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Abstract:
We propose a sparse signal reconstruction algorithm from
interlaced samples with unknown offset parameters based
on the l1-norm minimization principle. A typical applica-
tion of the problem is superresolution from multiple low-
resolution images. The algorithm first minimizes the l1-
norm of a vector that satisfies data constraint with the
offset parameters fixed. Second, the minimum value is
further minimized with respect to the parameters. Even
though this is a heuristic approach, the computer simula-
tions show that the proposed algorithm perfectly recon-
structs sparse signals without failure when the reconstruc-
tion functions are polynomials and with more than 99%
probability for large dimensional signals when the recon-
struction functions are Fourier cosine basis functions.

1. Introduction

Sampling theory is at the interface of analog/digital con-
version, and sampling theorems provide bridges between
the continuous and the discrete-time worlds. A fundamen-
tal framework of the sampling theorems consists of data
acquisition (sampling) process of a target signal and re-
construction process from the data. Classical studies as-
sumed that both processes are fixed and known. Then,
sampling theorems yield in linear formulations [9].
On the other hand, recent studies assume that sampling or
reconstruction processes contain unknown factors. Then,
sampling theorems become nonlinear. For example, Vet-
terli et al. discussed problems in which locations of re-
construction functions are unknown [11], [5]. They intro-
duced the notion of rate of innovation, and provided per-
fect reconstruction procedures for signals with finite rate
of innovation. The recent hot topic, compressive sam-
pling, assumes that signals are sparse in the sense that
signals are expressed by a small subset of reconstruction
functions, but the subset is unknown [3], [1], [4]. It is in-
teresting that the solution is obtained by the l1-norm min-
imization.
In contrast to the above studies, problems with unknown
factors in the sampling process have also been discussed.
For example, sampling locations are assumed to be un-
known and completely arbitrary in [8] and [2]. A more
restricted sampling process is interlaced sampling [7], in
which a signal is sampled by a sampling device several
times with slightly shifted locations. If the offset parame-

ters are unknown, the sampling theorem becomes nonlin-
ear. A typical application is superresolution from a set of
multiple low-resolution images. A replacement of a single
high-rate A/D converter by multiple lower rate converters
also yields within this formulation.
To this problem, Vandewalle et al. proposed perfect re-
construction algorithms under a condition that the total
number of unknown parameters is less than or equal to the
number of samples [10]. We can find, however, practical
situations in which the condition is not true. The method
proposed in [2] can be applied to such situations. How-
ever, it hardly provides a high quality stable result. In
order to solve these difficulties, the present author pro-
posed an algorithm that reconstructs the closest function
to a mean signal under data constraint assuming that sig-
nals are generated from a probability distribution [6]. The
mean signal is, however, not always available.
Hence, in this paper we propose a signal reconstruction
algorithm from interlaced samples with unknown offsets
using a relatively weak a priori knowledge, sparsity. The
algorithm first minimizes the l1-norm of a vector that satis-
fies data constraint with the offset parameters fixed. Then,
the minimum value is further minimized with respect to
the parameters. Even though this is a heuristic approach,
the computer simulations show that the proposed algo-
rithm perfectly reconstructs sparse signals without fail-
ure when the reconstruction functions are polynomials and
with more than 99% probability for large dimensional sig-
nals when the reconstruction functions are Fourier cosine
basis functions.
This paper is organized as follows. Section 2 formulates
the fundamental framework and defines the notion of spar-
sity. Section 3 introduces interlaced sampling and sum-
marizes the conventional studies. In Section 4, we pro-
pose the l1-norm minimization algorithm. Section 5 evalu-
ates the algorithm through simulations, and shows that the
algorithm perfectly reconstruct sparse signals with high
probability. Section 6 concludes the paper.

2. Sparse Signals

A signal f to be reconstructed is defined on a continuous
domain D. We assume that f belongs to a Hilbert space
H = H(D) of a finite dimension K. The inner product
for f and g in H is denoted by 〈f, g〉, and the norm is
induced as ‖f‖ =

√
〈f, f〉. By using an arbitrarily fixed



basis {ϕk}K−1
k=0 , any f in H is expressed as

f =
K−1∑
k=0

akϕk. (1)

A K-dimensional vector with k-th element ak is denoted
by a.

Definition 1 A signal f is J-sparse if at most J coeffi-
cients of {ak}K−1

k=0 in Eq. (1) are non-zero and the rest are
zero.

It should be noted that unknown factors in J-sparse signals
are not only values of non-zero coefficients but also their
locations. Hence, there are 2J unknown factors in a J-
sparse signal. If 2J ≥ K, then the number of unknown
factors is more than K, which is the number of the original
unknown coefficients {ak}K−1

k=0 without sparsity. Hence,
in order for sparsity to be meaningful, we assume that

J < K/2.

In real applications, J is supposed to be much smaller than
K/2.

3. Interlaced Sampling

Interlaced sampling means that a signal f is sampled
M times by an identical observation device with offsets
{δ(m)}M−1

m=0 , where δ(0) = 0. An M -dimensional vector
with m-th element δ(m) is denoted by δ. The observation
device is characterized by sampling functions {ψn}N−1

n=0 ,
which are given a priori. Then, the sampling function for
the n-th sample in the m-th sequence is given by

ψ(m)
n (x) = ψn(x − δ(m)),

and the sample is expressed as

d(m)
n = 〈f, ψ(m)

n 〉. (2)

Let d be an MN -dimensional vector in which d
(m)
n is the

n+mN -th element. An MN×K matrix with the n+mN ,
k-th element 〈ϕk, ψ

(m)
n 〉 is denoted by Bδ . Substituting

Eq. (1) into Eq. (2) yields

Bδa = d. (3)

For simplicity, we assume that the column vectors of Bδ

are linearly independent. Figure 1 illustrates the formula-
tion of interlaced sampling.
In order to reconstruct the signal f from interlaced sam-
ples with unknown offsets, we have to determine both
{ak}K−1

k=0 and {δ(m)}M−1
m=1 . To this problem, Vande-

walle et al. proposed perfect reconstruction algorithms
under a condition that the number of unknown param-
eters is less than or equal to the number of samples
{{d(m)

n }N−1
n=0 }

M−1
m=0 , or

K + M − 1 ≤ MN. (4)

We can find, however, practical situations in which the
condition is not true. The method in [2] can be applied
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Figure 1: Formulation of sampling and reconstruction.
The vector a is to be estimated from the vector d. Note
that there are unknown offset parameters δ in Bδ .

to the situation without Eq. (4). However, the results ob-
tained by the method tend to be unstable. The present au-
thor proposed an algorithm which uses a mean signal as a
prior [6]. However, the mean signal is not always avail-
able. Hence, in this paper, we propose perfect reconstruc-
tion algorithms using a relatively weak prior, sparsity.

4. l1Norm Minimization Algorithm

The problem which we are going to solve in this paper is
stated as follows.

Problem 1 Determine J-sparse vector a and δ which sat-
isfy Eq. (3) under the condition that the column vectors of
Bδ are linearly independent.

Because of the linear independentness, a vector a that sat-
isfies Bδa = d is uniquely determined as

a = B†
δd,

where B†
δ is the Moore-Penrose generalized inverse of Bδ .

Let us define a matrix Bε by setting an arbitrarily fixed
parameter ε instead of δ. By using this matrix, a vector cε

is defined as
cε = B†

εd. (5)

Then, our problem becomes a problem of finding a param-
eter ε such that the vector cε is J-sparse.
It is well-known that l1-norm minimization is effective to
promote sparsity as is used in the compressed sensing [3],
[1], [4]. Hence, we also employ this principle to find J-
sparse vector cε. Now, our problem becomes the follow-
ing problem.

Problem 2 Determine ε that makes column vectors of the
matrix Bε linearly independent, and minimizes l1-norm of
cε in Eq. (5):

ε̂ = argminε ‖cε‖l1 = argminε ‖B†
εd‖l1 . (6)



Table 1: Parameters K, J , N and M used in simulations.

K 4 6 8 10 12
J 1 2 3 4 5
N 2 3 4 5 6
M 2 2 2 2 2

The solution to Problem 2 is different from that to Prob-
lem 1 in general. Similar to the compressed sensing, the
former agrees with the latter in some cases. Theoretical
analyses for the agreement are still under consideration.
Instead, we show simulation results in this paper.

5. Simulations

We show computer simulations which demonstrate that
the proposed algorithm perfectly reconstructs sparse sig-
nals under certain conditions. We consider two recon-
struction functions, polynomial and Fourier cosine basis.

5.1 Polynomial reconstruction
Let H be a space spanned by functions

ϕk(x) = xk (0 ≤ k < K)

for [0, l] where l is a positive real number. The inner prod-
uct is defined by 〈f, g〉 = 1

l

∫ l

0
f(x)g(x)dx. Sampling

is assumed to be ideal, i.e., d
(m)
n = f(xn + δ(m)). The

sample point xn is given by

xn =
(2n + 1)l

2N
(n = 0, 1, . . . , N − 1),

which we call the base sequence. Let l = N so that the
sampling interval becomes one.
Figure 2 (a) shows a simulation result, in which the di-
mension of H is K = 8, sparsity parameter is J = 3, the
number of samples in each sequence is N = 4, and the
sequence was used M = 2 times. The offset parameter
is δ(1) = −0.4. The black line shows the target signal
f , and ‘o’ and ‘x’ respectively show the base and the first
sequences. The red line shows the reconstructed signal,
from which we can see the target signal is perfectly recov-
ered. Figure 2 (b) shows that the l1-norm of cε is indeed
minimized at ε = −0.4. We repeated the simulation for
one thousand target signals with the values shown in Table
1. Then, all of the signals are perfectly recovered as well
as the offset parameters.

5.2 Fourier cosine basis reconstruction
We used the same setup except that the reconstruction
functions are

ϕk(x) =

{
1 (k = 0),
√

2 cos
kπx

l
(0 < k < K).

Under the above defined inner product, {ϕk}K−1
k=0 is an

orthonormal basis.
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(b) l1-norm of cε

Figure 2: Simulation result. The black line shows the tar-
get signal f , and ‘o’, ‘x’, and ‘+’ respectively show the
base, the first, and the second sequences. The red line
shows the reconstructed signal which perfectly matches to
the target signal.

Figure 3 (a) shows a simulation result, in which the di-
mension of H is K = 60, sparsity parameter is J = 15,
the number of samples in each sequence is N = 20, and
the sequence was used M = 3 times. The offset parame-
ters are δ(1) = −0.2 and δ(2) = 0.3. The black line shows
the target signal f , and ‘o’, ‘x’, and ‘+’ respectively show
the base, the first, and the second sequences. The red line
shows the reconstructed signal, from which we can see the
target signal is perfectly recovered.
Unfortunately, perfect reconstruction is not always
achieved. Figure 4 shows failure rates [%] of perfect
reconstruction with respect to K. The dotted red and
the solid blue lines show the rates when J = K/4 and
J = K/6, respectively. The failure rate for J = K/4 ar-
rives at less than or equal to 1% when K > 32, while that
for J = K/6 does so when K > 30.
Even though these results are only verified through simu-
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Figure 3: Simulation result for Fourier cosine basis func-
tions. The black line shows the target signal f , and ‘o’,
‘x’, and ‘+’ respectively show the base, the first, and the
second sequences. The red line shows the reconstructed
signal which perfectly matches to the target signal.

lations, the proposed approach is attractive because of its
computational efficiency. It takes less than 0.4 second to
find the solution for the case of K = 60, N = 20, and
M = 3.
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Figure 4: Failure rates of signal recovery when reconstruc-
tion functions are Fourier cosine basis functions.

6. Conclusion

We proposed a sparse signal reconstruction algorithm
from interlaced samples with unknown offset parameters.
The algorithm is based on the l1-norm minimization prin-
ciple: First, it minimizes the l1-norm with the offset pa-
rameters fixed. Second, the minimum value is further min-
imized with respect to the parameters. Even though this
is a heuristic approach, the computer simulations showed
that the proposed algorithm perfectly reconstructs sparse
signals without failure when the reconstruction functions
are polynomials and with more than 99% probability for
large dimensional signals when the reconstruction func-

tions are Fourier cosine basis functions. Because of the
computational efficiency, the proposed algorithm is very
attractive. Theoretical analyses of these results are our
most important future task.
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