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Global existence vs. blowup for the one dimensional quasilinear

Smoluchowski-Poisson system

Tomasz Cieślak∗ & Philippe Laurençot†

February 5, 2010

Abstract

We prove that, unlike in several space dimensions, there is no critical (nonlinear) diffusion coefficient

for which solutions to the one dimensional quasilinear Smoluchowski-Poisson equation with small mass

exist globally while finite time blowup could occur for solutions with large mass.

1 Introduction

In a previous paper [4] we investigate the influence of the diffusion coefficient a on the life span of solutions

to the one dimensional Smoluchowski-Poisson system

∂tu = ∂x (a(u)∂xu− u∂xv) in (0,∞)× (0, 1), (1)

0 = ∂2
xv + u−M in (0,∞) × (0, 1), (2)

a(u)∂xu = ∂xv = 0 on (0,∞) × {0, 1}, (3)

u(0) = u0 ≥ 0 in (0, 1),

∫ 1

0
v(t, x)dx = 0 for any t ∈ (0,∞), (4)

where

M := 〈u0〉 =

∫ 1

0
u0(x)dx

denotes the mean value of u0, and uncover a fundamental difference with the quasilinear Smoluchowski-

Poisson system in higher space dimensions. More precisely, when the space dimension n is greater or equal
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to two, there is a critical diffusion a∗(r) := (1 + r)(n−2)/2 which separates different behaviours for the

quasilinear Smoluchowski-Poisson system. Roughly speaking,

(a) if the diffusion coefficient a is stronger than a∗ (in the sense that a(r) ≥ C(1+r)α for some α > (n−2)/n

and C > 0), then all solutions exist globally whatever the value of the mass of the initial condition u0

[5],

(b) if the diffusion coefficient a is weaker than a∗ (in the sense that a(r) ≤ C(1+r)α for some α < (n−2)/n

and C > 0), then there exists for all M > 0 an initial condition u0 with 〈u0〉 = M for which the

corresponding solution to the quasilinear Smoluchowski-Poisson system blows up in finite time (in the

sense that ‖u(t)‖∞ → ∞ as t → T for some T ∈ (0,∞)) [3, 5, 7],

(c) if the diffusion coefficient a behaves as a∗ for large values of r, solutions starting from initial data u0 with

small mass 〈u0〉 exist globally while there are initial data with large mass for which the corresponding

solution to the quasilinear Smoluchowski-Poisson system blows up in finite time [3, 7].

Observe that, in space dimension n = 2, the critical diffusion is constant and a more precise description

of the situation (c) is actually available. Namely, when a ≡ 1, there is a threshold mass M∗ such that,

if 〈u0〉 < M∗, the corresponding solution is global while, for any M > M∗, there are initial data with

〈u0〉 = M for which the corresponding solution blows up in finite time [6, 7, 8]. The threshold mass M∗ is

known explicitly (M∗ = 4π) but it is worth mentioning that for radially symmetric solutions in a ball, the

threshold mass is 8π. Similar results are also available for the quasilinear Smoluchowski-Poisson system in

R
n, n ≥ 2 [1, 2, 9, 10].

Most surprisingly, the above description fails to be valid in one space dimension and we prove in particular

in [4] that all solutions are global for the diffusion a(r) = (1 + r)−1 though it is a natural candidate to be

critical. We actually identify two classes of diffusion coefficients a in [4], one for which all solutions exist

globally as in (a) and the other for which there are solutions blowing-up in finite time starting from initial

data with an arbitrary positive mass as in (b), but the situation (c) does not seem to occur in one space

dimension. The purpose of this note is to show that the dichotomy (a) or (b) can be extended to larger

classes of diffusion, thereby extending the analysis performed in [4].

Theorem 1 Let the diffusion coefficient a ∈ C1((0,∞)) be a positive function.

(i) Assume first that a ∈ L1(1,∞) and one of the following assumptions is satisfied, either

γ := sup
r∈(0,1)

r

∫ ∞

r
a(s)ds < ∞, (5)

or there exist ϑ > 0 and α ∈ (ϑ/(1 + ϑ), 2] such that

γϑ := sup
r∈(0,1)

r2+ϑa(r) < ∞ and C∞ := sup
r≥1

rαa(r) < ∞. (6)
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For any M > 0, there exists a positive initial condition u0 ∈ C([0, 1]) such that 〈u0〉 = M and the corre-

sponding classical solution to (1)-(4) blows up in finite time.

(ii) Assume next that a 6∈ L1(1,∞) and consider an initial condition u0 ∈ C([0, 1]) such that u0 ≥ m0 > 0

and 〈u0〉 = M for some M > 0 and m0 ∈ (0,M). Then the corresponding classical solution to (1)-(4) exists

globally.

As already mentioned, Theorem 1 extends the results obtained in [4]. More precisely, in [4, Theorem 5],

the assertion (ii) of Theorem 1 is proved under the additional assumption that, for each ε ∈ (0,∞), there is

κε > 0 for which

a(r) ≤ ε ra(r) +
κε
r

for r ∈ (0, 1) ,

which roughly means that a cannot have a singularity stronger than 1/r near r = 0. This assumption

turns out to be unnecessary for global existence but nevertheless ensures the global boundedness of the

solution in L∞. Under the sole assumption of Theorem 1 (ii), our proof does not exclude that solution to

(1)-(4) becomes unbounded as t → ∞. Concerning Theorem 1 (i), it is established in [4, Theorem 10] for

a ∈ L1(1,∞) such that there is a concave function B for which

0 ≤ −rA(r) ≤ B(r) with A(r) = −

∫ ∞

r
a(s) ds , r ∈ (0,∞) , (7)

lim
r→∞

B(r)

r
= 0 . (8)

We make this criterion more explicit here by showing that the integrability of a on (1,∞) and (5) guarantee

the existence of a concave function B satisfying (7) and (8), see Lemma 3 below. Let us point out here

that the assumption (5) somehow means that a cannot have a singularity stronger that 1/r2 near r = 0.

However, the result remains true if a has an algebraic singularity of higher order near r = 0 which is allowed

by (6) provided a decays suitably at infinity. Observe that the second condition in (6) is compatible with

the integrability of a at infinity as ϑ/(1 + ϑ) < 1.

Summarizing the outcome of Theorem 1, we realize that, for a given diffusion coefficient a with a

singularity weaker than 1/r2 near r = 0, the integrability or non-integrability of a at infinity completely

determines whether we are in the situation (a) or (b) described above and excludes the situation (c). There

is thus no critical diffusion in this class. The same comment applies to the class of diffusion coefficients

satisfying (6) with an algebraic singularity stronger than 1/r2 near r = 0. In particular there is no critical

nonlinearity in the class of functions C([0,∞)) ∩ C1((0,∞)).

The paper is organized as follows: in section 2 we recall some statements from [4]. Section 3 is devoted

to proving the finite time blowup of solutions to (1)-(4) when a ∈ L1(1,∞). Global existence of solutions

for all initial data when a is not integrable at infinity is proved in the last section.
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2 Preliminaries.

In this section we summarize some results and methods introduced in [4]. Let a ∈ C1((0,∞)) be a positive

function and consider an initial condition u0 ∈ C([0, 1]) such that u0 ≥ m0 > 0 and 〈u0〉 = M for some

M > 0 and m0 ∈ (0,M). By [4, Propositions 2 and 3] there is a unique maximal classical solution (u, v) to

(1)-(4) defined on [0, Tmax) which satisfies

min
x∈[0,1]

u(t, x) > 0 , 〈u(t)〉 :=

∫ 1

0
u(t, x) dx = M , and 〈v(t)〉 :=

∫ 1

0
v(t, x) dx = 0 (9)

for t ∈ (0, Tmax). In addition, Tmax = ∞ or Tmax < ∞ with ‖u(t)‖∞ → ∞ as t → Tmax.

We next recall the approach introduced in [4] which will be used herein as well. Owing to the positivity

(9) and the regularity of u, the indefinite integral

U(t, x) :=

∫ x

0
u(t, z)dz , x ∈ [0, 1] ,

is a smooth increasing function from [0, 1] onto [0,M ] for each t ∈ [0, Tmax) and has a smooth inverse F

defined by

U(t, F (t, y)) = y , (t, y) ∈ [0, Tmax)× [0,M ] . (10)

Introducing f(t, y) := ∂yF (t, y), we have

f(t, y) u(t, F (t, y)) = 1 , (t, y) ∈ [0, Tmax)× [0,M ] , (11)

and it follows from (1)-(4) that f solves

∂tf = ∂2
yΨ(f)− 1 +Mf , (t, y) ∈ (0, Tmax)× (0,M) , (12)

∂yf(t, 0) = ∂yf(t,M) = 0 , t ∈ (0, Tmax) , (13)

f(0, y) = f0(y) :=
1

u0(F (0, y))
, y ∈ (0,M) , (14)

where

Ψ′(r) :=
1

r2
a

(

1

r

)

for any r > 0 , Ψ(1) := 0 , (15)

Moreover the conservation of mass (9) yields
∫ M

0
f(t, y)dy = F (t,M)− F (t, 0) = 1 , t ∈ [0, Tmax) . (16)

At this point, the crucial observation is that, thanks to (11), finite time blowup of u is equivalent to the

vanishing (or touch-down) of f . In other words, u exist globally if the minimum of f(t) is positive for each

t > 0. We refer to [4, Proposition 1] for a more detailed description.

An salient property of (1)-(4) is the existence of a Liapunov function [4, Lemma 8] which we recall now:
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Lemma 2 The function

L1(t) :=
1

2

∫ M

0
|∂yΨ(f(t, y))|2 dy +

∫ M

0
(Ψ(f(t, y))−M Ψ1(f(t, y))) dy

is a non-increasing function of time on [0, Tmax), the function Ψ1 being defined by

Ψ1(1) := 0 and Ψ′
1(r) := rΨ′(r) =

1

r
a

(

1

r

)

, r ∈ (0,∞) . (17)

3 Finite time blowup.

In this section we prove the blowup assertion of Theorem 1. To this end we first prove that the condition (5)

allows us to construct a concave function B satisfying (7) and (8) so that [4, Theorem 10] can be applied.

Lemma 3 Let a ∈ C1((0,∞)) be a positive function such that a ∈ L1(1,∞) and (5) holds. Then there exists

a concave function B ∈ C([0,∞)) such that for all r ≥ 0

B(r) ≥ r

∫ ∞

r
a(s)ds (18)

and

lim
r→∞

B(r)

r
= 0. (19)

Proof of Lemma 3. We construct B : [0,∞) → [0,∞) in the following way: we put

bi :=

∫ ∞

2i
a(s)ds , i ≥ 0 ,

and notice that {bi}i≥0 is a decreasing sequence converging to zero as i → ∞. We next define

B(r) =























b0r + γ if r ∈ [0, 2],

bir +

i−1
∑

j=0

(bj − bj+1)2
j+1 + γ if r ∈ (2i, 2i+1] and i ≥ 1,

(20)

Clearly, B ∈ C([0,∞)) and

B′(r) =

{

b0 if r ∈ (0, 2),

bi if r ∈ (2i, 2i+1) and i ≥ 1.
(21)

Hence B is concave as a consequence of the fact that the sequence {bi}i≥0 is decreasing. Furthermore, for

r ∈ [0, 1], we have

B(r) ≥ γ ≥ r

∫ ∞

r
a(s)ds,
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and for r ∈ [2i, 2i+1], i ≥ 0,

B(r) ≥ bir = r

∫ ∞

2i
a(s)ds ≥ r

∫ ∞

r
a(s)ds.

Therefore, B satisfies (18).

Finally, let k ≥ 1. If i ≥ k + 1 and r ∈ (2i, 2i+1], then

B(r)

r
= bi +

γ

r
+

i−1
∑

j=0

(bj − bj+1)
2j+1

r
≤ bi +

γ

r
+

i−1
∑

j=k

(bj − bj+1) +
k−1
∑

j=0

(bj − bj+1)
2j+1

r

≤ bi +
1

r



γ + 2k
k−1
∑

j=0

(bj − bj+1)



+ (bk − bi) ≤ bk +
1

r

(

γ + 2kb0

)

.

Consequently,

lim sup
r→∞

B(r)

r
≤ bk for all k ≥ 1 .

Letting k → ∞, we obtain (19) since bk → 0 as k → ∞ and Lemma 3 is proved. �

Proof of Theorem 1 (i), Part 1. When a belongs to L1(1,∞) and satisfies (5), it follows from Lemma 3 that

the conditions (7) and (8) are satisfied so that Theorem 1 (i) follows from [4, Theorem 10]. �

To handle the other case, we proceed in a different way by showing an upper bound for the function f

defined in section 2. We first observe that the function Ψ defined in (15) satisfies

Ψ(r) =

∫ ∞

1

1

s2
a

(

1

s

)

ds =

∫ 1

1/r
a(s) ds , r ∈ (0,∞) ,

so that, if a ∈ L1(1,∞), Ψ(r) has a finite limit Ψ(0) := −‖a‖L1(1,∞) as r → 0. We then define

Ψ̃(r) := Ψ(r)−Ψ(0) =

∫ r

0

1

s2
a

(

1

s

)

ds =

∫ ∞

1/r
a(s) ds , r ∈ (0,∞) . (22)

Lemma 4 Let a ∈ C1((0,∞)) be a positive function such that a ∈ L1(1,∞). There exists a positive constant

µM > 0 depending only on M and a such that, for any non-negative function g ∈ H1(0,M) satisfying

‖g‖L1(0,M) = 1, we have

‖Ψ̃(g)‖2L∞(0,M) ≤ 32ML1(g) + µM , (23)

with

L1(g) :=
1

2
‖∂yΨ(g)‖2L2(0,M) +

∫ M

0
(Ψ(g)−MΨ1(g)) (y) dy , (24)

the functions Ψ and Ψ1 being defined in (15) and (17), respectively.
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Proof of Lemma 4. We set G := ‖g‖L∞(0,M) which is finite owing to the continuous embedding of H1(0,M)

in L∞(0,M). Assume first that G > 1. Then, for y ∈ (0,M) and z ∈ (0,M), we have

Ψ̃(g(y)) = Ψ̃(g(z)) +

∫ y

z
∂xΨ̃(g(x)) dx ≤ Ψ̃(g(z)) +M1/2‖∂yΨ(g)‖L2(0,M).

Integrating the above inequality over (0,M) with respect to z gives

MΨ̃(g(y)) ≤

∫ M

0
Ψ̃(g(z)) dz +M3/2‖∂yΨ(g)‖L2(0,M)

≤

∫ M

0
1[0,2/M ](g(z))Ψ̃(g(z)) dz +

∫ M

0
1(2/M,∞)(g(z))Ψ̃(g(z)) dz +M3/2‖∂yΨ(g)‖L2(0,M)

≤ MΨ̃

(

2

M

)

+
MΨ̃(G)

2

∫ M

0
1(2/M,∞)(g(z))g(z) dz +M3/2‖∂yΨ(g)‖L2(0,M)

≤ MΨ̃

(

2

M

)

+
MΨ̃(G)

2
+M3/2‖∂yΨ(g)‖L2(0,M) ,

where we have used the property ‖g‖L1(0,M) = 1 to obtain the last inequality. Taking the supremum over

y ∈ (0,M) and using the monotonicity and non-negativity of Ψ̃, we deduce that

Ψ̃(G) ≤ 2Ψ̃

(

2

M

)

+ 2M1/2‖∂yΨ(g)‖L2(0,M). (25)

We next observe that the integrability of a at infinity also ensures that Ψ1(0) > −∞, so that Ψ̃1 := Ψ1−Ψ1(0)

is well-defined and satisfies

Ψ̃1(r) =

∫ r

0
sΨ′(s) ds ≤ rΨ̃(r) , r ∈ (0,∞) . (26)

Since ‖g‖L1(0,M) = 1, it follows from (25) and (26) that

∫ M

0
Ψ̃1(g) dy ≤

∫ M

0
gΨ̃(g) dy ≤ Ψ̃(G)

∫ M

0
gdy ≤ 2Ψ̃

(

2

M

)

+ 2M1/2‖∂yΨ(g)‖L2(0,M). (27)

We next infer from (27) and the non-negativity of Ψ̃ that

L1(g) ≥
1

2
‖∂yΨ(g)‖2L2(0,M) +

∫ M

0
Ψ̃(g) dy +MΨ(0)−M

∫ M

0
Ψ̃1(g) dy

≥
1

2
‖∂yΨ(g)‖2L2(0,M) +MΨ(0)− 2MΨ̃

(

2

M

)

− 2M3/2‖∂yΨ(g)‖L2(0,M)

≥
1

4
‖∂yΨ(g)‖2L2(0,M) +

(

1

2
‖∂yΨ(g)‖L2(0,M) − 2M3/2

)2

− 4M3 +MΨ(0)− 2MΨ̃

(

2

M

)

≥
1

4
‖∂yΨ(g)‖2L2(0,M) − 4M3 +MΨ(0)− 2MΨ̃

(

2

M

)

,
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whence

‖∂yΨ(g)‖2L2(0,M) ≤ 4L1(g) + 16M3 − 4MΨ(0) + 8MΨ̃

(

2

M

)

.

It then follows from (25) and the above inequality that

Ψ̃(G)2 ≤ 8Ψ̃

(

2

M

)2

+ 8M‖∂yΨ(g)‖2L2(0,M)

≤ 8Ψ̃

(

2

M

)2

+ 32ML1(g) + 128M4 − 32M2Ψ(0) + 64M2Ψ̃

(

2

M

)

≤ 32ML1(g) + µM ,

with

µM := 1 + 128M4 − 32M2Ψ(0) + 64M2Ψ̃

(

2

M

)

+ 8Ψ̃

(

2

M

)2

+Ψ(0)2 − 32MΨ(0).

We have thus shown Lemma 4 when G = ‖g‖L∞(0,M) > 1. To complete the proof, we finally consider the

case G ∈ [0, 1] and notice that, in that case,

0 ≤ Ψ̃(G) ≤ −Ψ(0) and L1(g) ≥

∫ M

0
Ψ̃(g) dy +MΨ(0) ≥ MΨ(0),

since Ψ1 ≤ 0 in (0, 1) and Ψ̃ ≥ 0. Consequently,

Ψ̃(G)2 ≤ Ψ(0)2 = 32MΨ(0) + Ψ(0)2 − 32MΨ(0) ≤ 32ML1(g) + µM ,

and the proof of Lemma 4 is complete. �

As an obvious consequence of Lemmas 2 and 4 we have the following result:

Corollary 5 Let a ∈ C1((0,∞)) be a positive function such that a ∈ L1(1,∞). For t ∈ [0, Tmax) and

y ∈ [0,M ], we have

0 ≤ Ψ̃(f(t, y)) ≤ (32M max {L1(f0), 0} + µM )1/2 .

Proof of Corollary 5. Clearly L1(f(t)) = L1(t) ≤ L1(0) = L1(f0) ≤ max {L1(f0), 0} for t ∈ [0, Tmax) by

Lemma 2 and Corollary 5 readily follows from Lemma 4. �

Remark 6 Corollary 5 provides an L∞-bound on f only if Ψ(r) → ∞ as r → ∞, that is, if a 6∈ L1(0, 1).

In that case, it gives a positive lower bound for u by (11).
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We next turn to the proof of the second part of Theorem 1 for which we develop further the arguments

from [4, Theorem 10].

Proof of Theorem 1 (i), Part 2. Assume now that a ∈ L1(1,∞) and satisfies (6). We fix M > 0, q > 2, and

εM ∈ (0, 1) such that

q > max

{

3 + ϑ,
5 + 3ϑ

α(ϑ + 1)− ϑ

}

and
q(q + 1)

M2

∫ ∞

1/εM

a(s) ds ≤
1

2
, (28)

the existence of εM being guaranteed by the integrability of a at infinity.

For

δ ∈
(

0,min
{

1, 2M, (2M)−1/q
})

, (29)

we put

f0(y) :=
2(1−Mδq)

δ2
(δ − y)+ + δq ≥ δq > 0 , y ∈ [0,M ] . (30)

Then
∫ M

0
f0(y) dy = 1, ‖f0‖L∞(0,M) =

2(1 −Mδq)

δ
+ δq ≤

2

δ
. (31)

Introducing next

mq(t) :=

∫ M

0
yqf(t, y) dy , t ∈ [0, Tmax) ,

we have

mq(0) =

(

2(1−Mδq)

(q + 1)(q + 2)
+

M q+1

q + 1

)

δq ≤ C1δ
q with C1 :=

(

2 + (q + 2)M q+1

(q + 1)(q + 2)

)

. (32)

It follows from (12), (13), and the non-negativity of Ψ̃ that

dmq

dt
= −q

∫ M

0
yq−1∂yΨ̃(f) dy +Mmq −

M q+1

q + 1
,

dmq

dt
≤ q(q − 1)

∫ M

0
yq−2Ψ̃(f) dy +Mmq −

M q+1

q + 1
. (33)

We shall now estimate the integral on the right-hand side of (33): to this end, we split the domain of

integration into three parts which we handle differently. As a preliminary step, we notice that, by (6),

Ψ′(r) ≤ γϑr
ϑ and Ψ(r) ≤

γϑ
ϑ+ 1

rϑ+1 ≤ γϑ rϑ+1 , r ≥ 1 . (34)

We next define

K0 := (32M max {L1(f0), 0} + µM )1/2(2+ϑ) > 1 ,

and consider (t, y) ∈ [0, Tmax)× [0,M ].
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• If f(t, y) ∈ (0, εM ], it follows from (28) and the monotonicity of Ψ̃ that

Ψ̃(f(t, y)) ≤ Ψ̃(εM ) =

∫ ∞

1/εM

a(s) ds ≤
M2

2q(q + 1)
. (35)

• If f(t, y) ∈ (εM ,K0), then (34) and the monotonicity of Ψ̃ yield

Ψ̃(f(t, y)) =
Ψ̃(f(t, y))

f(t, y)
f(t, y) ≤

Ψ(K0)−Ψ(0)

εM
f(t, y) ≤

γϑK
ϑ+1
0 −Ψ(0)

εM
f(t, y) . (36)

• If f(t, y) ≥ K0, Corollary 5 ensures that

Ψ̃(f(t, y)) =
Ψ̃(f(t, y))

f(t, y)
f(t, y) ≤

Kϑ+2
0

K0
f(t, y) ≤ Kϑ+1

0 f(t, y) . (37)

Consequently, recalling that K0 > 1 and Ψ(0) < 0, we deduce from (33) and (35)-(37) that

dmq

dt
≤ q(q − 1)

∫ M

0
yq−2Ψ̃(f) 1(0,εM ](f) dy + q(q − 1)

∫ M

0
yq−2Ψ̃(f) 1(εM ,K0)(f) dy

+ q(q − 1)

∫ M

0
yq−2Ψ̃(f) 1[K0,∞)(f) dy +Mmq −

M q+1

q + 1

≤
(q − 1)M2

2(q + 1)

∫ M

0
yq−2 dy + q(q − 1)

γϑK
ϑ+1
0 −Ψ(0)

εM

∫ M

0
yq−2f dy

+ q(q − 1)Kϑ+1
0

∫ M

0
yq−2f dy +Mmq −

M q+1

q + 1

≤ C2 Kϑ+1
0

∫ M

0
yq−2f dy +Mmq −

M q+1

2(q + 1)
,

with C2 := q(q − 1)(γϑ −Ψ(0) + εM )/εM . We next use Hölder’s inequality and (16) to conclude that

dmq

dt
≤ C2 Kϑ+1

0 m(q−2)/q
q +Mmq −

M q+1

2(q + 1)
. (38)

It remains to estimate K0 and in fact L1(f0). Since Ψ is negative on (0, 1) and Ψ1 is bounded from

below by Ψ1(0), it follows from (29) and (30) that

L1(f0) ≤
2

δ4
(1−Mδq)2

∫ δ

0
|Ψ′(f0)|

2 dy +

∫ δ

0
Ψ(f0) dy −M2Ψ1(0)

≤
2

δ4

∫ δ

0
|Ψ′(f0)|

2 dy +

∫ δ

0
Ψ(f0) dy −M2Ψ1(0).

10



On the one hand, we infer from (31), (34), and the monotonicity of Ψ that

∫ δ

0
Ψ(f0) dy ≤ δ Ψ

(

2

δ

)

≤ γϑ2
ϑ+1 δ−ϑ .

On the other hand, we have

f0(y) ≥ 1 for y ∈ [0, yδ ] with yδ := δ −
1− δq

2(1 −Mδq)
δ2 > 0 ,

f0(y) ∈ [δq , 1] for y ∈ [yδ, δ] ,

so that, if y ∈ [0, yδ],

Ψ′(f0(y))
2 ≤ γ2ϑf0(y)

2ϑ ≤ γϑ4
ϑ δ−2ϑ

by (31) and (34), while, if y ∈ (yδ, δ],

Ψ′(f0(y))
2 ≤

1

f0(y)4
a

(

1

f0(y)

)2

≤ C2
∞ f0(y)

2(α−2) ≤ C2
∞ δ−2q(2−α)

by (6) since α ≤ 2. Therefore,

L1(f0) ≤
2

δ4

[∫ yδ

0
γϑ4

ϑ δ−2ϑ dy +

∫ δ

yδ

C2
∞ δ−2q(2−α) dy

]

+ γϑ2
ϑ+1 δ−ϑ −M2Ψ1(0)

≤ γϑ4
ϑ+1 δ−3−2ϑ +C2

∞

1− δq

2(1 −Mδq)
δ−2−2q(2−α) + γϑ2

ϑ+1 δ−ϑ −M2Ψ1(0)

≤ γϑ4
ϑ+1 δ−2(2+ϑ) + C2

∞ δ−2−2q(2−α) + γϑ2
ϑ+1 δ−ϑ −M2Ψ1(0)

≤ C3

(

δ−2(2+ϑ) + δ−2−2q(2−α)
)

with C3 := γϑ4
ϑ+2 + C2

∞ −M2Ψ1(0). Therefore,

Kϑ+1
0 ≤ C4

(

δ−(ϑ+1) + δ−(ϑ+1)(1+q(2−α))/(ϑ+2)
)

(39)

for some constant C4 > 0 depending only on M and a.

Combining (38) and (39) yields

dmq

dt
≤ Λδ(mq) := C5

(

δ−(ϑ+1) + δ−(ϑ+1)(1+q(2−α))/(ϑ+2)
)

m(q−2)/q
q +Mmq −

M q+1

2(q + 1)
(40)

for t ∈ [0, Tmax) and some constant C5 > 0 depending only on M and a. At this point, we note that the

monotonicity of Λδ and (40) imply that Λδ(mq(t)) ≤ Λδ(mq(0)) for t ∈ [0, Tmax) if Λδ(mq(0)) < 0, the latter

condition being satisfied for δ small enough as

Λδ(mq(0)) ≤ C
(q−2)/q
1 C5

(

δq−3−ϑ + δ(q(α(ϑ+1)−ϑ)−3ϑ−5)/(ϑ+2)
)

+MC1 δq −
M q+1

2(q + 1)

11



by (28) and (32).

Summarizing, we have shown that, if δ satisfies (29) and

C
(q−2)/q
1 C5

(

δq−3−ϑ + δ(q(α(ϑ+1)−ϑ)−3ϑ−5)/(ϑ+2)
)

+MC1 δq <
M q+1

2(q + 1)
, (41)

we have
dmq

dt
(t) ≤ Λδ(mq(t)) ≤ Λδ(mq(0)) < 0 , t ∈ [0, Tmax) ,

an inequality which can only be true on a finite time interval owing to the non-negativity of mq. Therefore,

Tmax < ∞ in that case and, for any M > 0, we have found an initial condition u0 given by (10), (11), and

(30) (for δ small enough according to the above analysis) such that 〈u0〉 = M and the first component u of

the corresponding solution to (1)-(4) blows up in finite time. �

4 Global existence.

The proof of Theorem 1 (ii) also relies on the study of the function L1 defined in Lemma 2. For that purpose,

we first recall another property from [4]. We define the function E1 by

E1(h) :=
1

2
‖∂yh‖

2
2 +

∫ M

0
1(−∞,0)(h(y)) h(y) dy , h ∈ H1(0,M) , (42)

for which we have the following lower bound.

Lemma 7 [4, Lemma 9] For M > 0, we have

E1(h) ≥
1

4
‖∂yh‖

2
2 −M3 −M

∣

∣

∣

∣

Ψ

(

1

M

)∣

∣

∣

∣

, (43)

and

‖h‖1 ≤ M3/2‖∂yh‖2 +M

∣

∣

∣

∣

Ψ

(

1

M

)∣

∣

∣

∣

(44)

for every h ∈ H1(0,M) satisfying
∫ M

0
Ψ−1(h)(y) dy = 1 . (45)

We now show that the non-integrability of a at infinity allows us to show that Tmax = ∞. To this end,

we use the alternative formulation (12)-(14) as in [4] and prove that f cannot vanish in finite time.

Proof of Theorem 1 (ii). Owing to (14) and the assumptions made on u0, we have

0 < f0(y) ≤
1

m0
, y ∈ [0,M ].
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Introducing Σ(t) := M−1 + eMt
(

m−1
0 −M−1

)

for t ≥ 0 we have

∂tΣ− ∂2
yΨ(Σ)−MΣ+ 1 = M

(

Σ−
1

M

)

−MΣ+ 1 = 0,

Σ(0) =
1

m0
≥ f0(y), y ∈ (0,M),

and the comparison principle warrants that

f(t, y) ≤ Σ(t), (t, y) ∈ [0, Tmax)× [0,M ]. (46)

We now follow the strategy of the proof of [4, Theorem 5] and first use the properties of Ψ, Ψ1, and (46)

to estimate the function L1 defined in Lemma 2 from below. Indeed, since Ψ ≥ 0 on (1,∞) and Ψ1 ≤ 0 on

(0, 1) we arrive at

L1(0) ≥ L1(t) =
1

2
‖∂yΨ(f(t))‖2L2(0,M) +

∫ M

0
1(0,1)(f(t, y))(Ψ −MΨ1)(f(t, y)) dy

+

∫ M

0
1(1,∞)(f(t, y))(Ψ −MΨ1)(f(t, y)) dy

≥
1

2
‖∂yΨ(f(t))‖2L2(0,M) +

∫ M

0
1(−∞,0)(Ψ(f(t, y)))Ψ(f(t, y)) dy

− M

∫ M

0
1(1,∞)(f(t, y))Ψ1(f(t, y)) dy

≥ E1(Ψ(t))−M2Ψ1(Σ(t)),

where E1 is defined in (42) and we have used (46) to obtain the last inequality. Next, by Lemma 7 and (16),

we have

L1(0) ≥
1

4
‖∂yΨ(f(t))‖2L2(0,M) −M3 −M

∣

∣

∣

∣

Ψ

(

1

M

)∣

∣

∣

∣

−M2Ψ1(Σ(t)),

whence
1

4
‖∂yΨ(f(t))‖2L2(0,M) ≤ L1(0) +M3 +M

∣

∣

∣

∣

Ψ

(

1

M

)∣

∣

∣

∣

+M2Ψ1(Σ(t)). (47)

Using again Lemma 7, we have

‖Ψ(f(t))‖L1(0,M) ≤ M3/2 ‖∂yΨ(f(t))‖L2(0,M) +M

∣

∣

∣

∣

Ψ

(

1

M

)∣

∣

∣

∣

≤ 2M3/2

(

L1(0) +M3 +M

∣

∣

∣

∣

Ψ

(

1

M

)∣

∣

∣

∣

+M2Ψ1(Σ(t))

)1/2

+M

∣

∣

∣

∣

Ψ

(

1

M

)∣

∣

∣

∣

.

Combining the previous inequality with (47) and the Poincaré inequality leads us to the bound

‖Ψ(f(t))‖H1(0,M) ≤ C6(T ) , t ∈ [0, T ] ∩ [0, Tmax) , (48)
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for all T > 0. Together with the continuous embedding of H1(0,M) in L∞(0,M), (48) gives

−C7(T ) ≤ Ψ(f(t, y)) ≤ C7(T ) , (t, y) ∈ ([0, T ] ∩ [0, Tmax))× [0,M ] .

Since

lim
r→0

Ψ(r) = −∞

due to a 6∈ L1(1,∞), the above lower bound on Ψ(f) ensures that f(t) cannot vanish in finite time, from

which Theorem 1 (ii) follows as already discussed in section 2. �

Acknowledgements. This work was done while the first author held a post-doctoral position at the

University of Zürich and is also partially supported by the Polish Ministry of Science and Higher Education

under grant number NN201 396937 (2009-2012).

References
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[3] T. Cieślak and Ph. Laurençot, Finite time blow-up results for radially symmetric solutions to a critical

quasilinear Smoluchowski-Poisson system, C. R. Acad. Sci. Paris Sér. I 347 (2009), 237–242.
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