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Abstract:
Fourier sampling algorithms exploit the spectral sparsity
of a signal to reconstruct it quickly from a small number
of samples. In these algorithms, the sampling rate is sub-
Nyquist and the time to reconstruct the dominate frequen-
cies depends on the type of algorithm—some scale with
the number of tones found and others with the length of the
signal. The Ann Arbor Fast Fourier Transform (AAFFT)
scales with the number of desired tones. It approximates
the DFT of a spectrally sparse digital signal on a fixed
block by taking a small number of structured random sam-
ples. Unfortunately, to acquire spectral information on a
particular block of interest, the samples acquired must be
appropriately correlated for that block. In other words, the
sampling pattern, though random, depends on the block of
interest. When blocks of interest overlap significantly, the
union of the sampling patterns may not be an optimal one
(it might not be sub-Nyquist anymore). Unlike the much
slower algorithms, the sampling pattern does not accom-
modate an arbitrary block position. We propose a new
sampling procedure called Continuous Fast Fourier Sam-
pling which allows us to continuously sample the signal
at a sub-Nyquist rate and then apply AAFFT on any ar-
bitrary block. Thus, we have a highly resource-efficient
continuous Fourier sampling algorithm.

1. Introduction

Let x be a discrete time signal of length n which is sparse
or compressible in the frequency domain but the exact fre-
quency content depends on time. We consider the problem
of computing the frequency content present in different
blocks of the signal in a resource efficient manner. This
problem arises in many applications such as cognitive ra-
dio [2] where a wireless node alters its transmission or
reception parameters based on active monitoring of radio
frequency spectrum at various times. Another application
is incoherent demodulation of communication signals [3]
such as FSK, MSK, OOK, etc., where the computed fre-
quency spectrum at different times represents the message
being transmitted itself.
There are several Fourier sampling algorithms [1, 8, 9]
with low sampling costs that reconstruct the entire spec-
trum of a sampled signal. These algorithms make use of
a uniformly random (not structured) sample set for com-
putations thus allowing us to compute frequencies in any

arbitrary block of interest from the signal. However, the
time to reconstruct the spectrum is superlinear in signal’s
size and hence are slow and inappropriate for the appli-
cations involving large signal sizes or bandwidths where
just a few frequencies are of interest. Instead, we consider
a sub-linear time computational method called the AAFFT
(Ann Arbor Fast Fourier Transform) described in [4].

Figure 1: Figure showing the samples acquired in S1 and
the samples required to apply AAFFT on B = [16, 47].

Let y be a fixed block of interest of length N in the dis-
crete time signal x. Since x is sparse in frequency do-
main, it can be assumed that y has only m dominant
digital frequencies, where m � N . The AAFFT algo-
rithm takes a small number of (correlated) random sam-
ples from the block of interest and produces an approxi-
mation of its DFT (identifies dominant tones), using time
and storagempoly(log(N)). If we are interested in a win-
dowed Fourier analysis of x over windows of length N ,
a straightforward approach towards solving our problem
using AAFFT is to divide the signal x into consecutive
non-overlapping blocks of length N , generate appropri-
ately correlated sampling patterns for each block, acquire
the samples and then apply AAFFT on each block. Let
us call this sample set S1. Unfortunately, S1 does not ac-
commodate arbitrary block positions. For example, con-
sider samples acquired in S1 from two consecutive blocks
B1 and B2. Lets say we are now interested in block B
which consists of second half of B1 and first half of B2
(see Figure (1)). However AAFFT cannot be applied on
B since the samples acquired from B will not be appro-
priately structured for its application. This is illustrated in
Figure (1) for a simple case of N = 32 with a dummy
y-axis and a few samples plotted for clarity.
We propose a new sampling procedure called the Con-
tinuous Fast Fourier Sampling that allows us to continu-



ously sample the signal (as opposed to division into dis-
crete blocks) at a sub-nyquist rate and then apply AAFFT
on any arbitrary block of interest. The article describes the
algorithm in detail in Section (3.2), proves its correctness
in Section (3.3), followed by a few numerical experiments
and results in Section (3).

2. The Fourier Sampling Algorithm
(AAFFT)

The Fourier Sampling algorithm is predicated upon non-
evenly spaced samples unlike many traditional spectral es-
timation techniques [6, 7] and uses a highly nonlinear re-
construction method that is divided into two stages, fre-
quency identification and coefficient estimation, each of
which includes multiple repetitions of basic subroutines.
A detailed description of the implementation of AAFFT is
available in [5].
Frequency Identification consists of two steps, dominant
frequency isolation and identification. Isolation is carried
out by a two-stage process: (i) pseudo random permuta-
tions of the spectrum, followed by (ii) the application of
a filter bank with K = O(m) bands, where m = number
of tones (dominant spikes) in the signal. With high proba-
bility, a significant fraction of the dominant tones fall into
individual bands, isolating each tone from the others and
this probability can be increased with additional repeti-
tions. Note that all the above is carried out conceptually
in the frequency domain but instantiated in the time do-
main. That is, we sample the permuted and filtered signal
in the time domain. To carry out the computations, the
algorithm uses signal samples at time points indexed by
P (t, σ) = {(t+ qσ) mod N, q = 0, 1, ..,K − 1}, where
(t, σ) is randomly chosen for each repetition. The identifi-
cation stage performs group testing to determine the dom-
inant frequency value in each of the K outputs of the fil-
terbank. This stage uses the samples indexed at arithmetic
progressionsP (tb, σ) formed from each element of the ge-
ometric progression tb = t+ N

2b+1 , b = 0, 1, .., log2(N/2).
The estimation stage uses the random sampling similar to
the isolation stage for coefficient estimation of each of the
dominant frequencies identified.
Note that although the (t, σ) pair is chosen randomly in
each repetition, the samples that result from each pair are
highly structured. LetA1 = {(t, σ)} used in the frequency
identification stage and similarly let A2 be defined for the
estimation stage. These two sets define a sampling pattern.

3. Continuous Fast Fourier Sampling

3.1 Sample set construction
Let n be the length of signal x which has m dominant
tones that vary over time. Let the block length be N .
Let K = O(m) and α = log2(N). Let (t, σ) be a
fixed pair in A1 or A2. Define a sequence of time points
t(0) = t , t(j) = (t(j − 1) + Q(j − 1)σ)modN for
j = 1, .., J , where Q(j − 1) = smallest integer such that
t(j−1)+Q(j−1)σ ≥ N and J = dKσN e. We call t(j) the
“N -wraparound” of t(j−1). Figure (2) illustrates the cal-
culation of a N -wraparound. The choice of J is such that

the theorems in Section (3.3) hold. For j = 1, .., J , denote
by Ij the arithmetic progression formed by (t(j), σ),

Ij = {t(j) + qσ, ∀q ≥ 0 : t(j) + qσ ≤ n} (1)

Now, consider the geometric progression tb = t + N
2b+1

for all b = 0, 1, .., α − 1. For each b,
(
t+ N

2b+1 , σ
)

is
treated as another (t, σ) pair and the sequence tb(j) and
the corresponding progressions Ibj can be defined.
Do all the above, for each pair (t`, σ`) in A1 and A2 and
denote the arithmetic progressions produced, by I`,j , for
j = 1, .., J`. Define the union of all such arithmetic
progressions as I` =

⋃J`

j=0 I`,j . Similarly define Ib` =⋃J`

j=0 I
b
`,j for b = 0, .., α− 1. Now define IB` =

⋃α−1
b=0 I

b
` .

Finally define

I(A1, A2) =

(⋃
A1

(I` ∪ IB` )

)
∪

(⋃
A2

I`

)
(2)

Given a set of indices I , we denote by Sx(I) the set of
samples from signal x indexed by I .

Figure 2: Calculation of N -Wraparound t(1) from t.

3.2 The CFFS Algorithm

Preprocessing:

INPUT: N // Block length
(1) Sample-set generation : Choose A1 and A2 as
defined and compute I(A1, A2) (as in Equation (2)).
OUTPUT: I(A1, A2) // Index set

Sample Acquisition

INPUT: I(A1, A2), x
(2) sample signal x at I and obtain samples Sx(I).
OUTPUT: Sx(I)

Reconstruction

INPUT: Sx(I), (n1, n2) // boundary indices of an
arbitrary block y of length N from signal x
(3) calculate A′1, A

′
2 (depend on (n1, n2), defined in

Section (3.3)) and extract Sy(I(A′1, A
′
2)) ⊂ Sx(I).

(4) apply AAFFT on the sample-set Sy(I(A′1, A
′
2))

OUTPUT:top m frequencies of x in block
y = x[n1, n2]

3.3 Proof of Correctness of CFFS
The arbitrary block y has boundaries (n1, n2). To gen-
erate samples from this block, we define new sets A′1
and A′2 as follows. For every (t, σ) in A1 and A2, let



i be the smallest integer such that t + iσ > n1. De-
fine t′ = (t + iσ)modn1. Note that t′ is simply the n1-
wraparound of t. Put A′1 = {(t′, σ) : (t, σ) ∈ A1} and
similarly A′2. Note that A′1 and A′2 are still random since
A1 and A2 were chosen randomly. To apply AAFFT on
block y we can now use samples of y indexed by the sam-
pling pattern defined (as in Section (2.)) from A′1 and A′2.
The following theorems together show that the required
samples of y are available in Sx(I(A1, A2)).

Theorem 1 For sets A′1 and A′2 as defined above,
Sy(I(A′1, A

′
2)) ⊂ Sx(I(A1, A2)).

Theorem 2 AAFFT can be applied on the sample-set
Sy(I(A′1, A

′
2)), i.e. the index set I(A′1, A

′
2) has the re-

quired structure explained in Section (2.).

Rather than giving detailed proofs, we prove a proposition
that lies at the heart of the two theorems.

Proposition 3 For every (t′, σ) in A′1 or A′2,
Sy(P (t′, σ)) ⊂ Sx(I(A1, A2)).

Proof: Let (t, σ) be the pair in A1 or A2 from which
(t′, σ) was obtained. We will prove that the arithmetic
progressions Ij formed by the sequence of wraparounds
t(j),j = 1, .., J as defined in Section (3.1), induce mod-
N arithmetic in the progression P (t′, σ) (P as defined in
Section (2.)). Consider the first few terms in P (t′, σ), till
(t′ + (q0 − 1)σ) mod N where q0 is the smallest integer
such that (t′ + q0σ) ≥ N . From definition of t′ observe
that t′ = (t+iσ−n1). so y(t′) = x(n1+t′) = x(t+σ) ∈
Sx(I0), where I0 is defined in Equation (1). Similarly it
is easy to see that the first q0 terms in Sy(P (t′, σ)) are
contained in Sx(I0). Now call the next term (t′ + q0σ)
mod N = t′(1). Observe that t′(1) = t′+σ

⌈
N−t′
σ

⌉
−N .

Similarly observe that t(1) = t + σ
⌈
N−t
σ

⌉
− N . Now,

Substituting t′ = (t+ iσ − n1) in the expression for t′(1)
we get, t′(1) = t + iσ − n1 + σ

⌈
N−t+n1−iσ

σ

⌉
− N =

t + iσ − n1 + σ
⌈
N−t
σ

⌉
+ dσ − N = t(1) + (i + d)σ −

n1, for an appropriately defined d, which can be shown
to be positive. So y((t′ + q0σ) mod N) = y(t′(1)) =
x(t(1) + (i + d)σ) ∈ Sx(I1), where again I1 is defined
in Equation (1). Let q1 be the smallest integer such that
(t′(1) + q1σ) ≥ N . Now it is easy to see that the next
q1 terms in Sy(P (t′, σ)) are contained in Sx(I1). Repeat
this until all the terms in P (t′, σ) are covered.

Proposition 4 On average, the storage requirement of
CFFS algorithm is O( nNm logO(1)N), which is of the
same order as a straightforward, fixed boundary sample
set for AAFFT.

4. Results and Discussion

The Continuous Fast Fourier Sampling algorithm has been
implemented and tested in various settings. In particular,
we performed following three experiments.
First, we consider a model problem for communication de-
vices which use frequency-hopping modulation schemes.
The signal we want to reconstruct has two tones that

Figure 3: The Sparsogram for a synthetic frequency-
hopping signal consisting of two tones, as computed by
AAFFT (S1) and by CFFS.

change at regular intervals. We apply both the straight-
forward AAFFT on S1 and CFFS to identify the location
of the tones. Figure (3) shows the obtained sparsogram
which is a time-frequency plot that displays only the dom-
inant frequencies in the signal. We get the same sparso-
gram in both cases, as expected. ForN = 220, S1 samples
about 0.94% of the signal whereas CFFS samples about
1.06% of the signal, which is only very slightly larger than
S1. This experiment demonstrates the efficiency and sim-
ilarity of the two methods and supports the proposition
made in Section (3.3).

Figure 4: Applying CFFS to different blocks of signal x.

While S1-AAFFT cannot be applied to compute the dom-
inant tones in any arbitrary block, the CFFS has no such
limitation. This is demonstrated in the next experiment as
follows. Let y be a signal of length N = 220, with m = 4
known dominant frequencies. Let x be an arbitrary signal
of length n with N � n. Now let x[n1, n2] be an arbi-
trary block of interest of length N . Set x(n1 + q) = y(q),
for q = 0, 1, . . . , N − 1. Thus we have placed a copy
of the known signal y in the block of interest. The CFFS
was then applied and the four dominant frequencies in the
block of interest were computed. The obtained values for
frequencies and their coefficients match closely with those
of the signal y and satisfy the error guarantees of AAFFT.
The whole experiment was repeated with different values
for n1 (and corresponding n2 = n1 + N − 1) and the
same results were obtained. Figure (4) shows the sketch
of a signal x, pre-sampled in a predetermined manner (ac-
cording to CFFS), with copies of y placed at arbitrary po-
sitions. Application of AAFFT to any block with copy of y
gives the same results thus demonstrating the correctness
of CFFS.



In the final experiment, we consider the frequency hop-
ping signal from the first experiment. Let the block size
be N = 217 with unknown block boundaries. Let f1 and
f2 be the respective frequencies in two adjacent blocks
(f1 in the left block). We consider the problem of finding
the block boundary using CFFS with an analysis window
of size N. The center of the window can be varied and a
binary search can be performed for the block boundary
in the following manner. If the center is to the left of
the actual boundary, then the coefficient of f1 produced
by AAFFT will be higher than that of the f2. This in-
dicates that the center has to be moved to the right from
its current position. Also the search is not strictly binary
since the amount by which f1 coefficient is higher than
f2 can be used to shift the center of the window to the
right by an equivalent amount. This step can be iterated a
few times to make the center converge to the actual block
boundary. We express the error as the distance to the true
boundary and determine what percentage of the block this
distance is. Table (1) displays the error and how the error
increases with decreasing SNR. Note that even in the case

SNR(dB) %Error SNR(dB) %Error
no noise 0.39 6 0.78

10 0.58 4 0.79
8 0.70 2 1.56

Table 1: Percentage error in boundary identification.

of no noise there is some inherent ambiguity in the iden-
tification of block boundary. This uncertainty is caused
by two factors. First, when the analysis window has por-
tions of both the f1-block and f2-block, the net signal is
no longer sparse due to a sudden change in frequency and
has a slowly decaying spectrum. With m = 2 the AFFT
guarantees that the error made in signal approximation is
about as much as the error in optimal 2-term approxima-
tion [5]. Hence a slowly decaying spectrum implies more
error in the approximation. A second and more important
factor is the number of samples actually acquired from the
region of uncertainty around the block boundary. From
the entire block, CFFS acquires about 8% samples from
the N = 217 present. Assuming these samples are uni-
formly distributed (which is not true for CFFS), the num-
ber of samples present in the region of uncertainty (0.4%)
is about 40. In practice, CFFS contains even fewer sam-
ples in the uncertainty region (about 30 on average). In
terms of samples actually acquired in CFFS, the boundary
estimation is off by only a few samples and hence is neg-
ligible, as it does not affect the computations. This will be
true for any sparse sampling method like CFFS. Further-
more, if the uncertainty were to be reduced to 0.3% say,
the boundary identification would improve by only about
6 samples on average, which again is negligible. Hence
the boundary identification through the above method is
accurate enough for all practical purposes.

5. Conclusions and Future Work

We described and proved a sub-linear time sparse Fourier
sampling algorithm called the CFFS which along with
AAFFT can be applied to compute the frequency content

of sparse digital signals at any point of time. Once the
block length N is selected, a sub-nyquist sampling pat-
tern can be pre-determined and the samples can be ac-
quired from the signal (during the runtime if required).
The AAFFT can be applied to the samples correspond-
ing to any block of length N of the signal and the dom-
inant frequencies in that block and their coefficients can
be computed in sublinear time. The algorithm requires the
block length N to be fixed beforehand. Designing or ex-
tending the algorithm to work for different values of N
can be considered. Adapting the algorithm to further re-
duce the computational complexity by using known side
information about the signal can also be considered. The
algorithm is also highly parallelizable and can be adapted
for hardware applications. Also, we may be able to extend
this sample set generation to the deterministic sampling
algorithm described in [10].
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