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Introduction

In a previous paper [START_REF] Cieślak | Looking for critical nonlinearity in the one-dimensional quasilinear Smoluchowski-Poisson system[END_REF] we investigate the influence of the diffusion coefficient a on the life span of solutions to the one dimensional Smoluchowski-Poisson system ∂ t u = ∂ x (a(u)∂ x u -u∂ x v) in (0, ∞) × (0, 1),

(1)

0 = ∂ 2 x v + u -M in (0, ∞) × (0, 1), (2) 
a(u)∂ x u = ∂ x v = 0 on (0, ∞) × {0, 1}, (3) 
u(0) = u 0 ≥ 0 in (0, 1), 1 0 v(t, x)dx = 0 for any t ∈ (0, ∞),

where

M := u 0 = 1 0 u 0 (x)dx
denotes the mean value of u 0 , and uncover a fundamental difference with the quasilinear Smoluchowski-Poisson system in higher space dimensions. More precisely, when the space dimension n is greater or equal to two, there is a critical diffusion a * (r) := (1 + r) (n-2)/2 which separates different behaviours for the quasilinear Smoluchowski-Poisson system. Roughly speaking, (a) if the diffusion coefficient a is stronger than a * (in the sense that a(r) ≥ C(1+r) α for some α > (n-2)/n and C > 0), then all solutions exist globally whatever the value of the mass of the initial condition u 0 [START_REF] Cieślak | Finite-time blow-up in a quasilinear system of chemotaxis[END_REF],

(b) if the diffusion coefficient a is weaker than a * (in the sense that a(r) ≤ C(1 + r) α for some α < (n -2)/n and C > 0), then there exists for all M > 0 an initial condition u 0 with u 0 = M for which the corresponding solution to the quasilinear Smoluchowski-Poisson system blows up in finite time (in the sense that u(t) ∞ → ∞ as t → T for some T ∈ (0, ∞)) [START_REF] Cieślak | Finite time blow-up results for radially symmetric solutions to a critical quasilinear Smoluchowski-Poisson system[END_REF][START_REF] Cieślak | Finite-time blow-up in a quasilinear system of chemotaxis[END_REF][START_REF] Nagai | Blow-up of radially symmetric solutions to a chemotaxis system[END_REF],

(c) if the diffusion coefficient a behaves as a * for large values of r, solutions starting from initial data u 0 with small mass u 0 exist globally while there are initial data with large mass for which the corresponding solution to the quasilinear Smoluchowski-Poisson system blows up in finite time [START_REF] Cieślak | Finite time blow-up results for radially symmetric solutions to a critical quasilinear Smoluchowski-Poisson system[END_REF][START_REF] Nagai | Blow-up of radially symmetric solutions to a chemotaxis system[END_REF].

Observe that, in space dimension n = 2, the critical diffusion is constant and a more precise description of the situation (c) is actually available. Namely, when a ≡ 1, there is a threshold mass M * such that, if u 0 < M * , the corresponding solution is global while, for any M > M * , there are initial data with u 0 = M for which the corresponding solution blows up in finite time [START_REF] Jäger | On explosions of solutions to a system of partial differential equations modelling chemotaxis[END_REF][START_REF] Nagai | Blow-up of radially symmetric solutions to a chemotaxis system[END_REF][START_REF] Nagai | Blowup of nonradial solutions to parabolic-elliptic system modeling chemotaxis in twodimensional domains[END_REF]. The threshold mass M * is known explicitly (M * = 4π) but it is worth mentioning that for radially symmetric solutions in a ball, the threshold mass is 8π. Similar results are also available for the quasilinear Smoluchowski-Poisson system in

R n , n ≥ 2 [1, 2, 9, 10].
Most surprisingly, the above description fails to be valid in one space dimension and we prove in particular in [START_REF] Cieślak | Looking for critical nonlinearity in the one-dimensional quasilinear Smoluchowski-Poisson system[END_REF] that all solutions are global for the diffusion a(r) = (1 + r) -1 though it is a natural candidate to be critical. We actually identify two classes of diffusion coefficients a in [START_REF] Cieślak | Looking for critical nonlinearity in the one-dimensional quasilinear Smoluchowski-Poisson system[END_REF], one for which all solutions exist globally as in (a) and the other for which there are solutions blowing-up in finite time starting from initial data with an arbitrary positive mass as in (b), but the situation (c) does not seem to occur in one space dimension. The purpose of this note is to show that the dichotomy (a) or (b) can be extended to larger classes of diffusion, thereby extending the analysis performed in [START_REF] Cieślak | Looking for critical nonlinearity in the one-dimensional quasilinear Smoluchowski-Poisson system[END_REF].

Theorem 1 Let the diffusion coefficient a ∈ C 1 ((0, ∞)) be a positive function.

(i) Assume first that a ∈ L 1 (1, ∞) and one of the following assumptions is satisfied, either

γ := sup r∈(0,1) r ∞ r a(s)ds < ∞, (5) 
or there exist ϑ > 0 and α ∈ (ϑ/(1 + ϑ), 2] such that

γ ϑ := sup r∈(0,1) r 2+ϑ a(r) < ∞ and C ∞ := sup r≥1 r α a(r) < ∞. (6) 
For any M > 0, there exists a positive initial condition u 0 ∈ C([0, 1]) such that u 0 = M and the corresponding classical solution to (1)-(4) blows up in finite time.

(ii) Assume next that a ∈ L 1 (1, ∞) and consider an initial condition u 0 ∈ C([0, 1]) such that u 0 ≥ m 0 > 0 and u 0 = M for some M > 0 and m 0 ∈ (0, M ). Then the corresponding classical solution to (1)-( 4) exists globally.

As already mentioned, Theorem 1 extends the results obtained in [START_REF] Cieślak | Looking for critical nonlinearity in the one-dimensional quasilinear Smoluchowski-Poisson system[END_REF]. More precisely, in [4, Theorem 5], the assertion (ii) of Theorem 1 is proved under the additional assumption that, for each ε ∈ (0, ∞), there is

κ ε > 0 for which a(r) ≤ ε ra(r) + κ ε r for r ∈ (0, 1) ,
which roughly means that a cannot have a singularity stronger than 1/r near r = 0. This assumption turns out to be unnecessary for global existence but nevertheless ensures the global boundedness of the solution in L ∞ . Under the sole assumption of Theorem 1 (ii), our proof does not exclude that solution to (1)-( 4) becomes unbounded as t → ∞. Concerning Theorem

1 (i), it is established in [4, Theorem 10] for a ∈ L 1 (1, ∞) such that there is a concave function B for which 0 ≤ -rA(r) ≤ B(r) with A(r) = - ∞ r a(s) ds , r ∈ (0, ∞) , (7) 
lim r→∞ B(r) r = 0 . (8) 
We make this criterion more explicit here by showing that the integrability of a on (1, ∞) and ( 5) guarantee the existence of a concave function B satisfying ( 7) and [START_REF] Nagai | Blowup of nonradial solutions to parabolic-elliptic system modeling chemotaxis in twodimensional domains[END_REF], see Lemma 3 below. Let us point out here that the assumption (5) somehow means that a cannot have a singularity stronger that 1/r 2 near r = 0. However, the result remains true if a has an algebraic singularity of higher order near r = 0 which is allowed by ( 6) provided a decays suitably at infinity. Observe that the second condition in ( 6) is compatible with the integrability of a at infinity as ϑ/(1 + ϑ) < 1.

Summarizing the outcome of Theorem 1, we realize that, for a given diffusion coefficient a with a singularity weaker than 1/r 2 near r = 0, the integrability or non-integrability of a at infinity completely determines whether we are in the situation (a) or (b) described above and excludes the situation (c). There is thus no critical diffusion in this class. The same comment applies to the class of diffusion coefficients satisfying [START_REF] Jäger | On explosions of solutions to a system of partial differential equations modelling chemotaxis[END_REF] with an algebraic singularity stronger than 1/r 2 near r = 0. In particular there is no critical nonlinearity in the class of functions

C([0, ∞)) ∩ C 1 ((0, ∞)).
The paper is organized as follows: in section 2 we recall some statements from [START_REF] Cieślak | Looking for critical nonlinearity in the one-dimensional quasilinear Smoluchowski-Poisson system[END_REF]. Section 3 is devoted to proving the finite time blowup of solutions to (1)-( 4) when a ∈ L 1 (1, ∞). Global existence of solutions for all initial data when a is not integrable at infinity is proved in the last section.

Preliminaries.

In this section we summarize some results and methods introduced in [START_REF] Cieślak | Looking for critical nonlinearity in the one-dimensional quasilinear Smoluchowski-Poisson system[END_REF]. Let a ∈ C 1 ((0, ∞)) be a positive function and consider an initial condition u 0 ∈ C([0, 1]) such that u 0 ≥ m 0 > 0 and u 0 = M for some M > 0 and m 0 ∈ (0, M ). By [4, Propositions 2 and 3] there is a unique maximal classical solution (u, v) to (1)-( 4) defined on [0, T max ) which satisfies min

x∈[0,1] u(t, x) > 0 , u(t) := 1 0 u(t, x) dx = M , and v(t) := 1 0 v(t, x) dx = 0 ( 9 
)
for t ∈ (0, T max ). In addition,

T max = ∞ or T max < ∞ with u(t) ∞ → ∞ as t → T max .
We next recall the approach introduced in [4] which will be used herein as well. Owing to the positivity (9) and the regularity of u, the indefinite integral

U (t, x) := x 0 u(t, z)dz , x ∈ [0, 1] ,
is a smooth increasing function from [0, 1] onto [0, M ] for each t ∈ [0, T max ) and has a smooth inverse F defined by

U (t, F (t, y)) = y , (t, y) ∈ [0, T max ) × [0, M ] . (10) 
Introducing f (t, y) := ∂ y F (t, y), we have

f (t, y) u(t, F (t, y)) = 1 , (t, y) ∈ [0, T max ) × [0, M ] , (11) 
and it follows from ( 1)-( 4) that f solves

∂ t f = ∂ 2 y Ψ(f ) -1 + M f , (t, y) ∈ (0, T max ) × (0, M ) , (12) 
∂ y f (t, 0) = ∂ y f (t, M ) = 0 , t ∈ (0, T max ) , (13) 
f (0, y) = f 0 (y) := 1 u 0 (F (0, y)) , y ∈ (0, M ) , (14) 
where

Ψ ′ (r) := 1 r 2 a 1 r for any r > 0 , Ψ (1) 
:= 0 , (15) 
Moreover the conservation of mass (9) yields

M 0 f (t, y)dy = F (t, M ) -F (t, 0) = 1 , t ∈ [0, T max ) . ( 16 
)
At this point, the crucial observation is that, thanks to (11), finite time blowup of u is equivalent to the vanishing (or touch-down) of f . In other words, u exist globally if the minimum of f (t) is positive for each t > 0. We refer to [4, Proposition 1] for a more detailed description. An salient property of (1)-( 4) is the existence of a Liapunov function [4, Lemma 8] which we recall now:

Lemma 2 The function L 1 (t) := 1 2 M 0 |∂ y Ψ(f (t, y))| 2 dy + M 0 (Ψ(f (t, y)) -M Ψ 1 (f (t, y))) dy
is a non-increasing function of time on [0, T max ), the function Ψ 1 being defined by

Ψ 1 (1) := 0 and Ψ ′ 1 (r) := rΨ ′ (r) = 1 r a 1 r , r ∈ (0, ∞) . ( 17 
)
3 Finite time blowup.

In this section we prove the blowup assertion of Theorem 1. To this end we first prove that the condition ( 5) allows us to construct a concave function B satisfying ( 7) and ( 8) so that [4, Theorem 10] can be applied.

Lemma 3 Let a ∈ C 1 ((0, ∞)) be a positive function such that a ∈ L 1 (1, ∞) and ( 5) holds. Then there exists a concave function B ∈ C([0, ∞)) such that for all r ≥ 0

B(r) ≥ r ∞ r a(s)ds (18)
and

lim r→∞ B(r) r = 0. ( 19 
)
Proof of Lemma 3. We construct B : [0, ∞) → [0, ∞) in the following way: we put

b i := ∞ 2 i a(s)ds , i ≥ 0 ,
and notice that {b i } i≥0 is a decreasing sequence converging to zero as i → ∞. We next define

B(r) =            b 0 r + γ if r ∈ [0, 2], b i r + i-1 j=0 (b j -b j+1 )2 j+1 + γ if r ∈ (2 i , 2 i+1 ] and i ≥ 1, (20) 
Clearly, B ∈ C([0, ∞)) and

B ′ (r) = b 0 if r ∈ (0, 2), b i if r ∈ (2 i , 2 i+1 ) and i ≥ 1. ( 21 
)
Hence B is concave as a consequence of the fact that the sequence {b i } i≥0 is decreasing. Furthermore, for r ∈ [0, 1], we have

B(r) ≥ γ ≥ r ∞ r a(s)ds, and for r ∈ [2 i , 2 i+1 ], i ≥ 0, B(r) ≥ b i r = r ∞ 2 i a(s)ds ≥ r ∞ r a(s)ds.
Therefore, B satisfies (18).

Finally, let k ≥ 1. If i ≥ k + 1 and r ∈ (2 i , 2 i+1 ], then B(r) r = b i + γ r + i-1 j=0 (b j -b j+1 ) 2 j+1 r ≤ b i + γ r + i-1 j=k (b j -b j+1 ) + k-1 j=0 (b j -b j+1 ) 2 j+1 r ≤ b i + 1 r   γ + 2 k k-1 j=0 (b j -b j+1 )   + (b k -b i ) ≤ b k + 1 r γ + 2 k b 0 . Consequently, lim sup r→∞ B(r) r ≤ b k for all k ≥ 1 .
Letting k → ∞, we obtain (19) since b k → 0 as k → ∞ and Lemma 3 is proved.

Proof of Theorem 1 (i), Part 1. When a belongs to L 1 (1, ∞) and satisfies [START_REF] Cieślak | Finite-time blow-up in a quasilinear system of chemotaxis[END_REF], it follows from Lemma 3 that the conditions ( 7) and ( 8) are satisfied so that Theorem 1 (i) follows from [4, Theorem 10].

To handle the other case, we proceed in a different way by showing an upper bound for the function f defined in section 2. We first observe that the function Ψ defined in (15) satisfies

Ψ(r) = ∞ 1 1 s 2 a 1 s ds = 1 1/r
a(s) ds , r ∈ (0, ∞) , so that, if a ∈ L 1 (1, ∞), Ψ(r) has a finite limit Ψ(0) :=a L 1 (1,∞) as r → 0. We then define

Ψ(r) := Ψ(r) -Ψ(0) = r 0 1 s 2 a 1 s ds = ∞ 1/r a(s) ds , r ∈ (0, ∞) . (22) 
Lemma 4 Let a ∈ C 1 ((0, ∞)) be a positive function such that a ∈ L 1 (1, ∞). There exists a positive constant µ M > 0 depending only on M and a such that, for any non-negative function g ∈ H 1 (0, M ) satisfying g L 1 (0,M ) = 1, we have

Ψ(g) 2 L ∞ (0,M ) ≤ 32M L 1 (g) + µ M , (23) 
with

L 1 (g) := 1 2 ∂ y Ψ(g) 2 L 2 (0,M ) + M 0 (Ψ(g) -M Ψ 1 (g)) (y) dy , (24) 
the functions Ψ and Ψ 1 being defined in (15) and (17), respectively.

Proof of Lemma 4. We set G := g L ∞ (0,M ) which is finite owing to the continuous embedding of H 1 (0, M ) in L ∞ (0, M ). Assume first that G > 1. Then, for y ∈ (0, M ) and z ∈ (0, M ), we have

Ψ(g(y)) = Ψ(g(z)) + y z ∂ x Ψ(g(x)) dx ≤ Ψ(g(z)) + M 1/2 ∂ y Ψ(g) L 2 (0,M ) .
Integrating the above inequality over (0, M ) with respect to z gives

M Ψ(g(y)) ≤ M 0 Ψ(g(z)) dz + M 3/2 ∂ y Ψ(g) L 2 (0,M ) ≤ M 0 1 [0,2/M ] (g(z)) Ψ(g(z)) dz + M 0 1 (2/M,∞) (g(z)) Ψ(g(z)) dz + M 3/2 ∂ y Ψ(g) L 2 (0,M ) ≤ M Ψ 2 M + M Ψ(G) 2 M 0 1 (2/M,∞) (g(z))g(z) dz + M 3/2 ∂ y Ψ(g) L 2 (0,M ) ≤ M Ψ 2 M + M Ψ(G) 2 + M 3/2 ∂ y Ψ(g) L 2 (0,M ) ,
where we have used the property g L 1 (0,M ) = 1 to obtain the last inequality. Taking the supremum over y ∈ (0, M ) and using the monotonicity and non-negativity of Ψ, we deduce that

Ψ(G) ≤ 2 Ψ 2 M + 2M 1/2 ∂ y Ψ(g) L 2 (0,M ) . (25) 
We next observe that the integrability of a at infinity also ensures that Ψ 1 (0) > -∞, so that Ψ1 := Ψ 1 -Ψ 1 (0) is well-defined and satisfies

Ψ1 (r) = r 0 sΨ ′ (s) ds ≤ r Ψ(r) , r ∈ (0, ∞) . (26) 
Since g L 1 (0,M ) = 1, it follows from (25) and (26) that

M 0 Ψ1 (g) dy ≤ M 0 g Ψ(g) dy ≤ Ψ(G) M 0 gdy ≤ 2 Ψ 2 M + 2M 1/2 ∂ y Ψ(g) L 2 (0,M ) . (27) 
We next infer from (27) and the non-negativity of Ψ that

L 1 (g) ≥ 1 2 ∂ y Ψ(g) 2 L 2 (0,M ) + M 0 Ψ(g) dy + M Ψ(0) -M M 0 Ψ1 (g) dy ≥ 1 2 ∂ y Ψ(g) 2 L 2 (0,M ) + M Ψ(0) -2M Ψ 2 M -2M 3/2 ∂ y Ψ(g) L 2 (0,M ) ≥ 1 4 ∂ y Ψ(g) 2 L 2 (0,M ) + 1 2 ∂ y Ψ(g) L 2 (0,M ) -2M 3/2 2 -4M 3 + M Ψ(0) -2M Ψ 2 M ≥ 1 4 ∂ y Ψ(g) 2 L 2 (0,M ) -4M 3 + M Ψ(0) -2M Ψ 2 M , whence ∂ y Ψ(g) 2 L 2 (0,M ) ≤ 4L 1 (g) + 16M 3 -4M Ψ(0) + 8M Ψ 2 M .
It then follows from (25) and the above inequality that

Ψ(G) 2 ≤ 8 Ψ 2 M 2 + 8M ∂ y Ψ(g) 2 L 2 (0,M ) ≤ 8 Ψ 2 M 2 + 32M L 1 (g) + 128M 4 -32M 2 Ψ(0) + 64M 2 Ψ 2 M ≤ 32M L 1 (g) + µ M , with µ M := 1 + 128M 4 -32M 2 Ψ(0) + 64M 2 Ψ 2 M + 8 Ψ 2 M 2 + Ψ(0) 2 -32M Ψ(0).
We have thus shown Lemma 4 when G = g L ∞ (0,M ) > 1. To complete the proof, we finally consider the case G ∈ [0, 1] and notice that, in that case, 0 ≤ Ψ(G) ≤ -Ψ(0) and L 1 (g) ≥ As an obvious consequence of Lemmas 2 and 4 we have the following result:

Corollary 5 Let a ∈ C 1 ((0, ∞)) be a positive function such that a ∈ L 1 (1, ∞). For t ∈ [0, T max ) and y ∈ [0, M ], we have 0 ≤ Ψ(f (t, y)) ≤ (32M max {L 1 (f 0 ), 0} + µ M ) 1/2 .

Proof of Corollary 5. Clearly L 1 (f (t)) = L 1 (t) ≤ L 1 (0) = L 1 (f 0 ) ≤ max {L 1 (f 0 ), 0} for t ∈ [0, T max ) by Lemma 2 and Corollary 5 readily follows from Lemma 4.

Remark 6 Corollary 5 provides an L ∞ -bound on f only if Ψ(r) → ∞ as r → ∞, that is, if a ∈ L 1 (0, 1).

In that case, it gives a positive lower bound for u by (11).

for all T > 0. Together with the continuous embedding of H 1 (0, M ) in L ∞ (0, M ), ( 48 due to a ∈ L 1 (1, ∞), the above lower bound on Ψ(f ) ensures that f (t) cannot vanish in finite time, from which Theorem 1 (ii) follows as already discussed in section 2.

M 0 Ψ

 0 (g) dy + M Ψ(0) ≥ M Ψ(0), since Ψ 1 ≤ 0 in (0, 1) and Ψ ≥ 0. Consequently, Ψ(G) 2 ≤ Ψ(0) 2 = 32M Ψ(0) + Ψ(0) 2 -32M Ψ(0) ≤ 32M L 1 (g) + µ M ,and the proof of Lemma 4 is complete.

  ) gives -C 7 (T ) ≤ Ψ(f (t, y)) ≤ C 7 (T ) , (t, y) ∈ ([0, T ] ∩ [0, T max )) × [0, M ] .
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We next turn to the proof of the second part of Theorem 1 for which we develop further the arguments from [START_REF] Cieślak | Looking for critical nonlinearity in the one-dimensional quasilinear Smoluchowski-Poisson system[END_REF]Theorem 10].

Proof of Theorem 1 (i), Part 2. Assume now that a ∈ L 1 (1, ∞) and satisfies [START_REF] Jäger | On explosions of solutions to a system of partial differential equations modelling chemotaxis[END_REF]. We fix M > 0, q > 2, and ε M ∈ (0, 1) such that q > max 3 + ϑ, 5 + 3ϑ α(ϑ + 1)ϑ and q(q + 1)

the existence of ε M being guaranteed by the integrability of a at infinity. For δ ∈ 0, min 1, 2M, (2M )

we put

Then

Introducing next

we have

It follows from (12), (13), and the non-negativity of Ψ that

We shall now estimate the integral on the right-hand side of (33): to this end, we split the domain of integration into three parts which we handle differently. As a preliminary step, we notice that, by [START_REF] Jäger | On explosions of solutions to a system of partial differential equations modelling chemotaxis[END_REF],

We next define

and consider (t, y)

• If f (t, y) ∈ (0, ε M ], it follows from (28) and the monotonicity of Ψ that

• If f (t, y) ∈ (ε M , K 0 ), then (34) and the monotonicity of Ψ yield

Consequently, recalling that K 0 > 1 and Ψ(0) < 0, we deduce from ( 33) and ( 35)-(37) that

, with C 2 := q(q -1)(γ ϑ -Ψ(0) + ε M )/ε M . We next use Hölder's inequality and (16) to conclude that

It remains to estimate K 0 and in fact L 1 (f 0 ). Since Ψ is negative on (0, 1) and Ψ 1 is bounded from below by Ψ 1 (0), it follows from (29) and (30) that

On the one hand, we infer from (31), (34), and the monotonicity of Ψ that

On the other hand, we have

by ( 31) and (34), while, if y ∈ (y δ , δ],

by ( 6) since α ≤ 2. Therefore,

for some constant C 4 > 0 depending only on M and a. Combining (38) and (39) yields

for t ∈ [0, T max ) and some constant C 5 > 0 depending only on M and a. At this point, we note that the monotonicity of Λ δ and (40) imply that Λ δ (m q (t)) ≤ Λ δ (m q (0)) for t ∈ [0, T max ) if Λ δ (m q (0)) < 0, the latter condition being satisfied for δ small enough as Λ δ (m q (0)) ≤ C (q-2)/q 1 C 5 δ q-3-ϑ + δ (q(α(ϑ+1)-ϑ)-3ϑ-5)/(ϑ+2) + M C 1 δ q -M q+1 2(q + 1) by ( 28) and (32).

Summarizing, we have shown that, if δ satisfies (29) and

C

(q-2)/q 1 C 5 δ q-3-ϑ + δ (q(α(ϑ+1)-ϑ)-3ϑ-5)/(ϑ+2) + M C 1 δ q < M q+1 2(q + 1) ,

we have

an inequality which can only be true on a finite time interval owing to the non-negativity of m q . Therefore, T max < ∞ in that case and, for any M > 0, we have found an initial condition u 0 given by ( 10), (11), and (30) (for δ small enough according to the above analysis) such that u 0 = M and the first component u of the corresponding solution to (1)-( 4) blows up in finite time.

4 Global existence.

The proof of Theorem 1 (ii) also relies on the study of the function L 1 defined in Lemma 2. For that purpose, we first recall another property from [START_REF] Cieślak | Looking for critical nonlinearity in the one-dimensional quasilinear Smoluchowski-Poisson system[END_REF]. We define the function E 1 by

for which we have the following lower bound.

Lemma 7 [4, Lemma 9] For M > 0, we have

and

for every h ∈ H 1 (0, M ) satisfying

We now show that the non-integrability of a at infinity allows us to show that T max = ∞. To this end, we use the alternative formulation ( 12)-( 14) as in [START_REF] Cieślak | Looking for critical nonlinearity in the one-dimensional quasilinear Smoluchowski-Poisson system[END_REF] and prove that f cannot vanish in finite time.

Proof of Theorem 1 (ii). Owing to (14) and the assumptions made on u 0 , we have

12 Introducing Σ(t) := M -1 + e M t m -1 0 -M -1 for t ≥ 0 we have

and the comparison principle warrants that

We now follow the strategy of the proof of [4, Theorem 5] and first use the properties of Ψ, Ψ 1 , and (46) to estimate the function L 1 defined in Lemma 2 from below. Indeed, since Ψ ≥ 0 on (1, ∞) and Ψ 1 ≤ 0 on (0, 1) we arrive at

where E 1 is defined in (42) and we have used (46) to obtain the last inequality. Next, by Lemma 7 and (16), we have

Using again Lemma 7, we have

Combining the previous inequality with (47) and the Poincaré inequality leads us to the bound