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In this paper, we consider the method for reconstructing a signal from a finite number of samples. In shift-invariant space framework, we derive an aproximately min-max optimal interpolator to to reconstruct a signal on an interval. An effective non-iterative algorithm for signal reconstruction is given also. Numerical examples show the effectiveness of the proposed method.

Ⅰ. INTRODUCTION

The problem of signal reconstruction is pervasive in many areas of signal processing, such as in designs of nonuniform antenna arrays, sparse array beamforming, the restoration of signals with missing samples, image acquisition, etc [START_REF] Berger | Nonuniform sampling reconstruction Applied to sparse array beamforming[END_REF][START_REF] Early | Image reconstruction and enhanced resolution imaging from irregular samples[END_REF][START_REF] Stasinski | POCS-based image reconstrunction from nonuniform samples[END_REF]. The classical Shannon's sampling theorem was extended theoretically to general shift-invariant subspaces, and various generalized sampling theorems concerning band-limited and nonband-limited signals have been proposed [START_REF] Water | A sampling theorem for wavelet subspaces[END_REF][START_REF] Chen | On Sampling in Shift Invariant Spaces[END_REF][START_REF] Djokovic | Generalized sampling theorem in multiresolution subspaces[END_REF][START_REF] Selesnick | Interpolating multiwavelet bases and sampling theory[END_REF][START_REF] Aldroubi | Nonuniform sampling and reconstruction in shift-invariant spaces[END_REF][START_REF] Ford | Wavelet basis reconstruction of nonuniformly sampled data[END_REF]. However, the problem of reconstructing a continuous-time signal from its finite number of nonuniform samples is often encountered in practical applications, and truncating infinite reconstruction leads to errors.

Bandlimited and non bandlimited signals are often modeled by shift-invariant spaces. Some authors have proposed interpolation methods and iterative methods for reconstructing signals in shift-invariant spaces in the signal processing literatures [START_REF] Grochenig | Fast local reconstruction methods for nonuniform sampling in shift-invariant spaces[END_REF][START_REF] Aldroubi | Complete iterative reconstruction algorithms for irregular sampled data in spline-like spaces[END_REF][START_REF] Ferreira | Noniterative and faster iterative methods for interpolation and extrapolation[END_REF][START_REF] Choi | Analysis and Design of minimax-optimal interpolators[END_REF][START_REF] Rolain | Signal reconstruction for non-equidistant finite length sample sets: a KIS approach[END_REF]. A non-iterative reconstruction method is effective to reconstruct continuous-time signals from a finite number of samples by using a suitable interpolator. The Yen interpolator is well known to reconstruct band-limited signals in both minimal energy and least squares senses [START_REF] Choi | Analysis and Design of minimax-optimal interpolators[END_REF]. Some interpolation methods in shift-invariant spaces were given [START_REF] Ford | Wavelet basis reconstruction of nonuniformly sampled data[END_REF][START_REF] Grochenig | Fast local reconstruction methods for nonuniform sampling in shift-invariant spaces[END_REF][START_REF] Ferreira | Noniterative and faster iterative methods for interpolation and extrapolation[END_REF][START_REF] Choi | Analysis and Design of minimax-optimal interpolators[END_REF][START_REF] Rolain | Signal reconstruction for non-equidistant finite length sample sets: a KIS approach[END_REF].

In this paper, we are interested in optimally constructing signals in a shift-invariant space from a finite number of nonuniform samples, and develop a new method for reconstructing continuous-time signal on a interval. The upper bound of reconstruction error is derived. We also propose a practical reconstruction algorithm. The method of signal reconstruction can be regarded as a generalization of Yen's in general shift-invariant spaces.

The paper is organized as follows: in Section Ⅱ we formulate the optimal reconstruction problem in shift-invariant spaces, and Section Ⅲ derives a new method to reconstruct a signal from a finite number of arbitrarily distributed samples. Section Ⅳ propose a practical algorithm for implementing the optimal signal reconstruction. In Section 
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Ⅳ. ALGORITHM AND DISCUSSION

In the previous section we have derived an interpolator for signal reconstruction. However, because computing the min-max interpolator requires calculating the inverse of a matrix with possibly larger dimension, the reconstruction formula ( 12) wound be unfeasible when the number of samples is much large. To circumvent this problem, we reshape ( 12) as ( )
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From this, a non-iterative reconstruction algorithm can be given as follows.

Algorithm:

(1) Let T 1 2
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The most crucial step is solving the equation system of equations = Th f . This can be done effectively by computing the Cholesky factorization of the matrix T when T is invertible. In fact, the cholesky factorization of T gives a upper triangular matrix S such that T = T S S . Then the solution of the system = Th f can be obtained by sequentially solving the systems S b = f T and = Sh b by Gaussian elimination. This procedure is faster and more robust than directly computing the inverse of T . When T is not invertible, the equation can be solved effectively by the least squares method.

Note that although the proposed method has no restriction on sampling locations, the obtained reconstruction error is strongly related to the sampling pattern. As pointed in [START_REF] Tarczynski | Sensitivity of signal reconstruction[END_REF], the reconstruction errors are smaller in the neighborhood of the sampling instants. So, the quality of reconstruction should be evaluated in a pointwise manner. From [START_REF] Grochenig | Fast local reconstruction methods for nonuniform sampling in shift-invariant spaces[END_REF] we know that the min-max reconstruction error is pointwise upper-bounded by
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and it can estimate the quality of reconstruction when the sampling instants are known.

Ⅴ. DEMONSTRATIVE EXAMPLES

Some numerical examples are given to demonstrate the performance of the proposed method, where signals are selected randomly in shift-invariant subspaces, and the sampling instants are generated by adding random perturbation, distributed uniformly in the interval [ , ] u u for 0 u > , to each equally-spaced sampling instant, i.e., the sampling instants are . It is clear that the average sampling period is almost critical. The reconstructed signal, its reconstruction from its nonuniform samples and the errors between the original signal and its reconstructions were plotted in Fig. 1. From this experiment, it can be seen that under such a relaxed condition, the reconstruction of a signal is quite satisfying, Example 2 For non band-limited signals, we choose the cubic spline [START_REF] Chui | An Introduction to wavelets[END_REF] as a scaling function, and randomly choose a signal in the shift-invariant space. The average sampling period is 1.0s T = and the maximum of irregular perturbation is 0.5 u T =

. The signal to be reconstructed, its reconstruction and the reconstruction error (in dB) were plotted in Fig. 2, respectively. Note that, although the sampling density is much lower than that estimated in [START_REF] Chen | On Sampling in Shift Invariant Spaces[END_REF](see the examples therein for details), the quality of signal reconstruction is still considerably high. In addition, although the cubic spline is supported compactly, the method given in [START_REF] Grochenig | Fast local reconstruction methods for nonuniform sampling in shift-invariant spaces[END_REF] could not be used in this case because the maximal gap between adjacent sampling instants is too large. In fact, the local reconstruction methods in [START_REF] Grochenig | Fast local reconstruction methods for nonuniform sampling in shift-invariant spaces[END_REF] required the condition that the maximal gap of the sampling instants must be less 1 and the number of the samples must be bigger than the length of the reconstruction interval, but our method doesn't rely on any sampling condition. In contrast to the results in [START_REF] Grochenig | Fast local reconstruction methods for nonuniform sampling in shift-invariant spaces[END_REF], we also give another example to show the performance of the proposed method in Fig. 3. In this example, we chose the same scaling function, a Gaussian function, and the similar sampling condition as in [START_REF] Grochenig | Fast local reconstruction methods for nonuniform sampling in shift-invariant spaces[END_REF]. The proposed method of reconstructing a signal from its finite nonuniform samples has the following advantages: (a) the method doesn't require the usual hypotheses on the maximal gap between adjacent sampling instants and the compactness of the scaling functions of the shift-invariant space as in the literature, and therefore can be applied in various shift-invariant spaces with sampling locations distributed arbitrarily. (b) The reconstruction error function as sensitivity functions [START_REF] Shenoy | An optimal recovery approach to interpolation[END_REF] can measure the quality of the reconstruction prior to the practical implementation. (c) the method can be used effectively in a multi-wavelet space and can be extended straightforward to two-dimensional spaces. However, our method does not incorporate the case when samples are noisy, which we will investigate in future.
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 1 For the first example, we choose arbitrarily a signal of band[ , ] π π -. We reconstruct it on [0, 40] from 42 samples. The average sampling period is 0
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 1 Fig.1Top : original signal and sampling points marked by dots; middle: reconstructed signal obtained by the proposed method; bottom: normalized errors between the original signal the its reconstruction obtained by the proposed method and Yen interpolator.
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 2 Fig.2original signal with sampling points marked by stars, reconstructed signal obtained by the proposed method, normalized error(in dB) between the original signal the its reconstruction.
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 3 Fig. 3 original signal with sampling points marked by stars, reconstructed signal obtained by the proposed method, normalized error(in dB) between the original signal the its reconstruction with scaling function
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 4 Fig.4original signal with sampling points marked by stars, reconstructed signal obtained by the proposed method, normalized error(in dB) between the original signal the its reconstruction.
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 3 Finally, we select two functions 1 a and 2 a are normalized constants. Here the average sampling period is 0.8 T = s and the maximum of irregular perturbation 0.6 u T = . The simulation results were showed in Fig.4. This example also indicates the feasibility of the proposed method for signal reconstruction in a shift-invariant spaced with several scaling functions Ⅵ. CONCLUSION

  Ⅴ, some numerical examples of reconstructing signals demonstrate the effectiveness of the proposed method.
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