
HAL Id: hal-00453546
https://hal.science/hal-00453546

Submitted on 5 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spline Interpolation in Piecewise Constant Tension
Masaru Kamada, Rentsen Enkhbat

To cite this version:
Masaru Kamada, Rentsen Enkhbat. Spline Interpolation in Piecewise Constant Tension. SAMPTA’09,
May 2009, Marseille, France. pp.Poster session. �hal-00453546�

https://hal.science/hal-00453546
https://hal.archives-ouvertes.fr


Spline Interpolation in Piecewise
Constant Tension

Masaru Kamada(1) and Rentsen Enkhbat(2)

(1) Ibaraki University, Hitachi, Ibaraki 316-8511, Japan.
(2) National University of Mongolia, P. O. Box 46/635, Ulaanbaatar, Mongolia.

kamada@mx.ibaraki.ac.jp, renkhbat46@ses.edu.mn

Abstract:
Locally supported splines in tension are constructed where
the tension, which has ever been constant over the entire
domain, is allowed to change at sampling points.

1. Introduction

A cubic spline gives the interpolation of data that mini-
mizes the square integral of its second derivative [3, 5, 9]
and is crowned as the smoothest interpolation in this sense.
A linear spline gives the piecewise linear interpolation
that is most straight but nonsmooth. The linear spline is
characterized as minimizing the square integral of its first
derivative [3, 9]. A spline in tension [1, 10] was devised as
a generalization of those two splines. It minimizes the in-
tegral of a weighted sum of the squared second derivative
and the squared first derivative. By increasing the weight
called tension, we can make a spline in tension approach
the most straight linear spline while retaining smoothness
similar to that of the cubic spline.

The spline in tension has been known for more than 40
years. It has been extended even to the multidimensional
cases [2, 7] and is now supported by a standard software
library [8]. But the tension has ever been a single constant
over the entire domain.

In this paper, we look at the splines as the output of a linear
dynamical system with a series of delta functions input.
That is the same way as how the exponential splines and
their locally supported basis were successfully constructed
in [12, 13]. In addition, attending to that the linear dy-
namical system theory [6] allows for time-varying dynam-
ical parameters, we shall place different tension in each
sampling interval. Then we will obtain locally supported
splines in piecewise constant tension that can change the
interpolation characteristics from a sampling interval to
another.

2. Preliminaries

A spline f in tension interpolating the data
{(tk, fk)}∞k=−∞ given at strictly increasing sampling
points (· · · < t−2 < t−1 < t0 < t1 < t2 < · · · ) on the
real line is defined as the twice-differentiable function
that minimizes the integral of a weighted sum

∫ ∞

−∞
(f (2)(t))2 + p(t)2(f (1)(t))2 dt (1)

of its squared second derivative f (2) and squared first
derivative f (1) subject to the constraints

f(tk) = fk, k = 0,±1,±2, · · · . (2)

In the case p = 0, f is identical with the cubic spline
[3, 5, 9]. By increasing p, f approaches the most straight
linear spline as if the curve were pulled from both ends.
That is why p is called tension [1, 10].

The tension p has originally been a single constant over
the entire domain [10]. We shall now relax the tension to
be a non-negative constant in each sampling interval, i.e.,

p(t) = pk ≥ 0, for t ∈ [tk, tk+1), (3)

which can change at the sampling points.

By the calculus of variation, the minimization problem
is reduced to solution of the Euler-Lagrange differential
equation

f (4)(t)−2p(t)p(1)(t)f (1)(t)−p(t)2f (2)(t) = w(t), (4)

where w is a series of the Dirac delta functions

w(t) =
∞∑

n=−∞
wnδ(t − tn)

to be determined so that (2) holds good. We do not have,
however, a practical means to decide the coefficients {wn}
for given {(tk, fk)}.

In practice, it is convenient to have locally supported func-
tions {yn} satisfying

yn(t) = 0, for t /∈ [tn, tn+4] (5)

of which linear combination

f(t) =
∞∑

n=−∞
cnyn(t) (6)

represents any possible f . This yn can be constructed by

y(4)
n (t) − 2p(t)p(1)(t)y(1)

n (t) − p(t)2y(2)
n (t) = un(t) (7)

for some appropriately chosen

un(t) =
4∑

l=0

ul,nδ(t − tn+l) (8)



as long as the sampled data system (7) with the impulse
input (8) is completely controllable [4]. Once we obtain
yn(t), we have only to determine the coefficients {cn} by
the linear equations

fk =
∞∑

n=−∞
cnyn(tk), k = 0,±1,±2, · · ·

from {(tk, fk)}. Although infinitely many coefficients and
data are involved in the equations, we can solve the lin-
ear equations for finitely many {cn} from finitely many
{(tk, fk)} in practice because {yn} are locally supported.

3. Construction of locally supported splines
in piecewise constant tension

A state-space representation of the differential equation
(7) is

x(1)
n (t) = F (t)xn(t) + gun(t), yn(t) = hxn(t), (9)

where

F (t) =


0 1 0 0
0 0 1 0
0 0 0 1
0 2p(t)p(1)(t) p(t)2 0

 ,

xn(t) =


yn

y
(1)
n

y
(2)
n

y
(3)
n

 , g =


0
0
0
1

 , h = [1 0 0 0] . (10)

The state xn can be expressed by

xn(t) = Φ(t, v)xn(v) +
∫ t

v

Φ(t, τ)gun(τ) dτ, (11)

for any real numbers t and v, in terms of the state-
transition matrix function Φ and the input un [11].

Since un(t) = 0 for t /∈ {tn, tn+1, tn+2, tn+3, tn+4}, it
follows from (11) that

xn(t)

=


0, t < tn
Φ(t, tn+l+0)xn(tn+l+0),

tn+l < t < tn+l+1, (l = 0, 1, 2, 3)
Φ(t, tn+4+0)xn(tn+4+0), tn+4 < t.

(12)

Because of the top and bottom lines of (12), yn = hxn

is locally supported as (5) if xn(tn+4+0) = 0. In order
to avoid the trivial case u0,n = u1,n = u2,n = u3,n =
u4,n = 0 that would result in un ≡ yn ≡ 0, let us fix one
of them as u0,n = 1. Then the problem of constructing a
locally supported yn becomes a dead-beat control problem
of finding u1,n, u2,n, u3,n, and u4,n that make the terminal
state dead as

xn(tn+4+0) = 0. (13)

Once the terminal state is controlled to 0, it will stay at 0
forever for t > tn+4 without any beats.

We shall consider two types of state transitions: (i) Those
within each sampling interval (tn+l, tn+l+1), and (ii) one
across each sampling point tn+l.

(i) In the open interval (tn+l, tn+l+1), (11) with v =
tn+l+0 is reduced to

xn(t) = Φ(t, tn+l+0)xn(tn+l+0), l = 0, 1, 2, 3 (14)

because un(t) = 0 for t ∈ (tn+l, tn+l+1). Besides, F (t)
in (10) is a constant matrix

F (t) =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 p2

n+l 0

 (15)

because of (3) so that we can calculate the state-transition
matrix by the matrix exponential function [11] as follows:

Φ(t, tn+l+0)

= e

R t

tn+l+0
F (υ) dυ

=




1 t − tn+l

(t−tn+l)
2

2
(t−tn+l)

3

6

0 1 t − tn+l
(t−tn+l)

2

2
0 0 1 t − tn+l

0 0 0 1


if pn+l = 0

1 t − tn+l
cosh(pn+l(t−tn+l))−2

p2
n+l

0 1 sinh(pn+l(t−tn+l))
pn+l

0 0 cosh(pn+l(t − tn+l))

0 0 pn+l sinh(pn+l(t − tn+l))

sinh(pn+l(t−tn+l))−2pn+l(t−tn+l)
p3

n+l
cosh(pn+l(t−tn+l))−2

p2
n+l

sinh(pn+l(t−tn+l))
pn+l

cosh(pn+l(t − tn+l))


if pn+l > 0.

(16)

In the special case that t = tn+l+1-0, we have the state
transition from xn(tn+l+0) to xn(tn+l+1-0) as follows:

xn(tn+l+1-0) = Φ(tn+l+1-0, tn+l+0)xn(tn+l+0),
l = 0, 1, 2, 3. (17)

The matrix Φ(tn+l+1-0, tn+l+0) can be evaluated by the
right hand side of (16) with t replaced by tn+l+1.

(ii) The state transition from xn(tn+l-0) to xn(tn+l+0)
across the sampling point tn+l, (l = 0, 1, 2, 3, 4) finds a
trouble that F (t) in (10) contains a derivative of the func-
tion p being discontinuous at tn+l as defined by (3). We
had better consider this transition by way of the original
differential equation (7). An equivalent form of (7) is

y(4)
n (t) − d

dt

(
p(t)2y(1)

n (t)
)

= un(t) (18)

and its integration gives

y(3)
n (t) = p(t)2y(1)

n (t) +
∫ t

tn−0

un(τ)dτ + c, (19)

where c is an integral constant. Substituting tn+l+0 and
tn+l-0 for t of (19), we have

y(3)
n (tn+l+0) = p(tn+l+0)2y(1)

n (tn+l+0)
+u0,n + · · · + un+l,n + c (20)



and

y(3)
n (tn+l-0) = p(tn+l-0)2y(1)

n (tn+l-0)
+u0,n + · · · + un+l−1,n + c, (21)

respectively. Recall that the spline in tension is sought
among the twice-differentiable functions and attend to the
definition (3) of p. Then we can reduce (20) and (21) to

y(3)
n (tn+l+0) = p2

n+ly
(1)
n (tn+l)

+u0,n + · · · + un+l,n + c (22)
and

y(3)
n (tn+l-0) = p2

n+l−1y
(1)
n (tn+l)

+u0,n + · · · + un+l−1,n + c, (23)

respectively. Subtracting (23) from (22), we have

y(3)(tn+l+0) − y(3)(tn+l-0)
= (p2

n+l − p2
n+l−1)y

(1)(tn+l) + ul,n, (24)

which tells how to update the state variable y(3) at tn+l

and implies that the other state variables y(2), y(1), and y
are continuous at tn+l. So we can write the state transition
across the sampling point tn+l as follows:

xn(tn+l+0) = Φ(tn+l+0, tn+l-0)xn(tn+l-0) + gul,n,

l = 0, 1, 2, 3, 4, (25)

where

Φ(tn+l+0, tn+l-0) =


1 0 0 0
0 1 0 0
0 0 1 0
0 p2

n+l − p2
n+l−1 0 1

 . (26)

The two types of state transitions (17) and (25) can be
combined into the recurrence formulae

xn(tn+0) = gu0,n = g,

xn(tn+l+0) = Ψn+lxn(tn+l−1+0) + gul,n,

l = 1, 2, 3, 4, (27)
where we have set

Ψn+l = Φ(tn+l+0, tn+l-0)Φ(tn+l-0, tn+l−1+0),
l = 1, 2, 3, 4, (28)

and used our choice u0,n = 1 and the initial state
x(tn-0) = 0. By these recurrence formulae, we can write
the terminal state as follows:

xn(tn+4+0) = Ψn+4Ψn+3Ψn+2Ψn+1g

+Ψn+4Ψn+3Ψn+2gu1,n

+Ψn+4Ψn+3gu2,n

+Ψn+4gu3,n

+gu4,n. (29)

Then we can determine u1, u2, u3, and u4 that makes the
terminal state xn(tn+4+0) be zero by
u1,n

u2,n

u3,n

u4,n

= − [Ψn+4Ψn+3Ψn+2g Ψn+4Ψn+3g Ψn+4g g]−1

Ψn+4Ψn+3Ψn+2Ψn+1g.

(30)

Existence of the inverse matrix is equivalent to the com-
plete controllability of the sampled-data system with the

impulse control un input. We do not have the condition
in a simpler form due to the complication caused by time-
varying dynamics and non-uniform sampling. Even the
uniform sampling case is yet to be investigated.

For the numerical evaluation of yn, we first compute the
states {xn(tn+l+0)}3

l=0 by (27) from {ul,n}4
l=0. Then we

can evaluate yn by

yn(t)=


0, t ≤ tn
hΦ(t, tn+l+0)xn(tn+l+0),

tn+l < t ≤ tn+l+1, (l = 0, 1, 2, 3)
0, tn+4 ≤ t

(31)

and
hΦ(t, tn+l+0)

=



[
1 t − tn+l

(t−tn+l)
2

2
(t−tn+l)

3

6

]
if pn+l = 0[

1 t − tn+l
cosh(pn+l(t−tn+l))−2

p2
n+l

sinh(pn+l(t−tn+l))−2pn+l(t−tn+l)
p3

n+l

]
if pn+l > 0

(32)

which follow from (12), (16), and the continuity of yn over
the entire domain.

4. Numerical examples

Test data were prepared by concatenating a sampled
smooth curve and a sampled polygonal line. Their interpo-
lation was computed as a linear combination of the locally
supported splines in tension.

The cubic spline interpolation (equivalent to the case
p(t) ≡ 0) is shown in Fig. 1. The cursive part is re-
produced in a good shape but the polygonal part suffers
from inter-sample vibration. The linear spline interpola-
tion (equivalent to the case p(t) → ∞) in Fig. 2 behaves
in the opposite way. Reproduction of the polygonal part
is perfect but there is no smootheness. Interpolation by a
spline in constant tension (p(t) ≡ 10) in Fig. 3 provides
a good compromise between the cubic and linear spline
interpolation. It is fairly smooth and has less vibration.

Some may say that the cursive part is not smooth enough
and rather polygonal in Fig. 3. In this case, we can obtain
a better interpolation by varying the tension in time. Fig-
ure 4 is an interpolation by a spline in piecewise constant
tension. Higher tensions are imposed on the polygonal
part to suppress the vibration. The interpolation is kept
smooth elsewhere. The locally supported splines used to
construct this curve are plotted in Fig. 5 where the plots
are vertically scaled to have a common peak value.

5. Conclusions

Locally supported splines in tension were constructed
where the tension is constant within each sampling inter-
val and variable at the sampling points. They will hope-
fully contribute to the variety of curve drawing modules
in the graphical design tools. Another application may be
image enlargement tools which allow users to put higher
tension manually at the portions where they want to sup-
press ringing effects.
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Figure 1: Interpolation by a cubic spline (p(t) ≡ 0).
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Figure 2: Interpolation by a linear spline (p(t) → ∞).
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Figure 3: Interpolation by a spline in constant tension
(p(t) ≡ 10).
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Figure 4: Interpolation by a spline in piecewise constant
tension (p(t) = 0 for the cursive part (t < t4), p(t) = 10
for the straight parts (t4 ≤ t < t6 and t7 ≤ t), and p(t) =
30 for the breaking part (t6 ≤ t < t7) ).
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Figure 5: Locally supported splines used to construct the
curve in Fig. 4.


