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Abstract:

Adaptive frequency band (AFB) and ultra-wide-band

(UWB) systems require either rapidly changing or very

high sampling rates. Conventional analog-to-digital de-

vices have non-adaptive and limited dynamic range. We

investigate AFB and UWB sampling via a basis projection

method. The method decomposes the signal into a basis

over time segments via a continuous-time inner product

operation and then samples the basis coefficients in par-

allel. The signal may then be reconstructed from the ba-

sis coefficients to recover the signal in the time domain.

We develop the procedure of this method, analyze vari-

ous methods for signal segmentation and close by creating

systems designed for binary signals.

1. Introduction

Adaptive frequency band (AFB) and ultra-wide-band

(UWB) systems, requiring either rapidly changing or

very high sampling rates, stress classical sampling ap-

proaches. At UWB rates, conventional analog-to-digital

devices have limited dynamic range and exhibit unde-

sired nonlinear effects such as timing jitter. Increased

sampling speed leads to less accurate devices that have

lower precision in numerical representation. This moti-

vates alternative sampling schemes that use mixed-signal

approaches, coupling analog processing with parallel sam-

pling, to provide improved sampling accuracy and paral-

lel data streams amenable to lower speed (parallel) digital

computation.

We investigate AFB and UWB sampling via a basis pro-

jection method. The method was introduced as a means

of UWB parallel sampling by Hoyos et. al. [7] and ap-

plied to UWB communications systems [8, 9, 10]. The

method first decomposes the signal into a basis over time

segments via a continuous-time inner product operation

and then samples the basis coefficients in parallel. The sig-

nal may then be reconstructed from the basis coefficients

to recover time domain samples, or further processing may

be carried out in the new domain [7].

We address several issues associated with the basis-

expansion and sampling procedure, including choice of

basis, truncation error, rate of convergence and segmen-

tation of the signal. We develop a mathematical model

of the procedure, using both standard (sine, cosine) basis

elements and general basis elements, and give this rep-

resentation in both the time and frequency domains. We

compute exact truncation error bounds, and compare the

method with traditional sampling. We close by develop-

ing the method for binary signals.

2. Sampling via Projection

Let f be a signal of finite energy whose Fourier transform

f̂ has compact support, i.e., f, f̂ ∈ L2, with supp(f̂) ⊂
[−Ω,Ω]. The signal is in the Paley-Wiener class PW (Ω).
For a block of time Tc, let

f(t) =
∑

k∈Z

f(t)χ[(k)Tc,(k+1)Tc](t) .

For this original development, we keep Tc fixed. We

later let Tc be adaptive and will denote the adaptive

time segmentation as τc(t). A given block fk(t) =
f(t)χ[(k)Tc,(k+1)Tc](t) can be Tc− periodically continued,

getting

(fk)◦(t) = (f(t)χ[(k)Tc,(k+1)Tc](t))
◦ .

Expanding (fk)◦(t) in a Fourier series, we get

(fk)◦(t) =
∑

n∈Z

(̂fk)◦[n]e(2πint/Tc) , where

(̂fk)◦[n] =
1

Tc

∫ (k+1)Tc

(k)Tc

f(t)e(−2πint/Tc) dt .

Given that the original function f is Ω band-limited, we

can estimate the value of n for which fk[n] is non-zero.

At minimum, fk[n] is non-zero if

n

Tc
≤ Ω , or equivalently, n ≤ Tc · Ω .

Let

N = ⌈Tc · Ω⌉ .

(Note that the truncated block functionsfk are not band-

limited. We discuss this in section 3.) For this choice of

N , we compute

f(t) =
∑

k∈Z

f(t)χ[(k)Tc,(k+1)Tc](t)

=
∑

k∈Z

[
(fk)◦(t)

]
χ

[(k)Tc,(k+1)Tc](t)

≈
∑

k∈Z

[ n=N∑

n=−N

(̂fk)◦[n]e(2πint/Tc)

]
χ

[(k)Tc,(k+1)Tc](t) .



Given this choice of the standard (sines, cosines) basis, we

can, for a fixed value of N , adjust to a large bandwidth Ω
by choosing small time blocks Tc. Also, after a given set

of time blocks, we can deal with a increase or decrease

in bandwidth Ω by again adjusting the time blocks, e.g.,

given an increase in Ω, decrease the time blocks adaptively

to τc(t), and vice versa. There is, of course, a price to be

paid. The quality of the signal, as expressed in the accu-

racy the representation of f , depends on N , Ω and Tc.

Theorem : [The Projection Formula] Let f , f̂ ∈ L2(R)

and f ∈ PWΩ, i.e. supp(f̂) ⊂ [−Ω,Ω]. Let Tc be a fixed

block of time. Then, for N = ⌈Tc · Ω⌉, f(t) ≈ fP(t),
where

fP(t) =
∑

k∈Z

[ N∑

n=−N

fk[n]e(2πint/Tc)

]
χ

[kTc,(k+1)Tc](t).

(1)

The Projection Method can adapt to changes in the signal.

Suppose that the signal f(t) has a band-limit Ω(t) which

changes with time. For example, let f be a signal from a

cell phone which changes from voice to a highly detailed

musical piece. This change effects the time blocking τc(t)
and the number of basis elements N(t). This, of course,

makes the analysis more complicated, but is at the heart

of the advantage the Projection Method has over conven-

tional methods.

During a given τc(t), let Ω(t) = sup {Ω(t) : t ∈ τc(t)}.

For a signal f that is Ω(t) band-limited, we can estimate

the value of n for which fk[n] is non-zero. At minimum,

fk[n] is non-zero if

n

τc(t)
≤ Ω(t) , or equivalently, n ≤ τc(t) · Ω(t) .

Let

N(t) = ⌈τc(t) · Ω(t)⌉ .

For this choice of N(t), we have the following.

Theorem : [The Adaptive Projection Formula] Let f ,

f̂ ∈ L2(R) and f have a variable but bounded band-

limit Ω(t). Let τc(t) be an adaptive block of time and

given τc(t), let Ω(t) = sup {Ω(t) : t ∈ τc(t)}. Then, for

N(t) = ⌈τc(t) · Ω(t)⌉ , f(t) ≈ fP(t), where

fP(t) =
∑

k∈Z

[ N(t)∑

n=−N(t)

fk[n]e(2πint/τc)

]
χ

[kτc,(k+1)τc](t).

(2)

In comparison, Shannon Sampling examines the function

at specific points, then uses those individual points to

recreate the signal. The Projection Method breaks the

signal into segments in the time domain and then ap-

proximates their respective periodic expansions with a

Fourier series. This process allows the system to individ-

ually evaluate each piece and base its calculation on the

needed bandwidth. The individual Fourier series are then

summed, recreating a close approximation of the original

signal. It is important to note that instead of fixing Tc, the

method allows us to fix any of the three while allowing

the other two to fluctuate. The easiest and most practical

parameter from the design factor to fix is N . For situa-

tions in which the bandwidth does not need flexibility, it

is possible to fix Ω and Tc by the equation N = ⌈Tc · Ω⌉.

However, if greater bandwidth Ω is need, choose shorter

time blocks Tc.

The Projection Method adapts to general orthonormal sys-

tems, much as Kramer-Weiss extends sampling to gen-

eral orthonormal bases. Given a function f such that

f ∈ PWΩ, let Tc be a fixed time block. Define f(t),
fk(t) and fk

◦(t) as in the beginning of the computation

above. Now, let {ϕn} be a general orthonormal system

for L2[0, Tc]. Then,

fk
◦(t) =

∞∑

n=−∞

fk[n]ϕn(t), where fk[n] = 〈fk
◦, ϕn〉.

Since f ∈ PWΩ, there exists N = N(Tc,Ω) such that

fk[n] = 0 for all n > N . Therefore, f(t) ≈ fP(t), where

fP(t) =

∞∑

k=−∞

[ N∑

n=−N

fk[n]ϕn(t)

]
χ

[kTc,(k+1)Tc](t).

(3)

Given characteristics of the input class signals, the choice

of basis functions used in the the Projection Method can be

tailored to optimal representation of the signal or a desired

characteristic in the signal. We develop a Walsh system for

binary signals in section 4.

We close this section with a different system of segmen-

tation for the time domain. This was created because it is

relatively easy to implement, cuts down on frequency er-

ror and has no loss of data in time. It was developed by

studying the de la Vallée-Poussin kernel used in Fourier

series. Let 0 < r < Tc/2 and let

TriL(t) = max{[((Tc/(4r)) + r) − |t|/(2r)], 0} ,

TriS(t) = max{[((Tc/(4r)) + r − 1) − |t|/(2r)], 0}

and

Trap(t) = TriL(t) − TriS(t) .

The Trap function has perfect overlay in the time domain

and 1/ω2 decay in frequency space. When one time block

is ramping down, the adjacent block is ramping up at ex-

actly the same rate. This leads to the Projection formula

∑

k∈Z

[ N∑

n=−N

((f ·Trap)k[n]e(2πint/(Tc+r))

]
Trap(t−k(Tc/2)) .

3. Error Analysis

To compute truncation error, we first calculate the Fourier

transform of both sides of the equation. Let f ∈ PW (Ω),
so f ∈ L2 and Ω band-limited. For N = ⌈Tc · Ω⌉,

fP(t) =
∑

k∈Z

[ N∑

n=−N

fk[n]e(2πint/Tc)

]
χ

[kTc,(k+1)Tc](t)



Taking the transform of both sides and evoking the rela-

tionship between the transform and convolution gives

f̂P(ω) =
∑

k∈Z

[ N∑

n=−N

[
fk[n]

(
e(2πint/Tc)

)
(̂ω)

]
∗

[
χ

[kTc,(k+1)Tc](t)

]
(̂ω)

]

Performing the indicated transforms using the definition

results in

f̂P(ω) =
∑

k∈Z

[ N∑

n=−N

fk[n]

(
δ(ω −

n

Tc
)

)
∗

e(2πi(k− 1

2
)Tcω) sin(πTcω)

πω

]

It is important to note that f · χ[kTc,(k+1)Tc] is no longer

band-limited, but it does decay at a rate less than or equal

to 1
ω in frequency. Using the relationship between transla-

tion and modulation, we get the following.

Theorem : [The Fourier Transform of the Projec-

tion Formula] Let f , f̂ ∈ L2(R) and f ∈ PWΩ, i.e.

supp(f̂) ⊂ [−Ω,Ω]. Let Tc be a fixed block of time.

Then, for N = ⌈Tc · Ω⌉,

f̂P(ω) =

∞∑

k=−∞

[ N∑

n=−N

fk[n]e(2πi(k− 1

2
)Tc(ω− n

Tc
)

(
sin(π(ωTc

2 − n
2 ))

π(ω − n
Tc

)

)]
(4)

The system using overlapping Trap functions has the

advantage of 1/ω2 decay in frequency. Let βL =√
Tc/(4r) + r, αL = Tc/(4r) + r/2, βS =√
Tc/(4r) + r − 1, αS = Tc/(4r) − r/2. The Fourier

transform of Trap is

[
(βL)

sin(2παL(ω)

π(ω)

]2
−

[
(βS)

sin(2παS(ω)

π(ω)

]2
.

This replaces the sinc term in the equation above. The

Fourier coefficients are also different, and are computed in

the same method as the de la Vallée-Poussin kernel used

in Fourier series.

In the formula for the Projection Method, there is a re-

liance on a number N , representative of the number of

Fourier series components. In order to ensure maximum

utility from the formula, the difference between the in-

finitely summed series and the truncated must be made

a minimum. To do this, the mean square error must be

calculated. We compute this as a truncation error on the

number of Fourier coefficients used to represent a given

block fk. For a fixed N , the mean square error is

e2
N = ‖fk − fk,N‖2

2 = ‖f̂k − f̂k,N‖2
2.

Computing and then simplifying gives

e2
N =

1

Tc

∫ (k+1)Tc

kTC

|fk
◦(t) −

∑

|n|≤N

fk[n]e(2πitn/Tc)|2dt

=
1

Tc

∫ (k+1)Tc

kTC

|
∑

|n|>N

fk[n]e(2πitn/Tc)|2dt .

Applying the triangle inequality to the right side and then

exploiting the fact that e(2πitn/Tc) is an orthonormal sys-

tem, thus |e(2πitn/Tc)| = 1, we arrive at the following:

e2
N =

1

Tc

∫ (k+1)Tc

kTC

|
∑

|n|>N

fk[n]e(2πitn/Tc)|2dt (5)

≤
∑

|n|>N

|fk[n]|2 ·
1

Tc

∫ (k+1)Tc

kTc

12dt =
∑

|n|>N

|fk[n]|2

This demonstrates that the value of N has to be chosen

carefully. This truncation error perpetuates over all the

blocks.

The Projection Method experiences error due to truncation

in two separate categories: time and frequency. The error

in frequency is a function of the errors on each block due

to the choice of N . By duality, this gives us errors in time.

We can also get an error in time by loss of a given block

or blocks of information. This is easier to compute. Given

any lost or partially transmitted block fk,L, error is simply

‖fk − fk,L‖2 .

Error over the entire signal is computed by simply adding

up the blocks. Cell phone users are used to lost informa-

tion blocks, which gives rise to the following frequently

used phrase – “Can you hear me now?”

4. Binary Signals

The Walsh functions {ωn} form an orthonormal basis for

L2[0, 1]. The basis functions have the range {1,−1}, with

values determined by a dyadic decomposition of the inter-

val. The Walsh functions are of modulus 1 everywhere.

The functions are give by the rows of the unnormalized

Hadamard matrices, which are generated recursively by

H(2) =

[
1 1
1 −1

]

H(2(k+1)) = H(2) ⊗ H(2k) =

[
H(2k) H(2k)
H(2k) −H(2k)

]
.

We point out that although the rows of the Hadamard ma-

trices give the Walsh functions, the elements have to be

reordered into sequency order. Walsh arranged the com-

ponents in ascending order of zero crossings (see [1]). The

Walsh functions can also be interpreted as the characters

of the group G of sequences over Z2, i.e., G = (Z2)
N.

The Walsh basis is a well-developed system for the study

of a wide variety of signals, including binary. The Pro-

jection Method works with the Walsh system to create a

wavelet-like system to do signal analysis.

First assume that the time domain is covered by a uni-

form block tiling χ
[kTc,(k+1)Tc](t). Translate and scale

the function on this kth interval back to [0, 1] by a linear

mapping. Denote the resultant mapping as fk, which is an

element of L2[0, 1]. Given that f ∈ PW (Ω), there ex-

ists an N > 0 (N = N(Ω)) such that 〈fk, ωn〉 = 0 for

all n > N . The decomposition of fk into Walsh basis

elements is
N∑

n=0

〈fk, ωn〉ωn .



Translating and summing up gives the Projection repre-

sentation fP

fP(t) =
∑

k∈Z

[ N∑

n=0

〈fk, ωn〉ωn

]
χ

[kTc,(k+1)Tc](t). (6)

Next assume that the time domain is covered by a uniform

overlapping trapezoidal tiling Trap(t − k(Tc/2)). Note

that the construction of the trapezoidal system results in

the loss of no signal data, for just as a given block is ramp-

ing down, the subsequent block is ramping up at exactly

the same rate. Again translate and scale the function on

this kth interval back to [0, 1] by a linear mapping. Denote

the resultant mapping as fkT
. The resultant function is an

element of L2[0, 1]. Given that f ∈ PW (Ω), there exists

an M > 0 (M = M(Ω)) such that 〈fkT
, ωn〉 = 0 for

all n > M . The decomposition of fkT
into Walsh basis

elements is
M∑

n=0

〈fk, ωn〉ωn .

Translating and summing up gives the Projection repre-

sentation fPT

fPT
(t) =

∑

k∈Z

[ N∑

n=0

〈fkT
, ωn〉ωn

]
Trap(t−k(Tc/2)). (7)

5. Conclusions

The Projection Method gives a method for analog-to-

digital encoding which is an alternative to Shannon Sam-

pling. Projection gives a procedure for the sampling of

a signal of variable or ultra-wide bandwidth Ω by vary-

ing the time blocks Tc. If f is Ω band-limited, we can

estimate the value of n for which the Fourier coefficients

fk[n] of a given time block are non-zero. At minimum,

fk[n] is non-zero if n
Tc

≤ Ω, or equivalently, n ≤ Tc · Ω.

If N = ⌈Tc · Ω⌉, then, f(t) ≈ fP(t), where

fP(t) =
∑

k∈Z

[ N∑

n=−N

fk[n]e(2πint/Tc)

]
χ

[kTc,(k+1)Tc](t).

For fixed N , if greater bandwidth Ω is need, choose

shorter time blocks Tc. The price paid for this flexibil-

ity is in signal error, which has been computed above. The

Projection Method can also adapt to changes in the sig-

nal, e.g., f(t) has a band-limit Ω(t) which changes with

time. This change effects the time blocking τc(t) and the

number of basis elements N(t). During a given τc(t), let

Ω(t) = sup {Ω(t) : t ∈ τc(t)}. For a signal f that is Ω(t)
band-limited, we can estimate the value of n for which

fk[n] is non-zero. At minimum, fk[n] is non-zero if

n

τc(t)
≤ Ω(t) , or equivalently, n ≤ τc(t) · Ω(t) .

We let

N(t) = ⌈τc(t) · Ω(t)⌉ ,

and have

fP(t) =
∑

k∈Z

[ N(t)∑

n=−N(t)

fk[n]e(2πint/τc)

]
χ

[kτc,(k+1)τc](t).

This adaptable time segmentation makes the analysis more

complicated, but is at the heart of the advantage the Pro-

jection Method has over conventional methods. Subse-

quent work on this method will focus on minimizing error,

creating systems based on the Projection Method tailored

to different types of signals and optimizing signal recon-

struction in a noisy environment.
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