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Abstract:

As is well-known, the use of Shannon sampling to inter-
polate functions with discontinuous jump points leads to
the Gibbs’ overshoot. In image processing, it can lead to
the problem of artifacts close to edges, known as Gibbs
ringring. Its amplitude cannot be reduced by increas-
ing the sample density. Here we consider a generalized
Shannon sampling method which allows the use of time-
varying sample densities so that samples can be taken at a
varying rate adapted to the behavior of the function. Us-
ing this generalized sampling method to approximate a
periodic step function, we observe a strong reduction of
Gibbs’ overshoot. In a concrete example, the amplitude of
the Gibbs’ overshoot is reduced by about 70%.

1. Introduction

The Shannon sampling theorem [6] provides the link be-
tween continuous and discrete representations of informa-
tion and has numerous practical uses in communication
engineering and signal processing. For a review on Shan-
non sampling, see [7, 10, 1]. In addition, the Shannon
sampling theorem has been used to interpolate samples to
approximate a given function.
In the use of Shannon sampling to approximate functions
with discontinuous jump points, the well-known Gibbs’
overshoot [2, 3] has remained a persistent problem, lead-
ing to, e.g., Gibbs ringing in image compression [5]. The
clearest example for the Gibb’s phenomenon is the peri-
odic step function H(t), see Figure 1, where H(t) = 1 on
(0, 1

2 ), H(t) = −1 on ( 1
2 , 1), H(t) = 0 at t = 0, 1

2 , 1, and
H(t) has a period T = 1.
In Figure 1,H(t) is approximated using Shannon’s shifted
sinc reconstruction kernel with N = 24 sampling points
on one periodic interval [0, 1). Samples are denoted by
x in the plot, and the solid line at the top indicates the
maximum value of the approximating function, which is
1.0640. Within an error of 0.003, the 6.40% overshoot be-
yond the maximum amplitude 1 of the step function H(t)
can not be further reduced even if we increase the sam-
pling density.
However, using the generalized sampling method [4, 8, 9],
which allows the reconstruction of a function on a set
of non-equidistant sampling points, chosen adaptively ac-
cording to the behavior of the function, we show that the

Figure 1: Approximation of the step function by Shannon sam-
pling.

Gibbs overshoot can be strongly reduced. For an example,
see Figure 2.
In Figure 2, we use the same number of points N = 24
in one period as in the case of Shannon in Figure 1, but
we choose the sampling points to match the behaviour of
the step function. Intuitively, the jump in the step function
contains high frequencies. Thus more samples are taken
near the jump points t = 0, 1

2 , and 1. In this example, the
maximum value of the approximation is reduced to 1.0074
with an error of 0.0003. This is roughly a 70% reduc-
tion of Gibbs’ overshoot without increasing the number of
samples, but only varying the local sample density.
Figure 3 is a zoom-in of Figure 2 near the jump point.
The dashed line on the top indicates the maximum values
of the approximating function using the generalized sam-
pling, while the solid line indicates the overshoot in the
case of Shannon.

2. Generalized Shannon Sampling Method

The generalized Shannon sampling theory considered here
was not specifically developed for the application of re-
ducing Gibbs’ phenomena. It was originally motivated
by some fundamental physics problem in quantum gravity
[4] and was introduced to engineering for spaces of func-
tions with a new notion of time-varying Nyquist rate [8, 9].
The starting observation is that each set of Nyquist sam-
pling points in Shannon sampling turns to be the eigen-
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Figure 2: Approximating the step function by the generalized
sampling method with non-equidistant sampling points..
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Figure 3: This is a zoom-in of Figure 2 near the jump point..

values of one of the self-adjoint extensions of a particu-
lar simply symmetric multiplication operator T with de-
ficiency indices (1, 1), and the shifted sinc kernels are
the corresponding eigenfunctions. The Shannon sampling
theorem is the special case when the self-adjoint exten-
sions of T have equidistant eigenvalues. By considering a
generic such symmetric operator T , one obtains a general-
ized sampling method. We can not cover the mathematical
derivations of the new generalized sampling method here,
but we will review the key features of the generalization
along with a comparison to the Shannon sampling theo-
rem.
The Shannon sampling theorem states that if a function
φ(t) is in the space of Ω-bandlimited functions, i.e., φ(t)
has a frequency upper bound Ω, then φ(t) can be perfectly
reconstructed from its sample values {φ(tn)}n taken on a
set of sampling points {tn}n with an equidistant spacing
tn+1 − tn = 1/(2Ω) via:

φ(t) =
∞∑

n=−∞
G
(
t, tn

)
φ(tn) (1)

The function G(t, tn) is the so-called reconstruction ker-
nel, which is the shifted sinc function sinc

(
2Ω(t − tn)

)
.

The frequency upper bound Ω is called the bandwith, and
the sampling rate 1/(2Ω) is the Nyquist sampling rate.

2.1 One-Parameter Family of Sampling Lattices
We will call a set of Nyquist sampling points {tn}n a sam-
pling lattice. The Shannon sampling theorem only spec-
ifies the constant spacing between adjacent points in one
lattice, but it does not specify an initial sampling point.
Therefore, we can parameterize all possible sampling lat-
tices as:

tn(θ) =
n+ θ

2Ω
, 0 ≤ θ < 1 (2)

Hence the Shannon sampling method possesses a natural
one-parameter family of sampling lattices, and any func-
tion in the function space can be perfectly reconstructed
from its values on any fixed lattice via Eq. (1).
The generalized sampling method also possesses an anal-
ogous one-parameter family of sampling lattices, but the
points in each lattice are generally non-equidistant now.
To distinguish from the case of Shannon, we use a differ-
ent parameter α in {tn(α)}n, 0 ≤ α < 1, and assume that
{tn(α)}n are differentiable with respect to the parameter
α:

t′n(α) =
dtn(α)
dα

Shannon’s family of sampling lattices {tn(θ)}n can be
generated by a single number, namely, the constant band-
width Ω. It is so simple because the function space in
the case of Shannon has a constant bandwidth Ω. How-
ever, in the generalization, since we have a time-varying
‘bandwidth’, in the sense of Nyquist lattices with non-
equidistant points, more specification is required. The en-
tire family of sampling lattices is now generated from the
knowledge of a given lattice, say {tn(0)}, and a set of cor-
responding derivatives {t′n(0)}n by solving for t = tn(α)
in: ∑

m

t′m(0)
t− tm(0)

= π cot(πα) (3)

This equation implies that one sampling lattice and the
correponding derivatives are enough to determine the en-
tire family of sampling lattices, and hence the reconstruc-
tion kernel and the function space. This is important for
practical purposes, because one usually takes samples of a
given signal on only one lattice.
The family of sampling lattices {tn(α)}n in the general-
ization shares many important properties of the uniform
lattices {tn(θ)} of Shannon: as the parameter α (or β in
the case of Shannon) increases from 0 to 1, the sampling
lattices specified by the parameter move to the right on the
real line simultaneously and continuously with the follow-
ing continuity condition:

tn(1) := lim
α→1−

tn(α) = tn+1(0), t′n(1) = t′n+1(0) (4)

Hence, together, these sampling points in all lattices again
cover the real line exactly once. Namely, for any t ∈ R,
there exists an unique integer n and an unique α in [0, 1)
such that t = tn(α).

2.2 The Generalized Reconstruction Kernel
From the theory of self-adjoint extensions, if on each fixed
but arbitrary lattice {tn(α)}, α fixed, we let tn = tn(α),
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Figure 4: An example of generalized sinc function (or recon-
struction kernel) on an arbitrary non-equidistant sampling lattice.
The stars on the real line indicate the points in an arbitrary non-
equidistant sampling lattice, and the circles denote the same set
of points with an amplitude 1.

t′n = t′n(α), then the reconstruction kernel in the general-
ized sampling theorem reads:

G(t, tn) = (−1)z(t, tn)

√
t′n

| t− tn|

(∑
m

t′m
(t− tm)2

)−1/2

(5)
where z(t, tn) is the number of the sampling points
{tm}m between t and tn exclusively.
As functions in t, for each fixed α, the set of functions{

g(α)
n (t) = G(t, tn(α))

}
n

(6)

forms a basis of the function space. Thus, indeed, in the
generalized sampling theorem, every function in the func-
tion space specified by the family of sampling lattices can
be expanded using these basis functions.
These continuous functions in Eq. (6) have analogous
properties to the shifted sinc function of Shannon: they
interpolate all the points in the lattice specified by α

g(α)
n (tm(α)) = G

(
tm(α), tn(α)

)
= δmn

and their maximum values are all 1 at the sampling points
about which they are ‘centered’. This is important for the
stability of reconstruction. We will refer to these basis
functions as generalized sinc functions. See Figure 4 for
an example.
It is important to recall that each set of basis functions{
g

(α)
n (t)

}
n

specified by α spans the same function space.
This property is remarkable since as in Figure 4, the shape
of the generalized sinc functions is quite non-trivial.
To recover the Shannon sampling theorem as a special
case, we choose any uniform sampling lattice {tn}n with
tn+1 − tn = 1

2Ω for all n, together with constant deriva-
tives t′n = C. Then the reconstruction kernel in (5) sim-
plifies to the sinc kernel sinc

(
2Ω(t − tn)

)
, by using the

following trignometric identity:

π2

sin2(πz)
=

+∞∑
k=−∞

1
(z − k)2

(7)

2.3 Interpolation Strategy

To approximate a given function, depending on the behav-
ior of the function, one must select a sampling lattice for
interpolation. Arising from the theory of self-adjoint ex-
tensions, the chosen lattice {tn}n must have a minimum
and maximum spacing, namely, there must exist positive
real numbers δmin and ∆max such that:

0 < δmin ≤ ∆tn = tn+1 − tn ≤ ∆max for all n (8)

From Section 2.1 Eq. (3), we know that one also needs a
set of corresponding derivatives to apply the generalized
sampling method. So the question is, for a given lattice
{tn}n, what is a suitable choice of the set of corresponding
derivatives {t′n}n?
To this end, we notice that the derivative t′n(α) is the ve-
locity with which the sampling points tn(α) are moving to
the right along the real line for increasing α at t = tn(α).
Hence, a good candidate for t′n is the distance travelled in
one period of α, which is the spacing between two adja-
cent points ∆tn = tn+1 − tn. For symmetry, we set t′n
to be the average distance between tn to its previous and
successive points:

t′n =
1
2

(
∆tn + ∆tn−1

)
=

1
2

(
tn+1 − tn−1

)
(9)

Here a constant prefactor for the derivatives on a fixed lat-
tice does not matter because the reconstruction kernel is
independent of a scalar multiplication of the derivatives:
in (5), the prefactor in

√
t′n-term will cancel out the one

in t′m on the numerator inside the series.
With this set of initial data {tn}n and {t′n}n, we have an
explicit expression of the reconstruction kernel (5). Hence
we can construct the interpolating function φ(t) through
all the sample points

{(
tn, φ(tn)

)}
n

using the reconstruc-
tion formula (1).

3. Reduction of Gibbs’ Overshoot

3.1 Reconstruction of Periodic Functions

The clearest example to demonstrate the reduction of
Gibb’s overshoot using the generalized sampling method
is the periodic step function H(t). One of the reasons for
choosing a periodic function is that the infinite summa-
tions in the both reconstruction kernel (5) and the recon-
struction formula (1) will simplify to a finite sum. Hence,
we eliminate the truncation error in the summation.
To this end, assume that the function φ(t) has a period of
T , and we take N sampling points on one period [0, T ),
which are denoted by {τ1, τ2, . . . , τN} ⊆ [0, T ). Hence,
all the sampling points are

tnN+k = nT + τk, 1 ≤ k ≤ N,n ∈ N (10)

and from the periodictiy, we have

t′nN+k = t′k, φ(tnN+k) = φ(tk) (11)

After a lengthy calculation, the reconstruction kernel (5)



on this periodic lattice now reads:

G(t, tnN+K) =
(−1)z(t,tnN+l)

√
t′k

|t− tnN+K |

π

T

( N∑
l=1

t′l sin
−2
( π
T

(t− τl)
))−1/2

(12)

and the reconstruction formula (1) of the T -periodic func-
tion φ(t) reads:

φ(t) =
N∑
k=1

(−1)z(t,tnN+k)
√
t′k cot

( π
T

(t− τk)
)

( N∑
l=1

t′l sin
−2
( π
T

(t− τl)
))−1/2

φ(tk)

(13)

As discussed in Section 2.3, for using the formulae (12)
and (13) to approximate a periodic step function H(t), the
only task now left is to find a sampling lattice adapted to
the behavior ofH(t). With a periodic lattice (10), we only
need to pick up a finite number N of them on [0, T ).

3.2 Approximating a Periodic Step Function
Before we discuss how to determine a set of non-
equidistant sampling points, let us first consider why the
uniform lattices of Shannon do not work very well. Intu-
itively, because of the sudden change in the amplitude of
a step function H(t) at its jump points t = 0, 1

2 and 1,
the function can be considered to suddenly oscillate at an
“infinite” frequency in a sufficiently small neighborhoods
at the jump points, namely to have an ‘infinite’ bandwidth
at t = 0, 1

2 and 1. Recall that the constant Nyquist spacing
1/(2Ω) in the case of Shannon is inversely proportional to
the bandwidth Ω. A uniform lattice implies uniform band-
width. Intuitively, the uniform lattice in the case of Shan-
non is therefore not matched with the increase of band-
width in the small neighborhoods of jump points.
We therefore choose N sampling points with non-
equidistant spacings so that the smallest spacing (the high-
est bandwidth) occurs near the jump points at t = 0, 1

2 , 1,
and the spacing gradually increases away from the jump
points (the bandwidth decreases). We used the easiest such
increasing change in spacing, which is linear.
Due to the symmetry of the jump points at t = 0, 1

2 , 1, we
divide one period [0, 1) into four equal subintervals with
length 1

4 . On the first subinterval, [0, 1
4 ), we choose K

points so that their adjacent spacing is linearly increasing.
Let δ be the linear increment in spacing, then

τ1 = 0, τ2 = δ, τ3 = 3δ, . . .

τK =
1
2
K(K − 1)δ

(14)

The (K + 1)st point is 1
4 . The sampling points on ( 1

4 ,
1
2 ]

are a mirror image of the points on [0, 1
4 ) with respect to

t = 1
4 , and the points on [ 1

2 , 1) repeat the ones on [0, 1
2 ).

Therefore, we have in total N = 4K points on [0, 1).
The approximation in Figure 2 is obtained in this way with
K = 6. Hence it has the same total number of sampling
points (N = 24) on [0, 1) as in Figure 1. Its maximum

amplitude is 1.0193, which is a significant reduction com-
pared to the maximum amplitude 1.0640 in Gibbs’ over-
shoot (Figure 1).

4. Outlook

The question arises how far one can ultimately reduce the
Gibb’s overshoot? Is the linear change in sampling spac-
ing, as in Eq. (14), the optimal lattice spacing to match
the behavior of a step function? This question will be ad-
dressed in a longer following-up paper, in which we will
pursue an analytical optimization of the Gibbs’ overshoot
reduction.
To this end, the fact that the closed form of the recon-
struction kernel (12) is available in the case of periodic
functions has an important advantage: it in effect reduces
infinitely many points to a set of finitely many points. We
can then analytically study the behavior of the constructed
approximating functions. Eventually, we hope such an an-
alytical study can lead us to the ultimately goal, which is
to provide solution to design optimally adapted lattices for
arbitrary given functions.
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