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On approximation properties of sampling operators defined by dilated kernels

In this paper we consider some generalized Shannon sampling operators, which are defined by band-limited kernels. In particular, we use dilated versions of some previously known kernels. We give also some examples of using sampling operators with dilated kernels in imaging applications.

Introduction

For the uniformly continuous and bounded functions f ∈ C(R) the generalized sampling series with a kernel function s ∈ L 1 (R) are given by (t ∈ R; W > 0)

(S W f )(t) := ∞ k=-∞ f ( k W )s(W t -k) (1) 
where

∞ k=-∞ s(u -k) = 1, (2) 
and their operator norms are

S W = ∞ k=-∞ |s(u -k)| < ∞ (u ∈ R).
If the kernel function is s(t) = sinc (t) := sin πt πt , we get the classical (Whittaker-Kotel'nikov-)Shannon operator S sinc W . The idea to replace the sinc kernel (sinc (•) ∈ L 1 (R)) by another kernel function s ∈ L 1 (R) appeared first in [START_REF] Theis | Über eine interpolationsformel von de la Vallee-Poussin[END_REF], where the case s(t) = (sinc (t)) 2 was considered. A systematic study of sampling operators (1) for arbitrary kernel functions s was initiated at RWTH Aachen by P. L. Butzer and his students since 1977 (see [START_REF] Butzer | An introduction to sampling analysis[END_REF], [START_REF] Butzer | The sampling theorems and linear prediction in signal analysis[END_REF], [START_REF] Stens | Sampling with generalized kernels[END_REF] and references cited there). In this paper we consider the generalized sampling series with even band-limited kernels s, defined as the Fourier transform of an even window function λ ∈ C [-1,1] , λ(0) = 1, λ(u) = 0 (|u| 1) by the equality

s(t) := s(λ; t) := 1 0 λ(u) cos(πtu) du = π 2 λ ∧ (πt).
(3) These types of kernels arise in conjunction with window functions widely used in applications (e.g. [START_REF] Albrecht | A family of cosine-sum windows for high resolution measurements[END_REF], [START_REF] Blackman | The measurement of power spectra[END_REF], [START_REF] Marks | Fourier Analysis and Its Applications[END_REF], [START_REF] Turkowski | Filters for common resampling tasks[END_REF]), in Signal Analysis in particular. Many kernels can be defined by ( 3), e.g. 1) λ(u) = 1 defines the sinc function; 2) λ(u) = 1 -u defines the Fejér kernel (cf. [START_REF] Theis | Über eine interpolationsformel von de la Vallee-Poussin[END_REF])

s F (t) = 1 2 sinc 2 t 2 = O(|t| -2 );
3) λ H (u) := cos 2 πu 2 = 1 2 (1 + cos πu) defines the Hann kernel (see [START_REF] Kivinukk | On sampling operators defined by the Hann window and some of their extensions[END_REF])

s H (t) := 1 2 sinc t 1 -t 2 = O(|t| -3 ); 4) the general cosine window λ C,b (u) := m j=0 b j cos jπu (4) 
defines the Blackman-Harris kernel (see [START_REF] Kivinukk | On Blackman-Harris windows for Shannon sampling series[END_REF])

s C,b (t) := 1 2 m j=0 b j sinc(t -j) + sinc(t + j) (5) 
provided

m 2 j=0 b 2j = m+1 2 j=1 b 2j-1 = 1 2 . ( 6 
)
From approximation theory point of view at least two problems for the generalized sampling operators S W : C(R) → C(R) have some interest: 1) to calculate the operator norms

S W = sup u∈R ∞ k=-∞ |s(u -k)|; (7) 
2) to estimate the order of approximation

f -S W f C M ω k (f, 1 W ) ( 8 
)
in terms of the k-th modulus of smoothness ω k (f, δ).

Interpolating generalized sampling operators with dilated kernels

Let us consider the dilated kernel s α (t) = αs(αt). The Shannon operators with sinc kernel satisfy the interpolatory conditions

(S sinc W )( k W ) = f ( k W ) (k ∈ Z). (9) 
When we replace the sinc kernel with a band-limited one (3), we may lose the interpolatory property (9), but using the dilated kernel s(t) = 2s(2t), we can recover the interpolatory property. If s ∈ B 1 π , then s α ∈ B 1 α π , and the condition (2) is valid for 0 < α 2, therefore we get the sampling operator S W,α : C(R) → B ∞ απW ⊂ C(R). Here B p σ stands for the Bernstein class consisting of those bounded functions f ∈ L p (R) (1 p ∞) which can be extended to an entire function f (z) (z ∈ C) of exponential type σ. Using the Nikolskii inequality [START_REF] Nikolskii | Approximation of Functions of Several Variables and Imbedding Theorems[END_REF], we get the bounds for the operator norm.

Theorem 1. Let the operators S W : C(R) → B ∞ W π ⊂ C(R), S W,α : C(R) → B ∞ αW π ⊂ C(R) are defined by (1)
with kernels s and s α , respectively. Then

s 1 S W,α (1 + απ) S W (0 < α 2).
The order of approximation by operators S W,α we can estimate via modulus of smoothness ω k (f, σ). Next theorem generalizes slightly the result in [START_REF] Kivinukk | Interpolating generalized Shannon sampling operators, their norms and approximation properties[END_REF] (Th. 1.3).

Theorem 2. Let S W : C(R) → C(R), S W,α : C(R) → B ∞ αW π ⊂ C(R) be sampling operators defined by (1) with kernel functions s ∈ B 1 π , s α ∈ B 1 α π , respectively. 1) If 0 < α 1, then there exist positive constants C 1,α and C 2,α such that C 1,α S αW f -f C S W,α f -f C C 2,α S αW f -f C . 2) Moreover, if 0 < α < 2, then S W f -f C M k ω k (f, 1 W ), (10) 
implies

S W,α f -f C M k,α ω k (f, 1 W )
for some constant M k,α > 0.

Example. The Blackman-Harris sampling operator C W,b is defined by the window function

λ C,b := m j=0 b j cos(πju).
In [START_REF] Kivinukk | On Blackman-Harris windows for Shannon sampling series[END_REF] we proved that for some values of the parameters

b = (b 0 , b 1 , . . . , b m ) ∈ R m+1 we can estimate the order of approximation by operators C W,b : C(R) → B ∞ W π ⊂ C(R) via the modulus of continuity ω 2 (f, 1 W ) ( m)
. More precisely (see [START_REF] Kivinukk | On Blackman-Harris windows for Shannon sampling series[END_REF], Th. 3), let , 1 m, be fixed. If for every k = 0, . . . , -

1 m j=0 j 2k b j = 0 (0 0 = 1), ( 11 
) then f -C W,b f C M b, ω 2 (f, 1 W ). (12) 
Now by Theorem 2 we obtain for the corresponding dilated sampling operator

C W,b;α : C(R) → B ∞ αW π ⊂ C(R) with 0 < α < 2 the estimate f -C W,b;α f C M b, ,α ω 2 (f, 1 W ). ( 13 
)
The case m = = 1 gives the Hann sampling operator H W : C(R) → C(R), which often has been used in practise. For the corresponding dilated operator

H W,α : C(R) → B ∞ αW π ⊂ C(R) for 0 < α < 2 we obtain f -H W,α f C M α ω 2 (f, 1 W ). (14) 
See Figure 2 for corresponding kernels.

The next theorem gives hints how to construct the interpolating sampling series.

Theorem 3. Let the sampling operator SW be defined by (1) using the kernel s(t) := 2s(2t), where the kernel s ∈

B 1 π ⊂ L 1 (R) is generated by (3) with a window function λ. If λ(u) + λ(1 -u) = 1 (u ∈ [0, 1]) (15) 
then SW :

C(R) → B ∞ 2W π ⊂ C(R) is an interpolating sampling operator.
Examples. For the Hann window function λ H (u) the condition ( 15) holds and we get the interpolating Hann sampling operator HW : [START_REF] Marks | Fourier Analysis and Its Applications[END_REF] gives us the Blackman-Harris window function for which the condition ( 15) is fullfilled (see [START_REF] Kivinukk | Interpolating generalized Shannon sampling operators, their norms and approximation properties[END_REF]). In the case when s ∈ B 1 βπ , 0 < β < 1 and ( 15) holds for the corresponding window function we can prove the following theorem.

C(R) → B ∞ 2W π ⊂ C(R). Taking b 0 = 1/2, b 2j = 0(j ∈ N) in
Theorem 4. Let the sampling operator SW be defined by (1) using the kernel s(t) := 2s(2t), where the kernel s ∈ B 1 βπ ⊂ L 1 (R), 0 < β < 1, is generated by (3) with a window function λ. If (15) is valid, then for every k ∈ N there exist a constant M k such that

SW f -f C M k ω k (f, 1 W ).
Example. So-called Lanczos n-kernels sL,n (t) := sinc t n sinc t, which has been often used in image processing. The Lanczos 3-kernel is especially popular in imaging ((see [START_REF] Turkowski | Filters for common resampling tasks[END_REF] and references cited there). They are defined by De la Vallée Poussin window function

λ L,n (u) :=    1, 0 u n-1 2n , 1 2 (1 + n(1 -2u)), n-1 2n < u < n+1 2n , 0, u n+1 2n . If n > 1,
then the De la Vallée Poussin window function λ L,n satisfies the conditions (15) and sL,n ∈ B 1 ( n+1 2n )π , hence Theorem 4 is applicable. If n = 1, then we get the Fejér sampling operator (cf. [START_REF] Theis | Über eine interpolationsformel von de la Vallee-Poussin[END_REF]), for which we do not have even an estimate via the modulus of continuity ω 1 .

Applications in 2D imaging

A natural application of sampling operators with dilated kernels is imaging. We can represent an discrete 2D image f as a continuous function using sampling series Many image resizing (resampling) algorithms use such type of representation (see [START_REF] Turkowski | Filters for common resampling tasks[END_REF], [START_REF] Meijering | Quantitative comparison of sinc-approximating kernels for medical image interpolation[END_REF], [START_REF] Jähne | Digital Image Processing: Concepts, Algorithms, and Scientific Applications[END_REF]). If the image data is exact, then we can take interpolating kernels s 1 and s 2 , like interpolating Hann, Blackman-Harris or Lanczos, and enlarge (up-sample) image, having (Sf )(j, k) = f (j, k). If we want to reduce the image size (downsample) (magnification γ < 1) then, for eliminating artifacts, we can choose a dilated kernel s α with in some sense optimal value of α = 2γ (see Figure 2). The artifacts in down-sampled images appear, because details that are resized to smaller than one pixel will be misrepresented by larger aliases (see [START_REF] Gonzalez | Digital Image Processing[END_REF], [START_REF] Jähne | Digital Image Processing: Concepts, Algorithms, and Scientific Applications[END_REF]). Depending on the choice of the parameter value α we have S W,α :

(Sf )(x, y) := j,k f (j, k)s 1 (x -j)s 2 (y -k). (16)
C(R) → B ∞ αW π
i.e. a function belonging to a class for bandlimited functions, for which the Fourier' transform vanishes outside of the interval [-αW π, αW π]. This approach eliminates higher spatial frequencies, being equivalent to the use of low-pass filter. Also in the case, when the resolution of the optical system is less than the resolution of the sensor, we can choose the value of the dilation parameter α accordingly.

Using the representation [START_REF] Turkowski | Filters for common resampling tasks[END_REF] we can apply different imaging technics. For image enhancement we can use the unsharp masking (see [START_REF] Gonzalez | Digital Image Processing[END_REF], [START_REF] Jähne | Digital Image Processing: Concepts, Algorithms, and Scientific Applications[END_REF]), i.e. to subtract a blurred version of an image from the image itself. For the representation of original image f (x, y) we can choose in [START_REF] Turkowski | Filters for common resampling tasks[END_REF] the interpolating kernels (dilation by α = 2), but to get blurred version f b (x, y), we choose in ( 16) the dilated kernels with small parameter α, like s H,1/2 in Figure 2. We can control the amount of unsharp masking choosing the parameter a < 0:

f usm (x, y) = (1 -a)f (x, y) + af b (x, y).
Another well-known image enhancement method uses the derivatives of image. First derivatives in image processing are implemented using the magnitude of the gradient. The representation [START_REF] Turkowski | Filters for common resampling tasks[END_REF] gives us a natural way to implement derivatives. Indeed

f x (x, y) := j,k f (j, k)s 1 (x -j)s 2 (y -k), f y (x, y) := j,k f (j, k)s 1 (x -j)s 2 (y -k).
Surprisingly, if we choose Hann kernel s 1 = s 2 = s H and x, y ∈ Z, then the discrete convolution

f x (p, q) ≈ p+1 j=p-1 q+1 k=q-1 f (j, k)s H (p-j)s H (q -k) (17)
gives us the well-known Sobel filter (see [START_REF] Gonzalez | Digital Image Processing[END_REF], [START_REF] Jähne | Digital Image Processing: Concepts, Algorithms, and Scientific Applications[END_REF]) 1) and we get 1 4 (1, 2, 1). For s H we use the first 3 values only, i.e. 3 8 (1, 0, -1). We can easily compute a directional derivative

  1 2 1   1 0 -1 =   1 0 -1 2 0 -2 1 0 -1   . Indeed, s H (k) = 0 (k ∈ Z) if |k| > 1 (see Figure
f ϕ (x, y) := j,k f (j, k)s 1 (x -j) cos ϕ -(y -k) sin ϕ × ×s 2 (y -k) cos ϕ + (x -j) sin ϕ ,
To get the edges with different spatial frequency, we choose the dilation parameter (see Figure 1). Second derivatives in image processing are implemented using the Laplacian. Using the representation [START_REF] Turkowski | Filters for common resampling tasks[END_REF] we get

f (x, y) := f xx (x, y) + f yy (x, y) = j,k f (j, k) s (x -j)s(y -k) + s(x -j)s (y -k) .
In image processing we use the derivatives for edge detection. Changing the dilation parameter α for the kernel s α (t) = αs(αt) we can detect edges with different spatial frequencies. In calculations we must use the truncated sampling series (p, q ∈ Z)

(Sf ) mn (p, q) := p+m j=p-m q+n k=q-n f (j, k)s 1 (p -j)s 2 (q -k)
and have the truncation error. We can use kernels with finite support like the combinations of B-splines, considered in [START_REF] Butzer | The sampling theorems and linear prediction in signal analysis[END_REF], to get rid of the truncation error, but in some cases other types of kernels are more suitable. For minimizing the truncation error the kernel s(t) must decrease rapidly when |t| → ∞. The sinc function does not belong even to L 1 . Therefore using the kernels in form s(t) = θ(t) sinc t, where θ(t) is some window function (see [START_REF] Marks | Fourier Analysis and Its Applications[END_REF]), is well-known. In most cases of we lose the important property (2) and do not get a generalized sampling series anymore. The kernels in our approach, i.e. kernels defined via Fourier transform of window functions, allow us to get good approximation properties and are rapidly decreasing. In Figure 3 we take the Hann kernel sH (t) = O(|t| -3 ) and compare it with the Lanczos kernel s L,3 (t) = O(|t| -2 ), which is one of the most used kernels in imaging (see [START_REF] Turkowski | Filters for common resampling tasks[END_REF]). In the case of Blackman-Harris kernels (5), considered more precisely in [START_REF] Kivinukk | On Blackman-Harris windows for Shannon sampling series[END_REF], we have s = (|t| -2 -1 ) if for every k = 0, . . . , -1 m j=0 j 2k b j = 0.

We defined many rapidly decreasing kernels also in [START_REF] Kivinukk | Blackman-type windows for sampling series[END_REF], [START_REF] Kivinukk | On sampling operators defined by the Hann window and some of their extensions[END_REF], [START_REF] Kivinukk | Interpolating generalized Shannon sampling operators, their norms and approximation properties[END_REF]. 
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 1 Figure 1: Original image, derivatives with Hann kernel sH (t) = 2s H (2t) and s H,1/4(t) = 1 2 s H ( 1 4 t) (ϕ =2π3 ).

Figure 2 :

 2 Figure 2: Unsharp mask with Hann kernel s H,1/2 = 1 2 s H ( 1 2 t), a = -1.7.

Figure 3 :

 3 Figure 3: Hann kernel sH (t) = O(|t| -3 ), Lanczos kernel s L,3 (t) = O(|t| -2 ) and sinc(t) = O(|t| -1 ) .
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