓ(y). Therefore ρ x (ρ y (T r )) = ρ x (T ry ) = T xry = ρ y (T xr ) = ρ y (ρ x (T r )).
Proof. This is clear that ϕ is a morphism of A-modules. Let r belong to R, and let x 1 • • • x k be a minimal word representative. Then by definition of the maps ρ xi , we have T r = ϕ(ρ x1 • • • ρ x k ). Therefore, ϕ is surjective. Assume ϕ(ρ) = 0 for some ρ in L. Consider r and x 1 • • • x k as before, such that k is minimal. We prove by induction on k that ρ(T r ) = 0. For k = 0, that is r = 1, this is true by hypothesis. The word x 1 • • • x k-1 is a minimal word representative of some element r ′ . By induction hypothesis, we have 

ρ(T r ′ ) = 0. It follows ρ(T r ) = ρ(T r ′ x k ) = ρ(ρ x k (T r ′ )) = ρ xm (ρ(T r ′ )) = ρ xm (0) = 0.
T x T r = T xr . Assume x lies in Λ • and ℓ(xr) < ℓ(r). Then ρ x ρ r (T 1 ) = ρ x (T r ) = q ℓ(r)-ℓ(xr) T xr = q ℓ(r)-ℓ(xr) ρ xr (T 1 ). We get ρ x ρ r = q ℓ(r)-ℓ(xr) ρ xr and T x T r = q ℓ(r)-ℓ(xr) T xr . Assume x lies in S. If ℓ(xr) = ℓ(r), then ρ x ρ r (T 1 ) = ρ x (T r ) = qT xr = qρ xr (T 1 )
and T x T r = qT rx . Finally, consider the case ℓ(xr) = ℓ(r) -1. One has ρ x ρ r (T 1 ) = ρ x (T r ) = (q -1)T r + qT xr = (q -1)ρ r (T 1 )+ qρ xr (T 1 ) = ((q -1)ρ r + qρ xr )(T 1 ). Therefore, ρ x ρ r = (q -1)ρ r + qρ xr and T x T r = (q -1)T r + qT xr . Definition 1.30. Let q be an indeterminate and set A = Z[q]. The generic Hecke algebra H(R) of the generalised Renner monoid R is the A-algebra described in Theorem 1.27.

Corollary 1.31. The generic Hecke algebra H(R) of R admits the following Z[q]algebra presentation: the generators are T x for x in S ∪ Λ • ; the defining relations are (HEC1)

T 2 s = (q -1)T 1 + qT s , s ∈ S; (HEC2) |T s , T t m = |T t , T s m , ({s, t}, m) ∈ E(Γ); (HEC3) T s T e = T e T s , e ∈ Λ • , s ∈ λ ⋆ (e); (HEC4) T s T e = T e T s = qT e , e ∈ Λ • , s ∈ λ ⋆ (e); (HEC5) T e T w T f = q ℓ(w) T e∧wf , e, f ∈ Λ • , w ∈ Red(e, f ).
In the special case of the rook monoid (see Example 2.6 below), we recover the presentation obtained in [START_REF] Godelle | The Braid rook monoid[END_REF].

Proof. Consider the presentation of H(R) given in Theorem 1.27. Then Relations (HEC1)-(HEC5) clearly hold in H(R). For instance |T s , T t m = T |s,t m = T |t,s m = |T t , T s m . Conversely, consider the algebra H defined by the presentation given in the corollary. We claim that for two minimal word representatives

ω 1 = x 1 • • • x k and ω 2 = y 1 • • • y k on S ∪ Λ • that represent the same element r in R, we have T x1 • • • T x k = T y1 • • • T y k . Indeed, it follows from Corollary 1.23 that we can trans- form T x1 • • • T x k into T y1 • • • T y k by using (HEC2), (HEC3) and (HEC5). So we set T r = T x1 • • • T x k in H. If (w 1 , e, w 2
) is the normal decomposition of r we have T r = T w1 T e T w2 . Now, we deduce that the defining relations of H(R) given in Theorem 1.27 hold in H using lemma 1.25 and 1.26. If ℓ(xr) = ℓ(x) + ℓ(r) and

x 1 • • • x k is a minimal word representative of r, then xx 1 • • • x k is a minimal word representative of xr and T xr = T x T x1 • • • T x k = T x T r . If x belong to S and ℓ(xr) = ℓ(r) -1, then T x T r = T x T w1 T e T w2 = ((q -1)T w1 + qT xw1 )T e T w2 = (q -1)T r + qT xw1 .
Here we use that Relations (HEC1) and (HEC2) implies T w = (q -1)T w + qT xw when w belongs to W such that ℓ(xw) = ℓ(w) -1 (cf. [START_REF] Humphreys | Linear algebraic groups[END_REF]Sec. 7]). If x belongs to S and ℓ(xr) = ℓ(r), then by Lemma 1.25, there exists u in λ ⋆ (e) such that xw 1 = w 1 u, and ℓ(xw 1 ) = ℓ(w 1 ) + 1. It follows that T x T r = T x T w1 T e T w2 = T xw1 T e T w2 = T w1 T u T e T w2 = qT w1 T e T w2 = qT r . Finally, assume x belongs to Λ • and ℓ(xr) < ℓ(r). Write

w 1 = w ′′′ 1 w ′′ 1 w ′ 1 such that ℓ(w 1 ) = ℓ(w ′′′ 1 )+ℓ(w ′′ 1 )+ℓ(w ′ 1 ) with w ′′′ 1 in W ⋆ (x), w ′′ 1 in W ⋆ (x) and w ′ 1 in Red(x, e). We have T x T r = T x T w1 T e T w2 = T x T w ′′′ 1 T w ′′ 1 T w ′ 1 T e T w2 = q ℓ(w ′′′ 1 ) T x T w ′′ 1 T w ′ 1 T e T w2 = q ℓ(w ′′′ 1 ) T w ′′ 1 T x T w ′ 1 T e T w2 . We get T x T r = q ℓ(w ′′′ 1 )+ℓ(w ′ 1 ) T w ′′ 1 T x∧ w ′ 1 e T w2 .
We can decompose w ′′ 1 and w 2 such that w ′′

1 = v ′ 1 v ′′ 1 and w 2 = v ′′ 2 v ′ 2 where v ′′ 1 , v ′′ 2 belong to W ⋆ (x ∧ w ′ 1 e), v ′ 1 belongs to Red ⋆ (•, x ∧ w ′ 1 e) and v ′ 2 belongs to Red ⋆ (x ∧ w ′ 1 e, •). We have ℓ(xr) = ℓ(v ′ 1 ) + ℓ(v ′ 2 ) and v ′ 1 (x ∧ w ′ 1 e)v ′ 2 is a minimal word representative of xr. Hence, T x T r = q ℓ(w ′′′ 1 )+ℓ(w ′ 1 )+ℓ(v ′′ 1 )+ℓ(v ′′ 2 ) T v ′ 1 T x∧ w ′ 1 e T v ′ 2 = q ℓ(x)-ℓ(xr) T xr . Remark 1.32. (i) For e, f in Λ • , we set Red ⋆ (e, f ) = Red(e, f ) W ∩ h>e λ(h) W ∩ h>f λ(h) .
It is not difficult to see that in Relations (HEC5) of the presentation stated in Corollary 1.31, we can assume w belongs to Red ⋆ (e, f ) (cf. the proof of [6, Theorem 0.1]).

(ii) In H(R) the following relations hold :

T r T x = T xr , if x ∈ S and ℓ(rx) = ℓ(r) + 1; T r T x = qT r , if x ∈ S and ℓ(rx) = ℓ(r); T r T x = (q -1)T r + qT rx , if x ∈ S and ℓ(rx) = ℓ(r) -1; T r T x = q ℓ(r)-ℓ(rx) T rx , if x ∈ Λ • .
This can be deduced directly from Theorem 1.27, but this is an immediate consequence of Corollary 1.31 since the defining relations (HEC1) -(HEC5) have a right-left symmetry.

Iwahori-Hecke algebra of finite reductive monoids

Here, we first recall basic results on Algebraic Monoid Theory, then we introduce the notion of an Iwahori-Hecke algebra in the general framework of Monoid Theory, we recall some basic properties and explain why this Iwahori-Hecke algebra is interesting. Finally, we turn to finite reductive monoids and prove that the Iwahori-Hecke algebra of such monoids is related to the generic Hecke algebra of the associated Renner monoid. As a consequence, we prove Theorems 0.1 and 0.2.

2.1. Regular monoids and reductive groups. We introduce here the basic definitions and notation on Algebraic Monoid Theory that we shall need in the sequel. We fix an algebraically closed field K. We let M n denote the set of all n × n matrices over K, and by GL n the set of all invertible matrices in M n . We refer to [START_REF] Putcha | Monoid Hecke Algebras[END_REF][START_REF] Renner | Linear algebraic monoids[END_REF][START_REF] Solomon | An introduction to reductive monoids. Semigroups, formal languages and groups[END_REF] for the general theory and proofs involving linear algebraic monoids and Renner monoids; we refer to [START_REF] Humphreys | Linear algebraic groups[END_REF] for an introduction to Linear Algebraic Groups Theory. If X is a subset of M n , we let X denote its closure for the Zariski topology. Recall that a semigroup M is said to have a zero element if it contains an element 0 such that 0 × x = x × 0 = 0 for every x in M . Definition 2.1 (Algebraic monoid). An algebraic monoid is a submonoid of M n , for some positive integer n, that is closed for the Zariski topology. An algebraic monoid is irreducible if it is irreducible as a variety.

It is very easy to construct algebraic monoids. Indeed, the Zariski closure M = G of any submonoid G of M n is an algebraic monoid. The main example occurs when for G one considers an algebraic subgroup of GL n . It turns out that in this case, the group G is the unit group of M . Conversely, if M is an algebraic monoid, then its unit group G(M ) is an algebraic group. The monoid M n is the seminal example of an algebraic monoid, and its unit group GL n is the seminal example of an algebraic group.

The next result, which is the starting point of the theory, was obtained independently by Putcha and Renner in 1982.

Theorem 2.2. Let M be an irreducible algebraic monoid with a zero element. Then M is regular if and only if its unit group G(M ) is reductive. Example 2.6. Consider M = M n . Choose the Borel subgroup B of invertible upper triangular matrices and the maximal torus T of invertible diagonal matrices. The Renner monoid is isomorphic to the monoid of matrices with at most one nonzero entry, that is equal to 1, in each row and each column. This monoid is called the rook monoid R n [START_REF] Solomon | The Iwahori algebra of Mn(Fq). A presentation and a representation on tensor space[END_REF]. Its unit group is the group of monomial matrices, which is isomorphic to the symmetric group for every index i. One has λ ⋆ (e i ) = {s j | j > i} and λ ⋆ (e i ) = {s j | j < i}. Other examples can be found in [START_REF] Godelle | A note on Renner monoid[END_REF].

In the framework of algebraic monoids, Renner monoid plays the role of Weyl groups in Algebraic Group Theory. In particular we still have a Bruhat decomposition: the monoid M is equal to the disjoint union ∪ r∈R BrB. Moreover, the product of double classes BrB is related to the length function that we introduce in Section 1. 

= x 1 • • • x k is a minimal word representative of r then BrBsB = Bx 1 B • • • Bx k-1 Bx k BsB = Bx 1 B • • • Bx k-1 Bx k sB = • • • = BrsB. Finally, if ℓ(rs) = ℓ(rs) -1, and x 1 • • • x k-1 s is a minimal word representative of r, then BrBsB = Bx 1 B • • • Bx k-1 BsBsB = Bx 1 B • • • Bx k-1 B(B ∪ BsB) = BrsB ∪ BrB. Let us proof (iii)
. Since e belongs to Λ, Be ⊆ eB [START_REF] Renner | Linear algebraic monoids[END_REF]. Thus, BrBeB ⊆ BreB. The inclusion BreB ⊆ BrBeB is trivial. Let us prove that BeBrB = BerB. If r = s i1 • • • s i ℓ(r) belongs to the Weyl group W , the results follows from (ii) since for ℓ(es i1

• • • s ij ) ≥ ℓ(es i1 • • • s ij-1
). Therefore, we may assume that r = w 1 f w 2 where f lies in Λ • and (w 1 , f, w 2 ) is the normal decomposition of r. We can write w

1 = v 1 v 2 v 3 v 4 with v 1 ∈ W ⋆ (e), v 2 ∈ W ⋆ (e), v 3 ∈ Red(e, f ), v 4 in W ⋆ (f ) and ℓ(w 1 ) = ℓ(v 1 ) + ℓ(v 2 ) + ℓ(v 3 ) + ℓ(v 4 ). Then BeBrB = BeBw 1 f w 2 B = BeBv 1 v 2 v 3 f v 4 w 2 B = BeBv 1 Bv 2 v 3 Bf Bv 4 w 2 B = Bev 2 v 3 Bf Bv 4 w 2 B = Bv 2 ev 3 f Bv 4 w 2 B = Bv 2 (e ∧ v3 f )Bv 4 w 2 B. Write v 4 w 2 = v 5 v 6 v 7 such that ℓ(v 4 w 2 ) = ℓ(v 5 )+ ℓ(v 6 )+ ℓ(v 7 ) and v 5 ∈ W ⋆ (e ∧ v3 f ), v 6 ∈ W ⋆ (e ∧ v3 f ), v 7 ∈ Red(e ∧ v3 f, •). Then BeBrB = Bv 2 (e ∧ v3 f )Bv 6 v 7 B. We claim that ℓ(er) = ℓ(v 2 (e ∧ v3 f )v 6 v 7 ) = ℓ(v 2 (e ∧ v3 f )) + ℓ(v 6 v 7 ), which im- plies BeBrB = Bv 2 (e ∧ v3 f )v 6 v 7 B = BerB by (ii). If it was not the case, By Lemma 1.25 (iii), v 6 v 7 = uv 8 with u ∈ λ ⋆ (e ∧ v3 f ), ℓ(v 6 v 7 ) = ℓ(v 8 ) + 1 and ℓ(v 2 u) = ℓ(v 2 ) -1. But λ ⋆ (e ∧ v3 f ) ⊆ λ ⋆ (f ), uv 5 = v 5 u and uv 2 = v 2 u since v 2 lies in W ⋆ (e∧ v3 f ). Therefore, this leads to r = w 1 ew 2 = v 1 v 2 v 3 v 4 f w 2 = v 1 v 2 v 3 f v 4 w 2 = v 1 v 2 v 3 f v 5 uv 8 = v 1 v 2 uv 3 f v 5 v 8 . But this is impossible since ℓ(r) = ℓ(v 1 v 2 uv 3 f v 5 v 8 ) ≤ ℓ(v 1 ) + ℓ(v 2 u) + ℓ(v 3 ) + ℓ(v 5 ) + ℓ(v 8 ) = ℓ(v 1 ) + ℓ(v 2 ) -1 + ℓ(v 3 ) + ℓ(v 5 ) + ℓ(v 8 ) < ℓ(w 1 ) + ℓ(w 2 ) = ℓ(r).
2.2. Iwahori-Hecke algebra. We introduce here the notion of a Iwahori-Hecke algebra in the general framework of Monoid Theory. The equivalent notion in the context of Group Theory is well-known ([4, Sec. 8.4] for instance). There is no difficulty to translate the notion from Group Theory to Monoid Theory. The point is to verify that definitions and proofs can be written without using the existence of inverse elements. This is not the case for the whole theory (see Remarks 2.10 and 2.16 below) but the main results still hold as far as one considers the Iwahori-Hecke algebra associated with a subgroup. We have no find general references for Iwahori-Hecke Algebra of a monoid. This is why we start with an introduction to these notions with included proof. For all this section, we assume M is a finite monoid. We let G denote its unit group and we fix a subgroup H of G. We let C[M ] denote the monoid algebra of M . An element of C[M ] has the form x∈M λ x x where the λ x belong to C. We set

ε = 1 |H| h∈H h in C[M ].
All the considered algebras are unit associative algebras, and all modules are left modules. We begin with two easy lemma whose proofs are left to the reader.

Lemma 2.8. Consider the C-algebra C M of linear maps from M to C where the product is the convolution product ⋆, defined by

f ⋆ g(x) = y,z∈M,yz=x f (y)g(z). There is a canonical isomorphism of C-algebra from C[M ] to C M which sends X = x∈M λ x x to the map X : x → λ x .
The following lemma is immediate. We left the proof to the reader. Remark 2.10. We remark that Lemma 2.9 is no more true in general if we only assume H is a submonoid of M . Indeed, ε is not necessarily an idempotent. given by f → εf (ε)ε for every endomorphism f .

Following Solomon [START_REF] Solomon | The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field[END_REF] and Putcha [START_REF] Putcha | Monoid Hecke Algebras[END_REF], who consider the case of finite reductive monoids, we introduce the Iwahori-Hecke algebra H(M, H): Note that this is known by [START_REF] Okninski | Putcha L Complex representations of Matrix semigroups[END_REF] that C[M ] is semisimple for abstract finite monoids of Lie type (cf. Example 1.8), and therefore for finite reductive monoids. Proof. The first part is clear. The second part come from the fact that H is a group: we can write X i X j = ℓ k=1 z∈D k α(i, j, z)z where α(i, j, z) = #{(x, y) ∈ D i ×D j | xy = z}. But if z belongs to D k , then α(i, j, z) = α(i, j, x k ). Indeed, if z = h 1 x k h 2 then the map (x, y) → (h 1 x, yh 2 ) is one-to-one from {(x, y)

∈ D i × D j | xy = x k } onto {(x, y) ∈ D i × D j | xy = z}.
As explained in [START_REF] Solomon | The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field[END_REF]Sec 4] and in [START_REF] Putcha | Monoid Hecke Algebras[END_REF]Sec 2], an important issue is to determined the structure constants µ i,j,k and, if possible, to suitably choose the a i so that the Z-module generated by the a i X i becomes a Z-subalgebra of H(M, B), in other words, so that the structure constants µ i,j,k belong to Z. 2.3. Finite reductive monoids. We can now turn to the proof of Theorems 0.1 and 0.2. Let us recall the definition of finite reductive monoids [START_REF] Renner | Finite reductive monoids. Semigroups, formal languages and groups[END_REF], which is in the spirit of the definition of finite reductive groups [START_REF] Steinberg | Endomorphisms of linear algebraic groups[END_REF].

Denote by

π : H(M, B) → C

the restriction of the one-dimensional representation from C[M ] → C that sends every g in M to 1. We have π(T r ) = π( q ℓ(r) |BrB| x∈BrB x) = q ℓ(r) . Let r 1 , r 2 , r 3 lie in R such that Br 1 BBr 2 B = Br 3 B. Applying the map π, we get T r1 T r2 = q ℓ(r1)+ℓ(r2)-ℓ(r3) T r3 .

Therefore, it follows from Lemma 2.19 that T s T r = T sr , if s ∈ S and ℓ(r) = ℓ(r) + 1; T s T r = qT r , if s ∈ S and ℓ(sr) = ℓ(r); T e T r = q ℓ(r)-ℓ(er) T er , if e ∈ Λ • .

Assume s lies in S and r lies in R such that ℓ(sr) = ℓ(r) -1. Denote by (w 1 , e, w 2 ) the normal decomposition of r. By Lemma 1.25(i), ℓ(sw 1 ) = ℓ(w 1 ) -1 and ℓ(sw 1 ew 2 ) = ℓ(sw 1 ) + ℓ(w 2 ). Therefore, T s T w1 = qT sw1 + (1q)T w1 , by [4, Theorem 8.4.6], and T s T r = T s T w1 T ew2 = qT sw1 T ew2 + (1q)T w1 T ew2 = qT sr + (1q)T r . Now, using Theorem 1.27, Theorem 0.1 is a corollary of Theorem 0.2. More precisely, gathering Corollary 1.31 and Theorem 0.2, we get the following result. 

Definition 1 . 2 .

 12 Let (W, S) be a Coxeter system. (i) Let w belong to W . The length ℓ(w) of w is the minimal integer k such that w has a word representative of length k on the alphabet S. Such a word is called a minimal word representative of w. (ii) The subgroup W I generated by a subset I of S is called a standard parabolic subgroup of W . A key tool in what follows is the following classical result. Proposition 1.3. [1] Let (W, S) be a Coxeter system with Coxeter graph Γ. (i) For every I ⊆ S, the pair (W I , I) is a Coxeter system. Its graph Γ I is the full subgraph of Γ spanned by I.

Definition 1 .

 1 20. (i) We set ℓ(s) = 1 for s in S and ℓ(e) = 0 for e in Λ. Let x 1 , . . . , x k be in S ∪ Λ • and consider the wordω = x 1 • • • x k . Then the length of the word ω is the integer ℓ(ω) defined by ℓ(ω) = k i=1 ℓ(x i ).(ii) The length of an element w which belongs to R is the integer ℓ(w) defined byℓ(w) = min {ℓ(ω) | ω is a word representative of w over S ∪ Λ • } .If ω is a word representative of ω such that ℓ(w) = ℓ(ω), we say that ω is a minimal word representative of w. Proposition 1.21. Let r belong to R. (i) The length function ℓ on R extends the length function ℓ defined on W . (ii) ℓ(r) = 0 iff r lies in Λ. (iii) If s lies in S then |ℓ(sr)ℓ(r)| ≤ 1.(iv) If r ′ belongs to R, then ℓ(rr ′ ) ≤ ℓ(r) + ℓ(r ′ ).

Proposition 1 . 22 .

 122 Let r belong to R. If (w 1 , e, w 2 ) is the normal decomposition of r, then ℓ(r) = ℓ(w 1 ) + ℓ(w 2 ).

Case 2 :

 2 ℓ(xry) = ℓ(r) + 1. We must have ℓ(xr) ≥ ℓ(r), ℓ(ry) ≥ ℓ(r), and x or y, possibly both, belongs to S. If x or y belongs to Λ • , we are in Case 1. So we assume x and y belong to S. Subcase 1: ℓ(xr) = ℓ(r), that is xr = r. Then ℓ(ry) = ℓ(xry) = ℓ(r) + 1 and ℓ(xry) = ℓ(xr) + 1. Therefore ρ x (ρ y (T r )) = ρ x (T ry ) = qT xry = ρ y (qT xr ) = ρ y (ρ x (T r )). The case ℓ(ry) = ℓ(r) is similar. Subcase 2: ℓ(ry) = ℓ(xr) = ℓ(r) + 1. Then ℓ(ry) = ℓ(xr) = ℓ(xry). We deduce that ρ x (ρ y (T r )) = ρ x (T ry ) = qT xry = ρ y (T xr ) = ρ y (ρ x (T r )).

  Proof of Theorem 1.27. Consider the notation of Lemma 1.29. Assume r belongs to R and x 1 • • • x k is a minimal word representative of r. Iterating the first defining relation in Theorem 1.27, we get T r = T x1 • • • T x k . The unicity follows. Since ϕ is an isomorphism, the endomorphism ρ r = ρ x1 • • • ρ x k does not depend on the minimal word representing x 1 • • • x k , and the set {ρ r | r ∈ R} is a free A-basis for L with ϕ(ρ r ) = ρ r (T 1 ) = T r . Moreover, we can transfer the A-algebra structure of L to V using the isomorphism ϕ. It remains to verify that the structure constants of the obtained A-algebra are the one stated in the theorem. Let x belongs to S ∪ Λ • and r in R. If ℓ(xr) = ℓ(x) + ℓ(r) and ω is a minimal word representative of r, then xω is clearly a minimal word representative of xr. Therefore ρ x ρ r (T 1 ) = ρ x (T r ) = T xr = ρ xr (T 1 ). Therefore, ρ x ρ r = ρ xr , and

Definition 2 . 3 (

 23 Reductive monoid). A reductive monoid is an irreducible algebraic monoid whose unit group is a reductive group. Definition 2.4 (Renner monoid). Let M be a reductive monoid. The normaliser of a maximal torus T of G(M ) is denoted by N G(M) (T ). The Renner monoid R(M ) of M is the monoid N G(M) (T )/T . It is clear that R(M ) does not depend on the choice of the maximal torus of the algebraic group G(M ). Proposition 2.5. Let M be reductive monoid. Fix a maximal torus T of G(M ) and a Borel subgroup B of G(M ) that contains T . The unit group of R(M ) is the Weyl group W of G(M ). If S is the standard generating set of W associated with the Borel B and Λ(B) = {e ∈ E(T ) | ∀b ∈ B, be = ebe}, then (R(M ), Λ(B), S) is a generalised Renner-Coxeter system such that R(M ) is a generalised Renner monoid. Moreover, there is a canonical order preserving isomorphism of monoids between E(R(M )) and E(T ).

Figure 1 .

 1 Figure 1. Coxeter graph Γ(S) and Hasse diagram Λ(B) for M n .

2 . 3 :

 23 Proposition 2.7. Let M be a reductive monoid. Fix a maximal torus T of G(M ) and a Borel B of G(M ) that contains T . Consider the generalised Renner-Coxeter system (R(M ), Λ, S) of R(M ) defined in Proposition 2.5. (i) Let r lie in R(M ) and s lie in S, then ℓ(sr) = ℓ(r); BsrB, if ℓ(sr) = ℓ(r) + 1; BsrB ∪ BrB, if ℓ(sr) = ℓ(r) -1.(ii) Let r lie in R(M ) and s lie in S, then ℓ(rs) = ℓ(r); BrsB, if ℓ(rs) = ℓ(r) + 1; BrsB ∪ BrB, if ℓ(rs) = ℓ(r) -1. (iii) Let r lie in R(M ) and e lie in Λ, then BeBrB = BerB and BrBeB = BreB Proof. (i) is proved in [6, Prop. 0.2] in the case of irreducible regular monoid M with a zero element. Same arguments can be applied for any reductive monoids; let us deduced (ii): by the remark following [22, Prop. 8.6] we know that BrBsB ⊆ BrB ∪ BrsB and, clearly, BrBsB is a union of double classes. Hence, BrBsB has to be equal to BrB, BrsB are BrB ∪ BrsB. If ℓ(rs) = ℓ(r) then rs = r and we are done. if ℓ(rs) = ℓ(r) + 1 and r

Lemma 2 . 9 .

 29 (i) ε 2 = ε, and for every h in H one has hε = εh = h. (ii) C[M ]ε and C[M/H] are isomorphic as C[M ]-modules and as C-vector spaces.

Definition 2 .

 2 [START_REF] Mokler | An analogue of a reductive algebraic monoid, whose unit group is a Kac-Moody group[END_REF] (Iwahori-Hecke algebra). Let M be a finite monoid, and assumeH is a subgroup of M . Let ε = 1 |H| h∈H h in C[M ].We define the Iwahori-Hecke algebra H(M, H) of M relatively to H to be the algebra εC[M ]ε.It is immediate that for every C[M ]-module N , we get an induced structure of left H(M, H)-module on εN . Proposition 2.11 explains why the Hecke algebra is interesting. Another motivation for such a definition is the following result.Proposition 2.14. Assume C[M ] is semisimple. (i) The Hecke algebra H(M, H) is semisimple. (ii) The map N → εN induced a one-to-one correspondence between the set of simpleC[M ]-modules in the induced C[M ]-module C[M ]ε = C[M ] ⊗ C[H] C[H]and the set of isomorphic classes of simple H(M, H)-modules. Furthermore, the multiplicity of N in C[M ]ε is equal to the dimension of the H(M, H) module εN considered as a C-vector space.

  Proof. Since C[M ] is semisimple, the algebra εC[M ]ε is semisimple. Assume N is a simple C[M ] module and let f belong to HomC[M] (C[M ]ε, N ). For every x in C[M ]ε one has f (x) = f (xε) = xf (ε). If we consider x = ε, we get that f (ε) belongs to εN . Moreover, it follows that the map f → f (ε) from Hom C[M] (C[M ]ε, N ) to εN is C-linear and one-to-one. Thus dim C (εN ) is equal to dim(Hom C[M] (C[M ]ε, N )), that is to the multiplicity of N in C[M ]ε. Now write C[M ]ε = ⊕ i M i where the M i are simple C[M ]-modules.Then εC[M ]ε = ⊕ i εM i and each εM i is a nontrivial simple H(M, H)-modules: its C-dimension is at least one, and for m in M i such that εm = 0 one hasH(M, H)εm = εC[M ]εm = εM i since M i is a simple C[M ]-module.By Proposition 2.11, this is immediate to obtain a C-basis of H(M, H):. Proposition 2.15. Let {D 1 , • • • , D ℓ } be the set of double classes of M modulo H. We fix some arbitrary non-zero complex numbers a 1 , • • • a ℓ , and we setX i = a i x∈Di x for i in {1, • • • , ℓ}. Then the X i form a C-basis for H(M, H). If we write X i X j = ℓ k=1 µ(i, j, k)X k , then µ(i, j, k) = aiaj a k #{(x, y) ∈ D i × D j | xy = x k }where x k is an arbitrary fixed element of D k .

Remark 2 . 16 .

 216 Let ϕ belong to End C (C[M/H]). Define φ : M/H × M/H → C by ϕ(xH) = yH∈M/H φ(yH, xH)yH. If M is a group, it turns out that ϕ belongs to End C[M] (C[M/H]), that is to H(M, H), if and only if φ is constant on the orbits of M on M/H × M/H [4, Sec 8.4], which are naturally related to the double classes HxH when M is a group. This is no more true if we only assume M is a monoid. One can verify that in the general case, ϕ belongs to End C[M] (C[M/H]) if and only for every xH and yH in M/H and every g in M , one has φ(yH, gxH) = 0 if yH ∩ gM is empty, and φ(gyH, gxH) = 1 |C g (yH)| zH∈Cg (yH) φ(zH, xH) where C g (yH) = {zH | gzH = gyH}. If M is a group then yH ∩ gM is never empty, and C g (yH) = {yH}.

Corollary 2 . 22 .

 222 Let M be a finite reductive monoid over F q . Consider Notation 2.19. Then the Iwahori-Hecke algebra H(M, B) admits the following C-algebra presentation:(HEC1) T 2 s = (q -1)T 1 + qT s , s ∈ S;(HEC2) |T s , T t m = |T t , T s m , ({s, t}, m) ∈ E(Γ); (HEC3) T s T e = T e T s , e ∈ Λ • , s ∈ λ ⋆ (e); (HEC4) T s T e = T e T s = qT e , e ∈ Λ • , s ∈ λ ⋆ (e); (HEC5) T e T w T f = q ℓ(w) T e∧wf , e, f ∈ Λ • , w ∈ Red(e, f ).

  1.2. Generalised Renner monoids. 1.2.1. Generalised Renner-Coxeter System. If R is a factorisable monoid and e belongs to E(R) we let W (e) and W ⋆ (e) denote the subgroups defined by

  1.19. Consider a generalised Renner-Coxeter data (Γ, Λ • , λ ⋆ , λ

⋆ 

) and the monoid M defined by the presentation stated in Theorem 1.17. Let FM(S ∪ Λ • ) be the free monoid on S ∪ Λ • , and ≡ be the congruence on FM(S ∪ Λ • ) generated by the defining relations of M . Hence by definition, M is equal to FM(S ∪ Λ • )/ ≡. (i) If ω 1 and ω 2 are two words on S such that ω 1 ≡ ω 2 , then they represent the same element in W (Γ). (ii) If e lie in Λ • and ω lie in FM(S ∪ Λ • ) with e ≡ ω, then the word ω is equal to ν 1 e 1 ν 2 • • • e k ν k+1 where for every i we have e ≤ e i in Λ • and ν i are words on S whose images in W (Γ) belong to W λ(e) . Furthermore, the image of the word

ν 1 ν 2 • • • ν k+1 in W λ ⋆ (e) = W λ(e) /W λ⋆(e) is trivial.

Proof. In this proof we write ω 1 =ω 2 if the two words ω 1 , ω 2 are equals. If the words ω 1 ω 2 represent the elements w 1 , w 2 in M , respectively, then ω 1 =ω 2 implies ω 1 ≡ ω 2 and w 1 = w 2 . Conversely, w 1 = w 2 if and only if ω 1 ≡ ω 2 . Point (i) is clear: if ω 1 ≡ ω 2 then one can transform ω 1 into ω 2 using relations (COX1) and (COX2) only, since the words in both sides of Relations (REN1-3) contain letters in Λ • . Let us prove (ii). Write ω 1 ≡ 1 ω 2 if one can transform ω 1 into ω 2 by applying one defining relation of M on ω 1 . If e ≡ ω, then there exists ω 0 =e, ω 1 , • • • , ω r =ω such that ω i ≡ 1 ω i+1 . We prove the result by induction on r. If r = 0 we have nothing to prove. Assume r ≥ 1. By induction hypothesis, ω r-1 =µ 1 f 1 µ 2 • • • µ j f j µ j+1 with e ≤ f i in Λ • and µ i is a word on S whose image in W (Γ) belongs to W λ(e) , and the image of the word µ 1 µ 2 • • • µ j+1 in W λ ⋆ (e) = W λ(e) /W λ⋆(e) is trivial. We deduce the result for ω =ω r by considering case by case the type of the defining relation applied to ω r-1 to obtain ω r . The cases where the relation is of one of the types (COX1), (COX2) or (REN1) are trivial. The case where the relation is of type (REN2) follows from Property (a) in Definition 1.16: by induction hypothesis, one has λ ⋆ (f i ) ⊆ λ ⋆ (e) ⊆ λ(e). Finally, the case where the relation is of type (REN3) follows from properties (a) and (b) by Lemma 1.18. If the image

  • • • ν k+1 and µ 1 µ 2 • • • µ j+1 represent the same element in W λ(e) /W λ⋆(e) , which is trivial by induction hypothesis.Proof of Theorem 1.17. Consider a generalised Renner-Coxeter system (M, Λ, S). Denote by Γ the Coxeter graph with vertex set S of the unit group of M , and set Λ • = Λ \ {1}. It follows from previous results that (Γ, Λ • , λ ⋆ , λ ⋆ ) is a generalised Renner-Coxeter data, and by Proposition 1.14 that M has the required monoid presentation. Conversely, consider a generalised Renner-Coxeter data (Γ, Λ • , λ ⋆ , λ ⋆ ) and let M denote the monoid defined by the presentation stated in Theorem 1.17. By Lemma 1.19(i), the subgroup of M generated by S can be identified with W (Γ). Lemma 1.19(ii) implies that Λ • injects in M , as a set. Let e, f be in Λ • . In M one has ef = f e = e ∧ 1 f = e ∧ f . Assume furthermore that w lies in W (Γ). Lemma 1.19(ii) implies also that (wew -1 )f = wew -1 if and only if e ≤ f in Λ • and w lie in W λ(e) . Let wew -1 and vf v -1 be in E(M ) with e, f in Λ •

  The second and third algebras are isomorphic by [2, Lemma 3.19]. This is clear that εXε = X if and only if X belongs to εC[M ]ε. Consider the notation of Lemma 2.8. Denote by Hx 1 , . . . , Hx k the left classes of M modulo the subgroup H. Let X = x∈M λ x x belong to C[M ]. Then λ y x, and εX = X if and only if X is constant on each left class. by a similar computation, Xε = X if and only if X is constant on each right class. Therefore εXε = X if and only if X is constant on each double class.

	Proposition 2.11. There is a canonical isomorphism between the following C-
	algebras:						
	(a) the subalgebra of C M whose elements are the linear maps which are constant
	on the double-classes H\M/H;				
	(b) the algebra εC[M ]ε; (c) the algebra End C[M] (C[M/H])	op of endomorphisms of C[M/H] considered as
	a C[M ]-module (for the opposite product).	
	Proof. εX =	1 |H|	k i=1 x∈Hxi h∈H	λ x hx =	k i=1 x∈Hxi	  1 |H| y∈Hxi	α y,x λ y
	x∈M	1 |Hx|					
	Remark 2.12. The isomorphism between End C[M] (C[M/H])

  x where α y,x = #{h ∈ H | hy = x}. If M is a group, then α(y, x) = 1 for every y, x in Hx i . In the general case one has α(y, x) = |H| |Hxi| because H is a group. Therefore, εX = y∈Hx op and εC[M ]ε is
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Case 3: ℓ(xry) = ℓ(r). If x and y belong to Λ • , we are in Case 1. So we assume this is not the case. Subcase 1: x and y belong to S. Consider first the case ℓ(xr) = ℓ(r). Then xr = r and ℓ(xry) = ℓ(ry) = ℓ(r). Therefore, ρ x (ρ y (T r )) = ρ y (ρ x (T r )) = q 2 T r . Assume now ℓ(xr) = ℓ(r). This implies ℓ(ry) = ℓ(y) by symmetry. If ℓ(xr) = ℓ(ry), by Lemma 1.25(v) we have xr = ry. Hence, if ℓ(xr) = ℓ(ry) = ℓ(r) + 1, we have ρ y (ρ x (T r )) = ρ y (T xr ) = (q -1)T xr + qT xry and ρ x (ρ y (T r )) = ρ x (T ry ) = (q -1)T ry + qT xry . If ℓ(xr) = ℓ(ry) = ℓ(r) -1, we have ρ y (ρ x (T r )) = ρ y ((q -1)T r + qT xr ) = (q-1)T yr +qT xry and ρ x (ρ y (T r )) = ρ x ((q-1)T r +qT ry ) = (q-1)T xr +qT xry . Consider now the case ℓ(xr) = ℓ(r) + 1 and ℓ(ry) = ℓ(r) -1. Then ρ y (ρ x (T r )) = ρ y (T xr ) = (q -1)T xr + qT xry = ρ x ((q -1)T r + qT ry ) = ρ x (ρ y (T r )). The case where ℓ(xr) = ℓ(r) -1 and ℓ(ry) = ℓ(r) + 1 is similar. Subcase 2: x belongs to S and y belong to Λ • . We must have ℓ(xr) ≥ ℓ(r). Assume first ℓ(xr) = ℓ(r). We have xr = r and ℓ(xry) = ℓ(ry) = ℓ(r). We get, ρ y (ρ x (T r )) = ρ y (qT r )) = q 1+ℓ(r)-ℓ(ry) T ry = q ℓ(r)-ℓ(ry) ρ x (T ry ) = ρ x (ρ y (T r )). Assume now ℓ(xr) = ℓ(r) + 1, then ρ y (ρ x (T r )) = ρ y (T xr ) = q ℓ(xr)-ℓ(xry) T xry = qT xry . If ℓ(ry) = ℓ(r) then ℓ(xry) = ℓ(ry) and ρ x (ρ y (T r )) = ρ x (T ry ) = qT xry . If ℓ(ry) < ℓ(r), then ℓ(xry) = ℓ(r) = ℓ(ry) + 1 and ρ x (ρ y (T r )) = qρ x (T ry ) = qT xry . The case x ∈ Λ • and y ∈ S is similar.

Case 4: ℓ(xry) < ℓ(r). Subcase 1: x, y belong to Λ • . Clearly, ρ x (ρ y (T r )) = ρ y (ρ x (T r )) = q ℓ(r)-ℓ(xry) T xry . Subcase 2: x belongs to S, y belongs to Λ • and ℓ(xr) = ℓ(r). Then xr = r and xry = ry. This case is similar to the first case in Case 3 Subcase 2. Subcase 3: x belongs to S, y belongs to Λ • and ℓ(xr) = ℓ(r) -1. Applying Lemma 1.26, we get ℓ(xry) ≤ ℓ(ry). We have ρ y (ρ x (T r )) = ρ y ((q -1)T r + qT xr ) = (q -1)q ℓ(r)-ℓ(ry) T ry + q 1+ℓ(xr)-ℓ(xry) T xry and (ρ y (T r )) = q ℓ(r)-ℓ(ry) ρ x (T ry ). Assume first ℓ(xry) = ℓ(ry) -1. Then ℓ(xr)ℓ(xry) = ℓ(r)ℓ(ry) and (ρ y (T r )) = (q -1)q ℓ(r)-ℓ(ry) T ry + q 1+ℓ(r)-ℓ(ry) T xry . Assume secondly that ℓ(xry) = ℓ(ry), that is xry = ry. In this case, (ρ y (T r )) = q 1+ℓ(r)-ℓ(ry) T xry . But 1 + ℓ(xr)ℓ(xry) = ℓ(r)ℓ(ry), therefore ρ y (ρ x (T r )) = q 1+ℓ(r)-ℓ(ry) T ry . Subcase 4: x belongs to S, y belongs to Λ • and ℓ(xr) = ℓ(r) + 1. By Lemma 1.26, we get ℓ(xry) ≥ ℓ(ry). We have

Once we have Lemma 1.28, we can almost repeat the argument of [START_REF] Humphreys | Linear algebraic groups[END_REF]Sec 7.3] to prove Theorem 1.27. Definition 2.17 (finite reductive monoid). Let M be a reductive monoid defined over F q . A finite submonoid M of M is a finite reductive monoid if there exists a surjective endomorphism of algebraic monoid σ : M → M such that

Example 2.18. Consider a reductive monoid M over F q . The finite reductive monoid M associated with the map (x i,j ) → (x q i,j ) is M n (F q ). See [START_REF] Solomon | The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field[END_REF] for more details.

Finite reductive monoids are special cases of abstract finite monoids of Lie type [START_REF] Putcha | Monoids of Lie type. Semigroups, formal languages and groups[END_REF], and their unit groups are finite groups of Lie type. Therefore, they are groups with a BN pair and possess Borel subgroups and a generalised Renner monoid R (cf. Example 1.8). As a consequence, we can associate with M a generic Hecke algebra H(R) as defined in Section 2, and a Iwahori-Hecke algebra as defined in Section 2.2. Our objective is to prove Theorem 0.2, which explains how these two notions are related. Notation 2.19. Assume M is a finite reductive monoid over F q , and consider the notation of Definition 2.17. There exists a maximal torus T of G(M ) and a Borel subgroup B of G = G(M ) that contains T such that σ(T ) = T and σ(B) = B [START_REF] Steinberg | Endomorphisms of linear algebraic groups[END_REF][START_REF] Renner | Finite reductive monoids. Semigroups, formal languages and groups[END_REF]. Moreover, σ(N G (T )) = N G (T ). Let R be the Renner monoid associated with M , and W be its unit group. Then σ induces an isomorphism σ : R → R. We set For a conjugated class X of elements of S under σ, we let ∆ X denote the greatest element of W X . Let S be the set of all ∆ X . Then (W, S) is a Coxeter system, and (R, Λ, S) is a generalised Renner-Coxeter system. Moreover, we have a disjoint union Bruhat decomposition M = ∪ r∈R BrB.

From the Bruhat decomposition of M , we deduce for every r in R that

It is immediate that for e in Λ one has σ(λ(e)) = λ(e) and σ(λ ⋆ (e)) = λ ⋆ (e) in R, with obvious notation. Therefore, ω X belongs to λ(e) in R (resp. to λ ⋆ (e)) if and only if X is included in λ ( e) (resp. to λ ⋆ (e)) in R. 

(ii) Let r lie in R and s lie in S. Then

(iii) Let e lie in Λ • and r lie in R. Then

Proof. The result follows from Proposition 2.7. (i) Denote by ℓ the length function on R. Let r lie in R and ∆ X lie in S (cf. Proposition 2.20). Fix a minimal representative word x 1 • • • x k on S of ∆ X . Using the map σ, we deduce that there is three possibilities: (a) ∀x ∈ X, ℓ(xr) = ℓ(r) + 1. In this case, ℓ(ω X r) = ℓ(r) + ℓ(ω X ), Bω X BrB = Bω X rB and ℓ(ω X r) = ℓ(r) + 1. Therefore, Bω X BrB ⊆ {x ∈ Bω X rB | σ(x) = x} = Bω X rB. But Bω X BrB is an union of double classes ByB. Then the latter inclusion has to be an equality. (b) ∀x ∈ X, ℓ(xr) = ℓ(r). In this case ω X r = r, and in particular ℓ(ω X r) = ℓ(r), Bω X BrB = BrB and ℓ(ω X r) = ℓ(r). It follows that Bω X BrB = BrB as in the previous case. (c) ∀x ∈ X, ℓ(xr) = ℓ(r) -1. In this case, ℓ(ω X r) = ℓ(r)ℓ(ω X ), ℓ(ω X r) = ℓ(r) -1 and Bω X BrB = v BvrB, where v ranges over all the elements

(ii) the proof is similar to (ii). (iii) BeBrB is included in {x ∈ BerB | σ(x) = x} = BerB. But BeBrB is an union of double classes ByB. Therefore, BeBrB = BerB.

We are now ready to prove Theorem 0.2.

Proof of Theorem 0.2. By Theorem 1.27 and Definition 1.30, C ⊗ Z H q (R) is the unique C-algebra such that the relations stated in Theorem 1.27 hold. But, by Section 2.2, H(M, B) is a C-algebra over the free C-module with basis x∈BrB x, for r ∈ R. We set T r = q ℓ(r) |BrB| x∈BrB x in H(M, B). We are going to prove that the relations stated in Theorem 1.27 hold in H(M, B) for the basis T r , r ∈ R. The main arguments are like in [START_REF] Solomon | The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field[END_REF]Sec. 4].