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Abstract- In this paper, we consider the method for 
reconstructing a signal from a finite number of samples. In 
shift-invariant space framework, we derive an 
aproximately min-max optimal interpolator to to 
reconstruct a signal on  an interval. An effective 
non-iterative algorithm for signal reconstruction is  given 
also. Numerical examples show the effectiveness of the 
proposed method.  
Index Terms–sampling, signal reconstruction, scaling 
function, shift-invariant space   

Ⅰ. INTRODUCTION 
The problem of signal reconstruction is pervasive in 

many areas of signal processing, such as in designs of 
nonuniform antenna arrays, sparse array beamforming, the 
restoration of signals with missing samples, image 
acquisition, etc [1-3]. The classical Shannon’s sampling 
theorem was extended theoretically to general 
shift-invariant subspaces, and various generalized 
sampling theorems concerning band-limited and 
nonband-limited signals have been proposed [4-9]. 
However, the problem of reconstructing a continuous-time 
signal from its finite number of nonuniform samples is 
often encountered in practical applications, and truncating 
infinite reconstruction leads to errors.  

Bandlimited and non bandlimited signals are often 
modeled by shift-invariant spaces. Some authors have 
proposed interpolation methods and iterative methods for 
reconstructing signals in shift-invariant spaces  in the 
signal processing literatures[10-14]. A non-iterative  
reconstruction method is effective to reconstruct 
continuous-time signals from a finite number of  samples 
by using a suitable interpolator. The Yen interpolator is 
well known to reconstruct band-limited signals in both 
minimal energy and least squares senses [13]. Some 
interpolation methods in shift-invariant spaces were 
given[9-10,12-14].  

In this paper, we are interested in optimally constructing 
signals in a shift-invariant space from a finite number of 
nonuniform samples, and develop a new method for 
reconstructing continuous-time signal on a interval. The 
upper bound of reconstruction error is derived. We  also 
propose a practical reconstruction algorithm. The method 
of signal reconstruction can be regarded as a 
generalization of Yen’s in general shift-invariant spaces. 

The paper is organized as follows: in Section Ⅱ we 
formulate the optimal reconstruction problem in 
shift-invariant spaces, and Section Ⅲ  derives a new  
method to reconstruct a signal from a finite number of 
arbitrarily distributed samples. Section Ⅳ  propose a 

practical algorithm for implementing the optimal signal 
reconstruction. In Section Ⅴ, some numerical examples 
of reconstructing signals demonstrate the effectiveness of 
the proposed method. 

Ⅱ.THE PROBLEM FORMULATION 

Throughout the paper, we focus on one-dimensional 
signals and denote the space of signals of finite energy on 
R  by 2L ( )R . Let 2 2|| || ( )f f t dt= | |∫R  be the energy 

of a signal 2( ) ( )f t L∈ R . Given K scaling 

functions 2
1 2( ) ( ) , ( ) ( )Kt t t Lϕ ϕ ϕ, , ∈ R , the shift- 

invariant space 1 2( )KV ϕ ϕ ϕ, , ,  is a Hilbert space 
defined as 
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We assume that { }( ) |1 ,k t n k K n Zϕ − ≤ ≤ ∈ forms a 
frame of 1 2( )KV ϕ ϕ ϕ, , , , i.e., there exist two constants 

0A >  and B < +∞  such that  
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for any 1 2( )Kf V ϕ ϕ ϕ∈ , , , .  
To make the sampling of functions in 
1 2( )KV ϕ ϕ ϕ, , , well-defined, we additionally assume that 

there exists a constant C such that 
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where 'C  is a constant.  
It is known from [8] that the assumption (3) implies that 

1 2( )KV ϕ ϕ ϕ, , , is a reproducing kernel Hilbert space. For 
a function ( )f t in 1 2( )KV ϕ ϕ ϕ, , , , we adopt the 
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following interpolator  

1
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to reconstruct ( )f t on the interval containing sampling 

instants 1, , Mt t . In order to obtain an optimal 
interpolator, we discuss the optimization 

2
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f t f t
f
−

h
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which yields a min-max type interpolator. 

Ⅲ. DERIVATION OF SIGNAL RECONSTRUCTION 
Given M samples of a function 

1 2( ) ( , )Kf t V ϕ ϕ ϕ∈ , ,   at nonuniform 
instants 1 2, , , [ , ]Mt t t a b∈ , let [ , ]a bτ ∈ and 

1
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= ∑ . The optimal estimation ( )f τ  of 

( )f τ  is determined by appropriate coefficients ( )mh τ ’s.  
So ,we study the following optimization 
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where, ( )ϕ= − , = , , , ∈( ) , ( ) 1 2 ,k kc n f t n k K n Z , 

and { }( ) |1 ,k t n k K n Zϕ − ≤ ≤ ∈ is the dual frame of 
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The above can furthermore be expressed explicitly in 
vector form as  
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It can be seen that minimizing 
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where 1 2( ) ( ( ) ( ) ( ))T
Mh h hτ τ τ τ= , , ,H  and 

k =A 1 2k k k M
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Therefore, solving ( )
( ) 0E τ
τ

∂
∂ =H  yields that 
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and the minimal error between ( )f τ and ( )f τ  is given 
by  
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Note that the matrix
1
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So, the optimal reconstruction of ( )f t  can be expressed 
as 
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Let us take a look at the case 1K = in detail. Given 
M samples of ( ) ( )x t V ϕ∈  at instants 1 2 Mt t t, , , for a 

proper scaling function 2( ) L ( )tϕ ∈ R , we can express the 

optimal interpolating vector as 1( ) ( )T TA A A ττ −=H e , 
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where 1 2( )MA = , , ,e e e  and ( ( ))T
nnτ ϕ τ= −e , 

( ( ))T
m m nt nϕ= −e  for 1 2m M= , , , . It is easy to see 

that the optimal interpolating vector ( )τH  is exactly the 
orthogonal projection of vector τe  onto the subspace 
spanned by 1 2 M, , ,e e e  and hence from 
(12) ( ) ( )x t V ϕ∈ with ( ) ( )m mx t x t=  for 1 2m M= , , , . 
This implies that the reconstructed signal best fits the 
sampling data. Especially, for 0σ >  and 

( ) sinc( )t tϕ σ= , the optimal reconstruction ( )x t  of 
( ) ( )x t V ϕ∈ from samples 1 2( ) ( ) , ( )Mx t x t x t, ,  is also 

band-limited to σ  with ( ) ( )m mx t x t=  for 
1 2m M= , , , . It is easy to show that the interpolator 

obtained here is just Yen’s for band-limited signals. 

Ⅳ. ALGORITHM AND DISCUSSION 

In the previous section we have derived an interpolator 
for signal reconstruction. However, because computing 
the min-max interpolator requires calculating the inverse 
of a matrix with possibly larger dimension, the 
reconstruction formula (12) wound be unfeasible when the 
number of samples is much large.  To circumvent this 
problem, we reshape (12) as   

( )
1 1 1

( ) ( ) ( )
M K M

m ml k l k
n l k m

f f t x t n t nτ ϕ ϕ
= = =
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= − −⎜ ⎟

⎝ ⎠
∑ ∑∑∑ . (13)  

From this, a non-iterative reconstruction algorithm can be 
given as follows.  
Algorithm: 

(1)  Let T
1 2( ( ), ( ), , ( ))Mf t f t f t=f ,  

   T( ) ( , ( ), ( 1), )k k kt t n t nϕ ϕ= − − +E ,  
( )( )k

k mnb=A with ( ) ( )k
mn k mb t nϕ= −  for 

1,2, ,i M= and 1,2, ,k K= ; 

(2)  Compute T

1

K

k k
k=

= ∑T A A  

(3)  Solve =Th f ; 

(4)  T

1

( ) ( )
K

k k
k

f t t
=

= ∑h A E . 

The most crucial step is solving the equation system of 
equations =Th f . This can be done effectively by 
computing the Cholesky factorization of the 
matrix T when T  is invertible. In fact, the cholesky 
factorization of T gives a upper triangular matrix S  
such that T=T S S . Then the solution of the 
system =Th f can be obtained by sequentially solving the 
systems S b = fT and =Sh b by Gaussian elimination. 
This procedure is faster and more robust than directly 
computing the inverse of T . When T is not invertible, the 
equation can be solved effectively by the least squares 
method. 

Note that although the proposed method has no 
restriction on sampling locations, the obtained 

reconstruction error is strongly related to the sampling 
pattern. As pointed in [18], the reconstruction errors are 
smaller in the neighborhood of the sampling instants. So, 
the quality of reconstruction should be evaluated in a 
pointwise manner. From (10) we know that the min-max 
reconstruction error is pointwise upper-bounded by 

1
2

1/ 2 1 2

1 1 1

( ) || || || ( ) ||
K K K

T T
k k l l m m

k l m

r A f τ ττ − −
, ,

= = =

⎡ ⎤≤ −⎢ ⎥
⎣ ⎦
∑ ∑ ∑e A A A A e (14) 

and it can estimate the quality of reconstruction when the 
sampling instants are known.  

Ⅴ. DEMONSTRATIVE EXAMPLES  

Some numerical examples are given to demonstrate the 
performance of the proposed method, where signals are 
selected randomly in shift-invariant subspaces, and the 
sampling instants are generated by adding random 
perturbation, distributed uniformly in the interval [ , ]u u−  
for 0u > , to each equally-spaced sampling instant, i.e., 
the sampling instants are mmT u+ , where mu  randomly 
distributes in [ , ]u u−  for 1,2, ,m M= . 
Example 1 For the first example, we choose arbitrarily a 
signal of band[ , ]π π− . We reconstruct it on [0, 40]  from 
42 samples. The average sampling period is 0.995T = s 
and 0.7u T= . It is clear that the average sampling period 
is almost critical. The reconstructed signal, its 
reconstruction from its nonuniform samples and the errors 
between the original signal and its reconstructions were 
plotted in Fig.1. From this experiment, it can be seen that 
under such a relaxed condition, the reconstruction of a 
signal is quite satisfying,  
Example 2 For non band-limited signals, we choose the 
cubic spline [19] as a scaling function, and randomly 
choose a signal in the shift-invariant space. The average 
sampling period is 1.0sT =  and the maximum of 
irregular perturbation is 0.5u T= . The signal to be 
reconstructed, its reconstruction and the reconstruction 
error (in dB) were plotted in Fig.2, respectively. Note that, 
although the sampling density is much lower than that 
estimated in [5](see the examples therein for details), the 
quality of signal reconstruction is still considerably high. 
In addition, although the cubic spline is supported 
compactly, the method given in [10] could not be used in 
this case because the maximal gap between adjacent 
sampling instants is too large. In fact, the local 
reconstruction methods in [10] required the condition that 
the maximal gap of the sampling instants must be less 1 
and the number of the samples must be bigger than the 
length of the reconstruction interval, but our method 
doesn’t rely on any sampling condition. In contrast to the 
results in [10], we also give another example to show the 
performance of the proposed method in Fig.3. In this 
example, we chose the same scaling function, a Gaussian 
function, and the similar sampling condition as in [10].  



 4

 

Fig. 1 Top : original signal and sampling points marked by dots;  middle: 
reconstructed signal obtained by the proposed method; bottom: normalized 
errors between the original signal the its reconstruction obtained by the 
proposed method and Yen interpolator. 

 

Fig. 2 original signal with sampling points marked by stars, reconstructed signal obtained by the 
proposed method, normalized error(in dB) between the original signal the its reconstruction. 
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Fig. 3  original signal with sampling points marked by stars, reconstructed signal obtained by the 
proposed method, normalized error(in dB) between the original signal the its reconstruction with 
scaling function 

2 2/ 2( ) tt e σϕ −= , 0.81σ = , and  sampling density 0.85. 

 

 

Fig. 4  original signal with sampling points marked by stars, reconstructed signal obtained by the 
proposed method, normalized error(in dB) between the original signal the its reconstruction. 

Example 3. Finally, we select two functions 
2 / 4

1 1( ) tt a eϕ −=  and 
23 / 4

2 2( ) ( ) tt a t t eϕ −= + as scaling 
functions, where 1a and 2a  are normalized constants. 
Here the average sampling period is 0.8T = s and the 
maximum of irregular perturbation 0.6u T= . The 

simulation results were showed in Fig.4. This example also 
indicates the feasibility of the proposed method for signal 
reconstruction in a shift-invariant spaced with several 
scaling functions    

Ⅵ. CONCLUSION 
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The proposed method of reconstructing a signal from 
its finite nonuniform samples has the following 
advantages: (a) the method doesn’t require the usual 
hypotheses on the maximal gap between adjacent 
sampling instants and the compactness of the scaling 
functions of the shift-invariant space as in the literature, 
and therefore can be applied in various shift-invariant 
spaces with sampling locations distributed arbitrarily. (b) 
The reconstruction error function as sensitivity functions 
[17] can measure the quality of the reconstruction  prior 
to the practical implementation.  (c) the method can be 
used effectively in a multi-wavelet space and can be 
extended straightforward to two-dimensional spaces. 
However, our method does not incorporate the case when 
samples are noisy, which we will investigate in future.  
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