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Abstract:
In this paper, we study 2D cylindrical Positron Emission
Tomography (2D PET) sampling. We show that rectangu-
lar sampling schemes are more efficient than usual square
schemes.

1. PET and sampling

1.1 PET
The aim of Positron Emission Tomography (PET) is to
map the internal nuclear activity of a patient from exte-
rior measurement. Usually, the patient received some nu-
clear substance by inhalation or injection. In PET this
substance is tagged with a radioactive isotope, such as
Carbon-11, Fluorine-18, Oxygen-15. This substance has
also chemical and biological properties that enable to vi-
sualize metabolism and functions of patient organs (such
as blood flow). This substance, called radiotracer, emits a
positron per decay. The positron annihilates with an elec-
tron, which results in the emission of two opposite gamma
rays detected in a PET system. Thanks to detectors sur-
rounding the patient and a powerful electronic processing,
coincident photon pairs can be sorted, meaning that the
emission occurred on the line joining both detectors.
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Figure 1: Parametrization of a LOR with the variables
(ψ1, z1, ψ2, z2).

In a cylindrical PET system of radius r, see Fig. 1, the
unitary detectors are distributed on a cylinder surrounding
the patient (supposed to lie in a cylinder of radius ρ). Each
gamma ray detector localization can be parametrized by
cylindrical coordinates (ψ, z). When the coincidence on
two detectors (ψ1, z1) and (ψ2, z2) is detected, one knows

that some activity occurs on the line joining the detectors
(ψ1, z1) and (ψ2, z2). This line is called a LOR (Line Of
Response).
In 2D mode, lead rings called septa, see Fig. 2, are used
to restrict detected LORs to be essentially perpendicular
to the PET cylinder axis. In this case, LORs have only
three parameters (ψ1, ψ2, z), see Fig. 3. LORs with a
small oblicity (crossed LORs) are usually approximated to
LORs perpendicular to the axis, between two true detec-
tors rings, creating a virtual detection ring, allowing to im-
prove the sampling rate along the axis direction, see Fig. 2.
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Figure 2: Crossed LORs interpolated to improve axial
sampling .
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Figure 3: Parametrization of a LOR with the variables
(ψ1, ψ2, z).

In 2D PET, after the attenuation correction [5] the measure
can be modeled by g : [0, 2π]× [0, 2π]× R→ R, with

g (ψ1, ψ2, z) =
∫

R
f (u (ψ1, z) + tθ (ψ1, ψ2)) dt

with u (ψ1, z) = (r cosψ1, r sinψ1, z)
t and θ (ψ1, ψ2) =



1

2|sin(ψ1−ψ2
2 )| (cosψ2 − cosψ1, sinψ2 − sinψ1, 0)t. Ob-

viously g satisfies the symmetry relation

g(ψ1, ψ2, z) = g(ψ2, ψ1, z). (1)

1.2 Sampling
We want to sample a function g being 2π-periodic in its
two first variables and in R in its third variable. This is
a particular case of the general framework of sampling of
function on groups, see for example [2, 3]. In this case, the
Fourier transform of g ∈ C∞0 ([0; 2π[×[0; 2π[×R) can be
defined by:

ĝ(ξ) =
1

(2π)2
√

2π

∫

[0;2π[

∫

[0;2π[

∫

R
g(x)e−ix·ξdx,

where x = (ψ1, ψ2, z)t ∈ [0; 2π[×[0; 2π[×R, ξ =
(p1, p2, ζ)t ∈ Z× Z× R and ξ · x = p1ψ1 + p2ψ2 + ζz.
The inverse Fourier transform defined for G a function on
Z× Z× R is given by

Ǧ(x) =
1√
2π

∫

Z×Z×R
G(ξ)eix·ξ

=
1√
2π

∑

p1∈Z

∑

p2∈Z

∫

ζ∈R
G(p1, p2, ζ)ei(p1ψ1+p2ψ2+ζz)dζ.

Let K ⊂ Z × Z × R, the non-overlapping Shannon con-
dition associated to K for the sampling lattice LW =
WZ3 ∩ ([0; 2π[×[0; 2π[×R) generated by the non singu-
lar 3 × 3 matrix W is that the sets K + 2πW−tl, l ∈ Z3

are disjoint sets in Z × Z × R. The Petersen-Middleton
theorem [6, 3] yields the Fourier interpolation formula

(SW g)(x) =
1√
2π
| detW |

∑

y∈LW
g(y)χ̌K(x− y),

where χK is the indicator function of the set K. The in-
terpolation error is given by

||SW g − g||∞ ≤ 2√
2π

∫

ξ 6∈K

|ĝ(ξ)|dξ.

Thus if K is the essential support of ĝ, i.e.,
∫
ξ 6∈K

|ĝ(ξ)|dξ
can be negligible, then the interpolation error is low. The
geometry of the set K can be exploited for the design of
efficient sampling schemes, i.e., the choice of W satisfy-
ing the Shannon condition with |detW |maximal in order
to minimize the number of sampling points.
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Figure 4: Fan beam (a) and natural PET (b) parametriza-
tion in a transverse plane .

2. 3D Sampling in cylindrical PET 2D mode

In [1] we have established the sampling conditions of the
3D Fan-Beam X-ray Transform (3DFBXRT):

De3⊥f(β, α, z) =
∫

Lβ,α,t

f(u)du,

where u ∈ R3, Lβ,α,z is the line in the plane perpen-
dicular to e3 at abscissa z (z ∈ R), joining the source
at r(cosβ, sinβ, 0)t + ze3, β ∈ [0, 2π[ and the detector
at angular position α ∈ [−π/2, π/2[, see Fig. 4. This ge-
ometry appears in X-ray CT scanner when considering the
reconstruction of many 2D slices. Cylindrical PET in 2D
mode can be linked with the 3DFBXRT in the following
way:

g(x) = D3Df(A(x− eπ)) (2)

where x = (ψ1, ψ2, z)t, eπ = (0, π, 0)t, and

A =




1 0 0
− 1

2
1
2 0

0 0 1




see Fig 4.
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Figure 5: Kg: essential support of ĝ for η = ρ/r = 2/3,
slices in the planes (p1, p2) (left) and (v, ζ) (right). The
3D set Kg is just at the intersection of two cylinders of
respective basis the slices in the (p1, p2) and (v, ζ) and
respective axis ζ and the direction perpendicular to (v, ζ)
.

This link allows to easily estimate the essential support of
ĝ : Z× Z× R→ R. Indeed,

ĝ(ξ) =
∫

[0;2π[

∫

[0;2π[

∫

R
g(x)e−ix·ξdx

=
∫

[0;2π[

∫

[0;2π[

∫

R
D3Df(A(x− eπ))e−ix·ξdx

=
∫

[0;2π[

∫

[0;2π[

∫

R
D3Df(Ax)e−ix·ξ+ip2πdx

=
(−1)p2

| detA|
∫

[0;2π[

∫

[0;2π[

∫

R
D3Df(x)e−i(A

−1x)·ξdx

=
(−1)p2

| detA|
∫

[0;2π[

∫

[0;2π[

∫

R
D3Df(x)e−ix·(A

−tξ)dx

=
(−1)p2

| detA|D̂3Df(A−t(ξ))

From this link we see that the essential support of ĝ is
simply a linear transformation of the essential support of



D̂3Df . From [1] it can be easily shown that Kg, the es-
sential support of ĝ(p1, p2, ζ) when the emission function
f is supposed the be essentially Ω band limited, is given
by

Kg = {(p1, p2, ζ) ∈ Z× Z× R,
|p1 − p2|2 + r2ζ2 < Ω2r2; r|p1 + p2| < ρ|p1 − p2|}

see Fig. 5 for a representation.
The angles ψ1 and ψ2 parametrize the same detector ring,
thus their sampling must be identical. We consider here
only standard sampling, i.e. equidistant sampling along
each direction. The most efficient diagonal matrix satisfy-
ing the non overlapping Shannon conditions, see Fig. 6, is
given by:

2πW−t
S = Ω




r 0 0
0 r 0
0 0 2


 ,WS =

2π
rΩ




1 0 0
0 1 0
0 0 r

2




(3)
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Figure 6: Non overlapping conditions for the rectangular
sampling scheme .

Thus we see that the most efficient sampling distances are
∆ψ1 = 2π/rΩ(= ∆ψ2) and ∆z = π/Ω. lz = ∆z would
thus be the detector axial length. If we approximate the
detector tangential length by lt = r∆ψ1, we see that the
most efficient relation is lz = lt/2, thus the most efficient
detectors from the sampling point of view are rectangular
detectors. The empirical ring oversampling by rebinning
the crossed LORs as in Fig. 2 yields exactly the factor 2 of
oversampling in the direction z needed for efficient sam-
pling. This is a theoretical justification of this widely used
heuristic rebinning method.

3. Numerical experiments

3.1 Essential support
We have computed from numerical phantom the essential
support of |ĝ(p1, p2, ζ)| see Fig. 7. In (a) and (c) the sim-
ulation is based on simple line integrals of a phantom f
built with 3 concentric weighted ball indicator functions:

f = χB(c,0.03) + χB(c,0.05) + χB(c,0.07) where χB(c,r) is
the indicator function of the ball of radius r centered on
c = (0.9, 0, 0). The data are simulated for a PET of radius
1.5 with 32 rings and 300 detectors on each ring. (b) and
(d) are based on a Monte Carlo (MC) simulation computed
with GATE [4]. The phantom f is built with 5 concen-
tric weighted ball sources (of radius r expressed in mm):
f = a(χB(c,9)+χB(c,10)+χB(c,11)+χB(c,12)+χB(c,13)),
where the center c = (130, 0, 0) mm and the activity
a = 106 becquerel. The data are simulated for a PET
of radius 402 mm with 32 rings and 576 detectors on
each ring, imitating the ECAT EXACT HR+ scanner of
CTI/Siemens. We see that the simulation data are in good
agreement with the theoretical results.
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Figure 7: In (a) and (c) the emission function f is the sum
of 3 concentric indicator functions. In (b) and (c) the data
are obtained by a MC simulation of 5 concentric spherical
sources. (a) and (b) slice ζ = 0 of |ĝ(p1, p2, ζ)| ; (c) and
(d) 3D visualization of the isosurface at 1% of maximum
of |ĝ(p1, p2, ζ)| (|ĝ(p1, p2, ζ)| is essentially negligible out-
side of this surface) .

3.2 Reconstruction resolution
In Fig. 8, Fig. 9 and 10, we present the reconstruction
of the clock phantom, see [8], from simple line integrals.
The simulated cylindrical PET is of radius r = 1.5, the
reconstruction region is of radius ρ = 1. We consider
two sampling schemes with essentially the same number
of data. The square scheme is based on square detectors,
with lt = lz = 0.049. The number of ring is 20. The num-
ber of detectors on a ring is 190. The rectangular scheme
is based on rectangular detectors, with lt = 2lz = 0.062.
The number of ring is 32. The number of detectors on a
ring is 150. We see in these numerical experiments that
the rectangular scheme yields better reconstructions than
the square scheme.

4. Conclusion

We have shown the efficiency of the rectangular sampling
scheme over the square scheme in 2D mode cylindrical
PET. Sampling conditions in fully 3D PET as initiated
in [7] are now being investigated.
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Figure 8: A = Original image: transverse view ; B = Im-
age profile ; C = Original image: axial view ; D = Image
profile 1 ; E = Image profile 2 .
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Figure 9: A = Square scheme image: transverse view ; B =
Rectangular scheme image: transverse view ; C = Square
scheme image profile ; D = Rectangular scheme image
profile .

A B

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

C D

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

E F

Figure 10: A = Square scheme image: axial view ; B
= Rectangular scheme image: axial view ; C = Square
scheme image profile 1 ; D = Rectangular scheme im-
age profile 1 ; E = Square scheme image profile 2 ; F =
Rectangular scheme image profile 2 .
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