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ABSTRACT 

Biominerals can achieve complex shapes as aggregates of crystalline building blocks. In the 

red coral skeleton, we observe that these building blocks are arranged into eight hierarchical levels 

of similarly (but not identically) oriented modules. The modules in each hierarchical level assemble 

into larger units that comprise the next higher level of the hierarchy, and consist themselves of 

smaller, oriented modules. EBSD and TEM studies show that the degree of crystallographic 

misorientation between the building blocks decreases with decreasing module size. We observe this 

organization down to a few nm. Thus, the transition from imperfect crystallographic order at mm 

scale to nearly perfect single crystalline domains at nm scale is progressive. The concept of 

‘mesocrystal’ involves the three-dimensional crystallographic organization of nanoparticles into a 

highly ordered mesostructure. We add to this concept the notion of ‘multilevel modularity’. This 

modularity has potential implications for the origin of complex biomineral shapes in nature. A 

multilevel modular organization with small intermodular misorientations combines a simple 

construction scheme, ruled by crystallographic laws, with the possibility of complex shapes. If the 

observations we have made on red coral extend to other biominerals, long-range crystallographic 

order and interfaces at all scales may be key to how some biominerals achieve complex shapes 

adapted to the environment in which they grow. 

Keywords: Biomineral, mesocrystal, crystallography, calcite, EBSD, hierarchical organization, 

modularity, red coral, complex shape 

 

INTRODUCTION 

Biominerals often display morphological, chemical, and crystallographic patterns at 

length scales ranging from the nano- to the macroscale (Lowenstam and Weiner, 1989; Mann, 

2001). As such, they correspond to the definition of ‘complex systems’ (Grimm et al., 2005). 
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Individually or in combination, these patterns can provide information on the mechanisms that 

produce complex structures. An important feature of biominerals is that they can achieve 

‘beautifully sculpted’  shapes (Weiner et al., 2005) using crystal symmetry-dependent blocks, but 

it is unclear how these shapes are formed from such building blocks.  One possibility is that a 

disordered amorphous precursor phase that can be ‘molded into any shape’ (Weiner et al., 2005) 

plays an important role in generating a wide variety of forms (Pecher et al., 2009; Weiner et al., 

2005). Another is that complex shapes can emerge from particular arrangements of crystalline 

units during growth (Towe, 2006). In this article, we demonstrate that red coral (Corallium 

rubrum) acts as an astute crystallographer, assembling its skeleton as a delicate arrangement of a 

hierarchy of crystals with well-defined orientations relative to their near- and far-field neighbors.  

ANALYTICAL TECHNIQUES 

Electron backscatter diffraction (EBSD) using an SEM enables quantitative measurements of the 

crystallographic orientation of crystal domains as small as 200 nm (Prior et al., 1999), and the 

calculation of misorientation axes and angles between any two data points. EBSD patterns were 

obtained at Caltech on a LEO 1550VP SEM equipped with a HKL technology “channel 5” EBSD 

system using an accelerating voltage of 20 kV, a probe current of 2 nA and a working distance of 

14 mm. Samples were prepared by conventional polishing using diamond paste with grit sizes 

down to 1 or ¼ µm, followed by a final polish with colloidal silica. Durations of ~0.3 s under the 

SEM beam were sufficient to generate good quality EBSD patterns for the Mg-calcite red coral 

skeleton. A 200×100 grid with 4 µm spacing between points generated an orientation map in less 

than 2 hours. In the orientation map, each pixel corresponds to a crystallographic orientation 

characterized by three Euler angles (φ1, Φ, φ2) transformed into a RGB color code using the 

relations Red=255 φ1/180, Green=255 Φ /180, Blue=255 φ2/180. The lattice orientations of the 
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Mg-calcite crystals making up the red coral skeleton (Grillo et al., 1993) were determined with a 

lateral diameter of the diffracting volume of ~200 nm and an absolute angular resolution of ± 

0.5°. EBSD patterns with a mean angular uncertainty ≥ 1° were discarded and plotted as white 

dots on the map; on the orientation map, 42.6% of the points were indexed. Stereographic 

projections (upper hemisphere) of {hkil} planes and the corresponding pole density/contour 

diagrams were automatically generated.  

A SEM equipped with a forescatter detector generates images of texture of polycrystalline 

samples with a submicrometer spatial resolution (Prior et al., 1999). SEM orientation contrast 

(OC) imaging is based on signal contrast between materials with differences in crystallographic 

orientations. Sharp contrast changes correspond to sudden changes in crystallographic 

orientations, and conversely. This technique detects small changes in orientation (<0.5°) unseen 

by EBSD (Prior et al., 1999). It is also a high spatial resolution technique since domains about 

0.25 µm wide can be resolved with a field emission source. OC images are not quantitative (in 

contrast to EBSD), but they do allow the characterization of small crystallographic changes in 

polycrystalline materials.  

Other more widely used techniques (SEM and TEM) and the provenance of the biological 

material are described in Vielzeuf et al. (2008). Results presented here are based on the study of 

about twenty different samples of red coral. 

RESULTS 

In this section, the crystallographic structure of the red coral skeleton is presented from 

the largest to the smallest unit. In the figures, features of interest are labeled (e.g. ‘he’ for 

herringbone unit, etc.); in the text, they are referred to by the figure number followed by the label 

(e.g., Fig. 1b [he]). 
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Figure 1 – Crystallography of Corallium rubrum. (a) Mosaic photograph of a section of skeleton under reflected 
light microscope (polarized and analyzed light) with long range crystallographic order and herringbone units. di: 
dislocation, tr: trough on the wavy surface. (b) Enlargement of a. The herringbone units (he) are made of the 
association of a dark (ds) and a bright (bs) strip. New herringbone units appear at dislocations (di). The wavy black 
dashed line represents a past growth surface and indicates the polarity of the structure. (c) Internal structure of the 
herringbone: each strip is made of elongated spindles (sp). Spindles in two adjacent strips in a herringbone unit 
form an angle of ~45° (see also Fig. 1b). Black arrows indicate both the elongation of the spindles and the 
orientation of the c axes of calcite crystals. (d) SEM observation of spindles. Differences in grey levels are due to 
orientation contrast, the limit between two adjacent spindles corresponds to a change in crystallographic 
orientations. Yellow lines and black arrows underline the c axis orientations in different spindles. Note the drastic 
change of orientations on both sides of the herringbone axis shown as a heavy black line. The white dashed lines are 
traces of growth rings; they are orthogonal to crystallographic orientations. (e) Internal structure of the spindles 
(orientation contrast SEM image). Spindles are made of lozenges (lo). These lozenges are reminiscent of sections of 
calcite scalenohedra, and are separated by dark zones indicative of porosity (po).  Each lozenge shows elongated 
dark/bright bands (ba) corresponding to crystalline fibers. Black arrows indicate the c axis orientations. (f) 
Crystalline fibers (fi) observed under the SEM (secondary electrons). Fibers are made of a piling of submicrometer 
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units (sm). (g) A crystalline fiber in a focused ion beam foil observed under the TEM, dark field image.  (h)  
Submicrometer units under the TEM in a focused ion beam foil. Variations in grey levels are due to variations in 
crystallographic orientations. The darkest zones between the crystals are indicative of porosity (po). (i) HRTEM 
image showing lattice fringes and the internal structure of submicrometer units composed of 2-5 nm similarly 
oriented nanodomains. Variations in adsorption contrast indicate the presence of nanopores (np). Some 
characteristic interplane distances are indicated in nm. Inside frames in Figs. b, c, d, e, f and h are drawn for 
relative scale purpose and do not represent exact locations of enlargements. 
 

 Herringbone units and strips (10-2-10-3 m): Observation of polished surfaces of red 

coral cut perpendicular to its main axis under a reflected light microscope shows a regular 

alternation of a few mm long, darker and brighter strips (Figs. 1a and 1b [ds, bs]). A dark strip 

indicates that the optical axes of the Mg-calcite crystals that compose the skeleton are parallel or 

perpendicular to the axes of the polarizer or analyzer while any other orientation generates bright 

strips. A rotation of 45° reverses the pattern. The alternation of bright and dark strips in a radial 

arrangement is shown in Fig. 1a. It is important to note that crystals in a single strip are, from a 

crystallographic point of view, almost similarly oriented over distances of a few mm. The 

coupling of a dark and a bright strip forms a composite crystallographic superstructure that we 

refer to as the herringbone unit (Figs. 1b [he] and 1c). Some herringbone units reach the 

crenulated rim of the skeleton (Fig. 1a), and each of these units coincides with a concave outward 

portion of the rim (Fig. 1a [cr]); the wavy pattern at the rim is the expression in cross section of 

longitudinal grooves running along the skeleton (Grillo et al., 1993; Vielzeuf et al., 2008). The 

herringbone units display a roughly constant width, ca 200-300 µm (Figs. 1a and 1b). Thus the 

increase in diameter of the skeleton is accommodated not by an increasing width of the 

herringbone units but by an increasing number of units (Fig. 1a). New units appear at 

macroscopic dislocations (Figs. 1a and 1b [di]). 

Fig. 2b shows an EBSD orientation map with three herringbone units, superposed upon a 

reflected light microphotograph (Fig. 2a).  
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Figure 2 – EBSD study. (a) Reflected light microphotograph of a section of red coral skeleton normal to the axis 
(compare to Fig. 1a); bs, ds, and he as in Fig. 1b. (b) Electron backscattered electron diffraction orientation map - 
200×100 grid with a 4 µm interval between points, spatial resolution ~200 nm. For relative scale and polarity 
purpose, the wavy black dashed line represents a fossil growth surface. The black arrows correspond to the 
orientation of the c axes of the calcite crystals in the different strips. The dark blue and dark orange rectangles are 
the selected areas for the blue and pink spindle histograms in Fig. 2e. (c and d) Pole figures of the {0001} planes in 
the blue and pink strips. Density plot, stereographic projection, half width 10°, cluster size 5°, contour line interval 
2.5. (e) Histograms of crystallographic orientation of the c axes in the XY plane of crystals in the blue and pink strips 
(entire map) and in a blue and pink spindle (selected areas shown in Fig. 2b). 
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The EBSD study was performed on a different sample than those shown in Fig. 1; 

however as indicated by the scale bars, the width of the EBSD map is about twice the width of 

Fig. 1c. The orientation map shows the alternation of blue and pink bands coinciding with the 

bright and dark strips of the photograph, respectively. Pole figures (Figs. 2c and 2d) indicate that 

the c axes of the crystals of Mg-calcite are almost parallel to the plane of observation XY (tilt < 

~6°) in both types of strips. However, most importantly, their orientations in that plane 

systematically differ: in the blue strips, the c axes are oriented ~ -22° (relative to the Y axis 

shown in Fig. 2a), while they are oriented ~ +22° in the pink strips. The histogram of the 

crystallographic orientation of the c axes in the XY plane in the blue strips (Fig. 2e) shows a 

unimodal distribution and a peak width at half height of ~30°. The distribution for the pink strips 

is bimodal (Fig. 2e), but with a comparable peak width at half height if it is treated as a unimodal 

distribution. We do not ascribe important significance to this bimodality since it could be related 

to statistical bias. 

Spindles (10-4 m): Observation at higher magnification indicates that the bright/dark 

strips seen in reflected light are not perfectly homogeneous but are composed of elongated and 

irregular spindle-shape sub units (Fig. 1b). These spindles are 100 to 300 µm long, and 10 to 50 

µm wide; some of them are contoured in Fig. 1c [sp]. The angle between spindles in the bright 

and dark strips is in general close to 45° but shows a large dispersion of ±20°. It is this 

arrangement that results in the visually obvious herringbone pattern in Fig. 1c. The combination 

of EBSD map (Fig. 2b), pole figures (Figs. 2c and 2d), and reflected light images show that the 

elongation of the spindles is more or less parallel to the c optical axis of the crystals. Histograms 

of distribution of crystallographic orientations can be retrieved from zones corresponding to a 

single spindle (Figs. 2b and 2e). For a given set of EBSD data, the histogram of orientations of 

the c axes of a strip is obviously the external envelope of the local histograms of the spindles that 
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constitute the strip. The histogram for a single spindle displays a significantly lower spread of 

orientations than the strip as a whole (Fig. 2e) and a remarkable similarity of crystallographic 

orientation with a peak width at half height of only ~15°, i.e., about half that observed for the 

strip as a whole. Normalization of the data to generate identical areas under the strip or spindle 

distribution curves does not affect the width at half height of the distributions. Other EBSD maps 

(not shown here) performed on the same sample with a better spatial resolution (2 and 1 µm 

spacing between points) confirm this hierarchy of statistic distributions. Furthermore, the OC 

image of spindles shown in Fig. 1d is consistent with this observation: dark and bright lineations 

(emphasized by yellow lines in Fig. 1d) indicate a preferential crystallographic orientation within 

each spindle. 

We noted earlier that the surface of the red coral skeleton is crenulated and shows a wavy 

pattern (~300 µm wavelength). The surface of each wave is not smooth but, in a self-similar 

fashion, made of numerous tree-like smaller (~30 µm) microprotuberances (Grillo et al., 1993; 

Vielzeuf et al., 2008). Similarity of orientation and size, together with other EBSD observations 

(not shown here) suggest that microprotuberances are the surface expression of the spindles. 

Lozenges (10-5 m): OC images at higher magnification (Fig. 1e) show that spindles are 

not single crystals. Instead, they are made of 5 µm wide, 10 µm long lozenges (Fig. 1e [lo]) 

separated by narrow, dark, porous zones (Fig. 1e [po]). In spite of being made of separate 

subunits, the crystallographic orientation within each spindle remains nearly constant as indicated 

by the alignment of the long axis of the lozenges and the parallelism of dark/bright elongated 

bands (Fig. 1e [ba]). In both the spindles and the lozenges, EBSD showed that the long axes of 

these bands coincide with the c axes of calcite crystals (Figs. 1d and 1e [c]).  

Fibers (10-6 m): The alternation of dark and bright elongated bands (<1 µm wide, 5-10 

µm long) in the lozenges (Fig. 1e [ba]) indicate that crystallographic misorientations still exist 
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within each lozenge. However, these misorientations may be very small since minute differences 

can be detected by OC imaging (<0.1° according to Prior et al., 1999). SEM and TEM 

observations (Figs. 1f [fi] and 1g [fi]) respectively indicate the existence of crystalline fibers (see 

also Vielzeuf et al., 2008) whose dimensions (ca. 1 µm wide, ca. 10 µm long) are identical to the 

elongated bands observed in the lozenges. Thus, we infer that the OC bands in the lozenges 

correspond to crystalline fibers. 

Submicrometer units (10-7 m): In a previous SEM and TEM study, Vielzeuf et al. (2008) 

showed that the micrometer-scale crystalline fibers in the red coral do not correspond to single 

crystals but are themselves made of the piling of 200-500 nm units (Fig. 1f [sm]). This conclusion 

is consistent with atomic force microscopy observations (Dauphin, 2006). These submicrometer 

units are clearly identified on focused ion beam foils observed with a TEM (Fig. 1h [sm]). In the 

dark field images, the boundaries of the submicrometer units are commonly marked by thin black 

porous spaces (Fig. 1h [po]). Differences in diffraction contrast from one submicrometer unit to 

the other (Figs. 1g and 1h) can be ascribed to slight crystallographic misorientations.  

Nanodomains (10-8-10-9 m): TEM electron diffraction patterns on selected areas in the 

submicrometer units such as the one shown as an inset in Fig. 1i, indicate that each unit diffracts 

as a single crystal. However, TEM images show that the submicrometer units are not single 

crystal but are made of an assemblage of 2-5 nm nanodomains (Vielzeuf et al., 2008). Variations 

in absorption contrast and the presence of free crystalline surfaces suggest the presence of an 

intimate network of nanopores (Vielzeuf et al., 2008). High-resolution TEM imaging (Fig. 1i) 

confirms the presence of nanograins. Some of them display a rhombohedral shape. Most 

importantly, the parallelism of lattice fringes across adjacent domains demonstrates that the 

crystallographic axes of all domains are nearly parallel.  

 

 9



DISCUSSION AND IMPLICATIONS 

Figure 3 summarizes the different levels of crystallographic arrangement in the red coral 

skeleton. From this hierarchy of crystallographic structures, a simple pattern emerges: 

Imperfectly Similarly Oriented (ISO) nanograins combine into submicrometer units; the ISO 

submicrometer units combine into fibers; ISO fibers make up the lozenge units; ISO lozenges are 

arranged into spindles; the ISO spindles comprise the millimetric strips; the strips joined side by 

side form herringbone units; and finally, the juxtaposition of herringbone units plus the addition 

of new units at macroscopic dislocations lead to the radiating structure of the red coral skeleton. 

Each entity is composed of modules and is at the same time a modular part of a larger module 

with remarkable similarity of crystallographic orientations. Histograms of crystallographic 

orientation of c axes (Fig. 4) can be used to present a Russian nesting doll-like organization that 

spans over seven orders of magnitude. We have already seen that the histogram of orientation in 

the mm-scale strips (Fig. 2e) is the envelope of the histograms of the spindles that constitute the 

strip. In turn, the spindle histogram is necessarily the envelope of the histograms of the lozenges 

that constitute the spindles, and so on. Observations with different analytical techniques from the 

reflected light microscope to the TEM suggest that the degree of misorientation decreases with 

the decreasing size of the crystallographic modules. This is demonstrated by EBSD 

measurements for the strip and the spindle units. Our attempts to quantify the degree of 

misorientation in the smallest units by doing EBSD maps with a better spatial resolution (0.2 µm 

spacing between points) failed, in part as a result of beam damage of the sample. However,  

qualitative observations of the smallest units as described earlier are in agreement with the 

interpretation of increasing order with decreasing size of the modules. Thus, if our interpretation 

is correct, the red coral skeleton shows a progressive transition from imperfect to almost perfect 

crystalline domains down through a hierarchical crystallographic structure. This multilevel 
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modular arrangement preserves long-range crystallographic ordering (though imperfect), 

scattering properties close to single crystals and, at the same time, it allows the presence of 

porosity and crystal interfaces at all scales.  

 

 

 

Figure 3 – Summary and conceptual interpretation of seven levels of crystallographic hierarchy in the skeleton of 
Corallium rubrum. The macroscopic radial arrangement of herringbone units (as in Fig. 1a) representing an eighth 
level is not shown here. For clarity, some angles and lengths are not to scale. Note the preservation of 
crystallographic order (c axis) over long distance. Possible slight misorientations between the constituting units are 
not shown. 

 

A ‘mesocrystal’ is a recent concept defined as a superstructure made of almost perfectly 

aligned crystalline particles (Cölfen and Antonietti, 2005; Meldrum and Cölfen, 2008). This 

concept arose from observations of natural and synthetic materials (Penn and Banfield, 1998; 

Penn and Banfield, 1999). In these examples, primary particles aligned, docked, and fused to 

form oriented chains by a mechanism called ‘oriented attachment’ (Penn and Banfield, 1998). 

This mechanism was an elaboration of the concept of ‘particle aggregation’ developed for 

colloids (Bailey et al., 1993; Privman et al., 1999); it applies in biomineralogy as shown by 

experiments in the CaCO3 system (Cölfen and Antonietti, 2005; Imai et al., 2006; Oaki et al., 
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2007).  An important point is that although they are made of distinct nanoparticles, mesocrystals 

display scattering properties of single crystals (Cölfen and Antonietti, 2005). Most experimental 

studies related to mesocrystals describe a single level of organization i.e. nanograins assembling 

into a mesocrystal. However, recently, in a study dealing with the growth of calcite in an organic 

gel matrix, Oaki et al. (2007) observed structures made of a hierarchy of nanocrystals, 

submicrometric and micrometric units, each exhibiting rhombohedral habits. They concluded that 

the resultant calcite could be regarded as a hierarchical self-similar structure.  

 

 

Figure 4 – Modular organization illustrated through a schematic composite histogram of crystallographic 
orientations. Each unit is the external envelope of various sub-units and at the same time a sub-unit of a larger 
envelope. The degree of misorientation in the sub-unit is lower than in the unit. Note that the distribution in the blue 
and pink strip overlap. Not to scale. 
 

Our observations are consistent with most aspects of mesocrystals as described in these 

references, and thus we infer that each of the hierarchical levels we have observed in the red coral 

skeleton would be appropriately described as mesocrystalline. However, some observations 

presented here are new and may help refining the concept of mesocrystals in biomineral systems. 
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For example, contrary to previous examples of natural mesocrystals but in agreement with the 

experimental observations of Oaki et al. (2007), the red coral skeleton displays not a single stage 

but rather a multilevel crystallographic hierarchy. This is a new feature of natural mesocrystals. 

Further studies will be required to determine if, as we expect, this is a general feature of 

biominerals. 

Mesocrystals have been viewed as examples of crystallization that does not proceed 

through ion-by-ion attachment but rather by attachment of modular building-blocks (Cölfen and 

Antonietti, 2005). Our observations only describe a hierarchical organization and not necessarily 

a crystallization mechanism. Given the way in which a red coral skeleton grows (i.e., via layer-

by-layer addition of particles at the surface, as shown by chemical patterns and the presence of 

annual growth rings (Marschal et al., 2004; Vielzeuf et al., 2008), it seems likely that only the 

smallest hierarchical scales may have been assembled by the addition of separately built modules. 

In the case of the red coral, we have a modular organization but not a modular construction (see 

(Baldwin and Clark, 1997) for an interesting analogy with modularity in the design of complex 

engineering systems).  A major difference between inorganic mineral structures (e.g., rocks) and 

biomineral structures (e.g., skeletons), is that the latter are evolved by organisms to fulfill 

particular functions. The skeleton of the red coral must respond to competing demands: anchor 

the colony on a rocky sea floor; support and grip the living tissues; allow the growth of the 

organism; achieve mechanical strength against sea currents; and adapt its shape in a way that 

favors both the access of the polyps to the nutrients and the removal of metabolic waste in the sea 

water. The modular crystallographic organization in the red coral and its ability to achieve 

complex morphologies overcome the poor mechanical properties of calcite. For instance, 

microprotuberances, the morphological surface expression of the crystallographic spindles as 

discussed earlier, end up acting as self-blocking structures between growth rings in the skeleton 
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(Vielzeuf et al., 2008). Thus, in the red coral, morphologically complex, mechanically resistant 

structures result from a construction scheme ruled in great part by crystallographic principles. 

Colonies of red coral display a wide range of morphologies indicating that they are able to 

adapt to surrounding hydrodynamic motion. We noted above that the similarity of 

crystallographic orientation between different modules in each level is imperfect. Such 

misorientations may not be viewed as ‘imperfections’ but rather as degrees of freedom that, 

together with the polydispersity of the modules and the presence of interfaces at all levels, allow 

morphological adjustments. The precise nature of the interfaces between the crystalline units is 

not yet known. However, Vielzeuf et al. (2008) noted the presence of porosity and organic matter 

at all scales indicating that the red coral skeleton is a composite organic/inorganic material. Thus 

both inorganic/inorganic and organic/inorganic types of interfaces are possible. It has been 

suggested that the formation of biogenic calcium carbonates is directed by an ordered template of 

macromolecules (Cuif and Dauphin, 2005; Pouget et al., 2009). Whether the hierarchical modular 

organization presented here is also directed by a hierarchical organization of macromolecules 

remains to be determined. 

In nature, the existence of an amorphous phase that could be ‘molded into any shape’ has 

been put forward as a key factor of morphological control in biominerals (Weiner et al., 2005). 

We do not challenge the existence and the importance of an amorphous phase as a precursor in 

crystalline biominerals but we doubt that it plays a major role in the final morphology of the red 

coral. Instead, we consider that the presence of interfaces at all scales is a key property of 

biominerals to achieve all kinds of shapes and adapt to the environment. How amorphous 

precursor phase may influence or relate to the multiscale interface model that we propose here is 

not yet known. 
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Developing nanomaterials with controlled hierarchical structures, crystalline morphology, 

orientation and surface architecture remains a challenge in materials science, and there is still 

much to learn from biomineral archetypes (Cölfen, 2003). The multiscale interface model 

presented here may prove useful to develop new strategies to design complex-shaped three 

dimensional crystalline synthetic materials.  
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