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1. Introduction

Simple Cartesian scans, which collect Fourier transform
data on a uniformly-spaced grid in the frequency domain,
are by far the most common in MRI. But non-Cartesian
trajectories such as spirals and radial scans have become
popular for their speed and for other benefits, like mak-
ing motion-correction easier [12]. A major problem in
such scans, however, is reconstructing from nonuniform
data, which cannot be performed by a standard fast Fourier
transform (FFT) as in the Cartesian case.
Here, we briefly describe the most common reconstruc-
tion methods and the non-uniform fast Fourier transform
(NFFT) needed to complete the computations quickly.
We then give an overview of several current methods for
choosing a density compensation function (DCF) and sug-
gest some possible improvements.

2. Reconstruction Methods

The most common method for nonuniform reconstruction
in MRI is the Riemann approach, which approximates the
integral difining the inverse (continuous) Fourier trans-
form using a Riemann sum

fw(x) =
J∑
j=1

wj f̂(ξj)e
2πiξj ·x, (1)

where x ∈ ZdN are the pixel locations and ξj , j =
1, ..., J, are the frequency locations at which we measure
the Fourier transform (we assume J ≥ Nd). As the sub-
scriptw suggests, this approach requires finding appropri-
ate weightswj for each sample point in the reconstruction,
a major theoretical problem. An alternative method, called
implicit discretization (ID), assumes that the image itself
is a sum of evenly spaced delta impulses at the pixel points
of the final image, so that its Fourier transform is a finite-
dimensional, harmonic trigonometric polynomial. We can
then find a least-squares solution to the resulting system
of equations

f̂(ξj) =
∑
x∈Zd

N

f(x)e−2πix·ξj (2)

This model, which is known to have negligible error (the
model error is the Gibb’s error that would appear in a

Cartesian reconstruction), has the important advantage of
not depending on our arbitrary choice of weights.
These two approaches can be described in terms of matrix
algebra as follows: Let G be a J ×Nd matrix given by

Gj,x = e−2πiξj ·x.

Then we see immediately that

fw = G∗Wf̃ , (3)

where fw is the Nd × 1 vector, indexed by ZdN , whose
xth entry is fw(x), f̃ is the J×1 vector of measurements
whose jth entry is f̂(ξj), andW is theNd×Nd diagonal
matrix with diagonal equal tow. Once we havew, whose
determination is the main problem of interest, the remain-
ing issue is one of computational complexity, since G∗ is
a very large unstructured matrix.
Fortunately, there is a fast method for computing prod-
ucts called the nonuniform fast Fourier transform (NFFT),
based on the approximate factorization

G ≈ CφFDφ, (4)

where Cφ is a sparse, banded Nd × J matrix of con-
volution interpolation coefficients which depends on our
choice of convolution kernel φ,F is the uniformMd×Md

DFT matrix for some M > N, products of which are
rapidly computed via the FFT, and Dφ is an Md × Nd

modified diagonal deconvolution matrix, also depending
on φ, whose extra rows are zero. Since it is easy to com-
pute products with all three factors, this algorithm can
be used to quickly approximate matrix products involv-
ing either G or G∗. The theory of the NFFT, as applied
to MRI, was first laid out in [11] and [8]. Later, [4] found
bounds on the errors for Gaussian interpolation, and [23]
and [5] gave general estimates and gave sharper bounds
for Gaussian kernels. The most complete discussion of
NFFT theory is given in [16], while [15] presents many
of the proofs. Practical considerations like computational
load and numerical stability were addressed in [3] and
[17], while [1] and [6] presented two methods of efficient
interpolation using Kaiser-Bessel and Gaussian kernels.
In matrix form, the ID problem attempts to find a least-
squares solution to the problem

f̃ = Gf .



The ordinary least squares solution fOLS satisfies the nor-
mal equation

G∗GfOLS = G∗f̂ . (5)

Although the matrix G∗G is far too large to invert, it is
symmetric, so we may use iterative methods like conju-
gate gradients to find the solution. The resulting solution
typically has excellent quality, but convergence is often
slow, making ordinary least squares expensive.
Conjugate gradients converges fastest whenG∗G is close
to the identity, which is unfortunately rarely the case un-
less the sampling density is reasonably close to unity. In
order to improve the convergence of conjugate gradients,
we introduce the weighted least squares problem, which
finds the least squares solution to

W 1/2f̃ = W 1/2Gf

by solving the normal equations

G∗W bvecGfWLS = G∗Wf̂ ,

where W is the modified diagonal density compensation
matrix used for the Riemann method. We expect an im-
provement in convergence because we know that the Rie-
mann method gives much better results withW than with-
out, which meansG∗WG approximate the identity much
better than G∗G. From a signal processing perspective,
this has the additional benefit that we weight errors heav-
ier at highly isolated observations of the Fourier trans-
form, which heuristically contain more information about
the objective function than less isolated observations.
For either method, then, determining an appropriate value
of w is important. It is more essential in the Riemann ap-
proach, where a poor choice of w will lead to useless re-
sults. The ID method is known to converge quite well after
only a few iterations, even when a very rough approxima-
tion tow is used, but the betterw, the fewer iterations are
required. It is worth noting that the first iteration, which
always moves in the direction of the residual, is actually
just a rescaling of the Riemann solution.

3. Determination of an optimal DCF

3.1 Algebraic and Analytic Approaches
Since the equation

f̃ = Gf ,

used directly in the CG reconstruction, provides an accu-
rate mathematical model for the measurements which does
not depend on the choice of a sampling density w, the
clearest method of evaluating a DCF w is to require that

f̃ ≈ Gfw,

where
fw = G∗Wf̃ .

This is the same as requiring that

G∗W

approximate the pseudoinverse (G∗G)−1G∗ ofG.

The weighted conjugate gradient method described at the
end of the previous section, whose first iteration performs
best when the matrix is as close to the identity as possible,
leads to a similar but slightly simpler condition, that

G∗WG ≈ I,

in the sense that the eigenvalues of G∗WG be as closely
clustered as possible. Several techniques have been pro-
posed to use these conditions to find an algebraically ideal
DCF via use of a singular value decomposition or some
similar approach [22], [20]. These methods, however, tend
to have high computational complexity. This is a problem
if the same trajectory is not always used, as is the case
in many MRI applications in which iterative reconstruc-
tion is used to compensate for field inhomogeneities and
other measurement imperfections. Moreover, although
such algebraic methods generally give workable results,
other methods which take analytic considerations into ac-
count often perform better empirically. Possible reasons
why the theoretically optimal algebraic solutions fail to
give the best results include numerical instability and ill-
conditioning. In some cases, the algebraic approaches
even result in DCF’s with negative weights at some points.
This contradicts our intuition, and empirical studies indi-
cate that such DCF’s tend to perform relatively poorly.
The simplest analytic approaches to determining w are
based on the fact that the goal of the Riemann method
is to approximate a Riemann sum. For radial and ana-
lytic spiral trajectories, which may be smoothly param-
eterized, methods have been proposed which use the Ja-
cobian of a change-of-coordinates [10], [7]. These tech-
niques give very good results for certain spirals, although
for radial trajectories they tend to underweight points near
the center. An alternative analytic method, which works
for arbitrary nonuniform sampling schemes, is to construct
a Voronoi diagram, which partitions the sampled part of
frequency space into polygons about each sample point,
and weight the samples according to the area or volume
of those polygons [19]. This typically results in a good
image for radial trajectories. With other trajectories, the
results are generally inferior to alternative point-spread-
function methods, although it was demonstrated in [9] that
performing a few iterations of the weighted conjugate gra-
dient method using Voronoi weights produces an excellent
image.

3.2 The Point Spread Function
Most of the best-performing methods for determining the
DCF when the trajectory is anything other than an analytic
spiral are based on analysis of the point-spread-function
(PSF). The PSF is defined as the inverse Fourier transform
w̌ of the DCF, where we view the DCF as a distribution on
Rd defined by w :=

∑
j wjδξj

. The PSF w̌ is then given
by

w̌(x) =
J∑
j=1

wje
2πix·ξj . (6)

This is what the algorithm would produce if the true object
were a delta impulse located at zero. The observed data
would be a vector of all ones, so the reconstruction would



be the result of applying G∗ to w itself, i.e., the function
defined by (6).
If f is a more general object, it follows from the con-
volution theorem (for distributions) that the reconstructed
function fw will be equal to the convolution f ∗ w̌ of the
actual object f with the PSF. The more closely the PSF
resembles a delta impulse, the better the reconstruction.
It is important to note that, since the PSF is a (nonhar-
monic) trigonometric polynomial, it will not decay at in-
finity. Clearly, then, the best that we can hope for is that
w̌ will resemble a delta impulse in some compact neigh-
borhood of the origin. Recall that, by accepting the ID
model as having negligible error, we are assuming that f
is a finite-dimensional vector defined on ZdN which we as-
sociate with a distribution supported on ZdN for notational
convenience when dealing with convolutions. Since the
terms w̌(z)f(x− z) defining

fw(x) = w̌ ∗ f(x) =
∑
z∈Zd

w̌(z)f(x− z) (7)

are nonzero only if (x − z) ∈ ZdN , and we only want
to find the reconstruction fw(x) for x ∈ ZdN , we con-
clude that the only values of z for which w̌(z) matter
are z ∈ Zd2N . It is also worth noting that not all points
z ∈ Zd2N appear equally often in the convolution defin-
ing fW . The origin will appear in one term of every sum,
whereas values of z near the edge of Zd2N will appear only
occasionally.
For notational convenience, let A be the field of view
[−N/2, N/2]d and let B be the region of optimization
[−N,N ]d. PSF optimization techniques find some com-
putational way of minimizing the error

E = w̌ − δ

over this region of optimization B.
By carefully looking at (7), we see that the frequency with
which a PSF error at x actually occurs in the final image is
proportional to p = χA∗χA. Since errors are unavoidable
and we would like to minimize the important errors, we
introduce the weighted error, given by

E = pw̌ − δ, (8)

where p is called the error profile. This error can be ex-
pressed in the Fourier domain as

Ê = p̂ ∗ w − 1 = χ̂2
A ∗ w − 1. (9)

Our goal is to minimize these errors, thereby minimizing
the error in the final reconstruction fw = w̌ ∗ f.
Although this optimal kernel p was suggest only recently
in [13], convolution techniques for minimizing the Fourier
domain PSF error Ê have been used for some time. In
one of the early gridding papers, Jackson et. al. proposed
taking w to be equal to

w1 =
w0

φ ∗ w0
, (10)

where w0 is a DCF of unity (in distributional form) and
φ is the gridding kernel [8]. This method predates PSF

techniques, and was instead motivated by the intuitive idea
that φ ∗ w0 would give a reasonable, estimate of the sam-
pling density. Later researchers noted, however, that if we
φ with p̂, we would expect this ratio correction to make
w1 ∗ p̂ closer to unity than w0 ∗ p̂ regardless of the ini-
tial density w0 [14]. An iterative technique, based on this
observation, starts with a constant DCF w0 and takes

wi+1 =
wi

p̂ ∗ wi
. (11)

Since p̂ can be effectivly truncated, each iteration can be
computed quickly, particularly if an efficient sorting al-
gorithm is used to avoid time-consuming searches for the
nonzero terms p̂(ξk − ξj)w(ξj) in the convolution [13].
Another iterative algorithm, aimed at the same goal of
achieving Ê = 1, uses an additive correction instead of
a ratio-based correction, taking

wi = wi−1 + σ(1− p̂ ∗ wi−1),

where σ ∈ (0, 1) is a parameter controlling convergence
[18]. Taking σ close to 1 may result in the fastest con-
vergence, but could also lead to instability and a failure to
converge.
The advantage of these iterative techniques is that they
are conceptually simple, computationally fast, and empir-
ically give results as good as any current methods when
the correct error profile p is used and the number of itera-
tions is determined experimentally. A disadvantage is that,
although they work conceptually and empirically, there is
no theoretical basis for claiming that they converge to the
optimal solution, and, in fact, experimental evidence indi-
cates that the mean square error in fw can actually rises if
the algorithm is allowed to run too long. This may be due
to numerical instability, or to a failure of the mathematical
algorithm itself to technically converge.
An algebraic method of optimizing the PSF, which has
more theoretical grounding than convolution-based meth-
ods, attempts to directly solve the inverse problem

GG∗w = u,

where u is a vector of all ones. The direct solution to
this problem via conjugate gradients using the NFFT was
proposed in [21], but as with the algebraic solutions for
w based on the least-squares method, this can result in a
w with wide variations and sometimes even negative en-
tries, which does not match our expectation for a density
and empirically gives inferior results. A regularization of
this method was proposed in [2] which instead attempts to
solve

(GG∗ + σ2I)w = u+ σ2w1,

where w1 is an initial nonnegative and smoothly vary-
ing estimate of the density, say, Jackson’s weight (10), or,
more optimally, the result of one or two iterations of (11).
This second approach ensures that the solution behaves as
we would expect a DCF to behave, and empirically gives
better results than the unregularized method. The algo-
rithm given in [2] also incorporates Jacobi preconditioning
to speed convergence of the conjugate gradient iterations.
Knowing that Pipe and Johnson’s error profile p provides
an optimal weight on errors in the point-spread function,



it might be preferable to modify the approach in [2] in
two ways. The first is that, since we need to minimize
PSF errors over twice the support of f, we replace the
NDFT matrix G with G1, where the uniform grid has
twice the radius of that used by G. This avoids the risk
that we might ignore PSF errors which, according to the
convolution defining fw, appear in the Riemann recon-
struction. The second is replacing G1G

∗
1, which treats

all PSF errors as equally important, with G1PG
∗
1, where

P contains the values of the optimal error profile p. To
the author’s knowledge, this has never been tried, but in
light of experiments reported by [13] indicating that the
approaches taken in [2] and [13] both yield the some of
the best results of methods proposed to date for arbitrary
trajectories, combining their methods might produce the
best results seen yet.
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[16] D. Potts, G. Steidl, and M. Tasche. Fast fourier trans-
forms for nonequispaced data: A tutorial. In J. J.
Benedetto and P. J. S. G. Ferreira, editors, Modern
Sampling Theory: Mathematics and Applications,
pages 247–270. Birkhäuser, Boston, 2001.
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