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On the Yao-Yao partition theorem

Joseph Lehec∗

September 2008

Abstract

The Yao-Yao partition theorem states that for any probability mea-
sure µ on Rn having a density which is continuous and bounded away
from 0, it is possible to partition Rn into 2n regions of equal measure
for µ in such a way that every affine hyperplane of Rn avoids at least
one of the regions. We give a constructive proof of this result and
extend it to slightly more general measures.

Published in Arch. Math. 92 (4) (2009) 366–376.

1 Introduction

In [4], Yao and Yao show that for any probability measure µ on Rn having
a density which is continuous and bounded away from 0, it is possible to
partition Rn into 2n regions of equal measure for µ in such a way that every
affine hyperplane of Rn avoids at least one of the regions. This theorem
was designed for computational geometry purposes but it turned out to be
useful in other areas of mathematics. For instance, the authors of [1] use it
to prove Ramsey type theorems and in [3], we show a connection with the
Blaschke-Santaló inequality. More precisely, using a partition à la Yao and
Yao, we reduce a general functional form of the Blaschke-Santaló inequality
(due to Fradelizi and Meyer [2]) to an easy inequality between functions
dened on R+. The proof of Yao and Yao is by induction on the dimension
and uses the Borsuk-Ulam theorem. The purpose of this paper is to show
that the Yao-Yao theorem can be obtained in a much more concrete way, by
applying the real intermediate values theorem again and again. Of course
this proof is longer, but we believe that it gives a better understanding of
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the structure of the Yao-Yao partition. Also we are able to get rid of the
technical assumptions (µ having a continuous density bounded away from
0) which are annoying for applications. The article [4] being very sketchy,
we intend to give (almost) every detail.

The paper deals with finite dimensional real affine spaces; if E is such a
space, ~E denotes the associated vector space. We say that P is a partition
of E if ∪P = E and if the interiors of two distinct elements of P do not
intersect. For instance, with this definition, the set P = {(−∞, a], [a,+∞)}
is a partition of R.

Definition 1. If E = {x} is an affine space of dimension 0, we say that P
is a Yao-Yao partition of E if P = {x} and we define the center of P to be
x.
Let E be an affine space of dimension n ≥ 1. We say that P is a Yao-Yao
partition of E if there exists an affine hyperplane F of E, a vector v ∈ ~E\~F
and two Yao-Yao partitions P1 and P−1 of F having the same center x such
that

P =
{
A+ R−v | A ∈ P−1

}
∪
{
A+ R+v | A ∈ P1

}
,

and we say that x is the center of P.

If E has dimension n, then a Yao-Yao partition of E has 2n elements
and we shall see in the following section that every hyperplane of E avoids
at least one of the elements of a Yao-Yao partition. Let us state our main
theorem.
LetM(E) be the set of non-negative Borel measures µ on E which are finite
and satisfy µ(F ) = 0 for any affine hyperplane F .

Definition 2. Let µ ∈M(E), a Yao-Yao equipartition P for µ is a Yao-Yao
partition of E satisfying

∀A ∈ P, µ(A) = 2−nµ(E). (1)

We say that x ∈ E is a Yao-Yao center of µ if x is the center of a Yao-Yao
equipartition for µ.

Theorem 3. Let µ ∈ M(E), there exists a Yao-Yao equipartition for µ.
Moreover, if µ has a center of symmetry x ∈ E, then x is a Yao-Yao center
for µ.
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2 Main properties

If A is a subset of ~E we denote by pos(A) the positive hull of A, that is to
say the smallest convex cone containing A.
A Yao-Yao partition P of an n-dimensional space E has 2n elements and for
each A in P there exists a basis v1, . . . , vn of ~E such that

A = x+ pos(v1, . . . , vn), (2)

where x is the center of P. Indeed, assume that P is defined by F, v,P1
and P−1 (see Definition 1). Let A ∈ P1 and assume inductively that there
is a basis v1, . . . , vn−1 of ~F such that A = x + pos(v1, . . . , vn−1). Then
A+ R+v = x+ pos(v, v1, . . . , vn−1).

Proposition 4. Let P be a Yao-Yao partition of E and x be its center. Any
affine half-space containing x contains an element of P.

Proof. When E has dimension 0, the result is obvious. Let E have dimen-
sion n ≥ 1 and assume that the proposition holds for any affine space of
dimension n − 1. Let ` be an affine form on E such that `(x) ≥ 0, and
let H = {y ∈ E | `(y) ≥ 0}. We use the notations of Definition 1. By the
induction assumption, there exists A+ ∈ P1 and A− ∈ P−1 such that

∀y ∈ A+, `(y) ≥ 0 and ∀y ∈ A−, `(y) ≥ 0.

Let ~̀ be the linear form on ~E associated to `, if ~̀(v) ≥ 0 then `(x+ tv) ≥ 0
for all x ∈ A+ and t ∈ R+, thus A+ + R+v ⊂ H. Similarly if ~̀(v) ≤ 0 then
A− + R−v ⊂ H. In both cases H contains an element of P.

Proposition 5. Let µ ∈M(E) and let K be a convex subset of E satisfying
µ(E\K) < 2−nµ(E). Then any Yao-Yao center x of µ is contained in K.

Proof. Assume on the contrary that there is a center x of µ outside K, and
let P be an equipartition with center x. By Hahn-Banach there is a half-
space containing x and disjoint from K. By Proposition 4, this half-space
contains an element A of P. So on the one hand µ(A) = 2−nµ(E) and on
the other hand A ⊂ E\K, thus we get a contradiction.

3 Center with respect to a basis

Let E be an affine space of dimension n and L = (`1, . . . , `n) be a family of
affine forms on E such that the map

x ∈ E 7→
(
`1(x), . . . , `n(x)

)
∈ Rn
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is one to one. We say that L is a system of coordinates. If x ∈ E and v ∈ ~E
we write xi and vi for `i(x) and ~̀

i(v), respectively. We also let e1, . . . , en

be the basis of ~E satisfying eij = δij . Let us introduce a restricted notion of
Yao-Yao partition.

Definition 6. A Yao-Yao partition P of E given by F, v, x,P1 and P−1 is
adapted to L if F = {y ∈ E | y1 = x1} and if P1 and P−1 are adapted to
(`2|F , . . . , `n|F ) (which is a system of coordinates on F ).

In the sequel, the vector v is called the axis of P, and it is said to be
normalized when v1 = 1. Since P has 2n elements, there is a one to one map
between P and the discrete cube {−1, 1}n. Let us construct such a map.

Definition 7. Let P be a Yao-Yao partition of E adapted to L, defined
by x,P1,P−1 and v (with v1 = 1). Let P(∅) = E and let (ε1, . . . , εk) be
a sequence of ±1 of size k ∈ {1, . . . , n}. Recall that Pε1 is a partition of
F , hence the notation Pε1(·) is relative to F , for instance Pε1(∅) = F . We
assume inductively that we have defined Pε1(ε2, . . . , εk) and we let

P(ε1, . . . , εk) = Pε1(ε2, . . . , εk) + R+(ε1v).

An easy induction shows that

P =
{
P(ε) | ε ∈ {−1, 1}n

}
. (3)

We now give some basic properties of the sets P(·). It is easy to prove by
induction that if P is a Yao-Yao partition of E adapted to the basis L, then
for all ±1 sequence ε of size k, there exists a sequence of vectors v1, . . . , vk

satisfying vij = 0 and vii = 1 for all j < i ≤ k (we call sub-diagonal such a
sequence hereafter) such that

P(ε) = x+ pos(ε1v
1, . . . , εkv

k) + span(ek+1, . . . , en), (4)

where x is the center of P. Besides, the first vector v1 is equal to the axis
of P (in particular, it does not depend on ε). Let x, y ∈ E and v1, . . . , vn

and w1, . . . , wn be two sub-diagonal sequences of ~E. Observe that if

x+ pos(v1, . . . , vn) = y + pos(w1, . . . , wn)

then x = y and vi = wi for all i = 1, . . . , n. Let P and Q be Yao-Yao
partitions of E satisfying P(ε) = Q(ε) for some ±1 sequence ε of length
k ≤ n. Let P be the projection of E with range span(e1, . . . , ek) and kernel
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span(ek+1, . . . , en). Using (4), the equality P
(
P(ε)

)
= P

(
Q(ε)

)
and the

observation above, we get

(x1, . . . , xk) = (y1, . . . , yk) and

(v1, . . . , vk) = (w1, . . . , wk),
(5)

where x and y are the centers of P and Q, respectively; and v and w are
their normalized (v1 = w1 = 1) axes.

If S is a set of affine functions on E (possibly empty), we let BE(S) be
the smallest σ-algebra of subsets of E making all elements of S measurable.
When a set A belongs to BE(S) for some S, we say that A depends only on
S. Another simple consequence of (4) is that for any ε of length k the set
P(ε) depends only on (`1, . . . , `k).
Let α ∈ R and F = {`1 = α}. For any u ∈ ~E\~F we let πF,u : F + R+u→ F
be the projection which, for any x ∈ F and t ∈ R+, maps x + tu to x. Let
A ⊂ F , we let

Au = (πF,u)−1(A) = {x ∈ E |x1 ≥ α and x− (x1 − α)
u

u1
∈ A}. (6)

Let P be a partition of E. Let k < n and ε1, . . . , εk be a ±1 sequence. There
exists an affine form ` ∈ span(1, `1, . . . , `k) such that

P(ε1, . . . , εk, 1) = P(ε1, . . . , εk) ∩ {`k+1 ≥ `} (7a)

P(ε1, . . . , εk,−1) = P(ε1, . . . , εk) ∩ {`k+1 ≤ `}. (7b)

Let us prove (7) by induction on k. When k = 0 we have P(1) = F +R+v =
{`1 ≥ x1} and P(−1) = {`1 ≤ x1}. If k ≥ 1, let v be the normalized (v1 = 1)
axis of P and assume inductively that

Pε1(ε2, . . . , εk1) = Pε1(ε2, . . . , εk) ∩ {`k+1 ≥ `}

for some ` ∈ span(1, `2, . . . , `k). Let us assume that ε1 = 1, then

P(1, ε2, . . . , εk, 1) = (πF,v)
−1(P1(ε2, . . . , εk) ∩ {`k+1 ≥ `}

)
= P(1, ε2, . . . , εk) ∩Av,

where A = F ∩ {`k+1 ≥ `}. Using (6), we obtain

Av = {x1 ≥ α} ∩ {`k+1 ≥ `′}

where `′ = `+ (`1 − α)(vk+1 − ~̀(v)). Since additionnally {x1 ≥ α} contains
P(1, ε2, . . . , εk), we get (7a) when ε1 = 1. The proof for ε1 = −1 and the
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proof of (7b) are similar.
From (7), we get in particular

P(ε1, . . . , εk) = P(ε1, . . . , εk, 1) ∪ P(ε1, . . . , εk,−1).

Applying this equality again and again, we obtain, for any ε of size k

P(ε) = ∪
{
P(ε, τ) | τ ∈ {−1, 1}n−k

}
where (ε, τ) is the sequence obtained by concatenation of ε and τ . Therefore,
if P is an equipartition for µ then

µ
(
P(ε1, . . . , εk)

)
= 2−kµ(E). (8)

4 Uniqueness

In this section we prove that, under reasonable assumptions, the Yao-Yao
center of a measure, with respect to a given basis, is unique. In the sequel,
the space E is equipped with a system of coordinates `1, . . . , `n and all Yao-
Yao partitions are adapted to this system.

Lemma 8. Let α ∈ R and F = {z ∈ E | z1 = α}.

(i) Let A ⊂ F depend only on `2, . . . , `k, let v, w ∈ ~E satisfying v1 = w1 =
1 and (v2, . . . , vk) = (w2, . . . , wk), then Av = Aw .

(ii) Let ` be an affine form on E, non-constant on F and let A = F ∩{` ≥
0}. Let v, w satisfy v1 = w1 = 1 and ~̀(v) > ~̀(w), then Av ( Aw.

(iii) Again let A = F ∩{` ≥ 0}, and let (vp) be a sequence satisfying vp1 = 1

for all p and ~̀(vp) ↑ +∞. Then for any µ ∈M(E) we have

lim
p→+∞

µ(Avp) = 0.

Proof. Point (i) follows easily from (6). For (ii), observe that when A =
F ∩ {` ≥ 0}, equation (6) becomes

Av = {x ∈ E |x1 ≥ α and `(x) ≥ (x1 − α)~̀(v)}, (9)

and similarly for Aw. The inclusion Av ⊂ Aw follows immediately. Besides,
since ` is non-constant on F , we can find x satisfying x1 = 1 + α and

~̀(w) < `(x) < ~̀(v),

so inclusion is strict. By (ii) the sequence (Avp) is decreasing, and clearly
by (9) the intersection ∩Avp is included in F , hence (iii).
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The key step is the following

Lemma 9. Let P and Q satisfy

∀ε1, . . . , εk, P(ε1, . . . , εk) = Q(ε1, . . . , εk) (10)

∃ε′1, . . . , ε′k+1, P(ε′1, . . . , ε
′
k+1) 6= Q(ε′1, . . . , ε

′
k+1) (11)

for some k < n. If xk+1 ≥ yk+1, then there exists δ1, . . . , δk such that
P(δ1, . . . , δk, 1) is strictly included in Q(δ1, . . . , δk, 1).

Proof. The proof is by induction on k. If k = 0 then (11) becomes

P(1) = {`1 ≥ x1} 6= {`1 ≥ y1} = Q(1).

So x1 6= y1, thus x1 > y1, hence P(1) ( Q(1).
Assume that k ≥ 1. Let v and w be the normalized (v1 = w1 = 1) axes of P
and Q, respectively. Recall that (10) implies (5): (x1, . . . , xk) = (y1, . . . , yk)
and (v1, . . . , vk) = (w1, . . . , wk). Also, intersecting (10) with {`1 = x1}, we
get

∀ε1, . . . εk, Pε1(ε2, . . . , εk) = Qε1(ε2, . . . , εk). (12)

There are three cases. If vk+1 = wk+1, since for all ε1, . . . , εk+1, the set
A = Pε1(ε2, . . . , εk+1) depends only on `2, . . . , `k+1, Lemma 8 (i) implies
that

P(ε1, . . . , εk+1) = Pε1(ε2, . . . , εk+1) + R+(ε1v)

= Pε1(ε2, . . . , εk+1) + R+(ε1w).
(13)

Also Q(ε1, . . . , εk+1) = Qε1(ε2, . . . , εk+1) + R+(ε1w). Therefore there must
exist (δ1, ε

′
2, . . . , ε

′
k+1) such that

Pδ1(ε′2, . . . , ε
′
k+1) 6= Qδ1(ε′2, . . . , ε

′
k+1),

otherwise (11) would fail. Recalling (12), we remark that we can apply
the induction assumption to Pδ1 and Qδ1 : there exists δ2, . . . , δk such that
Pδ1(δ2, . . . , δk1) is stricly included in Qδ1(δ2, . . . , δk1). Then (13) shows
that P(δ1, . . . , δk1) is strictly included in Q(δ1, . . . , δk1), which concludes
the proof in this case.
If vk+1 > wk+1, then by (7) and Lemma 8 (ii) we obtain

P1(ε2, . . . , εk1) + R+v ( P1(ε2, . . . , εk1) + R+w, (14)

for all ε2, . . . , εk. Therefore, it is enough to prove that there exists δ2, . . . , δk
such that

P1(δ2, . . . , δk1) ⊂ Q1(δ2, . . . , δk1).
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This holds by the induction assumption applied to P1 andQ1: either we have
equality for all δ2, . . . , δk, or there exists δ2, . . . , δk such that the inclusion is
strict.
The case vk+1 < wk+1 is similar, we just need to deal with P−1 and Q−1
instead of P1 and Q1.

We now let M∗(E) be the set of measures µ ∈ M(E) which satisfy
µ(U) > 0 for every open set U . Here is the main result of this section.

Proposition 10. Let µ ∈ M∗(E), then µ has at most one center with
respect to the system L. Moreover the k first coordinates of the center of µ
depend only on the restriction of µ to BE(`1, . . . , `k).

Proof. Let µ, ν ∈M∗(E) satisfy ν(A) = µ(A) for all A ∈ BE(`1, . . . , `l). We
can assume that µ(E) = 1(= ν(E)). Let P and Q be equipartitions for µ
and ν, respectively, and let us call x and y the respective centers of P and
Q. We want to prove that (x1, . . . , xl) = (y1, . . . , yl). If P 6= Q, there exists
k satisfying (10) and (11), we have in particular

(x1, . . . , xk) = (y1, . . . , yk) (15)

and we may assume that xk+1 ≥ yk+1. By the previous lemma, there exists
(ε1, . . . , εk+1) such that P(ε1, . . . , εk+1) is strictly included inQ(ε1, . . . , εk+1).
Since these sets are polytopes, their differenceQ(ε1, . . . , εk+1)\P(ε1, . . . , εk+1)
has non-empty interior. Recall that the set Q(ε1, . . . , εk+1) depends only on
`1, . . . , `k+1. So if k + 1 ≤ l, applying (8), and the fact that µ(U) > 0 for
any open set U , we get

2−k−1 = µ
(
P(ε1, . . . , εk+1)

)
< µ

(
Q(ε1, . . . , εk+1)

)
= ν

(
Q(ε1, . . . , εk+1)

)
= 2−k−1,

which is absurd. Therefore l ≤ k, and the result follows from (15).
The uniqueness of the center is obtained by letting ν = µ and l = n.

5 Continuity

We now deal with the continuity of the center, for this we need a topology
on M(E). Let (µp)p∈N be a sequence of elements of M(E) and µ ∈M(E).
The sequence (µp) converges narrowly to µ when∫

φdµp →
∫
φdµ (16)
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for any function φ continuous and bounded on E. A subset F of M(E)
is tight if for every ε > 0 there exists a compact subset K of E such that
µ(E\K) < ε for all µ ∈ F . A converging sequence of measures is obviously
tight.
Recall that when T : Ω1 → Ω2 is a measurable map, and µ is a measure on
Ω1, the image measure T#µ of µ by T is defined by

T#µ(A) = µ
(
T−1(A)

)
,

for every measurable subset A of Ω2.
Let F be an affine hyperplane of E. For any µ ∈ M(E) and v ∈ ~E\~F we
let µF,v = (πF,v)#µ, hence

∀A ⊂ F, µF,v(A) = µ(A+ R+v). (17)

Let (νp) be a sequence of elements of M(E) converging narrowly towards
ν ∈ M(E). Notice that if A ⊂ E is a polytope, then ν(∂A) = 0 and thus
νp(A)→ ν(A).
Let (vp) be a sequence of elements of ~E\~F converging to v ∈ ~E\~F . Then

νpF,vp → νF,v, narrowly.

Indeed, by tightness of the set {ν, νp | p ∈ N}, we can assume that all these
measures are supported by a compact set K. We can also assume that
F + R+v

p = F + R+v for all p. Then, setting µp = νpF,vp and µ = νF,v, it is
easy to see that the supports of µ and µp for all p are contained in a compact
subset L of F . Let φ be continuous on F , then φ is uniformly continuous
on L, from which we get φ ◦ πF,vp → φ ◦ πF,v, uniformly on K. The result
follows easily.
In the same spirit, if (up) is a sequence of elements of ~E converging to 0 and
if Tp is the translation of vector up, then (Tp)#ν

p → ν, narrowly.
The following lemma is an easy consequence of Proposition 5.

Lemma 11. Let F ⊂ M(E) be tight and such that {µ(E) | µ ∈ F} is
bounded. Then there exists a compact subset of E containing any center of
any element of F .

We now reformulate the definition of a Yao-Yao center. Let µ ∈M(E).
Then an element x ∈ E is a center for µ according to (`1, . . . , `n) if and only
if letting F = {`1 = x1} there exists v ∈ ~E\~F such that

- µ(F + R+v) = 1
2µ(E).

9



- the point x is a center for both µF,v and µF,−v, according to the system
of coordinates (`2|F , . . . , `n|F ).

In the sequel, such a vector v, is called an axis for (µ, F ), and we say that
v is normalized if v1 = 1. Here is a first continuity property of the center.

Lemma 12. Let (µp) be a sequence of elements of M(E) converging nar-
rowly towards µ ∈ M(E). If all the measures µp share a common center x
with respect to (`1, . . . , `n); then x is also a center of µ.

Proof. The proof is by induction on the dimension n of E. When n = 1,
the result is obvious: if x is a median for all the measures µp then it is a
median for µ. We assume that n ≥ 2 and that the result holds for any affine
space of dimension n − 1. We can also assume that µ and the measures
µp are probability measures. Let F = {`1 = x1}. For all p there exists a
normalized axis vp for (µp, F ). We claim that the sequence (vp) is bounded.
Indeed otherwise there exists ` affine on E such that ~̀(vp)→ +∞. Let H =
{` ≥ 0} ∩ F . Let ε > 0, by Lemma 8 (iii), there exists w such that w1 = 1
and µ(Hw) < ε. For p big enough ~̀(vp) > ~̀(w), applying Lemma 8 (ii) we
get Hvp ⊂ Hw. Also for p large, we have µp(Hw) ≤ µ(Hw) + ε. Thus

µpF,vp(H) = µp(Hvp) < 2ε.

Taking ε small enough, it follows from Proposition 5 that for any such p the
center x of µpF,vp does not belong to H. Hence `(x) ≤ 0. Let m > 0, the
same holds if we replace ` by ` + m, so we get `(x) ≤ −m for all m > 0,
which is absurd.
Up to an extraction we can assume that (vp) has a limit, say v (which
satisfies v1 = 1). Then

µpF,vp → µF,v narrowly.

By the induction assumption, x is a center for µF,v with respect to the basis
(`2|F , . . . , `n|F ), and the same holds for µF,−v. Therefore x is a center for
µ.

Corollary 13. Let (µp) be a sequence of elements of M(E) converging
narrowly towards µ ∈ M(E). If every measure µp has a center xp with
respect to (`1, . . . , `n) and if the sequence (xp) has a limit x, then x is a
center of µ with respect to (`1, . . . , `n).

Proof. Let vp = x−xp and Tp be the translation of vector vp. Since vp → 0
we have (Tp)#µ

p → µ, and clearly x = Tp(x
p) is a center for (Tp)#µ

p. Then
the result follows from the previous lemma.
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6 Proof of Theorem 3

Let us start with an easy fact. Let V be a vector space of finite dimension
n, with a given basis (e1, . . . , en). Let T : V → V be continuous and satisfy
the following properties:

(a) For k = 1 . . . n and v ∈ V , the k first coordinates of Tv depend only
on the k first coordinates of v.

(b) If f is a linear form and (vp) a sequence satisfying f(vp)→ +∞ then
f(Tvp)→ +∞.

Then T is onto.
Indeed, let u in V and u1, . . . , un be its coordinates. By (b) and the

continuity of T , we can find v1 ∈ R such that the first coordinate of T (v1e1)
is u1. Then we find v2 ∈ R such that the second coordinate of T (v1e1+v2e2)
is u2, and by (a) the first coordinate of T (v1e1 + v2e2) is still u1. And so on.

Proposition 14. Let E be an affine space and (`1, . . . , `n) be a system of
coordinates. Any element of M∗(E) admits a unique center with respect to
(`1, . . . , `n).

Proof. We have already proved the uniqueness of the center, we shall prove
its existence by induction on the dimension. If E has dimension 1 then we
just have to show that any µ ∈M∗(E) has a median, which is clear.
If n ≥ 2, we assume that the proposition holds for any affine space of
dimension n−1. Let α ∈ R satisfy µ{`1 ≥ α} = 1

2µ(E) and let F = {`1 = α}.
Let u ∈ ~E satisfy u1 = 1. By the induction assumption, for all v ∈ ~F and
ε ∈ {−1, 1}, the measure µF,ε(u+v) admits a unique center with respect to

(`2, . . . , `n) which we call x(ε)(v). If we can prove that there exists v such
that x(1)(v) = x(−1)(v), then we are done. We define

T : v ∈ ~F 7→ x(−1)(v)− x(1)(v) ∈ ~F .

If a sequence (vp) goes to v, then µF,u+vp converges narrowly to µF,u+v. Then
by Lemma 11, the sequence

(
x(1)(vp)

)
p

is bounded, and by Corollary 13, any
of its converging subsequences goes to the unique center of µF,u+v. Therefore
x(1)(vp)→ x(1)(v), and similarly for x(−1), hence the continuity of T .
If (v2, . . . , vk) = (w2, . . . , wk) then, by Lemma 8 (ii), we have Au+v = Au+w
for all A ∈ BF (`2, . . . , `k), hence µF,u+v(A) = µF,u+w(A). By Proposition 10,
this implies that for i = 2, . . . , k

`i
(
x(1)(v)

)
= `i

(
x(1)(w)

)
,
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and similarly for x(−1). Therefore T satisfies (a).
Let ` be an affine form on E, and (vp) be a sequence of elements of ~F such
that ~̀(vp) → +∞. Then it follows from Lemma 8 (iii) that for any m > 0
and any big enough p we get µu+vp(F ∩ {` ≥ −m}) < 2−nµ(F ), which by
Proposition 5 implies that `(x(1)(vp)) ≤ −m. Hence

`
(
x(1)(vp)

)
→ −∞.

Similarly `
(
x(−1)(vp)

)
→ +∞. Thus T satisfies (b). Therefore T is onto.

There exists v ∈ ~F such that Tv = 0, then x(1)(v) = x(−1)(v) which con-
cludes the proof.

Lemma 15. If µ ∈M∗(E) has a center of symmetry z then z is the unique
Yao-Yao center of µ, whatever the basis L.

Proof. Let x be the Yao-Yao center of µ and s : E → E be the symmetry
of center z. Then clearly s(x) is a center for s#µ, with respect to L. Since
s#µ = µ and by uniqueness of the center, we obtain s(x) = x. Therefore
x = z.

We are now in a position to prove Theorem 3. Let E be an affine space
of dimension n and (`1, . . . , `n) be a system of coordinates. Let γ be an
arbitrary element of M∗(E). Let µ ∈M(E) and for p ≥ 1 let µp = µ+ 1

pγ.
Then obviously µp ∈M∗(E) and µp → µ, narrowly. Let xp be the center of
µp with respect to (`1, . . . , `n). By Lemma 11 and Corollary 13, the sequence
(xp) is bounded and the limit of any of its converging subsequence is a center
for µ, so µ has a center.
If µ is symmetric with respect to x, then we let γ be an element of M∗(E)
symmetric with respect to x. Then so is µp, by the preceding lemma we get
xp = x for any p, therefore x is a center for µ.
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