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1 Introduction

Life science models attempt to explicitly handle ecological processes that have
significant effects, for example on population dvnamics. Analytical models have
not yet been able to describe and explain the complexity of all population dy-
namics issues. Computer simulation has proven to be a developmental tool com-
plementary to theoretical and experimental modelling. The main features of a
simulation involve: developing a theoretical model, generating a solution using
an appropriate numerical algorithm, and subsequently analvzing the results. By
building up a representation of the phenomena under consideration, and testing
it under controlled conditions, scientists can gain a deeper understanding of the
systemn. This leads to increasing the pool of knowledge, altering preconceived
assumptions, or predicting the evolution of a biological system. Computational
power is necessary to deal with many types of these models [14, 15]. Certain
classes of complex phenomena. or space-related modelling approaches, or simply
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the level of detail of a model induce frequently large amount of computation and
memory consumption. Likewise a multi-scale approach adressing multiple phe-
nomenon could imply intensive computations. We shall describe such a model
related to population dvnamics, wherein ecological processes such as environ-
mental variations (macro to micro scale), population interactions (meso scale),
and individual biology (micro scale) are deeply interlaced.

Let us notice that parallelism is intensively used in the active field of discrete-
event simulation programs (7, 22|. General-purpose environments are built on
this concept of parallel discrete-event simulation. In the last decade the liter-
ature described several simulation languages and simulation environments that
allow the construction of more specific types of ecological simulations. Some are
centered on spatially explicit models [3, 6, 17], others on individual-based mod-
els [20], or even on cellular automata [21]. All these quoted environments use
distributed algorithms and work on parallel machine or inter-connected work-
stations. They provide a more-or-less easy access to user interface, simulation
management, and analysis tools. But specific models may not fit into these
frameworks. and one may have to design a domain-specific application for solv-
ing a particular problem. In such cases. one needs an efficient implementation
both to have a usable tool and to make it possible to validate the model (see
for example [1, 16]). Parallel simulation has already proven to be an invaluable
tool for population dynamics through simulation environments and specific ap-
plications.

This article deals with a performant parallel solution for a host-
macroparasite system model in a marine environment. In a previous article [11],
Langlais and Silan described the model we use which i1s both deterministic and
stochastic. In this model, detailed phenomena are reproduced, such as spatial
and temporal heterogeneities. Many factors are taken into account to simulate
the model very precisely and get a reasonable level of realism. It constitutes
a spatial model usually characterized by the discretisation of the problem do-
main into finer elements. But, unusually, the spatial decomposition consists in
a distribution of age structured parasites on hosts instead of geographic distri-
bution of entities in a 2D/3D environment; we will explain this point later. One
novelty of our approch lies in accurately modelling processes belonging to indi-
vidual and population scales. Our first goal in the simulation of such a model
is to validate it and to discover the hierarchy of various mechanisms involved in
the host-parasite system. The second one is to understand the sensitivity and
the stability of the model with respect to initial conditions. The third one is
to provide results that can be applied to devise prophylactic methods for fish
farming, and more generally in epidemiology.

A sequential simulator has already been developed [4, 5], but computation
time for one simulation took longer than one month. It is very important to
reduce this duration to have a usable tool. Existing simulation environments
are not adapted to the new approach used in our model, which includes age
structure for parasites, the distribution of parasites on the host population,
and the aggregation of parasites on hosts, when it appears. Because one single
simulation may cost up to 105 TeraFLOP or even 1.45 PetaFLOP, parallelism



1s required to experiment and explore this model. High-performance computers
offer an opportunity to study such a realistic system.

In this work, we present the main issues concerning a parallel version that
improves the previous simulator in terms of execution time. We present the
complexity of computations and the sequential optimization. Then we develop
a new parallel algorithmic solution and show a cost analysis. We investigate
its performance and high scalability on IBM SP2, IBM SP3. IBM Regatta and
SGI Origin 3800. Finally we give a brief validation of the model derived from
real simulations. As a contribution to computational science, the work pre-
sented here is at the interface of ecology, mathematics, and computer science.
This project is a collaborative effort in an interdisciplinary approach: popula-
tion dynamics with C.N.R.S, applied mathematics and computer science with
University of Bordeaux 1, University of Bordeaux 2, INRIA and University of
Strasbourg 1.

2 Bio-mathematical model

Overview of the model

A formulation of the evolution of a discrete model is given by :
Es(t+ At) = f(Es(t), Ep(t + At))

where Eg(t) is the set of state variables at time ¢ and Ep(t) is the set of param-
eters. The state variables get updated every iteration whereas parameters are
either constant or adjustable by the user. A numerical simulation is mainly in-
tended to describe the evolution of two populations, fish ( Dicentrarchus labrar )
and parasite (Diplectanum aeguans), over one vear with a time step of At =
2 days. Environmental conditions, such as water temperature, and biological
data, are used in the simulations; they are included into Ep(t) just as the param-
eters of the host-parasite model. Es(f) includes for example the number of eggs,
of juvenile parasites, of adult parasites, of hosts, the ratio of over-parasitized
hosts, etc. The final goal is to obtain values of the different variables in Eg(f)
at each step of the simulation. The global algorithm is sketched in Fig. 1.

Description of the model

We consider that only a surfeit of parasites can lead to the death of a host. A
detailed age structure of the parasites on a given host is required because only
adult parasites lay eggs, while both juvenile and adult parasites have a negative
impact on the survival rate of hosts. The population of parasites is divided into
K = 10 age classes, with 9 classes of juvenile parasites and one large class for
adult parasites. To deal with heterogeneities in both populations, the model
has a three dimensional data structure (ignoring the time dimension). Let N be
that structure, and let N(2. [, t) be the distribution of hosts having [ parasites,
i being older than kAtf. Thus, there is an age structure for parasites (variable



stage 0

- Read input parameters;
- Initialize, compute initial values of

several data;
-t:= 0;
no
— t <366 == End of simulation
yes
stage I | - Update environnmental data;
, | -Adult parasites lay eggs; €gg
stage< | Update the egg population (aging); populaﬁ.on
N Hatching of eggs (yielding swiming larva); larva
stage - Update the larvae population (aging); pop ulation
- Recruitment of larvae by hosts
(yielding juvenile parasites); host and
stage 4 | - Update the parasite population on parasite
hosts (aging); populations
- Death of overparasitized hosts:
_ | - Output of relevant data;
stage > -ti=t+2;

Figure 1: Global algorithm



k); the fish population is structured into groups of hosts having the same total
number of parasites (variable [); the parasite distribution on a fish is given by
the variable i. The complexity of the dataset comes from the detailed level of
modelling we want to reach. The update of N belonging to Es(t) is very costly;
it corresponds to the stage 4 of our algorithm (Fig. 1). The elementary events
in this stage are quantified into probabilistic functions p, ¢, which drive the
update of N. See table 1 for explanations of the meaning of these functions.

In this model, environmental parameters are monthly-averaged and influ-
ence the biology of parasites. Every two days (the time step), adult parasites
reproduce on a fish (infrapopulation level), larvae settle on fishes (individual
fish scale) possibly. Each parasite age class has a specific mortality rate (cohort
scale). There is an interdisciplinary challenge in this multi-scale model from
an ecological point of view. From a mathematical point of view, we must take
care of the consistency of computation because several variables are represent-
ing the same reality at different levels as, for example, R(l,t) and Ng(i.1.f).
But this model is multi-level too in terms of the ecological structures we are
interested in. The amount of information at each level is heterogeneous. Fur-
thermore, there are highly nonlinear interactions bewteen the different model
components. There is a challenge in specifying and validating a model with such
multiscale processes.

Update of Ng(Z, [, 1)

The data stored in N(i,[,t) is then modified at each time step (see Eq. 1),
according to the following arguments. Let us consider a host having [ parasites
among which i are older than k Atf, k¥ > 2 (see Fig. 2). At time £, this host
had at least ¢ parasites older than (k — 1) At, say d, among which d — i died
from natural death between times ¢ and ¢ + Af; furthermore the total load of
parasites at time ¢ was ¢ among which ¢ — m died from natural death before
time t + At, 0 <d—1 < ¢ —m, vielding a recruitment of [ — m larvae. Next,
the host survived a load of ¢ parasites.
Adding up one has

Vi e [0,S(t)),Vie [0.1],Vk € [2.K] .
! S(t) e=m+i
Ni(ilt+At) =Y > > Nea(doet) O(lim,c.d) (1)

=tc=m d=i

wherein
I(l,i.m,c,d) = p(c)p(l—m.c) §(d—i,d) (c—m—d+i,c—d) .

S(t) is limited to the minimum number of parasites which is considered
lethal for a fish (the biological hypothesis corresponds to 800 parasites for hosts
younger than one year). The accumulated time of this update during the simu-
lation can take up to 99% of the global simulation time. Our effort of speeding
up the application has been mostly concentrated here. Before studving this
computation, we present two other update formulae.



Symbol Meaning

p(l) probability for a host to survive a burden of [ parasites over At;

e(g,1,t) probability that j larvae are recruited by a host having [ parasites at time t;

o(u,l) probability that u parasites die among [ parasites older than k At;

Ny (i,1,t) density of hosts having | parasites, ¢ being older than k At;

R(l,t) density of hosts having [ parasites at time t;

At time step of 2 days;

K number of age classes: 10;

liethal threshold above which a host cannot survive parasitism, i.e. ljethqr = 800 for a host

having less than 1-year old;
Smaz(t) is an estimation of the maximal number of parasites fixed on a host;
S(t) = m'Ln(Smam (t), llethal)

Table 1: Symbol table

parasites strictly parasites older
younger than (k — 1)At than (k — 1)At
=
m—i Ed.ﬁ i :d—i time ¢
L
I’ \\ N E

' c—m—(d—1i) die S\ d—idie
|
I\\ m parasites survive out of \\\
‘. i older than (k —1)At Y

N

- -

[ — m parasites ~_
are recruted AN

'\ Y Y i

| parasites on a host i being
older than kAt

Figure 2: Evolution of the parasite population on a host having ¢ parasites at
time ¢



Update of Ny(i,l.t) and R(l.f)

Similar arguments to those used for (1) hold for the update of R(l, t) (density of
hosts having [ parasites) and N, (i,[,f). Let u be the number of dead parasites
and 7 be the number of recruited parasites at time ¢, we have

vl e [0,S(t)], Vi € [0,1],
S(t)—j
NG Lt+A8) = Y Ri+u,t)o(l—4.5+u,t) 8w, u+i)p(i+u), (2)

u=0
and
1 St
RLt+A6)=3" 3 R(+u—j.t) (i, l+u—75.6)d(u, I+u—3i) pl+u—3) .
=0 wu=0

(3)

In the following section, we will present the complexity evaluation of the main
computation of the simulator, that is the update of Ni(2.1, f). Then the design
of this costly computation will be re-defined, vectorized and last, parallelized.

3 Parallel computation

3.1 Algorithm description
Introduction to the parallel algorithm

First we reorganized the computations of equation (1): some precomputations
in temporary arrays allow direct memory access to the values of our probabilis-
tic functions, while basic factorizations and inversions of sums have been done
to reduce computation cost. Deriving (1) with a symbolic calculator leads to
a polynomial complexity W(S(¢)) with a highest degree term given by % S(t)°
[13, see chapter 6]. This means that the cost of one update of N can reach
W(800) =225 TrLOP. This cost is very high, especially since a complete simu-
lation needs 183 updates. In order to improve performance, our approach has
been to vectorize the update of N in order to use BLAS subroutines [2]. A ma-
trix formulation of the algorithm allows us to intensively use BLAS 3 and leads
to large speedups.

Moreover, it allows us to avoid some computation redundancies that appear
in partial sums of the update[12]. Then, we gain one order of complexity;
W(S(t)) has a higher degree term of %S(t)‘ and W (800)=950 cFLOP.

It leads to an algorithm where intermediate matrices A,, A, must be filled
from precomputed arrayvs. Each entry of the array A, is computed by multiply-

ing two elements from a precomputed array where §(.,.) is stored; this means a
cost of (e—i+1)(c—i+2)/2 multiplications to fill Ay1. The matrix A2 is filled
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- d=c k_l -k=K-1

Computation kernel : M(e.1,5(t))

Figure 3: Matrix form of one update of N.

Procedure N_Update(S(t)) {
For i:=0 to sS(t) do {
For c:=i to s(t) do {
/* task M(c,i,S(t)) */
initialization of Aj,A2 matrices;
Aux — Az.(p(c).(A1.Ni(c,*,1)));

N (#, 1, t4+At) — Ny (k,4, t+ At) + Aux;

Figure 4: Algorithm for the update ot N



with a memory copy of an array associated with (., ., ). The update of the
3-dimensional data structure associted with N can be written! as illustrated
in Fig. 3. Intermediate matrices contain by construction many zero elements
which are represented by light grey sectors in Fig. 3. Since the initial formu-
lation of the update of N, we have strongly reduced its cost and we can now
study a parallel version.

In order to exploit BLAS performance, it is interesting to parallelize without
cutting out the computation kernel M (e, 2, S(f)) defined as the set of matrix
multiplications in Fig. 3. Hence, this led to the algorithm described at Fig. 4
with two nested loops in variables ¢ and c.

Before the study of the parallelization of this computation, one can look up
for data dependencies to see what kind of parallelism is possible.

Data dependencies

In the following, we will refer to the data N, (c. *, t) as the “row slab” (¢,f), and
to N,(*,1,t) as the “column slab” (i,t) (see Fig 5). At iteration (i =ig,c=¢p)
of the algorithm (Fig. 4). the row slab (cg,) is used to compute a contribution
to the column slab (io,t+Af). The input data are row slabs and the results
are column slabs. Two data structures for N are then required at each update,
one for time ¢, the other one for time £+ At. because the data at time ¢ can not
simply be overwritten. Furthermore, it is easy to see that if the column slab
io of time £+ At crushed the data N at time £, then this data N is corrupted
and row slabs (e,t) (with ¢ > ig) can no more be used. Indeed, the column slab
(ig.t+At) depends on all row slabs (¢, t) for which ¢ > i, (see Fig. 5).

Each structure N for time ¢ and t+At needs 24.5 MB (using double-precision
reals); they will be dispatched over the processors of the parallel machine. Be-
cause row slabs are used and column slabs are generated, we must now study
the distribution on processors of the slabs.

One dimensional and two dimensional distribution schemes

Let us suppose we parallelize only one loop of the algorithm; there are S(¢)+1
tasks to map onto processors. As S(f) < 800, the algorithm has a coarse grain
if we consider more than 100 processors. The parallelization of the outer loop @
was evaluated in [9, 12] and gives good performances given in Table 3, p.34. This
scheme is called 1D because indices 7 are distributed on a vector of processors.

But one can also consider the parallelization of the two loops. The elemen-
tary tasks M(c,i. S(t)) are then distributed over the parallel machine and the
algorithm has a medium grain with (S(t) +1)(S(f)+2)/2 tasks to map onto
P processors. This scheme is named 2D because the indices of each loop are
distributed on a specific dimension of a grid of processors. As the grain is finer,

1The * notation means to consider all elements of one given dimension.



computed

with

column slab (ig,t + At)

Figure 5: Dependencies of N, (xk,*,t+At) on N, (x,*,t)

row slabs (¢, t)
with ig < ¢ < S

Number of processors: P

16 32 64 112 192
Run-time
201.0 102.8 55.4 37.6 28.5
(sec.)
Relative ) )
100.0 % 97.8% | 90.8 % 76.4 % 58.7 %
efficiency

Table 3: Run time for an update of N with the 1D scheme on IBM SP2 (S(%)

700 i.e. 560 crLop computation cost)



one can expect improving the scalability of the algorithm and getting a bet-
ter relative efficiency than 59% for 192 processors (see Table 3). We will now
give some explanation about computation and data distribution for this new 2D
scheme.

Processor grid

Two loops are parallelized on P processors. We work on a grid of processors
with |G| lines in the first dimension and |H| columns in the second, which is
llustrated at Fig. 6; so we have |H|.|G| = P.

The indices i of the first loop of the algorithm are distributed on |G| sets of
processors. In each set, the indices ¢ are mapped onto |H| sets of processors.
The actual distribution used will be discussed later on. If e is a column number
of the grid of processor with e € [0,|H| — 1], let he be the group of processors
responsible for a given set DH, of indices ¢. If u is the line number of the grid,
let g, be the group of processors responsible for a given set X5, of indices i.
The processor belonging both to g, and A, is p. .. Thus, the processor p, ,
has to run the tasks M(c,2,S(t)) with i € DG, and ¢ € DH,. The mapping
function giving » or € in terms of ¢ or ¢ will be clarified in another paragraph.
We introduce now the data distribution that will influence directly the choice
of the mapping that we will effectively use. Let us observe that the 1D scheme
corresponds exactly to the case |H| =1 and |G| = P.

Data distribution

It is worth noticing in the algorithm of Fig. 4, that the tasks M (+,7,, S()) com-
pute contributions to column slab data (i, t+ Atf). In the group of processors
g, responsible for indices iy € DG, it is interesting to map the column slab
(ig.t+At) and the tasks M (*,4, S(f)) onto the same processor in order to exe-
cute matrix additions of the algorithm locally and then reduce communication
costs. In each set g,. all the processors will compute locally a partial sum for
the column slab (i, t+At), for i € DG,. In a final step, these partial sums will
be summed by the group g, and store into the final column slab (ig, t+At). For
each ig of DG, one processor of g, is chosen to store the column slab (7g, +4+At)
at the end. This elected processor is given by a function named mapi (ig). In
the same way, one processor of each group of processors k. is chosen to store the
row slab (cq.t) for ¢ € DH,; this processor is given by the mapping function
mapc (cq) .

The update algorithm of N is rewritten in Fig. 7 and uses the mapping
functions which have been introduced.

Because row slabs are used and column slabs are computed. a transposition
step is needed to perform several successive updates. It appears in the parallel
algorithm as the communication task 3. The cost in communication for this

2
redistribution is equal to the storage amount of N, (#, #,f) which is ol 1t



ho h1 ha ha ha hs
go || Po,o | Po.1 | Po2 | Po3 | Po4 | Pos
gr )| P1o | P11 | P12 | P13 | P14 | P15
g2 || P20 | P21 | P22 | P23 | P24 | P25

Figure 6: Processor grid: p,__are processors; g and h_refer to groups of proces-
sors

Subroutine N_UPDATE(S(t)) { /* on processor py,. */
For all ¢ € DH. do {
/* communication task 1 */
If mapc(c) = my-id then
broadcast in group h. of
row slab N,(c.*,%);
Else
receive N, (c, *,t);
For all : € DG, do {
If (z < ¢) then {
/¥ computation task named M(i,c,S(t)) */
initialization of Ay, Ao, A3 matrices;
Aux:=computationkernel (i,c, N,(c,*,t));
Ny(#, 1, t+AtF
matrix_addition(N, (*,2, t+At)+Aux);

}
/¥ communication task 2 : sum reduction */
For all : € DG, do {

Sum of partial sums N, (*, 2, t4+At) of
all processors in g, by the processor mapi(i);

* communication task § : transposition */

For ¢ € [0,S(¢)] do {
For : € [0,¢] do {
If mapi(i) = my_id then send data N,(c,:,t+At) to mapc(c);
If mapc(c) = my_id then receive data N,(c,:,t+At) from mapi(i);

Figure 7: Parallel algorithm for the update of N



is achieved using the MPI [19] subroutine MPI_A11ToAll. In order to determine
the mapping functions giving p. ., in terms of Z or ¢, we have to evaluate the
communication costs and to reduce, if necessary, the communication overhead
with a specific mapping.

Communications

The communication cost is evaluated by considering each of the three commu-
nication tasks of the parallel algorithm one by one.

For the communication task 1, in each group of processors h., there is a local
broadcast at each iteration ¢ € DH.. The processor indexed by mapc(c) sends
its row slab (¢, f) corresponding to K (¢ + 1) real numbers to all processors
in h.. The data storage for N is K S(t)*/2; in each set h., a ratio 1/|H|
of this storage amount 1s sent or received locally during an update. At the
end of one complete update, each processor has then handled approximately
K S(t)?/(2|H|) reals among the row slabs. Because the processor is responsible
on average for 1/|G| of the row slabs in its own group h,. a processor broadcasts
to the other processors of the group a ratio 1 /|G| of K S(t)? /(2 |H|), and receives
from them (1 —1/|G|) of K S(¢)?/(2|H|). Because P = |H|.|G|. the global
communication cost on the parallel machine is then (|G| — 1) K S(t)%/2 (total
of received communications). We observed that the complexity of the parallel
algorithm is 55 5(¢)*/(24 P) plus the overhead due to parallelism. Whatever
the overhead may be, the global cost of communication task 1, ie. (|G| —
1) SS(t)g, is asymptotically less than the computation cost for P < S(f). In
practice the communication task 1 i1s pipelined and uses asynchronous non-
blocking communication. That means that while computation is done, row
slabs are sent in advance in order that computation overlaps communication.
As the communication cost is less than computation cost when P < S(t), we
observe in practice a full computation/communication overlap.

For the communication task 2. in each set g, summations of partial sums
are processed to compute N, (#,7g,t) with ig € D5 ,. At one iteration ig of the
communication task 2, for one given column slab (i.%), all processors of the
group minus one (the owner of column slab (5. ), that is mapi (ig)) send their
contributions to the processor mapi (ip). The data storage for N is K S(t)%/2;
in each set g, a ratio 1/|G| of this storage amount is handled during the com-
munication task 2, that is, K S(t)*/(2|G|). There are |H| processors in the set
of processors g,,, so one processor is really responsible for K S(t)? /(2 |G|) of data
divided by H in average. During the sum reduction, one processor receives from
all other processors of the set g, their contributions for the column slabs they are
responsible for, that means | H|—1 processors. Let us keep the received communi-
cations for the evaluation of the total communication cost per processor, which
means a communication cost per processor equal to (|H|—1) K S(t)*/(2|G||H|).
The global cost on the parallel machine for the communication task 2 is then
(|H|—1) K S(t)®/2. Let us notice that this value is symmetric to the commu-
nication cost found for task 1 with |H| and |G| switched. As the total parallel



computation cost is more than 55 5(¢)*/(24 P), the communication cost of task
2 could be predicted as negligible. The communication of task 2 cannot be over-
lapped by computation, but the use of the MPI[18] subroutine MPI_Reduce is
able to achieve relative good performances. Some time mesurements are given
in section 4.

The communication task 3 corresponds to the transposition of the data
structure N. This step is necessary because two data structures for N are
required with column slabs stored on one hand, and row slabs stored on the
other hand. The vector of K elements N, (cq, ip. +At) belonging to the proces-
sor mapi(ip) must be simply transferred to processor mapc(cg). By moving all
N,(cg.ig,t+ At) to their new places, the transposition is done; thus the com-
munication cost is the same as the storage amount of N, (#, #,t) that is qﬁﬁ
That parallel global transposition is achieved in our implementation using the
subroutine MPI_A11ToAll. It is negligible compared to the cost W(S(f)), and
the performances of the implementation confirms this assertion.

This organization of communication and the use of efficient MPI subroutines
lead in our implementation to a very little communication overhead, as showed
in section 4. After this study of communication costs, the distribution of com-
putation must be evaluated. The only source of possible load imbalance is now
work distribution.

Task cost

The complexity CM (¢, i, S(t)) of the computation kernel M (e, i, S(f)) (see Fig.
3) is given by its number of multiplications and additions. Different ordering
of the matrix multiplications (presented on Fig. 3) were envisaged. The chosen
order A,.(p(c).(A1.N,(c.*,1))) allows us to reduce asymptotically the compu-
tation cost. Let d = ¢—i+1, then we have:

e the filling of the intermediate matrix A1 implies d (d +1)/2 maultiplica-
tions;

e the computation of the matrix Bl «— (A1 N (¢, *, f)) implies Mf-(ﬂ
multiplications and additions;

e the matrix operation B2« (p(c) B1) implies (K —1)d maultiplications:

e the matrix operation B3 — (A2 B2) implies (K —1) (Xt 4 d (S(t) —¢))
multiplications and additions;

e the addition of B3 to N, (+.4.t+At) implies (K—1)(S—i+1) additions.

It follows that:

CM (c,i, S(t)) =d[(d;1) +(K =1)(d+1)+ (K —1)+(K —1)(d+1)+2(K - 1)(S(t) —¢)]

+ (K —=1)(S(t)—i+1) ,
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cost for each task M (c,i,S(t))
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furthermore as K = 10
CM(e.i,S(t)) =%(c—i+1) [e—37i+36S(t)+92] + 9(S(t)—i+1). (4)

The sequential complexity W previously introduced can be directly inferred
from the cost function CM:

S(¢) S(t)

W(S(t)) = go ; CM(c.i.S(t)) = % S(t)* + % S(t)* + o(S(t)3).

The task computation cost CM(e,i,S(t)) is displaved on Fig. 8. For
i €[0,S(t)].c € [i.8(t)], the function CM is positive, decreasing in variable i
and increasing in variable ¢. Furthermore, this function is convex in variable 7
(for ¢ fixed) and convex in variable ¢ (for 7 fixed):

PCM CM
A (@iS(0)=1>0,  ——(ci,5() =37>0.

We deduce from that the following first property:

Property 1 For(0 <i <c¢ < S(t), the function CM(S(t)—c.i,S(t)) is decreas-
ing and convex for both variables i and c.

Properties of the distributions

There are two main distributions to consider: the indices ¢ are mapped onto
the groups of processors h,, and indices ¢ are distributed on the sets g,. As
the communications take little time compared to the computation, our aim is
to find a good computation distribution. An optimal distribution of the tasks
M (#,%,5(t)) could be considered, but in order to study easily and precisely the
parallel algorithm, we used a more regular distribution. In order to allow us a
theoretical study we use the snake distribution.

The complexity of a task M (e,i, S(t)) is a decreasing function for the variable
c. For the distribution of the index ¢, we use the biggest ¢ of the update,
which gives ¢ = S(f) as the first index to be mapped onto the processors. It
means that we distribute the bigger tasks first and the smaller ones last to
have a finer distribution. Because the complexity of a task M(c,2,S(t)) is an
increasing function for the variable i, we take ¢ = 0 as the first index to begin
the distribution. Suppose that |G| = 3 and |H| = 4 for S(t) = 21, one gets the
distributions of Fig. 9 and Fig. 10.

Hence, we achieve a well-balanced work load. We can now analvze the
performance of this distribution of computations.



3.2 Cost analysis
Computation cost on processors

The distribution of tasks M (¢, i. S(t)) is known and the complexity of each task
18 known too, thus the computation cost on each processor can be evaluated.
The distribution is static, so a theoretical study of efficiency is even possible.
In order to calculate this efficiency. one has to identify which processor has the
most operations to execute, and to know the exact computation cost of this
processor. We will assume that the grid of processors is a square of width Y.
The processors are named p, ., with (e, u) € [0, Y—l]’. We have a finite number
of elementary tasks M(S(t)—e,i,5(f)) with 0 < ¢ < ¢ < S(t) to distribute
on the processors. The property 1 indicates that the number of operations of
an elementary task CM (S(t)—ec.4, S(t)) is a decreasing and convex function for
variable ¢ and variable c.

Proposition 1 Suppose that 2Y divides S(t)+1. We distribute tasks with a
bidimensionnal snake distribution on the grid of P=Y? processors, so we map
the task M(S(t)—c.i.S(t)) on processor p,. ,, with the following rules (Wlustrated
also by Fig. 11):

e let r; be i mod 2V,

if 0<r<Y-1 theme=mr;,
elsee =2Y —1-ry;

e let ro be (S—c) mod 2Y,

if 0<r. <Y -1 thenu=r,.
elseu=2Y —1—-r,.;

Let load(e,u) be the function giving the computation complerity on each
processor p. . We have the relation

Y(e.u) € [0,Y-1]* load(e,u) < load(0.0). (5)

Then, the processor pg o has to perform more computation than the others.

This proposition is proved in [13, see Annex A]. It follows that the processor
which has the greatest load is pg ¢ (if the grid of processors is a square of with
Y, and if 2V divides S(f)+1). Furthermore, we have observed that pg o has the
greatest number of operations to perform in many configurations without the
hypothesis 2Y divides S(f)+1. As an illustration, an example of the number
of operations to perform per processor is given on Fig. 12 for S(t) = 800 and
Y = 8. Moreover, that observation is also true whenever we use a rectangular
grid of processors.
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Figure 11: Black squares represent tasks M (S(t) — ¢, i, S(f)) mapped onto pro-
CESSOT Pe o

Figure 12: Number of operations load(u, ) of all tasks M mapped onto proces-
S0rs Pe.w (S(t) =800, P =64, Y =8)



Overhead for the 2D scheme

The processor pgo gives us the cost of the parallel algorithm, which is
Pload(0,0). As we have the sequential complexity, we will be able to deter-
mine the overhead and the efficiency of this algorithm. From this, one can
derive a theoretical estimation, but one must consider that the complexity in
terms of number of operations is different than complexity in time. In fact, the
time of initialization of transient matrices is not negligible, there are caching
effects because of matrices reusability in the kernel of computation, and last
but not least the use of BLAS modifies the cost in time. One deduces that
complexity in time differs from complexity in number of operations W(S(t));
but it is straight-forward to show that they have both the same asymptotical
complexity Tyeq(S(2)) 2 ©(S()*). In this section we will work only on the costs
in number of operations which are theoretically known. Furthermore, we will
suppose again that 2Y divides S(f)+1. Let us denote by Z the value S(f)+1.
In such conditions the cost of task M(c,i,Z —1) deduced from equation 4 is:
CMie,i,Z—1) =%c3 —19¢ci+ -02—90-{- -?'T?-iz - -g?oi +204+18¢Z —-18:Z+ 1827 .
Let W;,(Z—1.Y) be the parallel cost on the Y2 = P processors. The parallel
cost equals the number of operations on processor pyo times the number of
processors, that is

W /(Z 1Y) =Y?load(0,0) . (6)

The expression of load(0,0) is a function of CM that depends on the snake
distribution [13, see chapter 6]:

load(0,0) = (7)
9 ¢H
Z Z [CM(Z—-1-(2Y(g—1)),2Y(j—1).Z—-1)+

7=1 g=1
CM(Z-1—(2Yg—1),2Y(i—1).Z-1) +
CM(Z-1—(2Y(g—1)),2Yi—-1.Z—-1) +
CM(Z-1—(2Yg—1),2Yji—1,Z-1)]
q+1
+y [CM(Z-1-(2Y(q—j+1)),2Y (j—1).Z-1) +
i1=1
CM(Z—-1-(2Y(g—j+2)-1).2Y(j—1),Z-1) +
CM(Z-1-(2Y(g—3j+1)).2Yj—1,Z-1)] .

The overhead of the algorithm W,,(Z —1.Y) is given by:

Wo(Z—-1Y) =W (Z-1,Y) - W(Z-1)
= Y?load(0,0) — W(Z—1).



At one time step £, let X = Y — 1 for the simplicity of following formal ex-
pressions. After a tedious derivation performed using a program for symbolic
computation, we get:

Z-12-1

61 605 49
W(Z-1)= f(c.i.Z—1) = — Z¢ sy 2
(Z-1) 2.-:0:;:.;@(“2 ) 24z+ S22+ T 2,
28X2 137X 117X
Wm.(Z—l.X+1)=l T+ 13 ]Z’+l17X2+T]Z‘

The domain of definition where the parallel simulator is planned to be used
is nearly Z € [200,2000], and X € [4,40]. For this use of the algorithm the
overhead is very close to:

28 137
V.. (Z-1, y | =X 2,
Woo(Z—1,X+1) =~ [3){ 12Ju(]z
which leads to the following result:
W,.(S(t),VP) - (112P 87TVP —25)8(t)% .

12

S—oo

We can now consider the effective differences between the number of opera-
tions to perform on a processor and the time of computation on this processor.
It is reasonable to first suppose that the theoretical overhead is slightly different
from the real one, but let say that the asymptotical behavior is the same. If we
named the real overhead T,,(S(t), \/}_’), we have T, (S(t), x/I_’) = O(PS(t)*).
For the 1D scheme [9, 12] the overhead was equal to ©(P? S(¢)*): then the ben-
efit of the 2D scheme is actually significant.

Efficiency and scalability

Let E(S(t), K, P) be the efficiency of the algorithm. It can be expressed as a
function of the overhead, as stated in [§],
1
+ Wou(S(E), VP)
Weg(S(t).K)
Because of the expressions of W,,(S(t), vP) and W, seqlS(t). K). asymptotically
we get:

E(S(t),P) =

1
E(S(@).P)= mp—174\/5—50+0( 1) ’ (8)
555(t) S(t)*

As T,o(S(t)) = ©(S8(t)Y), and T,,(S(t). vP) = ©(PS(t)?) we have
Tou(S(t), VP) & Teeq(S(t)) when P is negligible compared to S(t). Under this
last assumption, which corresponds to the way we use the simulator, we con-
clude that the algorithm is cost-optimal, that is T, (S(f), P) = ©(Tseq(S(t))).
We can fix E(S(t). P) and derive the formula of isoefficiency from (8) which
drives to S(f) = 6(\/_ implying a scalable algorithm.



4 Performances

4.1 Parallel computers

We performed our experiments on the IBM SP3 (and previously on the IBM
SP2), the SGI Origin 3800 of CINES? and on the IBM Regatta of IDRIS®.
The 28 nodes of the SP3 are 16-way NH2 nodes (375 MHz), with 16 GBytes
of memory. A Colony switch manages the interconnection of nodes with a bi-
directional theoretical bandwidth of 1GB/s. The code has been developed in
FORTRAN 90 with the XL Fortan compiler and using the MPI message-passing
library (IBM proprietary version).

The SGI Origin 3800 is a scalable shared memory multiprocessor system. In
terms of parallel computer architecture, this machine is an cc-NUMA architec-
ture (cache coherent Non Uniform Memory Access). With a frequency equal
to 500 MHz, the theoretical peak performance is 1 GFLOPS per processor if
the two independent floating-point units are busy. There is no fused multiply-
add capability as for the IBM Power 3 and Power 4 processors. The level 1
instruction and data caches have a size of 32 KB, whereas the secondary uni-
fied instruction/data cache size is 8 MB. Two SGI machines of 512 and 256
processors have been used at CINES.

The last machine consists of eight IBM p690 Regatta nodes, each containing
32 Power 4 processors, for a total of 256 processors. The Power 4 processor has
a 1.3 GHz clock rate, a 32 KB L1 data cache and a 64 KB L1 instruction cache.
A L2 data cache of 1.5 MB is shared by an elementary block of two processors
and a L3 of 512 MB is shared within a 32-way node. There are two floating
point multiply-add units each of which can deliver one result per clock cycle,
which gives a theoretical peak performance of 5.2 GFLOPS per processor. The
Colony switch provides in this machine bi-directional network links of 200 MB/s
each (two links per node).

4.2 Kernel optimization

The tasks M(ec,i,S(t)) could be divided into four elementary subtasks (see
Figure 3). First, A, is initialized and two matrices are multiplied: auzr, =
Ay N,(c,*.t). Second, a scalar-matrix multiplication is computed: aur, =
plc)aur,. After, A, is initialized and multiplied with another matrix:
aurs = Az aur,. Finally, two matrices are summed up: N,(*.i,t+ Af) =
N,(#,i.t+At) + aurs. The costly part of this set of computations is the two
subtasks involving an initialization followed by a matrix multiplication. This
step must be very efficient because much of execution time is spent in this

2Centre Informatique National de I’Enseignement Supérieur (Franos).
nstitut du Développement & des Ressources en Informatique Scientifique (CNRS,
Franos).



Subroutine algo_1(dm,dk,dn,B,C,g) {
A : temporary matrix;
For k := 1 to dk do {
For n := 1 to dn do {
. agpn = g(k,n); /*initialization */
-}
}

C:=BA; /* multiplication use BLAS 3 subroutines (GEMM,TRMM) */
}

Figure 13: Algorithm algo_1 solving the {2 problem

Subroutine algo_2(dm,dk,dn,B,C,g) {
a : temporary matrix
For k := 1 to dk by stride;, do {
. For n := 1 to dn by stride, do {
. For 7 := 0 to stridey — 1 do {
. For j := 0 to striden, — 1 do {
aij:= gk+in+j);
3
. C(l:dm,n: n+striden—1) := C(1:dm,n : n+striden—1) +
. o B(1:dm,k : k+strideg—1) (0 : stride, —1,0 : striden —1);
1}

}
}

Figure 14: Blocked algorithm algo_2 solving the 2 problem



computation. It corresponds to the formal problem 2 defined by:

dk
Problem €2 : Efficient computation of ¥(m. n) € [1,dm]x[1,dn] ¢, , =Z gk, n) by i -
k=1

This formulation uses a matrix B of dimension dm x dk, a function ¢ defined on
[1.dk] x [1,dn], and a dm x dn matrix C'. In order to use the level 3 of BLAS,
it is straight-forward to write the algorithm algo_1 as presented in Figure 13.
It solves the problem € using a combination of calls to GEMM and TRMM
subroutines depending on the shape of matrix A.

The use of BLAS 3 primitives improve the kernel performances. However,
one can observe that if the temporary matrix A leaves the data cache between
the initialization and the multiplication, it leads to a non optimal situation
(many cache misses). In such case, the matrix A could be loaded two times
from memory to data cache, implying a larger memory bandwidth sollicitation.
In order to solve this problem, we could mix the initialization of sub-matrices of
A and their multiplication with B. If a sub-matrix (say a) of A stays in either
one of the data caches from initialization to its multiplication, we therefore
increase the temporal data locality. The blocked algorithm algo.2 of Figure 14
has such a behavior. The blocking size along the dimension k and n are stride;,
stride,, respectively. The algorithm is not blocked along the m dimension. To
simplify, we suppose that modulo(dn, stride,,) = 0, modulo(dk, stride;) = 0.

Let us notice that dm = K —1 = 9 issmall in our application. The minimum
complexity in number of memory references for the matrix multiplication of
the €1 problem is dk(9 + dn) + 9dn, whereas the computational complexity
is 18dkdn. Asvmptotically, the complexity in computation could represent
eight-teen times the complexity in number of memory references. That case
is not actually typical for a call to a GEMM subroutine. One could expect
to have much more computations compared to memory references and to use
actively the data cache to saturate the processor computational capability. Our
matrix multiplication is not very far from a vector-matrix multiplication where
the actual bottleneck is memory bandwidth when data are not cached. We
have implemented a matrix-matrix multiplication adapted to our special case
dm = 9 using classical techniques: loop unrolling, tiling for registers and caches,
prefetching, array padding. Care has been taken to avoid memory copies because
of the bandwidth bottleneck. To avoid the cost associated with function calls
the code of matrix multiplication with dm = 9 were compiled within the algo_2.
The blocking sizes of the algorithm pas;, pas,, were determined by a sequence
of benchmarks on the simulator for each considered machine. Results with the
best sets of blocking sizes are presented in Table 2.

For each considered parallel architecture, the algorithm algo 2 improves the
performance compared to algol. Furthermore, on the Power 4 processor, the
MFLOPS rates are almost doubled. For the SGI machine and the IBM SP3. near
60% of the peak performance is reached. This very good sustained performance
is not achieved for the IBM Regatta because of a lower ratio memory bandwidth



processor R14000, 500 Mhz Power 3, WH2 Power 3, NH2 Power 4, 1.3 Ghz
MFLOPS MFLOPS MFLOPS MFLOPS
time time time time
% peak % peak % peak % peak
Update of 532 528 685 837
B 111.8s 112.5s 86.8s 71.0s
N, algo.l 53 % 35 % 46 % 16 %
Update of 612 860 895 1544
B 97.1s 69.1s 66.4s 36.8s
N, algo2 61 % 57 % 60 % 30 %

Table 2: Performances of both algorithms algo_1 and algo_2 used in the update

of N on 16 processors for different superscalar architectures (S(t)=800, i.e. 950

GFLOP computation cost for the update of N )

Number of processors: P
16 64 128 256 448
Execution-time
18605 4 830 1248 - - -
(sec.) IBM Regatta
Execution-time
. 44 336 11175 2 896 1488 784 518
(sec.) SGI O3800
Execution-time
32361 8173 2179 1110 603 387
(sec.) IBM SP3NH2

Table 4: Run time for a complete simulation (105 TrLop)




over processor clock compared to the other machines.

4.3 Extensibility of the parallel kernel

We present now the performances for one update of N on a IBM SP2 (207 thin
nodes 120 MHz, 256 MBytes of memory, interconnected by a TB3 switch). In
a previous version of the parallel simulator, there was only a parallelization of
the outer loop ¢ (algorithm of Figure 4). The results of this simulator were
presented in [9, 12| and are given in Table 3. We observe that from 16 to 112
processors, the relative efficiency is above 75%, whereas for much processors the
relative efficiency decreases significantly.

From now on, we will show better results for the parallelization of the two
loops i and ¢ (2D scheme). The theoretical efficiency was established at formula
8. We have not been able to measure this asymptotic behavior experimentally
because it would have required many more processors than we may have. The
observed parallel efficiency 1s presented for different architectures at Figure 15.
In fact, up to 448 processors on the SP2 and the Origin 3800, the efficiency for
the computation kernel is nearly not degraded (above 94%). For all number
of processors used (up to 448) and all parallel machines, the relative efficiency
compared to 4 processors is larger than 90%. Then, the good performance of
our parallel algorithm and the quality of the load balancing is ocbserved in theory
and in practice.

4.4 Scalability of the complete simulation

At Figures 16, 17 and 18 we observe the time proportion for different parts of
the simulation program. When using several hundred of procsssors, the effect of
Amdah!’s law could be noticeable. In a parallel application, one must parallelize
as many parts of the code as possible. The parallelization of several costly pieces
of code in our simulator shows that time taken by computations other than for
the update of N takes a relatively small percentage of the global time of one
step. It 1s worth noticing that the parallelized “update of Ny" and “update
of R are scaling well even for different parallel machines. Nevertheless, the
“transpasition step” and the labeled part “other computation or idle time”
appear to have a cost that increases with the number of processors. The reason
is that collective communications involving all processors are required, such as
MPI_AlNTcAll, MPI_AllGather or MPI_AlIReduce. Consequently, the impact
on scalability is linked to the performances of the network and of the MPI
implementation on the target architecture. In our experiments, and for S(t) =
800, we have less than 1.3% of the total execution time spent in a sum reduction
(it corresponds to communication task 2 on Fig. 7). The transpasition step
(communication task 3) correponds to less than 2.3% of the total execution
time. These two communication tasks represent then a relative reduced cost
compared to computation, even for a large number of processors.
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The load is well balanced, the communication ceost is relatively small com-
pared to computation, and the whole costly computation were parallelized. That
explains why the parallel application 1s highly scalable. And if we have a lock
to Fig. 19, we see that the relative efficiency for one entire simulation is above
74 % for all the number of processors tested on the IBM SP2 and SGI Origin
3800. We notice that up to 64 processors the efficiencies are very clese for every
tested architectures. The algorithms used are very efficient and portable. The
SGI Origin 3800 gets a better scalability than the IBM SP3 because of relatively
higher communication performance. The table 4 illustrates the fact that above
128 processors, a costly simulation of 105 TFLOP lasts only less than 25 min-
utes. For 448 processors, this simulation lasts only 6 minutes and 27 secondes
(IBM SP3). On a single processor of the IBM SP2 or the Origin 3800, it would
have taken more than one day. Our goal of giving a usable tool is then achieved.

4.5 Numerical precision

When changing the number of processors, parallel computations are ordered
slightly differently, which can cause small approximation errors. When using
double-precision reals for computation, all variables cbserved during the entire
simulation remain identical up to at least the first 9 significant digits, even if the
number of processors is modified. But for simple-precision real computations,
if the number of processors is changed, the results are the same for only the
first 2 significant digits. Hence, double-precision improves, as usual, numerical
stability but the ccst in communication bandwidth (and in computation on old
32-bit architecture) is higher. However, we choose to use double precision com-
putation for our simulation for the best quality of results achieved. Numerical
stability 1s an important issue for biclogists and mathematicians: the ohserved
phenomena in numeric simulations must come from the underlying model and
not from computation artifacts.

4.6 Petaflop simulation

In order to understand the sensitivity of the hast-parasite system to the lethal
threshold of parasite per hast, we have to test some higher values for the ljespai
parameter. Depending on environmental conditions, the sea basses could be
more or less heavily impacted by their burden of parasites. For the mathemati-
cal model, it means that S(t) could be two times higher and reach 1600. At the
computation level, the tasks M(c,#, S(t)) will consider larger matrices in aver-
age. That increases the difference of performance between algo_1 and algo. 2.
For example, the execution times of the update N for S(¢)=800 on the IBM SP3
NH2 was 23% lower with algo. 2 compared to algo.l (it can be deduced from
Table 2). When we use S(t)=1600, the gain reaches then 43% (comparing the
execution time of the update of N for both algorithms in the Table 5). So, this
Table 5 shows the very good performances of the algorithm algo2. A complete
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simulation of 1.45 PFLOP achieves to use above 50% of the peak performance
of the parallel machine on 256 and 448 processors. The execution time of this
simulation with algo_2 on one processor would reach 3 weeks. On 448 proces-
sors, the update of N with alge 2 gets a performance of 382 GFLOP /s and
the complete simulation sustained 335 GFLOP /s (the peak performance is 672
GFLOP /s). The parallel application is now described, the description and per-
formances of the algorithm were given and the high-scalability was shown. In
the next section we are going to exhibit one example of the use of the simulator
to better understand the bioc-mathematical model.

5 DBiological results

Validation

It is the process of comparing the outputs of the model with the behavior of
the phenomenon; in other words: comparing model execution to reslity (e.g.
field data). For example, we have observed in our simulations some behaviors
of the output variables (ambiguous cscillations) which do not correspond to any
observed biological phenomena. The parallel simulator allows us to track the
origin of these results and to understand better the mathematical model.

Let us refer to hosts which have more than 300 parasites as “infected”.
Their strength is actually affected by parasites that aggregate on them. From
biclogical experimentations, we know that the ratic of larvae recruited by the
more parasitized hosts is greater than the ratio of larvae recruited by other
hosts. We can fix the ratio Fold(z) of larvae recruited by hasts having more
than 300 parasites, as a function of x, which is the ratic of hests having more
than 300 parasites. The shape of F_old(x) was fixed in the model and the only

input parameter was the inflexion point of the curve presented on Fig. 20.

In Fig. 20, the inflexion point (x¢, F_old(x)) has been set at (0.2, 0.8).

This means that when 20% of the hosts have more than 300 parasites, then
these hosts recruit 80% of the set of larvae present in the race-way. So the
more larvae hosts have, the more they will recruit. A typical situation consists
in a population within which only a few hcsts are highly parisitized. Such an
aggregation of parasites happens in natural conditions and in fish farms. The
developpment of the parasite population depends on its reproduction success
on hosts. Then, interactions between hosts and parasites at indivual scale in-
fluence dramatically the dynamics of parasite infrapopulations on these hosts,
and finally the population dynamics at the host population scale.
The function F _old is used to precompute at each time step the function (I, p, t)
which 1s the probability for a host with p parasites to recruit ! larvae; this funec-
tion ¢ is used in the update of N. Figures 21 and 22 show two output variables
of the same simulation, which corresponds to a given set of parameters where
(24a, Fudld(z, ) = (0.20, 0.95). We will give some interpretation of these curves
and figure out which is the best for our problem.
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Figure 21: Output variable : number of hosts for one simulation
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Figure 23: Output variable : number of hosts for one simulation
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Figure 24: Output variable : ratio x of hosts having more than 300 parasites,
and function F _new(x)



During time steps from 200 to 250 days, we chserve that variable x exhibits
sudden starts on one time step when x increases towards x;,. This is strange and
could be a numerical artifact. Let us imagine the following scenario, the variable
x increases and get closer and closer to x,,. For an increasing Ax in the variable
z, the function F _old(x) increases appraximately by AF_old = (Fold)'(x) Ax.
If the derivative of F_old has a high value for 0 < x < x4 as it can be seen
from Fig. 20, and for x= clese to x,,, one gets a relative big positive value
of AF _old. We can analyze the consequences of this feature. This large value
AF_pld implies a higher aggregation, which means if the ratio of infested hosts is
slowly increased then these hosts get many more parasites than in the previous
time step. Consequently there is a sudden death of hasts having more than 300
parasites and then the ratio x of this type of hosts decreases. Finally, if x < x,
18 near r¢», a growth of the variable r may imply a decrease of x at the next
time step.

Let us imagine another scenario: the variable x¢» < x decreases and gets
claser and closer to xy,. For a decrease Ax in the vanable x, the function
F _old(x) decreases approximately of AF_old = (Fold) (x) Ax. For x just below
¢z, one gets a relative large negative value for AF.old. The large decrease of
F_dld(x) implies a smaller aggregation, which means that larvae can be recruited
by many hosts and not only the more infected ones. Then, some hests get more
than 200 parasites, and then the ratio x of this type of hasts increasss. Last, if
I > Xyp 18 Near Iy,, a decrease in the variable x may imply an increase of x at
the next time step. So we have illustrated an instability at the point xr = x¢» and
characterized a phenomena of repel. This numerical approach is not satisfying
from a biclogical point of view becanse it ssems to have no biclogical basis. The
ascillations have a period of 2 At implying a numerical artifact. So we need to
chocse another function F _new with a nearly similar shape to F_dld to replace
it. The function F _new 1is displayed on Fig. 20 and has a denivative equal to
one for r = xy.. With this new function, the simulation leading to the curves
of Fig. 21 and 22 was recomputed without modifying the set of parameters and
gave the ones of Fig. 23 and 24. The behaviour of ratio x is lifted and the
ambiguous cecillations disappeared.

Other minor changes have been performed during the validation of the
maodel; some of them could be found with a more biologically-oriented discussion
in [13].

Calibration

It 1s the process of parameter estimation for a model. Calibration is a tuning of
existing parameters and usually does not involve the introduction of new ones
(this could change the model structure). The set of parameters we used has
been fixed from average parameter estimation [5].
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Figure 25: Temporary endemic state
at the end of simulation
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lated by host deaths
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Results

The results consists in new dynamics actually observed with the new parallel
simulator [23]. With the initial sequential simulator, only two dynamical behav-
1ors were ohserved: first, host extinction because of a parasite epzootic process,
second, parasite extinction without any host death. With the parallel version,
the computations are more accurate (approximations are removed), and fast
computations lead to the simulation of many realistic dynamics. Thus, we have
obtained three other dynamic behaviors corresponding to ohserved biclogical
cases:

e the fish population does not go extinct after introduction of parasites. A
hast population regulation is observed and a temporary endemic state is
achieved (Fig. 25):

e deaths in the hast population regulate the parasite epizootic process. Tun-
ing the parameters controlling the aggregation of parasites allows us to
obtain a more or less strong impact on the hest population (Fig. 26):

e the parasite population develops, but it has no impact on the hest popu-
lation dynamics (Fig. 27).

The simulation validates some of the observed population dynamics and
allows us to explore the model. Moreover, we have noticed through simulations
that a variable aggregation has a central position in the hierarchy of the various
mechanisms involved in the hast-parasite system as biologists have expected.

6 Conclusion

A parallel numerical simulator based on a bio-mathematical model of a hast-
parasite system was presented. We studied a task mapping using a bidimen-
sional snake distribution that leads theoretically to a very good load balancing
for the main computation of the simulator. The performance analysis estab-
lished the efficiency and high scalability of the parsllel algorithm. A complete
and castly simulation of 105 TFLOP lasts less than 9 minutes on the SGI Origin
3800 and 6 minutes 30 secondes on the IBM SP3 using 448 processors (double-
precision reals). Furthermore, for simulations of 1.45 PetaFLOP, the simulator
achieved a sustained performance of 500 of the peak on 448 processors.

So this parsallelization work leads to a usable research tool and to a better
understanding of how the bio-mathematical model reacts. The parallel simula-
tor allows us to compute complex and non-linear interactions between different
ecological levels. A feedback from the simulation results to the model allowed
us to improve the assumptions initially taken. Numerical artifacts were then
suppressaed. Future work will include a study of the acceptable variability of
the parameters, and a sensivity analysis with respect to initial conditions (that



is, inference about how simulation responds to changes for one or more in-
puts parameters). For this population dynamics problem, ancther simulation
maodel [10] based on a Monte-Carlo algorithm with a different computation cost
will be compared with the one presented here.
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