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Double Dirichelet Averages and Complex B-Splines

A relation between double Dirichlet averages and multivariate complex B-splines is presented. Based on this reationship, a formula for the computation of certain moments of multivariate complex B-splines is derived.

Introduction

Recently, a new class of B-splines with complex order z, Re z > 1, was introduced in [START_REF] Forster | Complex B-splines[END_REF]. It was shown that complex B-splines generate a multiresolution analysis of L 2 (R). Unlike the classical cardinal B-splines, complex B-splines B z possess an additional modulation and phase factor in the frequency domain: B z (ω) = B Re z (ω) e i Im z ln |Ω(ω)| e -Im z arg Ω(ω) ,

where Ω(ω) := (1 -e -iω )/(iω). The existence of these two factors allows the extraction of additional information from sampled data and the manipulation of images. In [START_REF] Forster | Statistical encounters with complex B-splines[END_REF] and [START_REF] Massopust | Multivariate complex B-splines and Dirichlet averages[END_REF], some further properties of complex Bsplines were investigated. In particular, connections between complex derivatives of Riemann-Liouville or Weyl type and Dirichlet averages were exhibited. Whereas in [START_REF] Forster | Statistical encounters with complex B-splines[END_REF] the emphasis was on univariate complex B-splines and their applications to statistical processes, multivariate complex B-splines were defined in [START_REF] Massopust | Multivariate complex B-splines and Dirichlet averages[END_REF] using a wellknown geometric formula for classical multivariate Bsplines [START_REF] Karlin | Multivariate splines: A probabilistic perspective[END_REF][START_REF] Micchelli | A constructive approach to Kergin interpolation in R k : Multivariate B-splines and Lagrange interpolation[END_REF]. It was also shown that Dirichlet averages are especially well-suited to explore the properties of multivariate complex B-splines. Using Dirichlet averages, several classical multivariate B-spline identities were generalized to the complex setting. There also exist interesting relationships between complex B-splines, Dirichlet averages and difference operators, several of which are highlighted in [START_REF] Forster | Multivariate complex B-splines, Dirichlet averages and difference operators[END_REF]. This short paper presents a generalization of some results found in [START_REF] Carlson | B-splines, hypergeometric functions, and Dirichlet averages[END_REF][START_REF] Neuman | Moments of Dirichlet splines and their applications to hypergeometric functions[END_REF] to complex B-splines. For this purpose, the concept of double Dirichlet average [START_REF] Carlson | Appell functions and multiple averages[END_REF] was introduced and its definition extended via projective limits to an infinite-dimensional setting suitable for complex Bsplines. Moments of complex B-splines are defined and a formula for their computation in terms of a special double Dirichlet average presented.

Complex B-Splines

Let n ∈ N and let △ n denote the standard n-simplex in R n+1 :

△ n := u :=(u 0 , . . . , u n ) ∈ R n+1 u j ≥ 0; j = 0, 1, . . . , n; n j=0 u j = 1 .
The extension of △ n to infinite dimensions is done via projective limits. The resulting infinite-dimensional standard simplex is given by

△ ∞ :=    u := (u j ) j ∈ (R + 0 ) N0 ∞ j=0 u j = 1    ,
and endowed with the topology of pointwise convergence, i.e., the weak * -topology. We denote by µ b = lim ← -µ n b the projective limit of Dirichlet measures µ n b on the ndimensional standard simplex △ n with density

Γ(b 0 ) • • • Γ(b n ) Γ(b 0 + • • • + b n ) u b0-1 0 u b1-1 1 • • • u bn-1 n . (1) 
Here, Γ :

C\Z - 0 → C denotes the Euler Gamma function. Let R + := {x ∈ R | x > 0} and let C + := {z ∈ C | Re z > 0}.

Definition 1 ([6]). Given a weight vector b ∈ C N0

+ and an increasing knot sequence τ :

= {τ k } k ∈ R N0 with the property that lim k→∞ k √ τ k ≤ ̺, for some ̺ ∈ [0, e), a complex B-spline B z (• | b; τ ) of order z, Re z > 1, with weight vector b and knot sequence τ is a function satisfy- ing R B z (t | b; τ )g (z) (t) dt = △ ∞ g (z) (τ • u) dµ b (u) (2)
for all g ∈ S (R).

Here, S (R) denotes the space of Schwartz functions on R, and τ

• u = k∈N0 τ k u k for u = {u k } k∈N0 ∈ △ ∞ .
In addition, we used the Weyl or Riemann-Liouville fractional derivative [START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF][START_REF] Miller | An Introduction to the Fractional Calculus and Fractional Differential Equations[END_REF][START_REF] Samko | Fractional Integrals and Derivatives[END_REF] of complex order z, Re z > 0, W z : S (R) → S (R), defined by

(W z f )(x) := (-1) n Γ(ν) d n dx n ∞ x (t -x) ν-1 f (t) dt,
with n = ⌈Re z⌉, and ν = n -z. Here ⌈ • ⌉ : R → Z, x → min{n ∈ Z | n ≥ x}, denotes the ceiling function.

To simplify notation, we write f (z) for W z f It is easy to show that the univariate complex B-spline

B z (t | b; τ ) is an element of L 2 (R) [5].
Remark 2. For finite τ = τ (n) and b = b(n) and z := n ∈ N, (2) defines also Dirichlet splines if g is chosen in C n (R). For, Dirichlet splines D n ( • | b; τ ) of order n are defined as those functions for which

R g (n) (t)D n (t| b; τ ) dt = ∆ n g (n) (τ • u) dµ b (u),
holds true for τ ∈ R n+1 and for all g ∈ C n (R), and thus for g ∈ S (R).

To define a multivariate analogue of the univariate complex B-splines, we proceed as follows. Let λ ∈ R s \ {0} be a direction, and let g : R → C be a function. The ridge function corresponding to g is defined as g λ : R s → C,

g λ (x) = g( λ, x ) for all x ∈ R s .
We denote the canonical inner product in R s by •, • and the norm induced by it by • .

Definition 3 ([9]). Let τ = {τ n } n∈N0 ∈ (R s ) N0 be a sequence of knots in R s with the property that ∃ ̺ ∈ [0, e) : lim sup n→∞ n τ n ≤ ̺. (3) 
The multivariate complex B-spline B z (• | b, τ ) : R s → C of order z, Re z > 1, with weight vector b ∈ C N0 + and knot sequence τ is defined by means of the identity

R s g( λ, x )B z (x | b, τ ) dx = R g(t)B z (t | b, λτ ) dt, (4) 
where g ∈ S (R), and where λ ∈ R s \ {0} such that λτ := { λ, τ n } n∈N0 is separated. [START_REF] Forster | Multivariate complex B-splines, Dirichlet averages and difference operators[END_REF]. Moreover, it follows from the Hermite-Genocchi formula for the univariate complex B-splines

As consequence of the fact that

B z (• | b; τ ) ∈ L 2 (R), one obtains from the above definition that B z (• | b, τ ) ∈ L 2 (R s )
B z ( • | b, λτ ) and (4), that B z ( x | b, τ ) = 0, when x / ∈ [τ ]
, the convex hull of τ . 

Dirichlet Averages

Here, • now denotes the canonical Euclidean norm on C s . (See also [START_REF] Forster | Statistical encounters with complex B-splines[END_REF].)

Definition 4. Let f : Ω ⊂ C s → C be a measurable function. The Dirichlet average F : C N0 + × Ω N0 → C over △ ∞ is defined by F (b; τ ) := △ ∞ f (τ • u) dµ b (u),
where µ b = lim ← -µ n b is the projective limit of Dirichlet measures on the n-dimensional standard simplex △ n . We remark that the Dirichlet average is holomorphic in b ∈ (C + ) N0 when f ∈ C(Ω, C) for every fixed τ ∈ Ω N0 . (See [START_REF] Carlson | Special Functions of Applied Mathematics[END_REF] for the finite-dimensional case and [START_REF] Massopust | Multivariate complex B-splines and Dirichlet averages[END_REF] for the infinite-dimensional setting.)

Definition 5. [1] Let f : Ω ⊂ C → C be continuous. Let b ∈ C k+1 + and β ∈ C κ+1
+ . Suppose that for fixed k, κ ∈ N, X ∈ C (k+1)×(κ+1) and that the convex hull [X] of X is contained in Ω. Then the double Dirichlet average of f is defined by

F (b; X; β) := △ k △ κ f (u • Xv)dµ k b (u)dν κ β (v),
where u + . Now suppose that X ∈ C N0×N0 is a infinite matrix with the property that

• Xv := k i=0 κ j=0 u i X ij v j . Note that F (b; X; β) is holomorphic on Ω in
∞ i=0 ∞ j=0 |X ij | converges. Let u • Xv := ∞ i=0 ∞ j=0 u i X ij v j .
Suppose that Ω ⊂ C contains the convex hull [X] of X and that f : Ω → C is continuous. The double Dirichlet average of f over △ ∞ is then given by

F (b; X; β) := △ ∞ △ ∞ f (u • Xv)dµ b (u)dν β (v). ( 6 
)
(We use the same symbol for the (double) Dirichlet average over △ ∞ and its finite-dimensional projections △ n .) It is easy to show that

F (b; X; β) = △ ∞ F (β; uX)dµ b (u), (7) 
where uX := { u, X j } j∈N0 , with X j denoting the jcolumn of X.

We note that F (b; X; β) is holomorphic in the elements of b, β, and X over △ ∞ . For z ∈ C + , we define

F (z) (b; X; β) := △ ∞ △ ∞ f (z) (u • Xv)dµ b (u)dν β (v).
(See also [START_REF] Massopust | Multivariate complex B-splines and Dirichlet averages[END_REF] for the case of a single Dirichlet average.)

Double Dirichlet Averages and Complex B-Splines

Assume now that the matrix X is real-valued and of the form X ij = 0, for i ≥ s and all j ∈ N 0 , some s ∈ N. In other words, X ∈ R s×N0 .

Theorem 6. Suppose that β ∈ R ∞ + and that Re z > 1.

Let b := (b 0 , b 1 , . . . , b s-1 ) ∈ R s be such that s-1 i=0 b i / ∈ -N 0 . Assume that f ∈ S (R + ).
Further assume that uX is separated for all u ∈ △ s-1 . Then

F (z) (b; X; β) = R s B z (x | β, X) F (z) (b; x)dx.
Proof. We prove the formula first for b ∈ R s + . To this end, we identify u = (u 0 , u 1 , . . . , u s-1 , 0, 0, . . .) ∈ △ ∞ with (u 0 , u 1 , . . . , u s-1 ) ∈ △ s-1 . By the Hermite-Genocchi formula for complex B-splines (see [START_REF] Forster | Statistical encounters with complex B-splines[END_REF] and to some extend [START_REF] Massopust | Multivariate complex B-splines and Dirichlet averages[END_REF]), we have that

F (z) (β; uX) = △ ∞ f (z) (u ′ • uX) dµ β (u ′ ) = R f (z) (t)B z (t | β, uX)dt
Substituting this expression into (7) and using [START_REF] Forster | Complex B-splines[END_REF] gives

F (z) (b;X; β) = △ ∞ R s f (z) ( u, x )B z (x | β, uX) dx dµ b (u).
Interchanging the order of integration yields the statement for b ∈ R s + . To obtain the general case b ∈ R s , we note that by Theorem 6.3-7 in [START_REF] Carlson | Special Functions of Applied Mathematics[END_REF], the Dirichlet average F can be holomorphically continued in the b-parameters provided s-1 i=0 b i / ∈ -N 0 .

Remark 7. Theorem 6 extends Theorem 6.1 in [START_REF] Neuman | Moments of Dirichlet splines and their applications to hypergeometric functions[END_REF] to complex B-splines and the △ ∞ -setting.

Moments of Complex B-Splines

Following [START_REF] Carlson | Special Functions of Applied Mathematics[END_REF], we define the R-hypergeometric function R a (b; τ

) : R s + × Ω s → C by R a (b; τ ) := △ s-1 (τ • u) a dµ s-1 b (u), (8) 
where

Ω := H, H a half-plane in C \ {0}, if a ∈ C \ N,
and Ω := C, if a ∈ N. It can be shown (see [START_REF] Carlson | Special Functions of Applied Mathematics[END_REF]) that R -a , a ∈ C + , has a holomorphic continuation in τ to C 0 , where

C 0 := {ζ ∈ C | -π < arg ζ < π}.
Taking in the definition of the double Dirichlet average (6) for f the real-valued function t → t -c , where c := s-1 i=0 b i , the resulting double Dirichlet average is denoted by R -c (b; X; β) and generalizes power functions. The corresponding single Dirichlet average R -c (b; x), where x = (x 0 , . . . , x s-1 ), is given by

R -c (b; x) = s-1 i=0 x -bi i , x / ∈ [X]. (9) 
(See, [START_REF] Carlson | Special Functions of Applied Mathematics[END_REF], (6.6-5).) Now, let p = (p 0 , p 1 , . . . , p s-1 ) ∈ R s , s ∈ N, be a multiindex all of whose components satisfy p i < -1 2 . The moment M x bi i .

The above considerations together with Theorem 6 immediately yield the next result. (10)
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