
HAL Id: hal-00453662
https://hal.science/hal-00453662v1

Submitted on 12 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining spatial support information and shape-based
method for tomographic imaging inside a microwave

cylindrical scanner
Amelie Litman, R. Lencrerot, Jean-Michel Geffrin

To cite this version:
Amelie Litman, R. Lencrerot, Jean-Michel Geffrin. Combining spatial support information and shape-
based method for tomographic imaging inside a microwave cylindrical scanner. Inverse Problems in
Science and Engineering, 2010, 18 (1), pp.19-34. �10.1080/17415970903233580�. �hal-00453662�

https://hal.science/hal-00453662v1
https://hal.archives-ouvertes.fr


Vol. 00, No. 00, Month 200x, 1–14

Combining spatial support information and shape-based method

for tomographic imaging inside a microwave cylindrical scanner

A. Litman ∗, R. Lencrerot and J.M. Geffrin

Institut Fresnel, Aix-Marseille Université, Ecole Centrale Marseille, CNRS, Domaine
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A nonlinear inverse scattering problem is solved to retrieve the permittivity maps inside a
microwave cylindrical scanner of circular cross-section. In this paper, we show how we can
improve this minimization scheme by taking advantage of several a-priori information. In
particular, a global representation based on a Zernike basis expansion is introduced in order
to restrain the class of solutions to functions which have circular spatial support, as it is the
case with the encountered geometrical configuration. The level-set function formalism is also
exploited as the targets are known to be homogeneous by parts. We will show how we can
combine the spatial support information and the binary nature of the scatterer, with limited
changes of the inversion algorithm. Both synthetic and experimental results will be presented
in order to highlight the importance of combining all the pieces of available information.
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1. Introduction

In the field of inverse scattering, it is well known that all available amount of a-
priori information is of great need in order to aid the convergence of the solution
scheme towards the desired solution. The available pieces of information can be of
several nature, based on the geometrical configuration at hand, on the mathemati-
cal properties of the various operators which are involved in the scattering process,
on assumptions made on the characteristics of the target, etc. In the present case,
we want to combine several types of a-priori information and incorporate them in
the most efficient way in the inversion algorithm. At the same time, we would like
to provide a scheme where the modifications of the algorithm are minimal with
respect to the various introductions of pieces of information.

The first type of a-priori information is related to the envisaged configuration.
Indeed, we are currently constructing a microwave circular scanner which consists in
a cylindrical column of circular cross-section, surrounded by a ring of antennas. The
target is necessarily placed inside the cylindrical column, and the measurements
are performed both in reflexion and in transmission, providing therefore a so-called
complete configuration. The only piece of information at hand is that the target is
included inside a region of circular cross-section. This is the type of low-level piece
of a-priori information that must be implemented inside the inversion algorithm.
One easy way is just to restrain the investigation area to such a circular zone, but
it is not sufficient to ensure that the target will have a circular spatial support.

∗Corresponding author. Email: amelie.litman@fresnel.fr



2 A. Litman et al.

A better way consists in projecting the target profile onto a set of basis functions
which are all defined on the unit disk. Amongst the available basis functions, the
Zernike polynomials are good candidates, due to their orthogonality properties.
Apart from the fact that they incorporate in a simple manner the information
related to the support, they also provide a global representation of the permittivity
profile. The added value is that it enables to drastically reduce the number of
unknown parameters.

The reduction of the number of unknowns is of great importance with respect to
the mathematical properties of the radiation operator. Indeed, it has been shown
that the radiation operator has the same behavior as a low-pass filter [5, 6]. It
means that the measured scattered field will have a limited spectrum and, even
if the target has a complex shape with details lower than half the wavelength,
it will not be possible to retrieve the exact features of the target profile without
additional amount of information. Due to the limited number of independent mea-
surements, there is a limited number of parameters that can be used to represent
the permittivity profile [15]. Therefore, using a local representation of the unknown
is pointless and it is preferable to use a global representation with a limited num-
ber of unknown coefficients that can be adequately controlled. By doing so, it is
possible to avoid local minima and instabilities. The nice feature of the Zernike
polynomials relies in the fact that the first terms correspond to smooth features as
the higher terms provide refined spatial details on the scatterer profile. By playing
with the number of terms in the Zernike summation, it is possible to remove or
add details in the reconstructed maps.

The other a-priori piece of information at hand is the fact that the investigated
scatterers are necessarily homogeneous and of known permittivity. The level-set
function formalism has proved to be one of the most suitable representation to
describe the shape of an homogeneous region. In particular, it can handle in a
very simple manner any kind of topological changes, such as merging or split-
ting. This level-set function approach has now been widely used in various do-
mains [7, 13,21,27] going from inverse scattering to image segmentation. The goal
is now to combine the previous a-priori piece of information with the level-set func-
tion formalism. Several attempts have been done to provide a level-set function de-
scription based on a reduced number of coefficients. For example, the contour of the
level-set function has been represented in terms of global basis functions such as B-
splines [23,24] or spherical harmonics in 3D configurations [30]. Unfortunately, this
type of representation is not suitable for the forward finite element code that we
have implemented and which is based on a volume integral formalism and not on a
surface integral formalism. In the present case, it is more appropriate to introduce
a global representation for the level-set function itself. Traditionally, the level-set
function is represented in terms of a piecewise-constant approximation, the num-
ber of unknowns being nothing but the number of pixels. Multi-scaling approach
combined with local polynomial interpolation techniques can be used to restrain
the number of unknown parameters [3], but this cannot incorporate the piece of
information related to the circular shape of the support. Radial basis functions [16]
or B-spline interpolation [2] have also been proposed in image segmentation. The
problem in that case is to define a suitable algorithm for the control points.

In the present work, we propose to model the level-set function as a continuous
parametric function, expressed in the Zernike polynomial basis in order to combine
both the limited circular spatial support piece of information and the limited num-
ber of degrees of freedom. Moreover, in order to avoid solving the Hamilton-Jacobi
equation [26] which controls the deformation of the level-set function during the it-
erative process, we adopt a mollified version of the Heaviside function [29] in order
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to work with differentiable functionals. With such an approach, it is still possible
to use the Polak-Ribiere scheme which has been first developed in order to retrieve
the maps of permittivity profile inside the cylindrical cavity [19].

The paper is organized as follows. Section 2 presents the microwave scanner con-
figuration and the forward problem formulation. Section 3 describes the classical
Polak-Ribiere scheme which has been developed in order to retrieve continuous
maps of permittivity profile inside the cylindrical cavity. In Section 4, the mol-
lified level-set function formalism is introduced together with the slight changes
that must be provided to the standard scheme in order to take into account such
a piece of a-priori information. In Section 5, the restriction on the circular shape
of the investigation area is introduced through the Zernike polynomial expansion.
This global basis representation is derived either for the permittivity profile, re-
gardless of the homogeneous nature of the scatterer, or for the level-set profile
taking this time into account the binary aspect of the permittivity profile. The
slight changes provided to the minimization algorithm are also highlighted. Re-
sults of reconstructions are presented in Section 6. We have compared the behavior
of the four schemes: without any a-priori information, with support information
only, with binary information only and with support and binary information to-
gether. A purely synthetic configuration is considered first. Results obtained with
experimentally acquired scattered fields are also discussed. Conclusions are given
in Section 7.

2. Configuration description

The configuration which is considered here corresponds to the microwave scanner
currently under construction at Institut Fresnel. This scanner is made of a cylin-
drical cavity entirely filled with water. It is enclosed by a metal casing Σ at radius
RΣ = 29.5 cm. This system contains an array of 64 biconical antennas acting as
emitters or receivers, and working at a fixed frequency of 434 MHz (Figure 1).
These antennas are placed in the same horizontal plane, on a circle Γ of slightly
smaller radius than the casing (RΓ = 27.6 cm) and are adapted to radiate within
water. A target is positioned inside the tank and the field scattered by such an ob-

Σ

Γ
Ω

Ωb

x

y

RΩ

RΓ

RΣ

Figure 1. Picture and cross-section of the microwave scanner measurement set-up presently developed at
Institut Fresnel.

stacle is measured for each couple of emitter-receiver antennas, obtaining therefore
a matrix of 64 × 63 measurements. A computer controls the network analyzer as
well as the multiplexer and stores the measured data.
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Such an environment is presently modelled by solving the Helmholtz equation at
the cross-section of interest. It is assumed that both the sample and the sources are
infinite along the scanner axis. Therefore, the propagation problem can be solved
as a two-dimensional E scalar field problem (Transverse Magnetic case). Taking
into account a time dependence in exp(+iωt), the z-component of the electric field
~Et(~r;~rs) for a given emitter ~rs = (xs, ys) with strength Js(~r) = αδ(~r−~rs), satisfies
the following set of equations:

∆Etz(~r;~rs) + k2
0εr(~r)E

t
z(~r;~rs) = 0, ~r ∈ Ω

∆Etz(~r;~rs) + k2
0εr,bE

t
z(~r;~rs) = −Js(~r), ~r ∈ Ωb

Etz(~r;~rs) continuous everywhere
Etz(~r;~rs) = 0, ~r ∈ Σ,

(1)

where k0 is the vacuum wave number, α = jk0

√
µ0/ε0 and εr(~r) corresponds to

the relative permittivity of the target Ω, and εr,b to the relative permittivity of
the embedding liquid Ωb. The field Etz is the total field which corresponds to the
summation of the incident field Eiz, measured when there is no target inside the
cylinder, and of the scattered field Edz , which corresponds to the field radiated by
the currents induced inside the target.

A finite element model is applied to the weak form of the Helmholtz equation (1).
The electrical field component is expanded onto linear P1 basis functions [18]. A
free unstructured mesh generator [17] is used to discretize the whole domain. The
sparse system is solved thanks to the sequential direct sparse solver SuperLu [12]
with a very small computational time. Typically, for a first-order triangular mesh
with 45 000 nodes, and for the 64 emitting antennas, the run time is about 6 seconds
on a standard PC.

3. Inversion algorithm with no a-priori information

When no a-priori piece of information is available on the unknown target, the
inverse scattering problem is stated as finding the permittivity distribution inside
the entire cylinder. Such a problem is traditionally solved by recasting it into a
minimization problem with the definition of a discrepancy criterion J

J (εr) =
1

2

Ns∑
s=1

ws ‖ Eobsz (·;~rs)− Edz (εr)(·;~rs) ‖2Γ , (2)

where Eobsz corresponds to the scattered field measured by the emitters placed at
positions ~rs, s = 1, · · · , Ns, on the probing line Γ. In order to retrieve a permittiv-
ity map which matches the measured dataset, the cost functional J (εr) must be
minimized taking into account the constraints which are provided by Equation (1).
It can be shown that the gradient of the cost functional is given by

∇εrJ (εr)(~r) = k2
0

[
Ns∑
s=1

Etz(~r;~rs)P
t
z(~r;~rs)

]∗
l1Ω(~r) , (3)

where P tz is the so-called adjoint field which satisfies Equation (1) with a correctly
defined field source J∗

s (~r) =
∑

r[E
obs
z (~rr;~rs)− Edz (~rr;~rs)]δ(~r − ~rr), where ~rr corre-

spond to the receivers positions for a given ~rs emitter position.
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Taking advantages of the closed-form expression of the gradient, a Polak-Ribiere
conjugate-gradient scheme is implemented [25]. A sequence of permittivity profiles
are then reconstructed based on the following updating scheme:

ε(n+1)
r = ε(n)

r + α(n)d(n) , (4)

where the descent direction d(n) is given by

d(n) = g(n) + β(n)d(n−1) with β(n) =
〈g(n) | g(n) − g(n−1)〉Ω

‖ g(n−1) ‖
, (5)

where 〈· | ·〉Ω represents the inner product defined on L2(Ω) and g(n) is the exten-
sion of the gradient of the cost functional on the entire domain

g(n) = −k2
0

[
Ns∑
s=1

Et(n)
z (~r;~rs)P

t(n)
z (~r;~rs)

]∗
. (6)

The coefficient α(n) is computed using the closed-form solution of the minimum of
the following approximated cost functional:

J̃ (α) =
1

2

Ns∑
s=1

ws ‖ Eobsz (·;~rs)−
[
Edz

(n)
(·;~rs) + αδEdz

(n)
(·;~rs)

]
‖2 , (7)

where Ezd
(n) + αδEdz

(n)
is an approximation at first order of Edz

(n+1)
with δEdz

(n)

satisfying the following set of equations:
∆δEdz

(n)
(~r;~rs) + k2

0εr,bδE
d
z

(n)
(~r;~rs) = −k2

0d
(n)Etz

(n)
, ~r ∈ Ω

∆δEdz
(n)

(~r;~rs) + k2
0εr,bδE

d
z

(n)
(~r;~rs) = 0, ~r ∈ Ωb

δEdz
(n)

continuous everywhere

δEdz
(n)

= 0, ~r ∈ Σ.

(8)

4. Mollified level-set function formalism

As it is well-known, inverse scattering problems are severely ill-posed. Therefore,
it is of great interest to take benefit of all available pieces of a-priori information,
in particular to restrain the class of admissible solutions. Here, we want to take
into account the fact that the considered targets are homogeneous and of known
permittivity ε̃r. This means that the unknown is no more the permittivity map,
but the shape and location of the various scatterers which are positioned inside the
tank.

Significant work exists now on the retrieval of binary obstacles. The level-set
function representation has proved to be one of the most suitable representations
when no additional topological information is available, such as connexity for ex-
ample. This level-set function approach has now widely been used in various ap-
plications [13, 21, 27]. It consists in defining the domain Ω thanks to a level-set
function φ such that

Ω = {~r s.t. φ(~r) < 0} . (9)
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The cost functional can now be written as

J (φ) =
1

2

Ns∑
s=1

ws ‖ Eobsz (·;~rs)− Edz (φ)(·;~rs) ‖2Γ . (10)

The next step is to describe the deformation process that the level-set function
is going to follow during the minimization scheme. If we derive, according to a
fictitious time t which corresponds to the evolution of the iterative scheme, the
zero-th level contour of φ, we get [27]

∂φ

∂t
+ ~V · ~n|∇φ| = 0, (11)

where ∂~r/∂t = ~V (t, ~r) and ~n = ∇φ/|∇φ|. In this Hamilton-Jacobi type equation,

the velocity ~V with whom the boundaries of the level-set function are evolving is
necessarily linked to the derivative of the cost functional J .

Unfortunately, such an Hamilton-Jacobi equation is not so easy to solve numer-
ically. When the underlying meshing is performed on a regular grid, a well-known
numerical scheme has been proposed [26] and is easily implementable. When the
meshing is unstructured, as it is the case with our finite element formalism, it turns
out to be more complex. In previous work [9], we have implemented the numeri-
cal scheme proposed in [1] which is designed specifically for unstructured meshes.
Here, we prefer to avoid solving the Hamilton-Jacobi equation and try to follow as
much as possible the Polak-Ribiere scheme described in the previous section. This
implies the computation of the derivative of the cost functional J with respect
to φ. In order to make everything differentiable, a mollified version of the shape
description is introduced. The permittivity profile is then expressed as

εr(~r) = εr,b + (ε̃r − εr,b) l1Ω(~r) = εr,b + (ε̃r − εr,b)Hη(−φ(~r)), (12)

where the mollified Heaviside function Hη and its derivative δη are defined by [29]

Hη(x) =
1

2

(
1 +

2

π
arctan(

x

η
)

)
, δη(x) =

1

π

η2

η2 + x2
, (13)

with a mollifying parameter η which controls the size of the transition area of the
Heaviside function.

By using the chain rule derivation, we obtain

∇φJ (φ)(~r) = −k2
0

[
Ns∑
s=1

Etz(~r;~rs)P
t
z(~r;~rs)

]∗
(ε̃r − εr,b)δη(−φ). (14)

This expression can be seen as the projection of the gradient onto the boundary of
the zero-th level of the level-set function. The standard Polak-Ribiere scheme can
now be applied by defining the updated level-set function φ, at step n, with

φ(n+1) = φ(n) + α(n)d(n) (15)

and d(n) still follows Equation (5) just replacing g(n) with

g(n) = −∇φJ (φ(n)). (16)
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With such an approach, introducing the homogeneous nature of the scatterers is
easily performed with limited changes in the minimization scheme implementation.

5. Zernike polynomials formalism

An additional piece of a-priori information can be added to the inversion scheme.
Indeed, the targets are known to be positioned inside a tank of circular cross-
section. Therefore, the investigation area is necessarily bounded and of circular
shape. It is then of interest to represent the unknowns with functions which have
the same circular spatial support. The Zernike polynomials have been selected as
they correspond to a set of orthogonal functions for the unitary disk. The Zernike
polynomials are expressed [4] in cylindrical coordinates ~r = (ρ, θ), with respect to
the center of the investigation domain, by

Z lm(~r) = Rlm(
ρ

RΩ
) exp(ilθ), (17)

where the radial component Rlm is defined by

Rlm(ρ) =

(m−l)/2∑
p=0

(−1)p(m− p)!
p!(m+l

2 − p)!(
m−l

2 − p)!
ρm−2p , (18)

where m ≥ 0, l ∈ ZZ are integers, m ≥ |l| and m− |l| is even.
We define by ”order” of the Zernike polynomials the maximal order achieved

by the radial component polynomial, i.e., a representation of order 4 implies that
polynomials up to ρ4 will participate in the representation of the unknown. The
Zernike polynomials behavior can be interpreted as follows: when the order of the
polynomial is increasing, the associated curve presents more and more oscillations
with respect to the radial direction. Low orders will correspond to smooth functions
while high orders will provide fastly varying functions.

5.1. Projecting the permittivity profile

When there is no a-priori information on the nature of the scatterer, such a Zernike
representation can be used to represent the permittivity map. In that case, the
unknowns are the coefficients

{
alm
}

such that

εr(~r) =
∑
l,m

almZ
l
m(~r). (19)

Using the chain rule derivation and the fact that the Zernike polynomials form an
orthogonal basis, we obtain

∇al
m
J = k2

0〈

[
Ns∑
s=1

Etz(·;~rs)P tz(·;~rs)

]∗
l1Ω(~r) | Z lm〉Ω . (20)
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Therefore, in the previous Polak-Ribiere conjugate gradient scheme, the gradient
g(n) of Equation (6) is now replaced by the following relationship:

g(n) = −k2
0

∑
l,m

〈

[
Ns∑
s=1

Et(n)
z (·;~rs)P t(n)

z (·;~rs)

]∗
| Z lm〉Ω Z lm . (21)

The rest of the iterative scheme remains identical, both for the estimation of d(n)

and for the computation of α(n).

5.2. Projecting the level-set function

If the scatterer is known to be homogeneous, it is more interesting to expand the
level-set function itself. In that case, the unknowns are the coefficients

{
blm
}

such
that

φ =
∑
l,m

blmZ
l
m . (22)

Using again the chain rule derivation, we obtain

∇blmJ = −k2
0〈

[
Ns∑
s=1

Etz(·;~rs)P tz(·;~rs)

]∗
(ε̃r − εr,b)δη(−φ) | Z lm〉Ω . (23)

In the previous Polak-Ribiere conjugate gradient scheme, the gradient g(n) of Equa-
tion (16) is now replaced by the following relationship:

g(n) = k2
0

∑
l,m

〈

[
Ns∑
s=1

Etz(·;~rs)P tz(·;~rs)

]∗
(ε̃r − εr,b)δη(−φ) | Z lm〉ΩZ lm . (24)

The rest of the iterative scheme remains identical, both for the estimation of d(n)

and for the computation of α(n).

5.3. Available information

By using a global representation of the unknowns on a suitably chosen family of
basis functions, we have been able to introduce spatial support information in the
inversion scheme. The second advantage associated to this representation is to re-
duce the number of unknowns. Indeed, instead of having as many unknowns as
pixels, there are now as many unknowns as coefficients alm (resp. blm) if the per-
mittivity profile (resp. the level-set function) is projected onto the basis functions
set. Instead of 10 000 unknowns, there are now 144 unknowns for a Zernike poly-
nomials representation of order 10. It is even possible to find out a correspondence
between the number of degrees of freedom [5,6] and the number of coefficients that
can correctly be retrieved in the present configuration [10, 20]. This is also a way
to regularize the inversion scheme, by restraining the number of unknowns in the
minimization process.
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6. Numerical and experimental results

In the previous sections, four different ways of resolving the inverse scattering
problem have been introduced: no a-priori information when searching for εr with
Equation (6), homogeneous scatterer when searching for φ with Equation (16),
circular investigation domain and reduced number of unknowns when searching
for alm with Equation (21), and finally homogeneous scatterer with circular in-
vestigation domain and reduced number of unknowns when searching for blm with
Equation (24). The four algorithms will be compared and validated using both
synthetic data and experimental data.

6.1. Initial guess and stopping criterion

All the iterative sequences start from the same initial estimate, that is εr(~r) = εr,b.
If the level-set function formalism is employed, the level-set function is initialized
using the permittivity plot obtained at the first iteration, which provides nothing
but the back-propagated profile. The level-set function is then defined with

φ(1) = H−1
η (

ε
(1)
r − εr,b
ε̃r − εr,b

− δε), (25)

where δε is a cut-off which enables to select at the first iteration the points which
are part of the scatterers and the points which are in water. A cut-off of δε = 0.2
has been taken. The mollifying parameter η is set to 0.1. The rest of the iterative
scheme then follows, only considering the level-set function as the unknown.

All the iterative sequences are stopped when either the number of iterations is
getting over 100 or when the cost functional J is reaching a plateau. To detect
such a plateau at iteration nmax, the following criterion is used:

|∇ ln(J (ε(n)
r ))| < tol for n = nmax − nwindow, · · · , nmax (26)

with nwindow = 5 and tol = 10−2. The stopping criterion is based on the log-scale
description of the cost functional as the plateau is much more visible on such a
representation.

6.2. Synthetic dataset

In the considered synthetic configuration, the embedding liquid is assumed to be
water with a permittivity of εr,b = 81 + 3j. Three tubes of radius r = λb/4 are
placed within the tank. All of them have a permittivity of ε̃r = 75 + 3j. The exact
permittivity profile is plotted in figure 2. In order to avoid an inverse crime, the
forward problem is modelled with a finer grid than the inverse problem grid. As
experimental dataset will be inverted in the next section, no noise has been intro-
duced in the synthetic case. The 64×64 scattered field matrix is taken as input for
the four algorithms and the obtained results are plotted in figure 3 when the order
of Zernike polynomials is 10. As expected, due to the low-pass filter nature of the ra-
diation operator, the permittivity profile obtained using Equation (6) is smoothed
(figure 3(a)). Such smoothing effect is also present when using Equation (21) as
shown in figure 3(b) and is even enhanced by the fact that not all the orders of
the Zernike polynomials are taken into account, but the expansion is truncated at
the order 10. Adding information on the binary nature of the scatterer with Equa-
tion (16) is improving definitively the result, as shown in figure 3(c). Nevertheless,
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Figure 2. Exact positioning of the three targets inside the tank in the synthetic configuration. Only the
inner circular part of the tank with a radius of 10 cm is plotted.

(a) Unknown is εr (b) Unknown is alm

(c) Unknown is φ (d) Unknown is blm

Figure 3. Real and imaginary permittivity profiles reconstructed at the end of the four iterative
schemes. The results are obtained using the synthetic dataset starting with an initial estimate having the
permittivity of the background. Only the inner circular part of the tank with a radius of 10 cm is plotted.

some spurious oscillations are present due to the numerical noise in the dataset.
Equation (24) enables to combine both binary information and Zernike representa-
tion and it provides excellent features, as shown in figure 3(d). Indeed, the previous
oscillations are removed by the smoothing effect of the Zernike polynomials.

6.3. Experimental dataset

Let us now consider an experimental dataset. Inside the tank, two plastic tubes,
filled with a given liquid, are placed. The plastic container of the tubes is assumed to
be thin enough for neglecting it in the modeling part. Using liquids ensure that the
targets are homogeneous. Moreover, we can a-posteriori control the permittivity of
the liquid thanks to an open-ended coaxial probe directly connected to the network
analyzer. The measured water permittivity has been found out to be εr,b = 81+3.5j.
The two tubes are filled in with a mixture of 30% of ethanol and 70% of water [8],
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Figure 4. (a) Amplitude and (b) phase of the measured scattered field for each pair of emitter and
receiver, when two tubes filled with a mixture of ethanol and water are positioned inside the water tank.

The points which are too close from the emitting antenna are excluded.

(a) Unknown is εr (b) Unknown is alm

(c) Unknown is φ (d) Unknown is blm

Figure 5. Real and imaginary permittivity profiles reconstructed at the end of the four iterative
schemes. The results are obtained using the experimental dataset, with an initial estimate having the

permittivity of the background. Only the inner circular part of the tank with a radius of 10 cm is plotted.

and the measured permittivity is ε̃r = 65 + 3.5j. In figure 4, one can see the
amplitude and phase of the scattered field matrix. Again, the order of the Zernike
polynomials have been stopped at 10.

The final reconstructed images are presented in figure 5. Due to the experimental
errors, the reconstruction obtained without a-priori information is noisy with large
oscillations. The imaginary part is reaching negative values which are not physi-
cally acceptable (figure 5(a)). Using the Zernike representation for the permittivity
profile smooths out slightly the images, but the result is still unsatisfactory (fig-
ure 5(b)). The introduction of the level-set function is also a good way for con-
straining the imaginary part and the target shape is more clearly distinguishable
(figure 5(c)). There are some spots from place to place in a similar manner as in
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(a) Order is 4 (b) Order is 8

(c) Order is 12 (d) Order is 16

Figure 6. Real and imaginary permittivity profiles reconstructed at the end of the level-set function
represented with Zernike polynomials. Several orders of Zernike polynomials are used to limit the number

of unknown coefficients blm. The results are obtained using the experimental dataset, with an initial
estimate having the permittivity of the background. Only the inner circular part of the tank with a

radius 10 cm is plotted.

figure 3(c). Finally, combining all a-priori amount of information, as in figure 5(d),
provides a very accurate and stable permittivity profile. Unfortunately, the two
tubes which were correctly separated in figure 5(c) are now connected. This is due
to the smoothing effect of the Zernike polynomials.

The next step is to vary the order of the Zernike polynomials. As stated before,
low orders correspond to small radial oscillations as high orders provide fast radial
variations. The reconstructed profiles obtained for various Zernike polynomials
order are plotted in figure 6. From the reconstructed images, it is clearly visible
that the low orders smooth out the profiles. The best reconstruction is provided
when the order of the Zernike polynomials is 12 as the separation between the two
tubes is visible. Let us point out that the distance between the two tubes is of the
order of λb/5. When the order increases again, oscillations appear and the image
is getting closer to figure 5(c). Indeed, there are more and more coefficients to
account for the noise components which are present in the measured signal. With
the present set-up, the signal to noise ratio is around 15 dB, and part of the current
experimental work is to improve this signal to noise ratio.

The cost functional behavior is plotted for the various cases envisaged here (fig-
ure 7). Each time, the cost functional has reached a plateau. The level-set function
formalism clearly improves the data fitting, meaning that using a homogeneous
assumption for the unknown scatterer is indeed a good option. In terms of Zernike
polynomials order, if the order is too low, the measurements are not properly fit-
ted as the solution is too much constrained. Nevertheless, in all cases, it exists a
threshold below which the cost functional does not decrease, which corresponds to
the level of noise which is present in the measured field.
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Figure 7. Evolution of the cost functional along the iterations. (a) The four schemes are compared. (b)
The combination of the level-set function formalism and the Zernike polynomials representation is
performed for various order of the Zernike polynomials. The dataset corresponds to the measured

scattered field.

7. Conclusions

We have presented therein several ways of incorporating pieces of a-priori informa-
tion in order to compensate for the ill-posedness of the inverse scattering problem.
Firstly, we have introduced in a simple manner a global representation for the
unknowns instead of looking for the value of the permittivity profile in each cell.
This was performed thanks to a representation in terms of Zernike polynomials ex-
pansion. By doing so, we have divided by a factor of 50 the number of unknowns.
The benefit is also to take into account the cylindrical shape of the investigation
domain and to limit the number of unknown coefficients to retrieve. Secondly, we
have introduced in a very simple manner the homogeneous nature of the targets.
This was performed thanks to a representation in terms of a mollified level-set
function formalism. Finally, the two pieces of a-priori information are combined to
provide a mollified level-set function represented in terms of Zernike polynomials.

We have shown that the associated modifications which have been introduced in
the standard minimization scheme are small, as only the gradient of the cost func-
tional is changing from one scheme to the other one. The behavior and performance
of each scheme have been compared both on synthetic data and experimental data.
The configuration which has been studied corresponds to the experimental set-up
currently under test at Institut Fresnel. We have shown that the combination of the
two pieces of a-priori information provides the best reconstructions, which are very
robust with respect to noise. This points out the good behavior and the interest of
such a regularization scheme.

In future works, the extension of such an approach to targets which are ho-
mogeneous by parts is envisaged [11, 22]. It would also be of interest to estimate
simultaneously the geometrical properties of the target and their homogeneous by
parts complex dielectric values [14,28]. Concerning the Zernike polynomials, asso-
ciated work has shown that the number of unknown coefficients to retrieve can be
estimated from the measured data spectrum and the signal to noise ratio [20]. It
would also be of interest to investigate a multi-level methodology for determining
the best order during the reconstruction process. At the same time, we are work-
ing on a three-dimensional modeling code to simulate in a proper way the exact
environment of the microwave circular scanner. The issue will be to find a set of
basis functions whose spatial support has the shape of a circular cylinder.
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