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Abstract

This paper deals with the stochastic control of nonlinear systems in
the presence of state and control constraints, for uncertain discrete-time
dynamics in finite dimensional spaces. In the deterministic case, the via-
bility kernel is known to play a basic role for the analysis of such problems
and the design of viable control feedbacks. In the present paper, we show
how a stochastic viability kernel and viable feedbacks relying on proba-
bility (or chance) constraints can be defined and computed by a dynamic
programming equation. An example illustrates most of the assertions.

Key words: stochastic control, state constraints, viability, discrete time,
dynamic programming.

1 Introduction

Risk, vulnerability, safety or precaution constitute major issues in the man-
agement and control of dynamical systems. Regarding these motivations, the
role played by the acceptability constraints or targets is central, and it has to
be articulated with uncertainty and, in particular, with stochasticity when a
probability distribution is given. The present paper addresses the issue of state
and control constraints in the stochastic context. For the sake of simplicity,
we consider noisy control dynamics systems. This is a natural extension of de-
terministic control systems, which covers a large class of situations. Thus we
consider the following state equation as the uncertain dynamic model

x(t + 1) = f
(

t, x(t), u(t), w(t)
)

, t = t0, . . . , T − 1 , with x(t0) = x0 (1)

where x(t) ∈ X = Rn represents the system state vector at time t, x0 ∈ X is the
initial condition at initial time t0, u(t) ∈ U = Rp represents decision or control
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vector while w(t) ∈ W = Rq stands for the uncertain variable, or disturbance,
or noise.

The admissibility of decisions and states is first restricted by a non empty
subset B(t, x) of admissible controls in U for all (t, x):

u(t) ∈ B
(

t, x(t)
)

⊂ U . (2)

Similarly, the relevant states of the system are limited by a non empty subset
A
(

t, w(t)
)

of the state space X possibly uncertain for all t,

x(t) ∈ A
(

t, w(t)
)

⊂ X , (3)

and a target
x(T ) ∈ A

(

T,w(T )
)

⊂ X . (4)

We assume that
w(t) ∈ S(t) ⊂ W , (5)

so that the sequences

w(·) :=
(

w(t0), w(t0 + 1), . . . , w(T − 1), w(T )
)

(6)

belonging to
Ω := S(t0)× · · · × S(T ) ⊂ W

T+1−t0 (7)

capture the idea of possible scenarios for the problem. A scenario is an uncer-
tainty trajectory.

These control, state or target constraints may reduce the relevant paths of
the system (1). Such a feasibility issue can be addressed in a robust or stochastic
framework. Here we focus on the stochastic case assuming that the domain of
scenarios Ω is equipped with some probability P. In this probabilistic setting,
one can relax the constraint requirements (2)-(3)-(4) by satisfying the state
constraints along time with a given confidence level β

P

(

w(·) ∈ Ω | x(t) ∈ A
(

t, w(t)
)

for t = t0, . . . , T
)

≥ β (8)

by appropriate controls satisfying (2). Such probabilistic constraints are often
called chance constraints in the stochastic literature as in [14, 16]. We shall
give proper mathematical content to the above formula in the following section.
Concentrating now on motivation, the idea of stochastic viability is basically to
require the respect of the constraints at a given confidence level β (say 90%,
99%). It implicitly assumes that some extreme events makes irrelevant the
robust approach [12] that is closely related to stochasticity with a confidence
level 100%.

The problems of dynamic control under constraints usually refers to viability
[1] or invariance [9, 17] framework. Basically, such an approach focuses on inter-
temporal feasible paths. From the mathematical viewpoint, most of viability
and weak invariance results are addressed in the continuous time case. However,
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some mathematical works deal with the discrete-time case. This includes the
study of numerical schemes for the approximation of the viability problems of
the continuous dynamics as in [1, 15]. Important contributions for discrete-time
case are also captured by the study of the positivity for linear systems as in [4],
or by the hybrid control as in [2, 17] or [11]. Other references may be found in
the control theory literature, such as [5, 13] and the survey paper [6]. A large
study focusing on the discrete-time case is also provided in [10].

Viability is defined as the ability to choose, at each time step, a control such
that the system configuration remains admissible. The viability kernel associ-
ated with the dynamics and the constraints play a major role regarding such
issues. It is the set of initial states x0 from which starts an acceptable solution.
For a decision maker or control designer, knowing the viability kernel has prac-
tical interest since it describes the states from which controls can be found that
maintain the system in a desirable configuration forever. However, computing
this kernel is not an easy task in general. Of major interest is the fact that a
dynamic programming equation underlies the computation or approximation of
viability kernels as pointed out in [1, 10].

The present paper aims at expanding viability concepts and results in the
stochastic case for discrete-time systems. In particular, we adapt the notions
of viability kernel and viable controls in the probabilistic or chance constraint
framework. Mathematical materials of stochastic viability can be found in [3, 8,
7] but they rather focus on the continuous time case and cope with constraints
satisfied almost surely. We here provide a dynamic programming and Bellman
perspective for the probabilistic framework.

The paper is organized as follows. Section 2 is devoted to the statement of
the probabilistic viability problem. Then, Section 3 exhibits the dynamic pro-
gramming structure underlying such stochastic viability. An example is exposed
in Section 4 to illustrate some of the main findings.

2 The stochastic viability problem

Here we address the issue of state constraints in the probabilistic sense. This
is basically related to risk assessment and management. This requires some
specific tools inspired from the viability and invariance approach known for the
certain case. In particular, within the probabilistic framework, we adapt the
notions of viability kernel and viable controls.

2.1 Probabilistic assumptions and expected value

Probabilistic assumptions on the uncertainty w(·) ∈ Ω are now added, providing
a stochastic nature to the problem. Mathematically speaking, we suppose that
the domain of scenarios Ω ⊂ WT+1 = Rq × · · · × Rq is equipped with a σ-
field1 F and a probability P: thus, (Ω,F ,P) constitutes a probability space. The

1For instance, F is the trace of Ω on the usual borelian σ-field F =
⊗T

t=t0
B(Rq).
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sequences
w(·) =

(

w(0), w(1), . . . , w(T − 1), w(T )
)

∈ Ω

now become the primitive random variables.
Hereafter, we shall assume that the random process w(·) is independent

and identically distributed (i.i.d.) under probability P. In other words, we

suppose that the probability is the product P =
⊗T

t=t0
µ of a common marginal

distribution µ. The expectation operator E is defined on the set of measurable
and integrable functions by

E[g] = EP [g (w(·))] =

∫

Ω

g
(

w(t0), . . . , w(T )
)

dµ(w(t0)) · · · dµ(w(T )) ,

and we have that
EP [g (w(t))] = Eµ [g (w(t))] .

2.2 Controls and feedback strategies

It is well-known that control issues in the uncertain case are much more com-
plicated than in the deterministic case. In the uncertain context, we must drop
the idea that the knowledge of open-loop decisions u(·) =

(

u(t0), . . . , u(T − 1)
)

induces one single path of sequential states x(·) =
(

x(t0), . . . , x(T )
)

. Open loop
controls u(t) depending only upon time t are no longer relevant, contrarily to
closed loop or feedback controls u(t, x(t)) which display more adaptive proper-
ties by taking into account the uncertain state evolution x(t). In the stochastic
setting, all the objects considered will be implicitly equipped with appropriate
measurability properties. Thus we define a feedback as an element of the set of
all measurable functions from the couples time-state towards the controls:

U := {u : (t, x) ∈ {t0, . . . , T − 1} × X 7→ u(t, x) ∈ U, umeasurable} . (9)

The control constraints case restricts feedbacks to admissible feedbacks account-
ing for control constraints (2) as follows

U
ad = {u ∈ U | u(t, x) ∈ B(t, x) , ∀(t, x) ∈ {t0, . . . , T − 1} × X} . (10)

Let us mention that, in the stochastic context, a feedback decision is also
termed a pure Markovian strategy. Markovian means that the current state
contains all the sufficient information of past system evolution to determine the
statistical distribution of future states. Thus, only current state x(t) is needed
in the feedback loop among the whole sequence of past states x(t0),. . . , x(t).

At this stage, we need to introduce some notations which will appear quite
useful in the sequel: the state map and the control map. Given a feedback
u ∈ U, a scenario w(·) ∈ Ω and an initial state x0 at time t0 ∈ {t0, . . . , T−1}, the
solution state xf [t0, x0, u, w(·)] is the state path x(·) = (x(t0), x(t0+1), . . . , x(T ))
solution of dynamics

x(t+ 1) = f
(

t, x(t), u(t, x(t)), w(t)
)

, t = t0, . . . , T − 1
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starting from the initial condition x(t0) = x0 at time t0 and associated with
feedback control u and scenario w(·). The solution control uf [t0, x0, u, w(·)]
is the associated decision path u(·) = (u(t0), u(t0 + 1), . . . , u(T − 1)) where
u(t) = u(t, x(t)).

2.3 The stochastic viability kernel and viable feedbacks

The viability kernel plays a major role in the viability analysis. In the deter-
minsitic case, it is the set of initial states x0 such that the state constraints hold
true for at least one control stategy. In the probabilistic setting, one relaxes
the constraints requirement by satisfying the state constraints along time with
a given confidence level as in (8). We give proper mathematical content to this
latter formula (8) inspired by chance constraints [14] in the following Definition.

Definition 1 The stochastic viability kernel at time t0 and at confidence level
β ∈]0, 1] is

Viabβ(t0) :=

{

x0 ∈ X

∣

∣

∣

∣

∣

there exists u ∈ Uad such that

P

(

w(·) ∈ Ω | x(t) ∈ A
(

t, w(t)
)

for t = t0, . . . , T
)

≥ β

}

(11)
where x(t) is a shorthand for the solution map x(t) = xf [t0, x0, u, w(·)](t).

Stochastic viable feedbacks are measurable feedback controls that allow the
stochastic viability property to hold true.

Definition 2 Stochastic viable feedbacks are those for which the above relations
occur:

U
viab

β (t0, x0) :=
{

u ∈ U
ad

∣

∣

∣ P

(

w(·) ∈ Ω | x(t) ∈ A
(

t, w(t)
)

for t = t0, . . . , T
)

≥ β
}

.

(12)

We have the following strong link between stochastic viable feedbacks and
the viability kernel:

x0 ∈ Viabβ(t0) ⇐⇒ U
viab

β (t0, x0) 6= ∅ .

Of particular interest is the case where the confident rate is β = 1 which is
very close to robust viability and control. Indeed, when the scenario domain
Ω is countable and that every scenario w(·) has strictly positive probability
under P, Viab1(t0) is the robust viability kernel (the set of initial states x0 such
that the state constraints hold true for at least one control stategy, whatever
the scenario). When the uncertainty domain S(t) in (5) is reduced to a single
element, so is also the scenario domain Ω in (7): this is the deterministic case
for which Viab1(t0) coincides with the classical viability kernel [1, 10].
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3 Stochastic dynamic programming equation

We shall now exhibit a a characterization of stochastic viability in terms of
dynamic programming. It relies on the the maximal viability probability defined
recursively as follows.

Definition 3 Assume that the random process w(·) is i.i.d. under probability
P, with marginal distribution µ. The stochastic viability value function V (t, x),
associated with dynamics (1), control constraints (2), state constraints (3) and
target constraints (4) is defined by the following backward induction:



















V (T, x) := Eµ

[

1
A

(

T,w
)(x)

]

,

V (t, x) := max
u∈B(t,x)

Eµ

[

1
A

(

t,w
)(x) V

(

t+ 1, f(t, x, u, w)
)

]

.

(13)

Here, 1A stands for the indicator function of a set A. It is defined by 1A(x) = 1
if x ∈ A, and 1A(x) = 0 if x 6∈ A.

The backward dynamic programming equation (13) allows us to define the
value function V (t, x). By writting a max instead of a sup, we implicitly as-
sume the existence of an optimal solution for each time t and state x. It turns
out that the stochastic viability function V (t0, x) at time t0 is related to the
stochastic viability kernels {Viabβ(t0), β ∈ [0, 1]}, and that dynamic program-
ming induction reveals relevant stochastic feedback controls. To achieve this,
we first claim that the value function V is the solution of a (stochastic) optimal
control problem involving the viability criterion π defined as follows:

π
(

t0, x(·), u(·), w(·)
)

=
T
∏

t=t0

1
A

(

t,w(t)
)(x(t)) . (14)

Proposition 1 Assume that the random process w(·) is i.i.d. under probability
P, with marginal distribution µ. For any initial conditions (t0, x0), we have

V (t0, x0) = max
u∈Uad

EP

[

π
(

t0, x(·), u(·), w(·)
)]

,

where the stochastic viability value function V (t0, x0) is given by the backward
induction (13), where the criterion π is defined in (14), and where x(·) =
xf [t0, x0, u, w(·)](·) and u(·) = uf [t0, x0, u, w(·)] are shorthand expressions for
the solution maps.

The proof of this previous Proposition is exposed in Appendix A. We also
derive the following assertion regarding the stochastic viability kernel.

Proposition 2 Assume that the random process w(·) is i.i.d. under probability
P, with marginal distribution µ. The stochastic viability kernel at confidence
level β is the section of level β of the stochastic value function:

V (t0, x0) ≥ β ⇐⇒ x0 ∈ Viabβ(t0) . (15)
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The proof of this previous Proposition is also exposed in Appendix A. As
regard the viable feedbacks, we obtain the following assertion.

Proposition 3 Assume that the random process w(·) is i.i.d. under probability
P, with marginal distribution µ. For any time t = t0, . . . , T − 1 and state x, let
us assume that

B
viab(t, x) := arg max

u∈B(t,x)
Eµ

[

1
A

(

t,w
)(x) V

(

t+ 1, f
(

t, x, u, w(t)
)

)

]

(16)

is not empty. Then, for any x0 ∈ Viabβ(t0), any measurable selection2 u⋆ ∈ Bviab

belongs to the set of stochastic viable feedbacks Uviab

β (t0, x0).

4 A simple academic example

To illustrate the general statements, we consider a simple academic model and
perform a probabilistic viability analysis.

4.1 Example statement

The evolution of a scalar x(t) is governed by the discrete-time dynamics

x(t + 1) = x(t) + u(t) + w(t) ,

where control is constrained by

u(t) ∈ {−1, 1} = B(t, x) = B

and uncertainty scenarii are induced by

w(t) ∈ {−1, 0, 1} = S(t) = S .

We assume that w(·) is an i.i.d. sequence, with probability

µ(w(t) = 1) = µ(w(t) = −1) = p; µ(w(t) = 0) = 1− 2p .

The state constraint is

x(t) ∈ {−1, 0, 1} = A
(

t, w(t)
)

= A .

The decision maker intends to exhibit controls such that this constraint is sat-
isfied with a high enough probability

P

(

x(t) ∈ {−1, 0, 1} , t = t0, . . . , T

)

≥ β .

2Any u⋆ ∈ U such that u⋆(t, x) ∈ Bviab(t, x) for any t and x.
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The intuition to satisfy the above probability constraint is as follows. When
x(t) belongs to the border {−1, 1} of the domain A = {−1, 0, 1}, there is an
obvious decision to make: if x(t) = −1, take u(t) = 1 so that x(t)+u(t) = 0 and
thus x(t+ 1) = w(t) ∈ {−1, 0, 1} (the same with x(t) = 1 and u(t) = −1 ). But
when x(t) = 0, then x(t+ 1) = u(t) + w(t) and, whatever u(t) ∈ {−1, 1}, there
is a chance that w(t) takes the same value, sending x(t) outside A = {−1, 0, 1}.

4.2 Results

time t

454035302520151050

3

2

1

0

-1

-2

-3

s
t
a
t
e
 
x
(
t
)

Figure 1: 9 simulations of state trajectories x(t) over time horizon [0, 40] for
dynamics x(t + 1) = x(t) + u(t) + w(t) starting from x0 = 0 with stochastic
viable feedback controls u⋆(t, x) ∈ B

viab(t, x) as defined in (17). Probability of
facing high disturbances w ∈ {−1,+1} is low with p = 1%. Viability probability
value function V (0, 0) ≈ 67% and 3 trajectories over 9 violate the constraint.

By dynamic programming equation (13), we compute the maximal viability
probability V (t, x) and associated viable feedback controls Bviab(t, x).

Result 1 Introduce matrix M , vectors ~1 and ~1i(x) by

M =





p 1− 2p p
p 1− 2p 0
p 1− 2p p



 , ~1 =





1
1
1



 , (~1i(x))j = 1{i}(x) = 1{x=i} .
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The stochastic viability value function is given by

V (t, x) =
∑

i=−1,0,1

〈

~1i(x),M
T−t~1

〉

,

or, in other words, V (t, x) = 0 for all x 6∈ {−1, 0, 1} and

V (t, x) = (MT−t~1)x+2 , ∀x ∈ {−1, 0, 1} .

The associated viable feedback controls are given by

B
viab(t, x) =







1 if x = −1
{−1, 1} if x = 0
−1 if x = 1 ,

(17)

Consequently the viability kernel reads:

Result 2

Viabβ(t) =







A if β ≤ (MT−t~1)2
{−1, 1} if (MT−t~1)2 < β ≤ (MT−t~1)1

∅ if (MT−t~1)1 < β.

The difficulty of the control is captured by the second row of the matrix
M where the sum is not equal to 1 which suggests that the state x = 0 can
escape from A. The results are illustrated by Figure 1 where 9 simulations
of state trajectories x(t) starting from x0 = 0 are displayed over time horizon
[0, 40] with stochastic viable feedback controls u⋆(t, x) ∈ Bviab(t, x) as defined in
(17). Probability of facing high disturbances w ∈ {−1,+1} is low with p = 1%.
However viability probability value function turns out to be V (0, 0) ≈ 67%
which points out a significant risk of leaving viability set A = {−1, 0, 1} due the
accumulation of risks over 40 periods; Therefore it is intuitive that 3 paths over
9 leave the state constraint set A = {−1, 0, 1} along time.

Proof. We shall check that V (t, x) =
∑

i=−1,0,1

〈

~1i(x),M
T−t~1

〉

is solution

to the dynamic programming equation (13).
This is true for final time t = T because

∑

i=−1,0,1

〈

~1i(x),M
T−T~1

〉

=
∑

i=−1,0,1

〈

~1i(x), ~1
〉

=
∑

i=−1,0,1

1i(x) = 1{−1,0,1}(x) = 1A(x) .

Proceeding by backward induction, let us suppose that

V (t+ 1, x) =
∑

i=−1,0,1

〈

~1i(x),M
T−(t+1)~1

〉

.

The dynamic programming equation (13) gives

V (t, x) = 1{−1,0,1}(x) max
u∈{−1,1}

Eµ

[

V
(

t+ 1, x+ u+ w
)

]

.
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Whenever x /∈ A = {−1, 0, 1}, we clearly have that V (t, x) = 0. Whenever
x = −1, we deduce that

V (t,−1) = max
{

pV (t+ 1,−3) + (1− 2p)V (t+ 1,−2) + pV (t+ 1,−1),
pV (t+ 1,−1) + (1− 2p)V (t+ 1, 0) + pV (t+ 1, 1)

}

= max
{

pV (t+ 1,−1) + (1− 2p)V (t+ 1, 0) + pV (t+ 1, 1), pV (t+ 1,−1)
}

= pV (t+ 1,−1) + (1− 2p)V (t+ 1, 0) + pV (t+ 1, 1)

and the viable control is provided by u⋆(t,−1) = 1. By induction, we deduce
that

V (t,−1) = pV (t+ 1,−1) + (1− 2p)V (t+ 1, 0) + pV (t+ 1, 1)

=
∑

i=−1,0,1

M1,i+2(M
T−(t+1)~1)i+2

= (MMT−(t+1)~1)1
= (MT−t~1)1

=
〈

~1−1(−1),MT−t~1
〉

=
∑

i=−1,0,1

〈

~1i(−1),MT−t~1
〉

.

In the same way, we check the expression for the stochastic viability value
function V (t, 1) when x = 1, and obtain the viable control u⋆(t, 1) = −1. The
case x = 0 is treated in the same vein, with the difference that viable control is
not unique since u⋆(t, 0) ∈ {−1,+1} and

V (t, 0) = pV (t+ 1,−1) + (1− 2p)V (t+ 1, 0).
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A Proofs

A.1 Proof of Proposition 1

We use the following notations for any strategy u ∈ U:

• πu is the evaluation of the criterion π defined in (14)

πu
(

t0, x0, w(·)
)

:= π
(

t0, xf [t0, x0, u, w(·)](·), uf [t0, x0, u, w(·)](·), w(·)
)

(18)
where w(·) ∈ Ω and xf , uf are the solution maps;

• the expected value

πu

E(t0, x0) := EP

[

πu
(

t0, x0, w(·)
)]

. (19)

We consider the maximization problem:

π⋆
E(t0, x0) := max

u∈Uad

πu

E(t0, x0) . (20)

We aim at proving that

V (t, x) = πu
⋆

E (t, x) = max
u∈Uad

πu

E(t, x) .

Let u⋆ ∈ Uad denote one of the measurable viable feedback strategies given by
the dynamic programming equation (13). We perform a backward induction to
prove (20).

First, the equality at t = T holds true since

πu
⋆

E
(T, x) = EP

[

πu
⋆

(T, x, w(·))
]

by definition (19)

= Eµ

[

1
A

(

T,w
)(x)

]

by definition (14)

= V (T, x) by definition (13).

Now, suppose that

πu
⋆

E
(t+ 1, x) = max

u∈Uad

πu

E
(t+ 1, x) = V (t+ 1, x) . (21)

The very definition (13) of the value function V by dynamic programming com-
bined with (22) in Lemma 1 (proved below) imply that

πu
⋆

E
(t, x) = Eµ

[

1
A

(

t,w(t)
)(x) πu

⋆

E

(

t+ 1, f
(

t, x, u⋆(t, x), w(t))
)

]

by (22)

= Eµ

[

1
A

(

t,w
)(x) V

(

t+ 1, f
(

t, x, u⋆(t, x), w)
)

]

by (21)

= maxu∈B(t,x) Eµ

[

1
A

(

t,w
)(x) V

(

t+ 1, f
(

t, x, u, w)
)

]

by (13)

= V (t, x) by (13).
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Similarly, for any u ∈ Uad, we obtain

πu

E
(t, x) = Eµ

[

1
A

(

t,w(t)
)(x) πu

E

(

t+ 1, f
(

t, x, u(t, x), w(t))
)

]

by (22)

≤ Eµ

[

1
A

(

t,w
)(x) V

(

t+ 1, f
(

t, x, u(t, x), w)
)

]

by (21)

≤ maxu∈B(t,x) Eµ

[

1
A

(

t,w
)(x) V

(

t+ 1, f
(

t, x, u, w)
)

]

since u(t, x) ∈ B(t, x)

= V (t, x) by (13).

Consequently, the desired statement is obtained since

max
u∈Uad

πu

E(t, x) ≤ V (t, x) = πu
⋆

E (t, x)

yields the equality

V (t, x) = πu
⋆

E
(t, x) = max

u∈Uad

πu

E
(t, x) .

Lemma 1 We have, for t = t0, . . . , T − 1 and u ∈ U,



















πu

E
(T, x) = Eµ

[

1
A

(

T,w(T )
)(x)

]

πu

E
(t, x) = Eµ

[

1
A

(

t,w
)(x) πu

E

(

t+ 1, f
(

t, x, u(t, x), w)
)

]

.

(22)

Proof. By (14) and (18), we have











πu(T, x, w(·)) = 1
A

(

T,w(T )
)(x)

πu(t, x, w(·)) = 1
A

(

t,w(t)
)(x)πu(t+ 1, f

(

t, x, u(t, x), w(t)), w(·))) .

(23)
Notice that πu(t, x, w(·)) depends only upon the end

(

w(t), . . . , w(T − 1)
)

, and

not upon the beginning
(

w(t0), . . . , w(t − 1)
)

. We shall write this property
abusively by

πu(t, x, w(·)) = πu (t, x, (w(t), . . . , w(T − 1))) . (24)
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We have

πu

E
(t, x) = EP [π

u(t, x, w(·))] by (19)

= EP

[

1
A

(

t,w(t)
)(x) πu

(

t+ 1, f
(

t, x, u(t, x), w(t)), w(·)
)

]

by (23)

= Eµ

[

EµT−t−1

[

1
A

(

t,w(t)
)(x)πu

(

t+ 1, f
(

t, x, u(t, x), w(t)), w(t + 1), . . . , w(T − 1)
)]

]

by Fubini theorem

= Eµ

[

1
A

(

t,w(t)
)(x)

EµT−t−1

[

πu
(

t+ 1, f
(

t, x, u(t, x), w(t + 1), . . . , w(T − 1))
)]

]

= Eµ

[

1
A

(

t,w(t)
)(x)Ew(·)∈Ω

[

πu (t+ 1, F (t, x, u(t, x), w(·)))
]

]

by (24)

= Eµ

[

1
A

(

t,w

)(x) πu

E(t+ 1, f
(

t, x, u(t, x), w
)

)
]

by (19).

Proof of Proposition 2

It is enough to remark that

Viabβ(t) =

{

x0 ∈ X

∣

∣

∣

∣

max
u(·)

EP

[

π
(

t0, x(·), u(·), w(·)
)]

≥ β

}

. (25)

Proof of Proposition 3

Simply follow step by step the proof of Proposition 1.
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