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Approximation of nonlinear parabolic equations

using a family of conformal and non-conformal schemes

Robert Eymard∗, Angela Handlovičová†and Karol Mikula‡

Abstract

We consider a family of space discretisations for the approximation of nonlinear parabolic equa-

tions, such as the regularised mean curvature flow level set equation, using semi-implicit or fully

implicit time schemes. The approximate solution provided by such a scheme is shown to converge

thanks to compactness and monotony arguments. Numerical examples show the accuracy of the

method.

Keywords: Conformal finite element scheme, non-conformal finite element scheme, convergence of the
scheme, nonlinear parabolic equation.

1 Introduction

Nonlinear parabolic equations are involved in different physical or engineering frameworks. For example,
the porous medium equation ut − ∆um = 0, the Stefan problem ut − ∆ϕ(u) = 0 arise in the framework
of fluid flows within porous media. Important improvements in the approximation of their solutions have
been obtained, using finite volume methods. Indeed, such methods are well suited to the conservative
form of these equations.

More surprising is the success of finite volume methods for the approximation of some nonlinear prob-
lems, under the more general form ut − F (u,∇u,D2u) = 0. For example, in [15], a few algorithms are
proposed for the approximation of motion by mean curvature equation, including finite volume methods,
whereas the equation, namely ut − |∇u|div (∇u/|∇u|) = 0, is not in the divergence form. In such cases,
finite difference methods have more intensively been used. The mathematical framework which is under
consideration for the analysis of the convergence of these finite difference schemes relies on the notion of
viscosity solution and monotonous scheme. Such a monotonous behaviour does not seem straightforward
in the framework of finite volume schemes. Indeed, in a recent paper [7], we study a finite volume method
for the approximation of the motion by mean curvature equation in a regularised sense. The principles,
used in [7] for the mathematical analysis of the convergence of the finite volume scheme, completely differ
from that of the viscosity solutions [5, 3], and do not allow for handling the case of the non-regularised
motion by mean curvature equation (nevertheless, this case is handled in some numerical examples pro-
vided at the end of this paper). A regularised sense, as detailed below, must be used for the proof of
convergence of the method.

In the present paper, our aim is to propose a more general framework of approximation methods for some
nonlinear parabolic equations in non-conservative form.

ν(u,∇u)ut − div(µ(|∇u|)∇u) = f, a.e. in Ω×]0, T [ (1)

with the initial condition
u(x, 0) = u0(x), for a.e. x ∈ Ω, (2)
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and the boundary condition
u(x, t) = 0, for a.e. (x, t) ∈ ∂Ω × R+, (3)

under the following hypotheses (called hypotheses (H) in the following) on the real functions µ, ν, the
initial data u0, the right hand side f , and on the domain Ω:

1. Ω is a finite bounded connected open subset of R
d, d ∈ N

⋆ (where N
⋆ denotes the set N \ {0}),

2. u0 ∈ H1
0 (Ω),

3. f ∈ L2(Ω×]0, T [) for all T > 0,

4. ν ∈ C0(R × R
d; [νmin, νmax]), with given νmax ≥ νmin > 0,

5. µ ∈ C0(R+; [µmin, µmax]), with given µmax ≥ µmin > 0, is a Lipschitz continuous (non-strictly)
decreasing function, and (xµ(x))′ ≥ α for a.e. x ∈ R

+ for a given α > 0.

Remark 1.1 We could as well consider bounded functions ν(x, t, s, ξ) for (x, t, s, ξ) ∈ Ω×]0, T [×R×R
d,

measurable with respect to (x, t), continuous with respect to s and ξ.

It is worth noticing that the functions µ and ν given by

µ(s) = max(1/
√
s2 + a2, 1/b), ∀s ∈ R+,

ν(z, ξ) = µ(|ξ|), ∀z ∈ R, ∀ξ ∈ R
d,

(4)

for given reals 0 < a ≤ b, satisfy (H4-5) with α = a2/b3 (this corresponds to the regularised level set
equation [5]). Let us now give the precise mathematical sense that we consider for a solution to Problem
(1)-(2)-(3) under Hypotheses (H).

Definition 1.1 (Weak solution of (1)-(2)-(3)) Under hypotheses (H), we say that u is a weak
solution of (1)-(2)-(3) if, for all T > 0,

1. u ∈ L2(0, T ;H1
0 (Ω)) and ut ∈ L2(Ω×]0, T [) (hence u ∈ C0(0, T ;L2(Ω))),

2. u(·, 0) = u0,

3. the following holds

∫ T

0

∫

Ω

(ν(u,∇u)utv + µ(|∇u|)∇u · ∇v) dxdt =

∫ T

0

∫

Ω

f vdxdt,∀v ∈ L2(0, T ;H1
0 (Ω)). (5)

In the spirit of [7], where we prove the convergence of a finite volume scheme for the approximation of
a weak solution of (1)-(2)-(3) in the sense of Definition 1.1, we develop in this paper a series of new
features:

1. We consider a more general framework for the space discretisations, including conformal and non-
conformal finite element methods and finite volume methods inspired by multipoint flux approxi-
mation [1].

2. In [7], the discrete norms involved in the scheme as arguments of functions µ and ν do not correspond
to the exact L2 norm of an approximate gradient (this imposes to separately prove the strong
convergence of this approximate norm, and of an approximate gradient), whereas we consider in
this paper a family of schemes such that exact norms of the discrete gradients are used, which
allows to directly prove the strong convergence of the gradient from the convergence of its norm.
Hence we can more easily consider in this paper the framework of a function ν(u,∇u) instead of
ν(u, |∇u|), since we prove the strong convergence of the discrete gradient used in the discretisation
of ν(u,∇u).
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3. We present numerical schemes which can resume to 9-point stencil finite volume scheme (see Section
3.2, where the local elimination of interface unknowns is possible).

4. The proof that the discrete gradient and its norm are strongly convergent relies on Hypothesis (H5)
instead of Leray-Lions method [11] (see (39)).

The main result of this paper, i.e. the strong convergence of the discrete schemes to a solution of (5), is
proved thanks to the following property. Let F be the function defined by

∀s ∈ R+, F (s) =

∫ s

0

zµ(z)dz ∈
[
µmin

s2

2
, µmax

s2

2

]
. (6)

Then, for any sufficiently regular function u, it holds

d

dt

∫

Ω

F (|∇u(x, t)|)dx =

∫

Ω

µ(|∇u(x, t)|)∇u(x, t) · ∇ut(x, t)dxdt. (7)

Therefore, assuming that this function u is solution of (1) with f = 0 for the sake of simplicity, we get,
by taking v = ut in (5), that ∇u ∈ C0([0, T ];L2(Ω)) and

∫ T

0

∫

Ω

ν(u,∇u)ut(x, t)
2dxdt+

∫

Ω

F (|∇u(x, T )|)dx =

∫

Ω

F (|∇u0(x)|)dx. (8)

The discrete equivalent of this property is shown in Lemma 4.1 for the fully-implicit scheme (using that
x 7→ xµ(x) is strictly increasing), and in Lemma 4.3 for the semi-implicit scheme (using that µ is de-
creasing). Note that the hypothesis that x 7→ xµ(x) is strictly increasing is used in both schemes for the
proof of the strong convergence of the discrete approximate of the gradient. Unfortunately, although it
is possible to extend some of these properties to the case µ(x) = 1/x, the convergence study provided in
this paper does not hold in this framework.

Remark 1.2 Note that, thanks to the convergence result proved in this paper, we also prove the existence
of a weak solution u of (1)-(2)-(3) in the sense of Definition 1.1, which satisfies, for all T > 0:

1. u ∈ L2(0, T ;H1
0 (Ω)) and ut ∈ L2(Ω×]0, T [) (hence u ∈ C0(0, T ;L2(Ω))),

2. u(·, 0) = u0,

3. div (µ(|∇u|)∇u) ∈ L2(Ω×]0, T [),

4. ν(u,∇u)ut − div (µ(|∇u|)∇u) = f a.e. in Ω×]0, T [.

This paper is organised as follows. In Section 2, we present a family of discretisation tools, examples
of which (case of rectangular or simplicial meshes) are given in Section 3. Then in Section 4, we show
some estimates that are used on one hand in the proof of the existence of at least one solution to the
fully implicit scheme, and of the existence and uniqueness of the solution to the semi-implicit scheme, on
the other hand, in the convergence proof provided in Section 5. Finally, numerical results are given in
Section 6.

2 The family of discrete schemes

We now introduce the tools used for prescribing the space discretisation.

Definition 2.1 (Space discretisation) Let Ω be an open bounded connected subset of R
d, with d ∈

N \ {0}, and ∂Ω = Ω \ Ω its boundary. A space discretisation of Ω is defined by D = (HD, PD,ΠD,∇D),
where
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1. We denote by HD a finite dimension vector space on R (the component of any u ∈ HD being the
degrees of freedom of u).

2. We denote by PD : H1
0 (Ω) → HD a linear operator (the interpolation operator).

3. We denote by ∇D : HD → L2(Ω)d a linear operator (reconstruction of the gradient), such that
‖∇Du‖L2(Ω)d is a norm on HD, denoted by ‖u‖D.

4. We denote by ΠD : HD → L2(Ω) a linear function (reconstruction of the function). Therefore, we
classically denote by ‖ΠD‖L(HD,L2(Ω)) = sup{‖ΠDu‖L2(Ω), u ∈ HD with ‖u‖D = 1}.

We can notice that the operators used in Definition 2.1 are quite general, and provided by a large variety
of discretisation schemes.

Remark 2.1 The easiest examples of such a discretisation are the conformal Lagrange finite element
methods: HD ⊂ H1

0 (Ω) is spanned by a family ϕi ∈ H1
0 (Ω), for i ∈ I, such that, for all i ∈ I, a point

xi ∈ Ω is given with ϕi(xj) = 1 if and only if i = j. Then the interpolation operator is defined by
PDu =

∑
i∈I uiϕi, with ui = 1

|B(xi,r)|

∫
B(xi,r)

u(x)dx and B(xi, r) ⊂ Ω. Then ∇D is the natural gradient

in H1
0 (Ω) and ΠD is equal to identity. This example will not be further considered in this paper, since we

prefer focusing on non-conformal methods including finite volume ones.

Let us now turn to space-time discretisations.

Definition 2.2 (Space-time discretisation) Let Ω be an open bounded connected subset of R
d, with

d ∈ N
⋆ and let T > 0 be given. We say that (D, τ) is a space-time discretisation of Ω×]0, T [ if D is a space

discretisation of Ω in the sense of Definition 2.1 and if there exists NT ∈ N with T = NT τ , where τ > 0
is time step. We denote by HD,τ the set of all u = (un)n=1,...,NT

with un ∈ HD for all n = 1, . . . , NT ,
we denote for all u ∈ HD,τ , by ΠD,τ : HD,τ → L2(Ω×]0, T [) the function defined by ΠDu

n(x) for a.e.
x ∈ Ω and all t ∈](n− 1)τ, nτ ], by Dτu the function defined by Dτu(x, t) = ΠD(un − un−1)(x)/τ for a.e.
(x, t) ∈ Ω×](n−1)τ, nτ [, and by ∇Du the function defined by ∇Du

n(x) for a.e. (x, t) ∈ Ω×](n−1)τ, nτ [.

We finally define PD,τ : L2(0, T ;H1
0 (Ω)) → HD,τ , by (PD,τv)

n = PD

(
1
τ

∫ nτ

(n−1)τ
v(·, t)dt

)
, for n =

1, . . . , NT .

Let (D, τ) be a space-time discretisation of Ω×]0, T [.

We now define two numerical schemes. The fully implicit scheme is defined by

u0 = PDu0, (9)

and

u ∈ HD,τ ,∫ T

0

∫

Ω

(ν(u(x, t),∇Du(x, t))Dτu(x, t)ΠD,τv(x, t) + µ(|∇Du(x, t)|)∇Du(x, t) · ∇Dv(x, t)) dxdt

=

∫ T

0

∫

Ω

f(x, t)ΠD,τv(x, t)dxdt, ∀v ∈ HD,τ .

(10)

The semi-implicit scheme is defined by (9), and by

u ∈ HD,τ ,∫ T

0

∫

Ω

(ν(ũ(x, t),∇Dũ(x, t))Dτu(x, t)ΠD,τv(x, t) + µ(|∇Dũ(x, t)|)∇Du(x, t) · ∇Dv(x, t)) dxdt

=

∫ T

0

∫

Ω

f(x, t)ΠD,τv(x, t)dxdt, ∀v ∈ HD,τ ,

(11)

where ũ is the function defined by un−1(x) for a.e. (x, t) ∈ Ω×](n− 1)τ, nτ [.
In order to be able to prove convergence properties, we now give the framework which is considered for
a sequence of space discretisations.
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Definition 2.3 (Admissible sequence of space discretisations) Let Ω be an open bounded connected
subset of R

d, with d ∈ N
⋆ (where N

⋆ denotes the set N \ {0}). We say that (Dm)m∈N is an admissible
sequence of space discretisations of Ω if the following conditions are fulfilled:

1. there exists C > 0 such that

‖ΠDm
‖L(HDm ,L2(Ω)) ≤ C, ∀m ∈ N, (12)

and
‖∇Dm

PDm
v‖L2(Ω)d ≤ C‖∇v‖L2(Ω)d , ∀m ∈ N, ∀v ∈ H1

0 (Ω), (13)

2. the following consistency property holds

lim
m→∞

(
‖v − ΠDm

PDm
v‖L2(Ω) + ‖∇v −∇Dm

PDm
v‖L2(Ω)d

)
= 0, ∀v ∈ H1

0 (Ω), (14)

3. the following compactness property holds: for all sequence (um)m∈N with um ∈ HDm
such that there

exists C > 0 with ‖um‖Dm
≤ C for all m ∈ N, then there exists u in L2(Ω) such that, up to a

sub-sequence, ΠDm
um converges to u in L2(Ω),

4. for all sequence (um)m∈N with um ∈ HDm
such that there exists C > 0 with ‖um‖Dm

≤ C for
all m ∈ N, and such that there exists u ∈ L2(Ω) such that ΠDm

um converges to u in L2(Ω), then
∇Dm

um converges to ∇u for the weak topology of L2(R)d, prolonging by 0 all functions outside Ω.

Remark 2.2 It results from the above definition that, if a sequence (um)m∈N with um ∈ HDm
is such

that there exists C > 0 with ‖um‖Dm
≤ C for all m ∈ N, and that there exists u in L2(Ω) such that um

converges to u in L2(Ω), then u ∈ H1
0 (Ω).

Definition 2.4 (Admissible sequence of space-time discretisations) Let Ω be an open bounded
connected subset of R

d, with d ∈ N
⋆ and let T > 0. We say that (Dm, τm)m∈N is an admissible se-

quence of space-time discretisations of Ω×]0, T [ if (Dm, τm) is a space-time discretisation of Ω×]0, T [ in
the sense of Definition 2.2 for all m ∈ N, if (Dm)m∈N is an admissible sequence of space discretisations
of Ω in the sense of Definition 2.3, and if (τ)m∈N converges to 0.

Remark 2.3 It results from the above definition that, for all v ∈ L2(0, T ;H1
0 (Ω)), thanks to domi-

nated convergence, ∇Dm
PDm,τm

v converges to ∇v in L2(Ω×]0, T [)d and ΠDm
PDm,τm

v converges to v in
L2(Ω×]0, T [).

The next section is devoted to the presentation of precise examples of space discretisations, and to the
detailed expression of Schemes (10) and (11) in these cases.

3 Examples of non-conformal space discretisations

Since the main applications which are considered are devoted to image processing, we first focus on non
conformal rectangular finite elements on rectangular domains, and then on non conformal simplicial finite
elements on polygonal domains. All these non conformal finite element methods can also be seen as finite
volume methods.

3.1 A first scheme on rectangular domains

We consider the particular case where Ω =]a1, b1[× . . .×]ad, bd[ is an open rectangle in R
d. A space

discretisation in the sense of Definition 2.1 is defined by the following way.

1. A rectangular discretisation of Ω is defined by the increasing sequences ai = x
(i)
0 < x

(i)
1 < . . . <

x
(i)

n(i) = bi, i = 1, . . . , d.
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2. We denote by

M =
{

]x
(1)

i(1)
, x

(1)

i(1)+1
[× . . .×]x

(d)

i(d) , x
(1)

i(d)+1
[, 0 ≤ i(1) < n(1), . . . , 0 ≤ i(d) < n(d)

}

the set of the control volumes. The elements of M are denoted p, q, . . .. We denote by xp the centre
of p. For any p ∈ M, let ∂p = p \ p be the boundary of p; let |p| > 0 denote the measure of p and
let hp denote the diameter of p and hD denote the maximum value of (hp)p∈M.

3. We denote by E the set of all the faces of p ∈ M, and for all σ ∈ E , we denote by |σ| its (d − 1)-
dimensional measure. For any σ ∈ E , we define the set Mσ = {p ∈ M, σ ∈ Ep} (which has therefore
one or two elements), we denote by Ep the set of the faces of p ∈ M (it has 2 d elements) and by xσ

the centre of σ. We then denote by dpσ = |xσ − xp| the orthogonal distance between xp and σ ∈ Ep

and by np,σ the normal vector to σ, outward to p.

4. We denote by Vp the set of all the vertexes of p ∈ M (it has 2d elements), by V the union of all
Vp, p ∈ M. For y ∈ V, we denote by Kp,y the rectangle whose faces are parallel to those of p, and
whose the set of vertexes contains xp and y. We denote by Vσ the set of all vertexes of σ ∈ E (it
has 2d−1 elements), and by Ep,y the set of all σ ∈ Ep such that y ∈ Vσ (it has d elements).

5. We define the set HD of all u ∈ R
M × R

E , with uσ = 0 for σ ⊂ ∂Ω and n = 1, . . . , NT .

6. We denote, for all u ∈ HD, by ΠDu ∈ L2(Ω) the function defined by the constant value up a.e. in
p ∈ M.

7. We denote, for all v ∈ H1
0 (Ω), by PDv ∈ HD the element defined by (PDv)p = 1

|p|

∫
p
v(x)dx for all

p ∈ M, and by (PDv)σ = 1
|σ|

∫
σ
v(x)ds(x) for all σ ∈ E .

8. For u ∈ HD, p ∈ M and y ∈ Vp, we denote by

∇p,yu =
2

|p|
∑

σ∈Ep,y

|σ|(uσ − up)np,σ =
∑

σ∈Ep,y

uσ − up

dpσ

np,σ, (15)

and by ∇Du the function defined a.e. on Ω by ∇p,yu on Kp,y.

It is then possible to show, using the results of [6] that a sequence of space discretisations defined as
above is an admissible sequence of space discretisations in the sense of Definition 2.3, letting hDm

tending

to 0 whereas minp∈M minσ∈Ep

dpσ

hp
remains uniformly bounded. The proof of this result is a consequence

of the fact that the discrete norm is related to the one which is used in the finite volume setting (see [6]).
Let us write the schemes (10) and (11) in this case. We first choose for test function v ∈ HD,τ , the
function such that vn

p = 1 for a given p ∈ M and n = 1, . . . , NT , and all other components equal to 0.
We get

|p|νn
p (un

p − un−1
p ) − τ

∑

σ∈Ep

|σ|µn
p,σ

dpσ

(un
σ − un

p ) = fn
p , (16)

where we set
2dνn

p =
∑

y∈Vp

ν(um
p ,∇p,yu

m) and 2d−1µn
p,σ =

∑

y∈Vσ

µ(|∇p,yu
m|), (17)

with m = n for (10) and m = n− 1 for (11), and

fn
p =

∫ nτ

(n−1)τ

∫

p

f(x, t)dxdt.

6



We then choose for test function v ∈ HD,τ , the function such that vn
σ = 1 for a given interior face σ

common to both control volumes p, q ∈ M and n = 1, . . . , NT , and all other components equal to 0. We
obtain

µn
p,σ

dpσ

(un
σ − un

p ) +
µn

q,σ

dqσ

(un
σ − un

q ) = 0.

The above expression allows, in the case of Scheme (11), for eliminating un
σ with respect to un

p and un
q .

It is then easy to derive an L∞ estimate in this case, which resumes to L∞ stability if f = 0.

3.2 A second scheme on rectangular domains

We again consider the particular case where Ω =]a1, b1[× . . .×]ad, bd[ is an open rectangle in R
d. A space

discretisation in the sense of Definition 2.1 is now defined by the following method.

1-4. identical to [1-4] section 3.1.

5. We define the set HD of all u = ((up)p∈M, (uσ,y)σ∈E,y∈Vσ
), with uσ,y = 0 for σ ⊂ ∂Ω, y ∈ Vσ and

n = 1, . . . , NT .

6. We denote, for all u ∈ HD, by ΠDu ∈ L2(Ω) the function defined by the constant value up a.e. in
p ∈ M.

7. We denote, for all v ∈ H1
0 (Ω), by PDv ∈ HD the element defined by (PDv)p = 1

|p|

∫
p
v(x)dx for all

p ∈ M, and by (PDv)σ,y = 1
|σ|

∫
σ
v(x)ds(x) for all σ ∈ E and y ∈ Vσ.

8. For u ∈ HD, p ∈ M and y ∈ Vp, we denote by

∇p,yu =
2

|p|
∑

σ∈Ep,y

|σ|(uσ,y − up)np,σ =
∑

σ∈Ep,y

uσ,y − up

dpσ

np,σ, (18)

and by ∇Du the function defined a.e. on Ω by ∇p,yu on Kp,y.

Remark 3.1 This definition differs from that of section (3.1) by the use of 2d−1 different unknowns uσ,y

at the interface σ instead of only one uσ.

Let us write the schemes (10) and (11) in this case. For a given p ∈ M and n = 1, . . . , NT , we get

|p|νn
p (un

p − un−1
p ) − τ

∑

σ∈Ep

∑

y∈Vσ

|σ|µ(|∇p,yu
m|)

2d−1dpσ

(un
σ,y − un

p ) = fn
p , (19)

where we set
2dνn

p =
∑

y∈Vp

ν(um
p ,∇p,yu

m),

with m = n for (10) and m = n− 1 for (11), and

fn
p =

∫ nτ

(n−1)τ

∫

p

f(x, t)dxdt.

For a given interior σ common to p, q ∈ M, y ∈ Vσ and n = 1, . . . , NT , we have

µ(|∇p,yu
m|)

dpσ

(un
σ,y − un

p ) +
µ(|∇q,yu

m|)
dqσ

(un
σ,y − un

q ) = 0. (20)

Again, the above expression allows to eliminate un
σ,y in the case of Scheme (11), and an L∞ estimate is

derived.
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3.3 A scheme applying on simplicial meshes

This scheme has a few common points with the scheme presented in Section 3.2, although we now consider
that Ω be an open bounded polyhedron in R

d. A space discretisation in the sense of Definition 2.1 is now
defined by the following method.

1. We denote by M a set of disjoint open simplicial domains (triangles in 2D, tetrahedrons in 3D),
such that Ω =

⋃
p∈M p. The elements of M are denoted p, q, . . .. We denote by xp the centre of

gravity of p. For any p ∈ M, let ∂p = p \ p be the boundary of p; let |p| > 0 denote the measure of
p and let hp denote the diameter of p and hD denote the maximum value of (hp)p∈M.

2. We denote by E the set of all the faces of p ∈ M, and for all σ ∈ E , we denote by |σ| its (d − 1)-
dimensional measure. For any σ ∈ E , we denote by Mσ = {p ∈ M, σ ∈ Ep}. We assume that the
mesh is conformal, in the sense that Mσ has exactly one element and then σ ⊂ ∂Ω or Mσ has two
elements and σ ⊂ Ω. We then denote by Ep the faces of p ∈ M (it has d+ 1 elements) and by xσ

the centre of gravity of σ. We then denote by dpσ = |xσ − xp| the orthogonal distance between xp

and σ ∈ Ep and by np,σ the normal vector to σ, outward to p.

3. We denote by Vp the set of all the vertexes of p ∈ M (it has d + 1 elements), by V the union of
all Vp, p ∈ M. For y ∈ V, we denote by Kp,y the polyhedron, defined as the set of all x ∈ p such
that the barycentric coordinates (sy′)y′∈Vp

of x satisfy sy = maxy′∈Vp
sy′ (recall that (sy′)y′∈Vp

is
defined by x− xp =

∑
y′∈Vp

sy′(y′ − xp), such that sy′ ≥ 0 and
∑

y′∈Vp
sy′ = 1). We denote by Vσ

the set of all vertexes of σ ∈ E (it has d elements), and by Ep,y the set of all σ ∈ Ep such that y ∈ Vσ

(it has d elements). We then denote, for σ ∈ E and y ∈ Vσ, by xσ,y the point of σ defined by the
barycentric coordinates (in σ) (sy′)y′∈Vσ

, such that sy′ = 1/(d+ 1) for all y′ ∈ Vσ \ {y} (therefore
sy = 2/(d+ 1)).

4. We define the set HD of all u = ((up)p∈M, (uσ,y)σ∈E,y∈Vσ
), with uσ,y = 0 for σ ⊂ ∂Ω, y ∈ Vσ and

n = 1, . . . , NT .

5. We denote, for all u ∈ HD, by ΠDu ∈ L2(Ω) the function defined by the constant value up a.e. in
p ∈ M.

6. We denote, for all v ∈ H1
0 (Ω), by PDv ∈ HD the element defined by (PDv)p = 1

|p|

∫
p
v(x)dx for all

p ∈ M. We denote by σy the subset of all x ∈ σ such that the barycentric coordinates (sy′)y′∈Vσ

of x in σ satisfy sy > 1/2, and we set (PDv)σ,y = d−1
(d+1)|σ|

∫
σ
v(x)ds(x) + 2

(d+1)|σy|

∫
σy
v(x)ds(x) for

all σ ∈ E and y ∈ Vσ (hence computing a second order approximation at point xσ,y).

7. For u ∈ HD, p ∈ M and y ∈ Vp, we denote by

∇p,yu =
d+ 1

|p|
∑

σ∈Ep,y

|σ|
d

(uσ,y − up)np,σ, (21)

and by ∇Du the function defined a.e. on Ω by ∇p,yu on Kp,y.

Remark 3.2 Note that the measure of Kp,y is |p|/(d + 1) (this is easily shown, considering the affine
transformation which sends p to a tetrahedron with all edges equal).

It can then be shown (see [2, 12, 13]) that a sequence of space discretisations defined as above, such that
hDm

tends to 0, under a regularity property of the mesh, is an admissible sequence of space discretisations
in the sense of Definition 2.3. Let us write the schemes (10) and (11) in this case. For a given p ∈ M
and n = 1, . . . , NT , we get

|p|νn
p (un

p − un−1
p ) − τ

∑

σ∈Ep

∑

y∈Vσ

|σ|
d
µ(|∇p,yu

m|)∇p,yu
n · np,σ = fn

p ,
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where we set
(d+ 1)νn

p =
∑

y∈Vp

ν(um
p ,∇p,yu

m),

with m = n for (10) and m = n− 1 for (11), and

fn
p =

∫ nτ

(n−1)τ

∫

p

f(x, t)dxdt.

For a given interior σ common to p, q ∈ M, y ∈ Vσ and n = 1, . . . , NT , we have

µ(|∇p,yu
m|)∇p,yu

n · np,σ = µ(|∇q,yu
m|)∇q,yu

n · np,σ,

and in this case no L∞ estimate can be easily derived.

4 Properties of the schemes

Before focusing on the estimates satisfied by the approximate solutions, we first present a few properties
which are useful in the convergence study.

4.1 Estimates and existence of a solution to the fully implicit scheme

Lemma 4.1 L2(Ω×]0, T [) estimate on Dτu and L∞(0, T ;HD) estimate, fully implicit scheme.
Let Hypotheses (H) be fulfilled. Let (D, τ) be a space-time discretisation of Ω×]0, T [ in the sense of
Definition 2.2. Let u ∈ HD,τ be a solution of (9) and (10). Then it holds:

νmin

∫ mτ

0

∫

Ω

Dτu(x, t)
2dxdt+ µmin‖∇Du

m‖2
L2(Ω)d

≤ µmax‖∇DPDu0‖2
L2(Ω)d +

1

νmin
‖f‖2

L2(Ω×]0,T [), ∀m = 1, . . . , NT .
(22)

Proof.

We set v = Dτu in the scheme and in (10) we integrate in time on the interval ]0,mτ [, for m = 1, . . . , NT .
Let us remark that, thanks to Hypothesis (H5) which implies the convexity of F , we have

∀c1, c2 ∈ R+, F (c2) − F (c1) =

∫ c2

c1

zµ(z)dz ≤ c2µ(c2)(c2 − c1). (23)

We can then write

F (|∇Du
n(x)|) − F (|∇Du

n−1(x)|) ≤ µ(|∇Du
n(x)|)|∇Du

n(x)|(|∇Du
n(x)| − |∇Du

n−1(x)|).

Note that the Cauchy-Schwarz inequality implies

|∇Du
n(x)|(|∇Du

n(x)| − |∇Du
n−1(x)|) ≤ ∇Du

n(x) · (∇Du
n(x) −∇Du

n−1(x)).

Thanks to property (6), and to the Young inequality applied to the right hand side, we conclude (22).
�

Lemma 4.2 (Existence of at least one solution to the fully implicit scheme) Under Hypothe-
ses (H), let (D, τ) be a space-time discretisation of Ω×]0, T [ in the sense of Definition 2.2. Then there
exists at least one u ∈ HD,τ such that (9), (10) holds.
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Proof. We first define, for any λ ∈ [0, 1], the functions µλ and νλ by µλ(s) = µmax(1− λ) + λµ(s) and
νλ(s, ξ) = νmin(1−λ)+λν(s, ξ). Since estimate (22) holds independently of λ, since the problem is linear
for λ = 0, the topological degree argument [8], applied to the function Φ : HD,τ → HD,τ defined by

Φ(u)n
i =

∫

Ω

νλ(un(x),∇Du
n(x))(ΠDu

n(x) − ΠDu
n−1(x))ΠDvi(x)dx

+τ

∫

Ω

µλ(|∇Du
n(x)|)∇Du

n(x) · ∇Dvi(x)dx−
∫

Ω

∫ nτ

(n−1)τ

f(x, t)dtΠDvi(x)dx,

where (vi)i=1,...,M is a basis of HD, ensures the existence of at least one solution to Scheme (9), (10) .
�

Lemma 4.3 L2(Ω×]0, T [) estimate on ut and L∞(0, T ;HD) estimate, semi-implicit scheme. Let
Hypotheses (H) be fulfilled. Let (D, τ) be a space-time discretisation of Ω×]0, T [ in the sense of Definition
2.2. Let u ∈ HD,τ be a solution of (9) and (11). Then it holds:

νmin

∫ mτ

0

Dτu(x, t)
2dxdt+ µmin‖∇Du

m‖2
L2(Ω)d + µmin

m∑

n=1

∫

Ω

(|∇Du
n(x)| − |∇Du

n−1(x)|)2dx

≤ µmax‖∇DPDu0‖2
L2(Ω)d +

1

νmin
‖f‖2

L2(Ω×]0,T [), ∀m = 1, . . . , NT ,

(24)

hence proving the existence and uniqueness of the solution u ∈ HD,τ to (9) and (11).

Proof. We proceed as in the proof of Lemma 4.1. We remark that, thanks to Hypothesis (H5),

∀c1, c2 ∈ R+,

∫ c2

c1

zµ(z)dz +
1

2
(c2 − c1)

2µ(c1) ≤ c2µ(c1)(c2 − c1). (25)

Indeed, we set, for c1, c2 ∈ R+, Φc1
(c2) = c2µ(c1)(c2 − c1) − 1

2 (c2 − c1)
2µ(c1) −

∫ c2

c1
zµ(z)dz. We have

Φc1
(c1) = 0, and Φ′

c1
(c2) = c2µ(c1) − c2µ(c2), whose sign is that of c2 − c1 since µ is (non-strictly)

decreasing. Hence Φc1
(c2) ≥ 0 and we get

F (|∇Du
n(x)|) − F (|∇Du

n−1(x)|) +
µmin

2
(|∇Du

n(x)| − |∇Du
n−1(x)|)2

≤ |∇Du
n(x)|µ(|∇Du

n−1(x)|)(|∇Du
n(x)| − |∇Du

n−1(x)|).

Then the conclusion follows, as in the proof of Lemma 4.1.
�

5 Convergence

Thanks to the estimates proved in the above section, we are now in position for proving the convergence
of the scheme, using the monotonicity properties of the operators.

5.1 Convergence properties for the fully implicit scheme

We consider u ∈ HD,τ satisfying (9) and (10). We define

wD,τ = f − ν(uD,τ ,∇Du)Dτu, (26)

GD,τ = µ(|∇Du|)∇Du, (27)

Note that uD,τ is the solution of

10



u ∈ HD,τ ,∫ T

0

∫

Ω

GD,τ (x, t) · ∇Dv(x, t)dxdt =

∫ T

0

∫

Ω

wD,τ (x, t)ΠD,τv(x, t)dxdt, ∀v ∈ HD,τ .
(28)

We then have the following convergence lemma.

Lemma 5.1 (A convergence property of the fully implicit scheme) Let Hypotheses (H) be ful-
filled. Let (Dm, τm)m∈N be an admissible sequence of space-time discretisations of Ω×]0, T [ in the sense
of Definition 2.4. Let, for all m ∈ N, um ∈ HDm,τm

be such that (9) and (10) hold.
Then there exist a sub-sequence of (Dm, τm)m∈N, again denoted (Dm, τm)m∈N, and functions
ū ∈ L∞(0, T ;H1

0 (Ω)) ∩ C0(0, T ;L2(Ω)), with ūt ∈ L2(Ω×]0, T [) and u(., 0) = u0, Ḡ ∈ L2(Ω×]0, T [)d and
w̄ ∈ L2(Ω×]0, T [) such that

1. ΠDm,τm
um converges in L∞(0, T ;L2(Ω)) to ū as m→ ∞,

2. Dτm
um weakly converges in L2(Ω×]0, T [) to ūt as m→ ∞,

3. GDm,τm
, defined by (27), weakly converges to Ḡ in L2(Ω×]0, T [)d as m→ ∞,

4. wDm,τm
, defined by (26), weakly converges to w̄ in L2(Ω×]0, T [) as m→ ∞,

5. it holds

lim
m→∞

∫ T

0

∫

Ω

GDm,τm
(x, t) · ∇Dm

um(x, t)dxdt =

∫ T

0

∫

Ω

Ḡ(x, t) · ∇ū(x, t)dxdt. (29)

Proof.

Thanks to (22), GDm,τm
remains bounded in L∞(0, T ;L2(Ω)) and wDm,τm

remains bounded in L2(Ω×]0, T [).
Hence, up to a sub-sequence, the existence of Ḡ ∈ L2(Ω×]0, T [)d and w̄ ∈ L2(Ω×]0, T [) such that GDm,τm

weakly converges to Ḡ in L2(Ω×]0, T [)d and wDm,τm
weakly converges to w̄ in L2(Ω×]0, T [).

We then remark that the sequence um is bounded in L∞(0, T ;HDm
), which provides, thanks to com-

pactness property assumed in Definition 2.3, to the L2(Ω×]0, T [) bound on Dτm
um and to an adaptation

of Ascoli’s theorem similar to that done in [7], that there exists ū ∈ L∞(0, T ;H1
0 (Ω)) ∩ C0(0, T ;L2(Ω)),

with ūt ∈ L2(Ω×]0, T [) such that, up to a sub-sequence, ΠDm,τm
um converges in L∞(0, T ;L2(Ω)) to ū

as m → ∞. We then get that Dτm
um weakly converges in L2(Ω×]0, T [) to ūt as m → ∞. The proof

that u(., 0) = u0 results from the initialisation of the scheme (9) and from Property (14). One of the
difficulties is to respectively identify Ḡ and w̄ with µ(|∇ū|)∇ū and ν(ū,∇ū). This will be done in further
lemmas, thanks to the property (29) stated in the present lemma, that we have now to prove. Note that
in the proof below, we drop some indexes m for the simplicity of notation.
Let ϕ ∈ L2(0, T ;H1

0 (Ω)) be given. Letting v = PD,τϕ in (28), and passing to the limit, we get

∫ T

0

∫

Ω

Ḡ(x, t) · ∇ϕ(x, t)dxdt =

∫ T

0

∫

Ω

w̄(x, t)ϕ(x, t)dxdt ∀ϕ ∈ L2(0, T ;H1
0 (Ω)). (30)

Hence, setting ϕ = ū in (30), we get

∫ T

0

∫

Ω

Ḡ(x, t) · ∇ū(x, t)dxdt =

∫ T

0

∫

Ω

w̄(x, t)ū(x, t)dxdt.

Passing to the limit in (28) with v = um (the right hand side converges thanks to weak/strong conver-
gence), we then get (29).
�
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5.2 Convergence properties for the semi-implicit scheme

We consider u ∈ HD,τ , given by (9) and (11). We define

w̃D,τ = f − ν(ũD,τ ,∇Dũ)Dτu, (31)

G̃D,τ = µ(|∇Dũ|)∇Du, (32)

and GD,τ defined by (27).
Note that uD,τ is the solution of

u ∈ HD,τ ,∫ T

0

∫

Ω

G̃(x, t) · ∇Dv(x, t)dxdt =

∫ T

0

∫

Ω

w̃(x, t)vD,τ (x, t)dxdt, ∀v ∈ HD,τ .
(33)

We then have the following convergence lemma.

Lemma 5.2 (A convergence property of the semi-implicit scheme) Let (Dm, τm)m∈N be an ad-
missible sequence of space-time discretisations of Ω×]0, T [ in the sense of Definition 2.4. Let, for all
m ∈ N, um ∈ HDm,τm

be such that (9) and (11) hold.
Then there exist a sub-sequence of (Dm, τm)m∈N, again denoted (Dm, τm)m∈N, and functions
ū ∈ L∞(0, T ;H1

0 (Ω)) ∩ C0(0, T ;L2(Ω)), with ūt ∈ L2(Ω×]0, T [) and u(., 0) = u0, Ḡ ∈ L2(Ω×]0, T [)d and
w̄ ∈ L2(Ω×]0, T [) such that

1. ΠDm,τm
um converges in L∞(0, T ;L2(Ω)) to ū as m→ ∞,

2. Dτm
um weakly converges in L2(Ω×]0, T [) to ut as m→ ∞,

3. G̃Dm,τm
, defined by (32), and GDm,τm

, defined by (27), weakly converge to Ḡ in L2(Ω×]0, T [)d as
m→ ∞, and

lim
m→∞

∫ T

0

∫

Ω

(G̃Dm,τm
(x, t) −GDm,τm

(x, t)) · ∇Dm
um(x, t)dxdt = 0, (34)

4. w̃Dm,τm
, defined by (31), weakly converges to w̄ in L2(Ω×]0, T [) as m→ ∞,

5. relation (29) holds.

Proof. The proof mainly follows the same steps as that of Lemma 5.1. Let us focus on the points
which are specific. Writing

‖|∇Du| − |∇Dũ|‖2
L2(Ω×]0,T [)d = τ

NT∑

n=1

∫

Ω

(|∇Du
n(x)| − |∇Du

n−1(x)|)2dx, (35)

we get, from (24), that ‖|∇Dm
um| − |∇Dm

ũm|‖L2(Ω×]0,T [)d tends to 0 since τm −→ 0 as m −→ ∞. This
leads, for any ψ ∈ L2(Ω×]0, T [), that the quantity

∫ T

0

∫

Ω

(G̃Dm,τm
(x, t) −GDm,τm

(x, t)) · ψ(x, t)dxdt

≤
∫ T

0

∫

Ω

|µ(|∇Dm
ũm(x, t)|) − µ(|∇Dm

um(x, t)|)| |∇Dm
um(x, t) · ψ(x, t)|dxdt

tends to 0 asm→ ∞ thanks to (35) and properties of function µ. The same holds for
∫ T

0

∫
Ω
(G̃Dm,τm

(x, t)−
GDm,τm

(x, t)) · ∇Dm
um(x, t)dxdt, which proves (34).

�
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5.3 Strong convergence of ∇Du

The problem is now to show the convergence in L2(Ω×]0, T [) of ∇Dm
um to ∇ū. This will result from

property (29) (which holds for both the fully implicit and the semi-implicit schemes), and from the
properties of function µ. Indeed, this property is the key point of the proof of the following lemma which
uses Minty’s trick.

Lemma 5.3 Let Hypotheses (H) be fulfilled. Let (Dm, τm)m∈N be an admissible sequence of space-time
discretisations of Ω×]0, T [ in the sense of Definition 2.4.
Let us assume that a sequence (um)m∈N is such that um ∈ HDm,τm

for all m ∈ N, and such that um

converges in L2(Ω×]0, T [) to ū ∈ L∞(0, T ;H1
0 (Ω)), ∇Dm

um weakly converges to ∇ū in L2(Ω×]0, T [),
GDm,τm

, defined by (27), weakly converges to Ḡ in L2(Ω×]0, T [)d as m → ∞ and we assume that (29)
holds. For all W ∈ L2(Ω×]0, T [)d, we denote by

Tm(W ) =

∫ T

0

∫

Ω

(GDm,τm
− µ(|W |)W ) · (∇Dm

um −W )dxdt. (36)

Then the following holds

lim
m→∞

Tm(W ) =

∫ T

0

∫

Ω

(Ḡ− µ(|W |)W ) · (∇ū−W )dxdt, (37)

and therefore
Ḡ(x, t) = µ(|∇ū(x, t)|)∇ū(x, t), for a.e. (x, t) ∈ Ω×]0, T [. (38)

Proof. In order to pass to the limit in Tm(W ), we write Tm(W ) = T
(1)
m (W ) − T

(2)
m (W ) − T

(3)
m (W ) +

T (4)(W ) with

T (1)
m (W ) =

∫ T

0

∫

Ω

GDm,τm
(x, t) · ∇Dm

umdxdt,

T (2)
m (W ) =

∫ T

0

∫

Ω

GDm,τm
(x, t) ·Wdxdt,

T (3)
m (W ) =

∫ T

0

∫

Ω

µ(|W |)W · ∇Dm
umdxdt,

and

T (4)(W ) =

∫ T

0

∫

Ω

µ(|W |)W ·Wdxdt.

Thanks to properties of admissible sequences of discretisations, we get

lim
m→∞

T (2)
m (W ) =

∫ T

0

∫

Ω

Ḡ ·Wdxdt,

lim
m→∞

T (3)
m (W ) =

∫ T

0

∫

Ω

µ(|W |)W (x, t) · ∇ūdxdt,

Relation (29) provides

lim
m→∞

T (1)
m (W ) =

∫ T

0

∫

Ω

Ḡ · ∇ūdxdt.

Hence we get (37), which is sufficient to prove next Lemma 5.4. Nevertheless, let us apply Minty’s trick
(which remains available in the framework of non strictly monotonous operators): we set W = ∇ū− λψ,
with λ > 0 and ψ ∈ C∞

c (Ω×]0, T [)d in (37). We get, dividing by λ,

∫ T

0

∫

Ω

(
Ḡ− µ(|∇ū− λψ|)(∇ū− λψ)

)
ψdxdt ≥ 0.
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We can let λ −→ 0 in the above inequality, using Lebesgue’s dominated convergence theorem. We then
get ∫ T

0

∫

Ω

(Ḡ− µ(|∇ū|∇ū)ψdxdt ≥ 0.

Since this also holds for −ψ, we get
∫ T

0

∫

Ω

(Ḡ− µ(|∇ū|∇ū)ψdxdt = 0.

Hence Ḡ− µ(|∇ū|∇ū) = 0 a.e. in Ω×]0, T [, which achieves the proof of (38).
�

We now have the following lemma.

Lemma 5.4 Under the same hypotheses as Lemma 5.3, ∇Dm
um converges in L2(Ω×]0, T [) to ∇ū as m

tends to ∞.

Proof. We first remark that, for all V,W ∈ L2(Ω×]0, T [)d, it holds

∀V,W ∈ L2(Ω×]0, T [)d,

∫ T

0

∫

Ω

(µ(|W |)W − µ(|V |)V ) · (W − V ) dxdt ≥ α‖|W | − |V |‖2
L2(Ω×]0,T [). (39)

Indeed, thanks to the Cauchy-Schwarz inequality, we get
∫ T

0

∫

Ω

µ(|W |)W · V dxdt ≤
∫ T

0

∫

Ω

µ(|W |)|W | |V |dxdt,

and the same property holds exchanging the roles of W and V . Hence
∫ T

0

∫

Ω

(µ(|W |)W − µ(|V |)V ) · (W − V ) dxdt

≥
∫ T

0

∫

Ω

(µ(|W |)|W | − µ(|V |)|V |) (|W | − |V |) dxdt.

Property (H5) on µ provides (39). Taking W = ∇Dm
um and V = ∇ū in (39), we get

‖|∇Dm
um| − |∇ū|‖2

L2(Ω×]0,T [) ≤
1

α
Tm(∇ū),

and, thanks to (37), limm→∞ Tm(∇ū) = 0. Therefore

lim
m→∞

‖|∇Dm
um| − |∇ū|‖L2(Ω×]0,T [) = 0,

which, in addition to the convergence of ∇Dm
um to ∇ū for the weak topology of L2(Ω×]0, T [), provides

the convergence in L2(Ω×]0, T [) of ∇Dm
um to ∇ū.

�

We can now conclude the convergence of the scheme.

Theorem 5.1 Let Hypotheses (H) be fulfilled. Let (Dm, τm)m∈N be an admissible sequence of space-time
discretisations of Ω×]0, T [ in the sense of Definition 2.4.
Let, for all m ∈ N, um be such that (9) and (10) (fully implicit scheme) or (9), and (11) (semi-implicit
scheme) hold.
Then there exists a sub-sequence of (Dm, τm)m∈N, again denoted (Dm, τm)m∈N, and there exists a function
ū ∈ L∞(0, T ;H1

0 (Ω)), weak solution of (1)-(2)-(3) in the sense of Definition 1.1, such that uDm,τm
tends

to ū in L∞(0, T ;L2(Ω)), ∇Dm
um tends to ∇ū in L2(Ω×]0, T [)d.

Proof. We first apply Lemmas 5.1 or 5.2. We get (28) or (33). We apply Lemma 5.4. We thus get
that

w̄ = f − ν(ū,∇ū)ūt a.e. in Ω×]0, T [,

which, in addition to (38), concludes the proof.
�
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6 Numerical experiments

In this section we present several numerical examples to illustrate the properties of the proposed numerical
schemes. They are devoted to the solution of regularised mean curvature flow and to the motion of 2D
curves by curvature in level set formulation. In all examples we use both the semi-implicit and fully
implicit schemes. We compute the errors and experimental order of convergence (EOC) for the whole
level set function and also for the level set representing moving curve. Let us emphasise that for all the
tests also proposed in [7], the order of the obtained errors and EOC are very close, using similar space
and time steps. In the tables below n is number of finite volumes along each boundary side and n2 is a
total number of finite volumes. We consider square domain Ω = [−1.25, 1.25]× [−1.25, 1.25] and compute
the errors of the solution in L2(Ω×]0, T [) norm denoted by E2, L

∞(0, T ;L2(Ω)) denoted by E∞ and for
the gradient of the solution in L2(Ω×]0, T [)d denoted by EG2 and L∞(0, T ;L2(Ω)d) norm denoted by
EG∞. We refined the grid from n = 10 to n = 320, taking for b a large value, e.g. greater than 320C
where the initial condition is valued a.e. in [0, C].

Example 1. In this example we compare a numerical solution with the exact solution

u(x, y, t) =
x2 + y2

2
+ t (40)

to the equation

ut√
|∇u|2 + 0.5

− div

(
∇u√

|∇u|2 + 0.5

)
= − 0.5

(x2 + y2 + 0.5)
3
2

, (41)

with non-homogeneous (exact) Dirichlet boundary conditions in time interval [0, T ] = [0, 0.3125].

The results for the semi-implicit and fully implicit schemes are summarised in tables below. In this
example and in the other ones, the time step τ fulfils the relation τ = h2 (natural for solving parabolic
PDEs), where h = 1

n
is the size of the side of finite volume. For computing the linear system in every

discrete time step we use the Gauss-Seidel iterative solver. The iterations are stopped when the square of
relative residual drops below a prescribed tolerance TOL. For the semi-implicit scheme and TOL = 10−15

we need about 30-40 iterations in each time step and the results are presented in Table 1 for first numerical
scheme and in Table 3 for the second one. For the fully implicit scheme and TOL = 10−12, we need
about 20-30 Gauss-Seidel iterations and about 40-50 nonlinear iterations. The results are presented in
Table 2 and Table 4.
As one can see, the fully implicit schemes are about 10 times more accurate than the semi-implicit ones
in this smooth example, but clearly they are more computationally complex and thus resulting in longer
CPU times. All the schemes have EOC = 2 in solution error and EOC is slightly better than 1 in the
gradient.

n δt E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 4.298e-02 - 1.174e-01 - 5.487e-01 - 1.215e-00 -
20 1.5625e-02 1.995e-02 1.107 5.086e-02 1.207 2.868e-01 0.936 6.051e-01 1.001
40 3.90625e-03 6.146e-03 1.699 1.452e-02 1.809 1.218e-01 1.236 2.333e-01 1.375
80 9.765625e-04 1.578e-03 1.962 3.614e-03 2.006 4.592e-02 1.407 8.415e-02 1.471
160 2.44141e-04 3.887e-04 2.021 8.830e-04 2.033 1.714e-02 1.422 3.091e-02 1.445
320 6.10352e-05 9.583e-05 2.020 2.172e-04 2.023 6.625e-03 1.371 1.188e-02 1.380

Table 1: Example 1, error reports and EOCs for the semi-implicit scheme (15)-(17).
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n δt E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 1.788e-02 - 5.779e-02 - 3.156e-01 - 6.491e-01 -
20 1.5625e-02 1.992e-03 3.166 1.103e-02 2.390 1.338e-01 1.238 2.517e-01 1.367
40 3.90625e-03 3.434e-04 2.536 1.967e-03 2.487 5.351e-02 1.322 9.699e-02 1.376
80 9.765625e-04 8.408e-05 2.030 3.472e-04 2.502 2.195e-02 1.286 3.939e-02 1.301
160 2.44141e-04 2.125e-05 1.984 6.122e-05 2.504 9.495e-03 1.209 1.670e-02 1.238
320 6.10352e-05 5.334e-06 1.994 1.160e-05 2.399 4.327e-03 1.134 7.742e-03 1.109

Table 2: Example 1, error reports and EOCs for the fully implicit first scheme (15)-(17).

n δt E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 4.419e-02 - 1.215e-01 - 5.544e-01 - 1.235e-00 -
20 1.5625e-02 2.044e-02 1.112 5.246e-02 1.212 2.909e-01 0.930 6.183e-01 0.998
40 3.90625e-03 6.214e-03 1.718 1.470e-02 1.835 1.223e-01 1.250 2.354e-01 1.393
80 9.765625e-04 1.582e-03 1.974 3.625e-03 2.020 4.601e-02 1.410 8.432e-02 1.481
160 2.44141e-04 3.890e-04 2.024 8.837e-04 2.036 1.714e-02 1.425 3.093e-02 1.447
320 6.10352e-05 9.585e-05 2.021 2.172e-04 2.025 6.625e-03 1.371 1.189e-02 1.379

Table 3: Example 1, error reports and EOCs for the semi-implicit scheme (18)-(20).

n δt E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 1.331e-02 - 4.106e-02 - 3.639e-01 - 7.420e-01 -
20 1.5625e-02 2.305e-03 2.530 8.867e-03 2.211 1.454e-01 1.183 2.739e-01 1.438
40 3.90625e-03 4.374e-04 2.398 1.756e-03 2.336 5.602e-02 1.377 1.016e-01 1.431
80 9.765625e-04 9.568e-05 2.086 3.280e-04 2.420 2.247e-02 1.318 4.034e-02 1.989
160 2.44141e-04 2.254e-05 2.086 5.953e-05 2.462 9.605e-03 1.225 1.720e-02 1.230
320 6.10352e-05 5.507e-06 2.033 1.199e-05 2.312 4.367e-03 1.137 7.793e-03 1.142

Table 4: Example 1, error reports and EOCs for the fully implicit second scheme (18) -(20).
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Example 2. Now we use the exact solution [14]

u(x, y, t) = min{x
2 + y2 − 1

2
+ t, 0} (42)

to the level set equation
ut

|∇u| − div

( ∇u
|∇u|

)
= 0, (43)

with zero Dirichlet boundary conditions, in time interval [0, T ] = [0, 0.3125]. The initial condition and
exact and numerically computed solution (setting n = 160) are plotted in Figures 1 and 2.
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Figure 1: Example 2: Initial condition
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Figure 2: Example 2, the exact (left) and numerical solution (right) at time 0.3125.

In this example, the solution contains flat regions and so we have to use the Evans-Spruck type regulari-
sation [5]. Moreover, a singular circular curve with gradient jump is present, so we cannot expect second
order accuracy in numerical solution. However, as we see from the Tables 5-8, the numerical schemes
converge also in this singular case and naturally, EOC is equal (or close to) 1 for the solution error. In
order to mimic convergence of numerical solution to (43) we use the coupling a = h2. One can also
observe that the error obtained using the fully implicit schemes is only slightly better than that provided
by the semi-implicit ones. This may lead to the conclusion that concerning both precision and CPU
time aspects, one should use semi-implicit schemes as a reasonable compromise (cf. [10, 4]) in practical
applications.
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n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 5.846e-02 - 1.349e-01 - 2.829e-01 - 5.502e-01 -
20 1.5625e-02 3.148e-02 0.893 7.692e-02 0.815 2.213e-01 0.354 4.359e-01 0.336
40 3.90625e-03 1.657e-02 0.926 4.031e-02 0.932 1.767e-01 0.325 3.475e-01 0.327
80 9.76563e-04 8.477e-03 0.967 2.039e-02 0.983 1.401e-01 0.335 2.729e-01 0.349
160 2.44141e-04 4.299e-03 0.980 1.028e-02 0.988 1.114e-01 0.331 2.162e-01 0.336
320 6.10352e-05 2.166e-03 0.989 5.149e-03 0.997 8.853e-02 0.332 1.716e-01 0.333

Table 5: Example 2, error reports and EOCs for semi-implicit scheme (15)-(17), a = h2.

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 3.973e-02 - 9.370e-02 - 2.240e-01 - 4.531e-01 -
20 1.5625e-02 1.231e-02 1.690 3.194e-02 1.553 1.717e-01 0.384 4.293e-01 0.078
40 3.90625e-03 4.679e-03 1.396 1.161e-02 1.460 1.348e-01 0.349 3.013e-01 0.511
80 9.76563e-04 2.146e-03 1.124 4.973e-03 1.223 1.089e-01 0.308 2.214e-01 0.445
160 2.44141e-04 1.071e-03 1.003 2.432e-03 1.032 8.807e-02 0.306 1.727e-01 0.358
320 6.10352e-05 5.437e-04 0.978 1.231e-03 0.982 7.094e-02 0.312 1.375e-01 0.329

Table 6: Example 2, error reports and EOCs for fully implicit scheme (15)-(17), a = h2.

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 6.915e-02 - 1.505e-01 - 2.990e-01 - 5.662e-01 -
20 1.5625e-02 4.939e-02 0.486 1.192e-01 0.336 2.417e-01 0.307 4.664e-01 0.280
40 3.90625e-03 2.935e-02 0.751 7.419e-02 0.684 1.872e-01 0.369 3.631e-01 0.361
80 9.76563e-04 1.601e-02 0.874 4.108e-02 0.853 1.451e-01 0.368 2.806e-01 0.372
160 2.44141e-04 8.401e-03 0.930 2.170e-02 0.921 1.127e-01 0.365 2.175e-01 0.368
320 6.10352e-05 4.312e-03 0.962 1.117e-02 0.891 8.793e-02 0.358 1.698e-01 0.357

Table 7: Example 2, error reports and EOCs for semi-implicit scheme (18)-(20), a = h2.

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
10 6.25e-02 7.022e-02 - 1.508e-01 - 3.003e-01 - 5.664e-01 -
20 1.5625e-02 4.490e-02 0.645 1.112e-01 0.440 2.425e-01 0.308 4.652e-01 0.284
40 3.90625e-03 2.495e-02 0.848 6.515e-02 0.771 1.916e-01 0.340 3.742e-01 0.314
80 9.76563e-04 1.323e-02 0.915 3.510e-02 0.892 1.524e-01 0.330 2.961e-01 0.337
160 2.44141e-04 6.883e-03 0.943 1.837e-02 0.934 1.219e-01 0.322 2.363e-01 0.325
320 6.10352e-05 3.535e-03 0.961 9.455e-03 0.958 9.708e-02 0.329 1.880e-01 0.330

Table 8: Example 2, error reports and EOCs for fully implicit scheme (18) -(20), a = h2.
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Example 3. In this example we compute the displacement of the unit circle by its curvature, and we
compare the numerical results with the exact solution. The exact radius r(t) of a shrinking circle can be
analytically expressed by

r(t) =
√
r(0)2 − 2t, t ∈ [0, T ], where T =

r(0)2

2
. (44)

The initial condition is given by

u0(x, y) = −1 +
√
x2 + y2, (45)

which represents the distance function to the initial unit circle. Since we use zero Neumann boundary
conditions in this example, the initial level set function is deformed, see Figure 3, but the error on the
interface decreases with respect to the space and time steps, indicating the convergence of the method,
as it can be seen in Tables 9 and 10.

Figure 3: Example 3, the level set function at time t = 0 (left) and t = 0.439 (right).

The comparison of the numerical solution with the exact one (44) is performed within the time interval
[0, T ], where T = 0.375, by a subsequent refinement of the grid. The measurement of the error is similar to
that of [9]. For every discrete time step k = 0, 1, . . . , N , we first compute all the points xk

i , i = 1, 2, . . . , P
where the piecewise linear representation of the numerical solution becomes equal to zero along the finite
element grid lines. Then we compute the distances rk

i , i = 1, 2, . . . , P between the origin and the points
xk

i , i = 1, 2, . . . , P . Finally, these distances are compared to the radius r(kτ) of the exact evolving circle.
Then the formula

E2 =

√√√√
N∑

k=0

τ
1

P

P∑

i=1

(rk
i − r(kτ))2 (46)

is used for assessing the error in the L2(0, T ;L2(S1)) norm, denoting by S1 the unit circle and setting
T = Nτ . The results for the numerical schemes on rectangular grids in semi-implicit and fully implicit
versions are summarised in Tables 9 and 10. One can see that the fully implicit scheme (18) -(20) has
the second order behaviour in this case.
In Figure 4 we represent the numerical evolution of a circle together with the exact solution, setting
n = 80, τ = h2 and using 400 time steps. We hardly distinguish in this figure the numerical solution and
the exact one.
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n τ E2 semi-implicit EOC E2 fully-implicit EOC
10 6.25e-02 9.035e-02 - 9.303e-02 -
20 1.5625e-02 4.831e-02 0.903 2.311e-02 2.009
40 3.90625e-03 1.200e-02 2.009 3.314e-04 6.124
80 9.76563e-04 9.864e-04 3.604 1.470e-04 1.172
160 2.44141e-04 5.122e-05 4.267 1.750e-05 3.070
320 6.10352e-05 1.867e-05 1.456 4.459e-06 1.973

Table 9: Example 3, error reports and EOCs for scheme (15)-(17) semi and fully implicit version, a = h2.

n τ E2 semi-implicit EOC E2fully-implicit EOC
10 6.25e-02 9.036e-02 - 9.309e-02 -
20 1.5625e-02 4.832e-02 0.903 2.339e-02 1.993
40 3.90625e-03 1.201e-02 2.008 2.880e-04 6.344
80 9.76563e-04 9.857e-04 3.607 6.922e-05 2.057
160 2.44141e-04 5.135e-05 4.263 1.408e-05 2.298
320 6.10352e-05 1.868e-05 1.458 2.510e-06 2.488

Table 10: Example 3, error reports and EOCs for scheme (18) -(20) semi and fully implicit version,
a = h2.
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Figure 4: Example 3: Evolution of the unit circle, exact (black) and numerical(red dashed) solutions at
time steps tN = Nτ , τ = 9.76563e− 4, N = 0, 50, 100, 150, 200, 250, 300, 350, 400.
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Example 4. Finally, we consider the mean curvature flow of a quatrefoil, defined as the zero
level set of the initial level set function constructed by the formula

u0(x, y) = −1 +

√
x2 + y2

rL
,where rL = 0.6 + 0.4 sin

(
4arctg(

y

x
)
)
. (47)

The evolution is computed in time interval [0, T ], T = 0.22461, n = 80, τ = h2 by both schemes (15)-(17)
and (18) -(20) and the results are presented in Figure 5, showing very close results.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 5: Example 3. Evolution of a quatrefoil, first scheme on rectangles (left, red, solid), second scheme
on rectangles (right, blue, dashed) in time steps tN = Nτ , τ = 9.76563e− 4, N = 0, 10, 20, . . . , 220.

7 Conclusions

The family of discrete schemes presented in this paper shows very easy implementation properties, and
satisfactory accuracy. The adaptation of the viscosity solution sense to this discrete framework remains
an open problem.
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[7] R. Eymard, A. Handlovičová, and K. Mikula. Study of a finite volume scheme for the regularised
mean curvature flow level set equation, http://hal.archives-ouvertes.fr/hal-00407573/fr/. ,submitted,
2009.
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