
HAL Id: hal-00453476
https://hal.science/hal-00453476v1

Submitted on 4 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Verification of Real-time Systems with
Preemptive Scheduling
Didier Lime, Olivier Henri Roux

To cite this version:
Didier Lime, Olivier Henri Roux. Formal Verification of Real-time Systems with Preemptive Schedul-
ing. Real-Time Systems, 2009, 2 (41), pp.118-151. �10.1007/s11241-008-9059-0�. �hal-00453476�

https://hal.science/hal-00453476v1
https://hal.archives-ouvertes.fr

Formal verification of real-time systems with

preemptive scheduling

Didier Lime and Olivier (H.) Roux

IRCCyN (Institut de Recherche en Communication et Cybernétique de Nantes)
1, rue de la Noë B.P. 92101

44321 NANTES cedex 3 (France)
{Didier.Lime | Olivier-h.Roux}@irccyn.ec-nantes.fr

Abstract. In this paper, we propose a method for the verification of
timed properties for real-time systems featuring a preemptive schedul-
ing policy: the system, modeled as a scheduling time Petri net, is first
translated into a linear hybrid automaton to which it is time-bisimilar.
Timed properties can then be verified using HyTech. The efficiency of
this approach leans on two major points: first, the translation features a
minimization of the number of variables (clocks) of the resulting automa-
ton, which is a critical parameter for the efficiency of the ensuing veri-
fication. Second, the translation is performed by an over-approximating
algorithm, which is based on Difference Bound Matrix and therefore effi-
cient, that nonetheless produces a time-bisimilar automaton despite the
over-approximation. The proposed modeling and verification method are
generic enough to account for many scheduling policies. In this paper,
we specifically show how to deal with Fixed Priority and Earliest Dead-
line First policies, with the possibility of using Round-Robin for tasks
with the same priority. We have implemented the method and give some
experimental results illustrating its efficiency.

1 Introduction

Hard real-time systems are both complex and critical. Therefore thorough ver-
ification processes of such systems must be performed, including behavior and
timing correctness. These systems are usually designed as a set of several tasks
interacting and sharing one ore more processors. Hence, in a system S, tasks
must be scheduled on the processors in such a way that they respect some prop-
erties Pi imposed by the controlled process. This is usually achieved using either
an offline or an online approach. In the offline approach, a pre-runtime schedule
is built up so that S satisfies Pi. In the online approach, the schedule of the
tasks is computed at runtime according to a scheduling policy based on priori-
ties (e.g. Rate Monotonic, Earliest Deadline First). Among the Pi properties S

must verify, the first one is the schedulability, i.e. “each task meets its deadline”.
In this paper, we shall consider the online approach.

1.1 Analytical online scheduling analysis

The online scheduling analysis is a much studied topic and many analytical
results have been proposed, mostly concerning the schedulability of task sets
since the seminal work of Liu and Layland in 1973 (Liu and Layland 1973).
Results on low-cost exact analysis of sets of independent and periodic tasks
with fixed execution times are presented in (Tindell 1994, Palencia and Harbour
1998, Hladik and Déplanche 2003) for instance. Extensions have been proposed
to take into account interactions between tasks and variable execution time, see
in particular (Palencia and Harbour 1999, Harbour et al. 1991). The authors
give upper bounds of response times and thus only sufficient conditions. This
leads to an inherent pessimism, which potentially grows with the complexity of
the system considered. This motivates the use of formal verification methods
using such models as timed automata (TA) (Alur and Dill 1994, Henzinger et
al. 1994) and timed Petri nets (TPN) (Merlin 1974, Berthomieu and Diaz 1991),
among others.

1.2 Formal models for online scheduling

Timed models such as timed automata or time Petri nets are usually not expres-
sive enough to model and verify many classical features of real-time systems: in
these models, time elapses at the same speed for all components of the system,
which allows the modeling of non-preemptive scheduling policies of tasks, each
being executed on a different processor. However, they cannot represent preemp-
tive scheduling policies where the execution of a task can be suspended at some
point and later resumed at the same point.

Automata and scheduling. Hybrid automata extend finite automata with
continuous variables whose dynamic evolution is specified in each location by
a differential equation. Linear hybrid automata (LHA) (Alur et al. 1995) are a
subclass of hybrid automata. In this model, the differential equation governing
the evolution of the variables X is written AẊ ≤ B, with A being a real matrix
and B a real vector. For this subclass, symbolic verification (semi-)algorithms
have been developed (Alur et al. 1996) and implemented in the HyTech tool
(Henzinger et al. 1997).

Stopwatch automata (SWA) (Cassez and Larsen 2000) can be defined as
timed automata for which clocks can be stopped and later resumed with the
same value. These clocks are then more appropriately called stopwatches. This
is thus a syntactical subclass of LHA which is of particular interest when mod-
eling real-time systems. Cassez and Larsen show however in (Cassez and Larsen
2000) that stopwatch automata (with unobservable delays) are as expressive as
LHA in the sense that for all timed language accepted by a LHA, there ex-
ists a stopwatch automaton which accepts the same language. The reachability
problem being undecidable for LHA, this shows that it is also undecidable for
stopwatch automata. The authors then propose an over-approximation of the

reachable state-space using Difference Bound Matrix (DBM) (Berthomieu and
Menasche 1983, Dill 1989).

In (McManis and Varaiya 1994), McManis and Varaiya propose an exten-
sion of timed automata, called suspension automata, where continuous variables
progress similarly as exposed in (Cassez and Larsen 2000). They prove that, for
this model, reachability is undecidable and fall back to a decidable case, sim-
ilar to that of timed automata, by considering that the suspension durations
are fixed and integral. When a stopwatch is stopped and resumed, the duration
of the suspension is subtracted from its value. In this approach, precedence re-
lations inducing preemptions have to be explicitly encoded by locations of the
automaton, which may restrict the expressivity and the ease of use of the model.
In addition, fixed execution times cannot account for a number of well-known
cases in which the early termination of a task leads to a longer response time
for another task.

The approach of McManis and Varaiya is further developed by Fersman,
Mokrushin, Petterson and Yi (Fersman et al. 2002, Fersman et al. 2003). Using
so-called task automata, modeling task arrivals, the authors propose an analysis
of the schedulability of the system as a reachability problem in a subtraction
automaton modeling the scheduler. In these paper, the authors have found a
way to avoid stopwatches and get around the undecidability problems. However,
in (Fersman et al. 2002) task execution times are given as intervals but tasks
are independent. In (Fersman et al. 2003, Fersman and Yi 2004), the authors
introduce shared resources and semaphores in their analysis but the execution
times of tasks are fixed and it is easy to show that, in this setting, reducing the
execution time of a task may decrease the overall timing performances for the
application. Finally, in (Fersman et al. 2006) the authors consider the problem
of fixed priority scheduling policy when the task execution times are given as
intervals but, as the problem is undecidable, they propose an over-approximation
technique.

Finally, an interesting approach, proposed by Altisen et al. (Altisen et al.
1999, Altisen et al. 2000, Altisen et al. 2002) uses the paradigm of controller
synthesis, modeling the scheduler as a controller of the system. The idea is
then to obtain, by construction, the schedulability of the system modeled using
a discrete time semantics (according to the authors, the methodology can be
adapted to continuous timed model modulo some technical problems related to
time density), by restricting the guards of controllable events. These restrictions
are obtained by adding control invariants modeling the schedulability constraints
and the scheduling policy. This method may however be hard to use in practice,
as the authors acknowledge that the search for control invariants may be difficult.

Time Petri nets and scheduling. A number of authors propose extensions
of time Petri nets to account for the suspension and resumption of actions.

(Okawa and Yoneda 1996) propose an approach with time Petri nets where
groups of transitions are defined together with rates (speeds) of execution. Tran-
sition groups correspond to transitions that model concurrent activities and that

can become simultaneously firable. In this case, each rate is then divided by the
sum of transition execution rates.

Roux and Déplanche (Roux and Déplanche 2002) propose an extension for
time Petri nets (called Scheduling-TPN) that allows to take into account the
way the real-time tasks of an application distributed over different processors are
scheduled. They propose the computation of an over-approximation of the state
space based on the classical state-class graph of (Berthomieu and Diaz 1991)
and DBM.

The same approach is developed in (Bucci et al. 2004, Bucci et al. 2003),
with preemptive time Petri nets (Preemptive-TPNs). In (Bucci et al. 2004), the
authors also propose an interesting method allowing the timed analysis of the
net: given an untimed transition sequence from the over-approximated state-class
graph, they retrieve the possible durations between the firings of the transitions
in the sequence, as the solutions of a linear programming problem. They can
thus verify if the sequence is actually possible in the net or if it was added by
the over-approximation.

These last two models are subclasses of inhibitor hyperarcs time Petri nets
(IHTPN) (Roux and Lime 2004), which, since they are more general, are not as
well-suited for modeling real-time systems. For these three models, reachability
is undecidable even when the net is bounded (i.e., there exists a constant k such
that for all reachable states, the number of tokens in any place is less than k)
(Berthomieu et al. 2007). Reachability and related results are then obtained by
computing the state-space if it is computable.

1.3 Issues of formal verification of real-time systems

State-space computation. With a discrete-time semantics, the state-space is
generally finite but the analysis is hindered by the well-known state explosion
problem, even with the use of acceleration techniques available in tools such as
Fast (Bardin et al. 2003).

For dense-time models, the state-space is generally infinite, because of the
real-valued clocks, so, one needs to group some states together, in order to obtain
a finite number of these groups, which is hopefully computable. These groups
of states are, classically, regions and zones for timed automata or state classes
for time Petri nets. If the model does not feature any stopwatch, then the states
contained in those groups may be described by linear inequations of a particular
type which may be encoded into a so-called Difference Bound Matrix (DBM)
(Dill 1989, Berthomieu and Menasche 1983). DBM allow fast manipulation and
generation (i.e. polynomial complexity). When the model has more than one
evolution rate for its continuous variables (e.g. when featuring stopwatches), in-
equations describing the group of states are more complex and can non longer be
described as a DBM. A general polyhedron representation is needed, which in-
volves a much more complex manipulation and generation cost (i.e. exponential
complexity). As a consequence, an idea to speed up the state-space compu-
tation is to expand the general polyhedra into DBM. This is clearly an over-
approximation.

Number of clocks. The number of clocks/variables is a critical concern with
the verification of formal models. Generating and handling polyhedra in the
general case are operations that have a complexity that is exponential in the
number of variables of the polyhedron. In the case of hybrid systems such as
SWA, these variables are the stopwatches. With the increase of the number of
stopwatches, the analysis quickly becomes intractable with a tool for linear hy-
brid automata such as HyTech (Henzinger et al. 1997). Algorithms have been
developed for timed automata, such as (Daws and Yovine 1996), to reduce the
number of clocks. To our knowledge, there are no such algorithm for hybrid au-
tomata. Moreover, these algorithms cannot be applied to products of automata,
which are (heavily) used to properly model real-time systems with SWA.

1.4 Our contribution

In this paper, we consider the Scheduling-TPN model for its ability to conve-
niently model concurrency and for the fact that the upper bound of countable
resources such as semaphores and queues do not need to be given a priori in a
Petri net-based model. Moreover, the adequacy of Scheduling-TPN to the mod-
eling of classical services provided by real-time executives (shared resource access
protocol, task activation, synchronization and messaging) and the modeling of
classical components of distributed embedded systems such as CAN buses have
been exposed in (Lime and Roux 2003). Similarly to formalisms such as ACSR
(Brémond-Grégoire et al. 1993), we can then model and analyze arbitrarily com-
plex task behaviors.

For Scheduling-TPN, we tackle the problem of the state-space explosion by
a two-stage analysis. First, we pre-compute the state space of the Scheduling-
TPN as a linear hybrid automaton. This first step is performed by a fast DBM-
based algorithm. Although this algorithm is over-approximating, the produced
linear hybrid automaton is proved to be time-bisimilar to the initial Scheduling-
TPN i.e. the additional locations generated by the approximation are actually
not reachable. As a consequence, the cost of the translation is fairly low. The
second step consists of an exact analysis of that LHA with the HyTech model-
checker. For this second step to be efficient, the number of variables (clocks)
must be kept as low as possible. To this effect, the translation algorithm offers a
number of reduction mechanisms and thus produces a LHA that has, in general,
a fairly lower number of variables than what is required for a direct modeling as
a product of linear hybrid automata.

This paper extends results presented in both (Lime and Roux 2004) and
(Lime and Roux 2006b). These previous papers focused on the fixed priority
scheduling policy. Here we have clearly separated the usual mechanics of time
Petri nets and the scheduling information and we have extended both the model
and the associated state-space computation algorithms to take Earliest Deadline
First (EDF) and Round-Robin scheduling policies into account.

In order to get a proper view of the application area of our method, let us
consider a real-time system with a preemptive scheduling policy to analyze. Let
us restrict ourselves to the schedulability verification problem:

– for independent periodic tasks, one should definitely go for the low cost exact
analysis of Liu and Layland (Liu and Layland 1973) for EDF and Tindell
(Tindell 1994) for fixed priority and subsequent works along these lines ;

– in the presence of interactions between tasks, it becomes interesting to use
formal methods: if the execution times of tasks are exactly known then the
method by Fersman et al. (Fersman et al. 2006) is good choice ;

– for interacting tasks with variable execution times, the modeling requires
stopwatches in a dense-time setting and the verification may be performed
using hybrid models such as LHA (Alur et al. 1995) or Petri nets with stop-
watches for model-checking (Bucci et al. 2004, Roux and Lime 2004). The
method described in this paper follows this line of works and proposes a
formalism that is conveniently taking into account real-time systems fea-
tures, including major scheduling policies like EDF or fixed priority, and
translating it into a model optimized in terms of analysis efficiency.

Outline of the paper

The rest of the paper is organized as follows: section 2 presents the Scheduling-
TPN model and its instances for Fixed Priority, Earliest Deadline First and
Round-Robin schedulers. Section 3 adapts the classical state-class graph method
of Berthomieu et al. to that model. Section 4 describes the translation into a
linear hybrid automaton and proves the correctness of the translation by proving
a time-bisimulation relation. Finally, we apply our results on an example in
section 5.

2 A formal model for real-time systems

Computer control systems are essentially discrete. Therefore, any such system
can be modeled by a discrete-event system with a discrete time assumption. For
instance, for one processor (CPU), the discrete time step can be chosen as the
cycle time of the CPU or the tick time of the scheduler. This is however highly
inefficient and actually unusable because the number of states to analyze is much
too large: this is an instance of the so-called “state-space explosion problem”.

Consequently, we choose a higher level model in which:

– the cycle-wise execution of a task is modeled by the continuous evolution of
a variable representing the time during which the task has been executed;

– the preemption of a task is modeled by stopping the evolution of that variable
(making its derivative equal to 0);

– the cyclic preemptions induced by the round-robin scheduling policy of n

tasks sharing the same processor are modeled by an evolution of the corre-
sponding variables with the derivatives 1

n
.

For this purpose, we introduce a powerful new model for real-time systems.
It consists of two layers: the formal layer and the scheduling layer.

The formal layer is based on time Petri nets and allows the modeling of task
structure, synchronizations, communications and timings. The scheduling layer
gives the resource requirements of tasks and scheduling policies associated to
them, as well as all the information needed by the scheduler to operate (priority,
deadlines, . . .).

Given a state of the system, the scheduling layer output is the resource
allocation, which is then used by the formal layer to update the state of the
system. The new state is then sent back to the scheduling layer.

Thanks to the above modeling choices, time elapsing can be abstracted within
the formal layer and the new state that is passed back to the scheduling layer
corresponds to what is obtained after the next discrete event (firing of a tran-
sition). Therefore, the allocation of resources is constant between two discrete
events.

2.1 The Formal Layer

Notations. We denote AX the set of mappings from X to A. If X is finite
and |X | = n, an element of AX is also a vector in An. The usual operators
+,−, < and = are used on vectors of An with A = N, Q, R and are the point-
wise extensions of their counterparts in A. For a valuation ν ∈ AX , d ∈ A, ν + d

denotes the vector such that (ν + d)(x) = ν(x) + d and for X ′ ⊆ X , ν[X ′ 7→ 0]
denotes the valuation ν′ with ν′(x) = 0 for x ∈ X ′ and ν′(x) = ν(x) otherwise.

Syntax. The following definition formally defines Scheduling-TPNs.

Definition 1 (Scheduling-TPN). A scheduling time Petri net (Scheduling-
TPN) is a 8-tuple T = (P, T, •(.), (.)

•
, α, β, M0, NewFlow), where

– P = {p1, p2, . . . , pm} is a finite non-empty set of places,

– T = {t1, t2, . . . , tn} is a finite non-empty set of transitions (T ∩ P = ∅),

– •(.) ∈ (NP)T is the backward incidence function,

– (.)
• ∈ (NP)T is the forward incidence function,

– M0 ∈ NP is the initial marking of the net,

– α ∈ (Q+)T and β ∈ (Q+∪{∞})T are functions giving respectively the earliest
and latest firing times of transitions (α ≤ β),

– NewFlow ∈ R+T N
P×R

T

is the activity function.

The function NewFlow is the distinctive trait between TPNs and Scheduling-
TPNs. It models the allocation of resources to transitions by the scheduler by
giving to each transition the rate at which time will elapse for it. For instance,
the rate of progress of a transition modeling a preempted task will be 0, while the
rate of a task running alone on its processor will be 1. An in-depth explanation
will be given in section 2.3.

Semantics. A marking is a function associating to each place of the net the
number of tokens it contains.

As usual, a transition t is said to be enabled by the marking M if it has
“enough” tokens in its input places: M ≥ •t. We denote by enabled(()M) the set
of transitions enabled by the marking M .

A state of the Scheduling-TPN is defined as triple (M, ν, Flow), where M is
the marking of the net, ν the function that assigns to each transition the time
during which it has been enabled and Flow a function giving for each transition
t the speed at which ν(t) increases.

In this paper, in order to decide which transition clock should be reset when
firing a transition, we consider the intermediate semantics for TPNs, based
on (Berthomieu and Diaz 1991, Aura and Lilius 2000), which is the most com-
mon one. The key point in the semantics is to define when a transition is newly
enabled and its clock must be reset.

Let ↑ enabled(t′, M, t) ∈ B be true if t′ is newly enabled by the firing of
transition t from marking M , and false otherwise. The firing of t leads to a new
marking M ′ = M − •t + t•. The fact that a transition t′ is newly enabled on
the firing of a transition t 6= t′ is determined w.r.t. the intermediate marking
M − •t. When a transition t is fired it is newly enabled regardless of what the
intermediate marking is. Formally this gives:

↑enabled(t′, M, t) = (t′ ∈ enabled(M − •t + t•)∧
(

t′ 6∈ enabled(M − •t)∨ (t = t′)
)

Definition 2 (Semantics of a Scheduling-TPN). The semantics of a Scheduling-
TPN T is defined as non deterministic1 timed transition system (TTS) ST =
(Q, Q0,→) such that:

– Q = NP × (R+)T × (Q+)T ;
– Q0 = {(M0, 0, Flow0), Flow0 ∈ NewFlow(M0, 0)} ;
– →∈ Q×(T∪R)×Q is the transition relation including continuous transitions

and discrete transitions:

• the continuous transition relation is defined ∀d ∈ R+ by:

(M, ν, Flow)
d
→ (M, ν′, Flow) iff

{

∀ti ∈ enabled(M), ν′(ti) = ν(ti) + Flow(ti) ∗ d,

∀tk ∈ T, M ≥ •tk ⇒ ν′(tk) ≤ β(tk).

• the discrete transition relation is defined ∀ti ∈ T by:

(M, ν, Flow)
ti→ (M ′, ν′, Flow

′) iff

ti ∈ enabled(M) ∧ Flow(ti) 6= 0,

α(ti) ≤ ν(ti) ≤ β(ti),
M ′ = M − •ti + ti

•,

∀tk, ν′(tk) =

{

0 if ↑enabled(tk, M, ti),
ν(tk) otherwise.

Flow
′ ∈ NewFlow(M ′, ν′)

1 The non determinism arises no theoretical problem. For a discussion on its practical
implications, see 2.3.

A transition t is said to be active for a given state (M, ν, Flow) of the net ρ

if t is enabled and Flow(t) 6= 0.
In previous papers, the activity of transitions was defined using a function

named Act giving a subset of the marking of the net (Roux and Déplanche 2002,
Lime and Roux 2003, Lime and Roux 2004, Magnin et al. 2005). The transitions
enabled by this subset were declared active. Now, we need a more general defini-
tion to take into account the Round-Robin and Earliest Deadline First scheduling
policies. We can fall back to the former setting with the following definition: for
a state (M, ν, Flow), ∀t ∈ enabled(M), Flow(t) = 1 if t ∈ enabled(Act(M)) and
Flow(t) = 0 otherwise.

Note the following important property of Scheduling-TPNs:

Property 1. From a state (M, ν, Flow), Flow does not change by letting time
elapse.

The function NewFlow(M ′, ν′) is given by the scheduling layer. It is computed
after the firing of a discrete transition and gives the set of possible activation
choices of the scheduler wrt. the scheduling policy.

2.2 The Scheduling Layer

On top of the formal layer, we define the specifics of our application with respect
to the scheduling problem, in terms of tasks, processors,etc.

Let Procs be the set of processors. We denote by Sched : Procs 7→ {EDF, FP}
the function that maps a processor to a scheduling policy, which can be either
“Ealiest Deadline First” (EDF) or “Fixed Priority” (FP).

Let Tasks be the set of tasks of the system. We assume that there is no task
migration and we denote by Π : Tasks 7→ Procs the function that maps a task
to its processor.

For tasks τ such that Sched(Π(τ)) = FP , the partial function ω : Tasks 7→ N

gives the priority of the task on the processor. Similarly, for tasks τ such that
Sched(Π(τ)) = EDF , the partial function δ : Tasks 7→ N gives the deadline of
the task relative to its activation time.

Now we map each place of the net to a task with the function γ : P 7→
Tasks ∪ {φ}. φ is a special element which denotes that the place is not mapped
to any real task, for instance because it models a service of the operating system.
φ can be seen as a special task that is always running.

We assume that for each transition, there is at most one place p such that
p ∈ •t and γ(p) 6= φ. If ∀p ∈ •t, γ(p) = φ, then t is not bound to any real task and
we say that it is part of the special task φ (denoted by γ(t) = φ). Otherwise,
for each transition t, we say that t is part of the task τ , and we denote it t ∈ τ

if one of its input places is mapped to τ : t ∈ τ ⇔ ∃p ∈ •t, s.t. γ(p) = τ . For
convenience, and thanks to the hypothesis above, we denote by γ(t) the task s.t.
t ∈ τ .

Each task τ is thus modeled by a subnet of the Scheduling-TPN composed
of places mapped to τ by γ and of transitions which are part of τ .

We assume that at most one instance of each task is active at a given instant,
which is expressed by the restriction that at most one place mapped to τ by γ

is marked at a given instant.

Let B(τ) be the set of transitions which start the task τ and similarly, let
E(τ) be the set of transitions which terminate τ . These two sets are user-defined
as part of the modeling phase.

Example 1 Figure 1 gives an example of the above modeling. It uses design
patterns presented in (Lime and Roux 2003). In particular, p1 and t1 model the
periodic activation of task τ1. There is only one processor scheduled with EDF,
so no priority function ω is defined, only the deadlines of tasks δ. Places p2 and
p3 are part of task τ1 and p4 of task τ2. So t2 and t3 are part of τ1 and t4 is part
of τ2. In addition, t1 begins τ1 and t3 ends it; t2 begins τ2 and t4 ends it.

p1 γ = φ

p2 γ = τ1

p3 γ = τ1

p4 γ = τ2

t1 [10, 10]

t2 [1, 3]

t3 [3, 3]

t4 [2, 2]

•

•

δ(τ1) = 10
B(τ1) = {t1}
E(τ1) = {t3}

δ(τ2) = 8
B(τ2) = {t2}
E(τ2) = {t4}

Π(τ1) = Π(τ2)
Sched(Π(τ1)) = EDF

Fig. 1. A Scheduling-TPN

Example 2 The net in Figure 2 models two periodic tasks on the same processor
with a fixed priority scheduling policy.

p1 γ = φ

p2 γ = τ1

p3 γ = φ

p4 γ = τ2

t1 [4, 4]

t2 [2, 2]

t3 [8, 8]

t4 [3, 3]

• •

• •

(τ1) (τ2)

Π(τ1) = Π(τ2)
ω(τ1) = ω(τ2)
Sched(Π(τ1)) = FP

Fig. 2. A system with Fixed Priority scheduling modeled as a Scheduling-TPN.

2.3 Computing the activity function

The interface between the formal layer and the scheduling layer is the activity
function NewFlow. Its computation (performed after the firing of each discrete
transition) models the scheduling policy.

It can model many scheduling policies (including non-deterministic ones),
the main constraint being that a rescheduling cannot happen by simply letting
time elapse: a discrete event must occur, which is usually the case in practice.

In our setting, exactly one scheduling policy is bound to a given processor.
We could model systems with multiple scheduling policies for a given processor
by wrapping them up into one higher level policy that decides which policy to
use at a given instant.

Given a state of the system2, NewFlow gives the set of possible activation
choices made by the scheduler. Each of these choices is a function that maps
a rational number to each enabled transition, representing the speed at which
the value of the clock associated to the transition increases. If the scheduler is
deterministic, then this set of possible choices is reduced to a unique element.

In the following, we investigate the case of a fixed priority policy, then the
case of an Earliest Deadline First policy. In both cases, the scheduler is deter-
ministic so we show how the unique result Flow of the computation of NewFlow

is obtained.

Let s = (M, v, Flow) be a state of (the semantics) of the net such that a
transition has just been fired (meaning no time has elapsed since). Let t be an
enabled transition. If γ(t) = φ then Flow(t) = 1. This models services of the
executive. For the following subsections we consider that γ(t) 6= φ.

2 For the sake of simplicity, we restrict NewFlow to states but it could easily be ex-
tended to executions (runs), so that the full history of the system can be used by
the scheduler.

Fixed Priority. Here we consider the case when Sched(Π(γ(t))) = FP . In this
case, if all task priorities on a given processor are different, the situation is quite
clear: let s = (M, v, Flow) be a state of (the semantics) of the net. If γ(t) has
the highest priority ω(γ(t)) on its processor then Flow(t) = 1 else Flow(t) = 0.
Further steps should be taken if, at some point, some tasks have the same priority
on a given processor and this priority happens to be the highest. Before we deal
with this problem, let us explain the case of EDF.

Earliest Deadline First. We now consider the case when Sched(Π(γ(t))) =
EDF . Let D : Tasks × NP × RT 7→ R+ be the function that gives for each
task the time remaining until it reaches its deadline. As a shorthand, for a state
s = (M, ν, Flow) and a task τ , we note D(τ, s) = D(τ, M, ν). Then Flow is simply
given for a state (M, ν, Flow) by:

Flow(t) =

{

1 if D(γ(t), M, ν) = minτ∈Tasks s.t. Π(τ)=Π(γ(t)){D(τ, M, ν)}
0 otherwise

Now, the problem is reduced to the computation of the function D. Let τ be
a task in Tasks. Suppose that each time a transition tb which begins τ is fired, we
dynamically add a clock xτ to the model, whose initial value is 0. Subsequently,
the first time that a transition te which ends τ is fired, the clock is removed.

Since a clock is implicitly associated to each enabled transition in time Petri
nets, xτ is actually implemented as an extra transition in the net: for the task
τ , let us add an extra transition Dτ and an extra place Pτ such that:

– Pτ is the only input place of Dτ ;
– Dτ is set to fire at the same time as the expiration of the deadline of τ :

α(Dτ) = β(Dτ) = δ(τ);
– Dτ is always active, and progressing at rate 1: γ(Pτ) = φ;
– Dτ is enabled when the task τ is started: Pτ is an output place for all the

transitions in B(τ) and M0(Pτ) = 0;
– Dτ is disabled when the task τ ends: Pτ is an input place for all the transi-

tions in E(τ);
– Dτ cannot be fired if some transition in E(τ) is firable.

Now, for each state (M, ν, Flow) between the firings of tb and te we have:

D(τ, M, ν) = δ(τ) − ν(Dτ) (1)

As for fixed priority further steps should be taken if, at some point, several
tasks have the same deadline on a given processor. We deal with this in the next
paragraph.

Dealing with equal priorities. In the case where several processes have the
same priority at some point (be it fixed or dynamic) and if this priority makes
them eligible for execution, the scheduler has at least three options:

– a deterministic choice with a second criterion, e.g. a FIFO choice on the list
of processes (this may require to extend NewFlow from states to runs which
causes no theoretical problem) ;

– a random choice between the processes with the same priority;
– time sharing between the processes with the same priority (round-robin).

The deterministic case is easily handled by an integration of the second choice
criterion in the computation of the Flow function.

Since our model does not support probabilistic firing of transitions, the case
of a random choice will be treated as a non-deterministic choice. In this case,
the scheduler is not deterministic anymore: all possible outcomes are given by
the function NewFlow as the set of all possible values of the function Flow, each
corresponding to one of the possible choice of the scheduler.

Finally, in the Round-Robin scheduling policy, each task is given a small
processor time slice (quantum), one after the other and repeatedly, leading to
a pseudo-parallelism. This leads to a significant number of preemptions, which
we do not want to explicitly model since it would cause the number of states
to analyze to drastically increase. Hence, we model this policy by using a fluid
approach illustrated by the chronogram in Figure 3. It represents the concurrent
execution of two tasks τ1 and τ2 on the same processor, with the same priority.
The task τ1 is periodic with a period of 4 time units. Its execution time is 2 time
units. The task τ2 is periodic with period 8 and its execution time is 3. Finally
the time quantum is d = 0.5.

τ1

0 2 4 6 8

τ2

0 2 4 6 8

Fig. 3. Chronogram of the execution of two tasks scheduled on the same processor
using Round-Robin

By letting d tend towards 0, we can model the scheduling policy by assuming
that the processor is perfectly shared between all scheduled tasks. If n tasks
are scheduled using Round-Robin, we consider that they are executed in full

parallelism at speed 1
n
. This is illustrated in Figure 4. The smaller the time

quantum in comparison to the execution times of tasks, the closer to reality our
model is. For d > 0, this is however neither an over-approximation nor an under-
approximation of the real behavior: each time a Roud-Robin execution ends, the
model approximates the real execution time of the stopped tasks by at most d

time units.

Henceforward, we consider the “fluid” approach to Round-Robin.

τ2

0 2 4 6 8

τ1

0 2 4 6 8

0

1

2

3

0

1

2

3

Execution time

Execution time

Time

Time

Fig. 4. Execution of the two tasks in Figure 3 with respect to time: real (plain) and
model (dashed)

Hence, the value of the function Flow on t is given by the following: if γ(t) has
the greatest priority on its processor, then Flow(t) = 1

n
, where n is the number of

tasks sharing the same priority as γ(t) on the processor Π(γ(t)) and Flow(t) = 0
otherwise.

End of tasks. Note that the preemption of a task represented by a transition t

can occur even when the transition t has met its upper bound. Indeed, a transi-
tion must fire when its valuation reaches its upper bound but firing transitions
takes no time so any enabled transition, including t, may fire.

This is consistent with the real behavior of the scheduler for which a task
may be preempted when it only has a call to some end of task() primitive left
to do.

3 State-Class Graph

In this section, we show how to compute a first abstraction to analyze our models.
This is based on the state-class graph method by Berthomieu, Diaz and Menasche
(Berthomieu and Menasche 1983, Berthomieu and Diaz 1991) as well as on our
first extension of that method for stopwatch Petri net models presented in (Lime
and Roux 2003, Roux and Lime 2004).

Even if the net is bounded and as for all timed models, the explicit enumer-
ation of all the reachable states of Scheduling-TPNs is forbidden by the use of
a dense representation of time. Valuations may indeed take an infinite number
of different values, leading to an infinity of states in the semantics (so-called
concrete states).

A solution to this problem is to consider symbolic states which gather con-
crete states of the nets bound by some equivalence relation. By a careful choice
of the equivalence relation, we can obtain a finite number of equivalence classes
and guarantee that the graph of transitions between reachable classes preserves
the properties of interest of the graph of transitions between reachable concrete
states. Among these abstraction techniques are found: the region graph (Alur
and Dill 1994), the zone graph (Larsen et al. 1995) and the state-class graph.

The state-class graph is historically the first one and, in opposition to the
region and zone graphs proposed first for timed automata (Alur and Dill 1994)
and then adapted to time Petri nets (Gardey et al. 2006), it was designed from
the start to analyze time Petri nets (and its applicability to timed automata
is an open problem). The region graph is an inefficient abstraction and mostly
used as a theoretical tool. The zone graph however could also be used and it is
actually implemented in our tool for the verification of TPN Romeo. The choice
of the state-class graph is here mainly made for the sake of simplicity since it
avoids to deal with the so-called k-extrapolations which ensure the finiteness of
the zone graph.

In (Lime and Roux 2003, Roux and Lime 2004), we have extended the state-
class graph method to take stopwatches into account. In the following, we show
how to deal with the specific theoretical problems coming from our modeling
of Round-Robin (multi-rate continuous variables) and Earliest Deadline First
(unstability of symbolic states with respect to the activity function) policies.

3.1 State-class

Informally speaking, a state-class gathers all concrete states reached by a par-
ticular sequence of transitions (regardless of the timings of their firings). As a
consequence, all concrete states in a state-class share the same marking.

Definition 3 (State-Class). A state class of a time Petri net N is a pair
(M, D) where M is a marking of N and D is a convex polyhedron called the
firing domain and described by:

AΘ ≤ B

If n is the number of transitions enabled by M , there exists m ∈ N s.t. A is a
m × n matrix, B is a vector of dimension m, and Θ is the variable vector of
dimension n.

In the class C = (M, AΘ ≤ B), the Θ vector gives, for each enabled transi-
tion, the time remaining until it fires. This time is relative to the date at which
the class C was reached. Given a polyhedron D on n variables, we will denote
by JDK the set of real vectors which are solutions of D and JDKθ the projection
of this set on the variable θ.

When the function Flow only depends on the current marking, as in a “Fixed
Priority for all processors” setting, its value, for each enabled transition, is the
same for all the concrete states of a given class C. Thus, we denote by Flow(C, t)
this common value on an enabled transition t.

This is not the case anymore with an EDF scheduling policy, where Flow also
depends on the clock valuation. Consider the Scheduling-TPN in Fig. 1. If we
fire t2 at date 1 then we reach a state s, with D(τ1, s) = 9 and D(τ2, s) = 8.
So, τ2 is selected by the scheduler. Now, if we fire t2 at time 3, then the reached
state s′ is such that D(τ1, s

′) = 7 and D(τ2, s
′) = 8. This time, τ1 is the task

selected by the scheduler.
However, as we said above, all the states obtained by firing t2 belong to the

same state class C. So, given a transition t and a state s in C, Flow(t) is not
unique. As a consequence, we need to perform some extra partitioning of the
state-classes, so that the uniqueness of Flow on the partitions is enforced.

A correct partition with respect to Flow is obtained by adding extra variables
modeling the deadlines and adding extra inequalities in the domain which enforce
a total order on the firing times of these deadlines.

In subsection 2.3, for each task τ , we have added a transition Dτ to model
the time elapsed since the start of the task. With an abuse of notations, the
corresponding variable in the domains of state classes will also be called Dτ .
Since the bounds of the time interval of Dτ are equal to δ(τ), this variable
exactly represents the time remaining until the expiration of the deadline of
task τ .

So, we can add extra inequalities in the firing domain between these variables.
Given a class C and two tasks τ and τ ′ such that the possible dates for their
deadlines are overlapping, we can partition C by duplicating it as a new class

C′ and adding Dτ ≤ D′
τ to the domain of C and Dτ ≥ D′

τ to the domain of C′.
If we assume that no other deadlines were overlapping, then, on both partition
and given a transition, Flow has the same value for all states.

3.2 Initial state class and successors

The initial state class of a Scheduling-TPN N , is C0 = (M0, D0), M0 being the
initial marking of N and D0 = {α(ti) ≤ θi ≤ β(ti)|ti ∈ enabled(M0)}.

For each concrete state (M, ν, Flow) in the initial class, and for each tran-
sition t enabled by M , Flow(t) is unique since all states in C0 are obtained by
letting time elapsed from (M0, 0, Flow0), which cannot change the relative order
of deadlines. We will show that the proposed successor computation preserves
this property and as a consequence, we denote by Flow(C, t) the common value
of Flow(t) for each concrete state s in class C.

Now we can define when a transition can be fired from a given state class:

Definition 4 (Firable transition from a state-class). Let C = (M, D) be a
state class of a Scheduling-TPN. A transition ti is said to be firable from C iff:

– ti is active,
– there exists a solution (θ∗1 , . . . , θ

∗
n) of D s.t. ∀j ∈ [1..n]−{i}, s.t. tj is active,

θ∗

i

Flow(C,ti)
≤

θ∗

j

Flow(C,tj)
,

– if there exists τ s.t. ti = Dτ , then no transition in E(τ) is firable from C.

Given the initial class and the firability rule above, we can compute a state-
class graph by applying the following successor computation: let C = (M, D) be
a state class and tf a firable transition from C. Then, the successor C′ = (M ′, D′)
of C by tf is given by the following rules:

– the new marking is computed as usual by M ′ = M − •tf + tf
•;

– the new firing domain, D′, also denoted by Next(D, tf) is computed by the
following algorithm:

1. ∀j 6= f , s.t. tj is active, addition of the constraints
θf

Flow(C,tf) ≤
θj

Flow(C,tj)
,

2. variable substitutions: for all active transition tj(j 6= f) in C, θj =
Flow(C,tj)
Flow(C,tf) ∗ θf + θ′j ,

3. elimination of variables corresponding to transitions disabled by the fir-
ing of tf (thus including tf),

4. addition of inequalities relative to transitions newly enabled by the firing
of tf :

∀tk ∈↑ enabled(M, tf), α(tk) ≤ θ′k ≤ β(tk)

5. for each task τ , s.t. Sched(Π(τ)) = EDF and that is beginning, i.e. s.t. tf ∈
B(τ), if ∃τ ′ s.t. δ(τ) ∈ JD′KDτ′

, then we duplicate the class. One of the
instances receives the additional inequality Dτ ≤ Dτ ′ and the other
Dτ ≥ Dτ ′ .

The constraints added in step 1 mean that tf has been selected for firing, so it
will fire before any other active transition. Adding these constraints never leads
to an empty firing domain since tf is firable and therefore meets the conditions
in definition 4.

The variable substitutions in step 2 model the time elapsing. The new origin
of time for the successor is chosen as the firing date of tf . So all active transitions
progress according to the delay after which tf is fired (since the firing of the
transition that lead to the class C). Classically, in TPNs, the coefficient before θf

is 1 since all clocks progress at rate 1(Berthomieu and Diaz 1991). In Scheduling-
TPNs with a fixed priority policy but without Round-Robin, we extended it to
0 (preempted tasks) or 1 (active tasks) (Roux and Déplanche 2002, Lime and
Roux 2003). Now, the “fluid” approach to the modelling of Round-Robin that
we chose leads to more complex rates, given by the Flow function.

Elimination of variables in step 3 may be done using the Fourier-Motzkin
method (Dantzig 1963). According to the semantics, we know that only variables
associated to enabled transitions are relevant to describe the state of the net.
So variables relative to disabled transitions do not need to be explicitly kept
and are eliminated. Note that since we added deadline transitions to the net,
the variables relative to the deadlines of tasks τ ending with the firing of tf
(tf ∈ E(τ)) are eliminated at this step.

Similarly, when a task τ begins (tf ∈ B(τ)), its deadline transition becomes
(newly) enabled. So the δ(τ) ≤ Dτ ≤ δ(τ) inequalities are added to the firing
domain at step 4, setting up a timer until the expiration of the deadline.

The last step realizes the partitioning when the possible dates of the deadline
expiration of different tasks overlap. Note that when partitioning a class between
two overlapping deadlines, the case where Dτ = Dτ ′ belongs to both partitions.
This reflects a non-deterministic choice made by the scheduler. Then both cases
are considered in the analysis. If the choice is deterministic, then one of the
added inequation should be strict (which causes no problem for the theory of
time Petri nets nor of convex polyhedra) and if Round-Robin is chosen, then the
class should be split in three: Dτ < D′

τ , Dτ > D′
τ and Dτ = D′

τ .

Theorem 1 (Class uniqueness of Flow). For each state class C = (M, D)
and for each transition t enabled by M , there exists F ∈ Q, s.t. for all states
s = (M, ν, Flow) ∈ C, Flow(t) = F . We note Flow(C, t) = F .

Proof. For the Fixed Priority policy, Flow only depends on the marking. Since all
states in a class share the same marking, they also have the same Flow function.

For the Earliest Deadline First policy, Flow also depends on the relative order
of (the expiration of) deadlines. The added constraints on variables Dτ ensure
that all states in a class have the same deadline order, which entails that they
have the same Flow function.

3.3 Examples

Round-Robin. We now compute the state-class graph of Example 2, given in
Figure 2. The result is given in Figure 5.

The initial class is:

C0 =

{p1, p2, p3, p4}
4 ≤ θ1 ≤ 4
8 ≤ θ3 ≤ 8
2 ≤ θ2 ≤ 2
3 ≤ θ4 ≤ 3

t2 and t4 share the same processor with the same priority and thus are both
active. The processor is ideally shared between them: Flow(t2) = Flow(t4) = 1

2 .
t1 and t2 are both firable. We fire t2. The variable substitutions are done as
follows:

C′
1 =

{p1, p3, p4}
4 ≤ θ′1 + 2θ2 ≤ 4
8 ≤ θ′3 + 2θ2 ≤ 8
2 ≤ θ2 ≤ 2
3 ≤ θ′4 + 1

22θ2 ≤ 3

And the class finally obtained is:

C1 =

{p1, p3, p4}
0 ≤ θ1 ≤ 0
4 ≤ θ3 ≤ 4
1 ≤ θ4 ≤ 1

t1 is then fired in 0 time unit, which gives the following class:

C2 =

{p1, p2, p3, p4}
4 ≤ θ1 ≤ 4
4 ≤ θ3 ≤ 4
2 ≤ θ2 ≤ 2
1 ≤ θ4 ≤ 1

Firing first t1 then t2 leads to this class. Now, only t4 is firable. Again, t2
and t4 are executing concurrently on the same processor with the same priority.
So, we have:

C′
3 =

{p1, p2, p3}
4 ≤ θ′1 + 2θ4 ≤ 4
4 ≤ θ′3 + 2θ4 ≤ 4
2 ≤ θ′2 + 2

2θ4 ≤ 2
1 ≤ θ4 ≤ 1

C3 =

{p1, p2, p3}
2 ≤ θ1 ≤ 2
2 ≤ θ3 ≤ 2
1 ≤ θ2 ≤ 1

Now, t2 is the only firable transition and it has the processor for itself. The
class obtained after firing t2 is:

C4 =

{p1, p3}
1 ≤ θ1 ≤ 1
1 ≤ θ3 ≤ 1

Finally firing t1 and t3 in any order straightforwardly leads back to the initial
class. Figure 5 gives the resulting graph.

C0

C1

C2 C3 C4

C5

C6

C7

t2 t1

t4 t2

t1

t3

t1 t2

t3

t1

Fig. 5. State class graph of the net in Figure 2

Earliest Deadline First. We now compute the state-class graph of the net
presented in Figure 1. In this example, we do not explicitly add the deadline
transitions but the variables are added in the domain exactly as if they were
present.

The initial class is:

C0 =

{p1, p2}
10 ≤ θ1 ≤ 10
1 ≤ θ2 ≤ 3
10 ≤ Dτ1

≤ 10

We have Flow(t1) = Flow(t2) = 1. The only firable transition is t2. Its firing
gives:

C1 =

{p1, p3, p4}
7 ≤ θ1 ≤ 9
3 ≤ θ3 ≤ 3
2 ≤ θ4 ≤ 2
7 ≤ Dτ1

≤ 9
8 ≤ Dτ2

≤ 8
0 ≤ θ1 −Dτ1

≤ 0

t2 is a transition that starts τ2 so we add the inequalities δ(τ2) ≤ Dτ2
≤ δ(τ2).

Furthermore δ(τ2) ∈ JD1KDτ1
so we partition the class C1 into C′

1 and C′′
1 :

C′
1 =

{p1, p3, p4}
7 ≤ θ1 ≤ 9
3 ≤ θ3 ≤ 3
2 ≤ θ4 ≤ 2
7 ≤ Dτ1

≤ 9
8 ≤ Dτ2

≤ 8
0 ≤ θ1 −Dτ1

≤ 0
Dτ1
≤ Dτ2

C′′
1 =

{p1, p3, p4}
7 ≤ θ1 ≤ 9
3 ≤ θ3 ≤ 3
2 ≤ θ4 ≤ 2
7 ≤ Dτ1

≤ 9
8 ≤ Dτ2

≤ 8
0 ≤ θ1 −Dτ1

≤ 0
Dτ2
≤ Dτ1

In the class C′
1, we have Flow(t3) = 1 and Flow(t4) = 0. Only t3 is firable. So

we fire t3 and obtain:

C2 =

{p1, p4}
4 ≤ θ1 ≤ 6
2 ≤ θ4 ≤ 2
5 ≤ Dτ2

≤ 5

t3 ends τ1, so its firing allows us to remove the inequalities relative to Dτ1
.

In C2, Flow(t4) = 1 and t4 is the only firable transition. The successive firings
of t4 and t1 straightworfardly lead back to C0.

In the class C′′
1 , we have Flow(t3) = 0 and Flow(t4) = 1. Only t4 is firable.

So, we fire t4, which gives:

C3 =

{p1, p3}
5 ≤ θ1 ≤ 7
3 ≤ θ3 ≤ 3
5 ≤ Dτ1

≤ 7
0 ≤ θ1 −Dτ1

≤ 0

As before, t4 ends τ2 so with its firing, we remove Dτ2
from the firing domain

of C3. Then the sequence t3, t1 leads back to the initial class.

Finally, we obtain the (non-deterministic) graph in Figure 6.

C0

C′

1 C′′

1

C2 C3

C4

t2 (θ2 ≤ 2) t2 (θ2 ≥ 2)

t4 t3

t3

t4

t1

Fig. 6. State class graph of the net in Figure 1.

4 State Class Hybrid Automaton

In this section, we present a method for computing the state space of a Schedul-

ing-TPN as a linear hybrid automaton (LHA)(Alur et al. 1995). We show the
soundness of the computation by proving that this LHA is time-bisimilar to the
initial Scheduling-TPN. We then show how to obtain, with a much faster DBM-
based over-approximating method, a LHA which is also time-bisimilar to the
Scheduling-TPN. But first, let us recall the definition of linear hybrid automata.

4.1 Linear hybrid automata

A hybrid automaton is basically a finite automaton equipped with continuous
variables whose evolution is dictated by the current location.

We actually consider a restricted form of linear hybrid automata consisting of
timed automata (Alur and Dill 1994) augmented with derivatives of continuous
variables given as integer constants in each location.

Definition 5 (Linear Hybrid Automaton). A linear hybrid automaton is a
7-tuple (L, l0, X, A, E, Inv, Dif) where

– L is a finite set of locations,

– l0 is the initial location,

– X is a finite set of real-valued variables,

– A is a finite set of actions,

– E ⊂ L×C(X)×A×2X×XX×L is a finite set of edges. If e = (l, δ, α, R, ρ, l′) ∈
E, e is the edge between locations l and l′, with the guard δ, the action α,
the set of variables to reset R and the clock assignment function ρ.

– Inv ∈ C(X)L maps an invariant to each location,

– Dif ∈ (NX)L maps an activity to each location, Ẋ being the set of deriva-
tives of the variables w.r.t. time. Ẋ = (Dif(l, x))x∈X.

For short, given a location l, a continuous variable x and n ∈ N, we will
denote Dif(l, x) = n by ẋ = n when the considered location is not ambiguous.

Definition 6 (Semantics of a LHA). The semantics of a LHA H is defined
as a TTS SH = (Q, Q0,→) where Q = L × (R+)X , Q0 = (l0, 0) is the initial
state and → is defined, for a ∈ A and t ∈ R+, by:

– discrete transitions: (l, ν)
a
→ (l′, ν′) iff ∃(l, δ, a, R, ρ, l′) ∈ E such that

δ(ν) = true,

ν′ = ν[R← 0][ρ],
Inv(l′)(ν′) = true

– continuous transitions: (l, ν)
t
→ (l, ν′) iff

{

ν′ = ν + Ẋ ∗ t,

∀t′ ∈ [0, t], Inv(l)(ν + Ẋ ∗ t′) = true

4.2 State class hybrid automaton

Following the idea of (Lime and Roux 2006a) for classical time Petri nets, we ex-
tend the notion of state classes with information about the continuous variables
that are required to describe the class. Then, we compute the reachability graph
of these extended state classes with an adequate convergence criterion. Finally,
we syntactically compute the hybrid automaton from the extended state-class
graph.

First, let us define extended state-classes:

Definition 7 (Extended state-class). An extended state class is a 4-tuple
(M, D, χ, trans), where M is a marking, D a firing domain, χ a set of continuous
variables and trans ∈ (2T)χ a mapping of variables to sets of transitions.

The variables in χ measure the cumulative time during which the transitions
associated to by trans have been active since they have been enabled.

Given an extended state class C = (M, D, χ, trans) and a firable transition
tf , the successor C′ = (M ′, D′, χ′, trans′) of C obtained by firing tf is given by
the following algorithm:

1. M ′ and D′ are computed as in section 2,

2. for each variable x in χ, the disabled transitions are removed from trans(x),

3. the variables whose image by trans is empty are removed from χ,

4. if there are newly enabled transitions by the firing of t, two cases can occur:

– there exists a variable x whose value is zero3. Then, we simply add the
newly enabled transitions to trans(x),

– There is no such variable. Then we need to create a new one, xi associated
to the newly enabled transitions. The index, i, is chosen as the smallest
available index w.r.t. the variables in χ. We add xi to χ and trans(xi)
is the set of newly enabled transitions.

5. if, for a given variable x, the value of Flow(C, t) is not the same for all
the transitions t in trans(x), then we create as many variables as there are
different values minus one (the considered variable). Then, we remap all the
transitions to these variables via trans so that for each variable xj , Flow(C)
is constant on trans(xj).

By applying theses rules, the extended state-class graph is computed by
generating all the successors of the initial state-class iteratively (breadth-first
for instance). The chosen convergence criterion is χ-similarity, with an inclusion
check:

Definition 8 (χ-similarity). Two extended state classes C = (M, D, χ, trans)
and C′ = (M ′, D′, χ′, trans′) are χ-similar, and we denote it by C ≈ C′, iff they

3 This means that no time could elapse since the creation of x. It is fairly easy to
check from D and D′ if some time could elapse when firing tf . So, it is easy to check
inductively if some time could elapse since the creation of x.

have the same markings and the same number of continuous variables which are
mapped to the same transitions:

C ≈ C′ ⇔

M = M ′,

|χ| = |χ′|,
∀x ∈ χ, ∃x′ ∈ χ′, s.t.

trans(x) = trans′(x′),
∀t ∈ trans(x), ∀t′ ∈ trans(x)′, Flow(C, t) = Flow(C′, t′)
and x = 0⇔ x′ = 0

Definition 9 (Inclusion of state classes). An extended state class C′ =
(M ′, D′, χ′, trans′) is included in an extended state class C = (M, D, χ, trans)
iff C and C′ are χ-similar and JD′K ⊂ JDK. This is denoted by C′ ⊂ C.

So, when two classes are χ-similar and one is included in the other, we stop
the exploration of the current branch. If there is no inclusion, then we loop
anyway but continue the computation of the successors of the states that are
not in the intersection of the two domains.

We write the extended state class graph as the following timed transition
system: ∆′(T) = (Cext, C0,→ext) defined by:

– Cext ⊆ NP ×RT × 2X × (2T)X , X being the set of all continuous variables,
– C0 = (M0, D0, χ0, trans0), where M0 is the initial marking, D0 = {α(ti) ≤

θi ≤ β(ti)| ti ∈ enabled(M0)}, χ0 = {x0, x1} and trans0 = {(xk, {t ∈
enabled(()M0)|Flow0(t) = rk})} with rk ranging over the different rates of
transitions enabled by M0,

– →ext∈ Cext×T ×Cext is the transition relation defined by the algorithm of
definition 8.

And now, using this timed transition system we give the definition of the
state-class hybrid automaton.

Definition 10 (State-Class Hybrid Automaton). The state-class hybrid
automaton ∆(T) = (L, l0, X, A, E, Inv, Dif) is defined from the extended state-
class graph by:

– L, the set of locations, is the set of the extended state classes Cext,
– l0 is the initial state class (M0, D0, χ0, trans0),
– X =

⋃

(M,D,χ,trans)∈Cext χ the set of all continuous variables,
– A = T is the set of transitions,
– E is the set of edges, defined as follows:

∀Ci = (Mi, Di, χi, transi), Cj = (Mj, Dj , χj , transj) ∈ Cext,

∃Ci
t
→

ext

Cj ⇔ ∃(li, δ, a, R, ρ, lj) s.t.

δ = (trans−1
i (t) ≥ α(t)),

a = t,

R = trans−1
j (↑enabled(Mi, t)),

∀x ∈ χi, x
′ ∈ χj ,

s.t. transj(x
′) ⊂ transi(x)

and x′ 6∈ R, ρ(x) = x′

– ∀C ∈ Cext, Inv(C) =
∧

x∈χ,t∈trans(x)(x ≤ β(t)).

– ∀C ∈ Cext, ∀x ∈ χ, Dif(C, x) is the common value of Flow(C) on all the
transitions of trans(x).

As an example, Figure 7 shows a Scheduling-TPN modeling two periodic
tasks running on the same processor and synchronized by a semaphore. Figure 8
shows the corresponding state class LHA. The semaphore is simply modeled by
a place Semaphore. The actions semP and semV are then obtained respectively
by waiting for a token from Semaphore and adding a token in Semaphore.

Clock

Task 1-M1,
γ = τ1

Task 1-M2,
γ = τ1

Task 2-M1,
γ = τ2

Task 2-M2,
γ = τ2

Offset

Semaphore

M1-1 [1, 4]

M2-1 semP
[2, 4]

M1-2 semV [2, 3]

M2-2 [3, 5]

Top [20, 20]
Delay [1, 1]

•

• •

Π(τ1) = Π(τ2)
Sched(Π(τ1)) = FP

ω(τ1) = 2, ω(τ2) = 1

Fig. 7. Scheduling-TPN modeling two tasks sharing a processor and synchronized by
a semaphore

4.3 Termination of the algorithm

As for time Petri nets, reachability is undecidable for Scheduling-TPNs as well
as for LHA. For bounded TPN and timed automata, it is actually decidable.
Reachability is however undecidable even for bounded Scheduling-TPNs. Since
our method is based on the computation of an extended reachability graph, the
computation of the state class hybrid automaton is not guaranteed to finish,
which is inherent to that class of models.

Note that a structural translation from Scheduling-TPNs to LHA along the
lines of (Cassez and Roux 2006) should be feasible and decidable but the analysis
of the obtained LHA would be very inefficient. Our objective is to obtain an LHA
which can be efficiently analyzed as we will show in the next sections.

C0

ẋ0 = ẋ1 = ẋ2 = 1

x0 ≤ 1

C1

ẋ0 = ẋ1 = 1
ẋ2 = 0

x0 ≤ 20
∧x1 ≤ 4
∧x2 ≤ 3

C2

ẋ0 = ẋ1 = ẋ2 = 1

x0 ≤ 20 ∧ x2 ≤ 3

C3

ẋ0 = ẋ1 = ẋ2 = 1

x0 ≤ 20 ∧ x1 ≤ 4

C4

ẋ0 = ẋ1 = ẋ2 = 1

x0 ≤ 20 ∧ x1 ≤ 5

C5

ẋ0 = ẋ1 = ẋ2 = 1

x0 ≤ 20

x0 ≥ 1
Delay
x′

1 = 0
x′

2 = 0

x1 ≥ 1
M1-1

x2 ≥ 2
M1-2 semV
x′

1 = 0

x1 ≥ 2
M2-1 semP

x1 ≥ 3
M2-2

x0 ≥ 20
Top
x′

0 = 0

Fig. 8. State-class LHA of the net in Figure 7. The initial location is C0.

4.4 Soundness of the translation

In order to prove the soundness of this expression of the state space of a Schedul-

ing-TPN, we will show in theorem 2 that the Scheduling-TPN and its state class
LHA are time-bisimilar.

Theorem 2 (Bisimulation). Let QT be the set of states of the Scheduling-
TPN T and QA the set of states of the state-class hybrid automaton A =
(L, l0, X, A, E, Inv, Dif). Let R ⊂ QT × QA be a binary relation such that
∀s = (MT , νT , Flow) ∈ QT , ∀a = (l, νA) ∈ QA, sRa ⇔ MT = MA where
MA is the marking of the extended state-class l and ∀t ∈ enabled(MT), ∃xt ∈
X, νT (t) = νA(xt) and ẋt = Flow(t).
R is a bisimulation.

Proof. Let s = (MT , νT , Flow) ∈ QT , a = (l, νA) ∈ QA and sRa. Then ∀t ∈
enabled(MT), ∃xt ∈ X, νT (t) = νA(xt) and ẋt = Flow(t).

1. Let us suppose that the Scheduling-TPN can let d ∈ R+ time units elapse:

s
d
→ s′. That means that ∀t ∈ enabled(MT), νT (t) + Flow(t).d ≤ β(t). Then,

νA(xt)+ ẋt.d ≤ β(t) and so by definition of Inv(l), Inv(l)(νA + Ẋ.d′) is true
∀d′ ≤ d. Therefore, the state-class LHA A can let time elapse during d time

units: a
d
→ a′. Since the Scheduling-TPN stays in the same extended state

class, and the state-class LHA in the same location, the activity Flow and Ẋ

do not change and finally s′Ra′.

2. Let us suppose that the Scheduling-TPN can fire the transition t ∈ T : s
t
→ s′

with s′ = (M ′
T , ν′

T , Flow
′). By definition of the state-class hybrid automaton,

there exists an edge e = (l, δ, t, R, ρ, l′). That means that α(t) ≤ νT (t). So,
α(t) ≤ νA(xt) and by definition of the guard δ, δ(νA) is verified. Therefore

the state class LHA A can take the edge e : a
t
→ a′. By definition of l′, the

marking M ′
A of the extended state-class l′ is the same as the new marking

M ′
T of the Scheduling-TPN. Let t′ be a transition in enabled(M ′

T).
If t′ is newly enabled, a new clock is created or t′ is associated to clock xt′

whose value is 0 and ẋt′ = Flow
′(t′). If t′ is not newly enabled and if all

transitions associated to its clock have the same activity, which is equal to
Flow

′(t′), then ẋt′ is set accordingly to the activity of t′: ẋt′ = Flow
′(t′).

Else, if all transitions associated to the clock of t′ do not have the same
activity value, a new clock xt′bis to which is associated t′ is created with
ẋt′bis = Flow

′(t′). Finally, s′Ra′.
3. Let us suppose that the state-class LHA can let d ∈ R+ time units elapse:

a
d
→ a′. That means that Inv(l)(νA + Ẋ.d) is true. So, by definition of

Inv(l), ∀x ∈ X, ∀t ∈ trans(x), νA(x) + ẋ.d ≤ β(t), which is equivalent to
∀x ∈ X, ∀t ∈ trans(x), νT (t) + Flow(t).d ≤ β(t). Since

⋃

x∈X trans(x) =
enabled(MT), we have finally ∀t ∈ enabled(MT), νT (t) + Flow(t).d ≤ β(t),

which means that T can let d time units elapse: s
d
→ s′. Since the state-class

LHA stays in the same locality and then the Scheduling-TPN stays in the
same extended state-class, the conditions on Flow and Ẋ do not change and
finally s′Ra′.

4. Let us suppose that the state class LHA can take the edge e = (l, δ, t, R, ρ, l′):

a
t
→ a′. That means that t is enabled by MA = MT and that δ(νA) is true.

So, by definition of δ, νA(xt) ≥ α(t) and then νT (t) ≥ α(t): t is therefore
firable for T . As in point 2, s′Ra′ by construction.

4.5 Number of continuous variables

As mentioned before, the number of continuous variables is a critical concern for
the computation of the state-space of formal models. So, in this method we take
great care to keep the number of those variables as low as possible. Modeling with
Scheduling-TPNs roughly requires the same number of continuous variables4

as a direct modeling as a product of LHA minus the possible variables of the
scheduler. For instance, the basic modeling of a periodic task requires at least
two variables for both models: one for the periodic activation and one for the
progress of the task itself.

However, in the product of LHA, all variables are always used to define
the state in the system whereas with Scheduling-TPNs, only the valuations of
enabled transitions need to be considered. That means, for example, that when a
periodic task is waiting for its periodical activation, only the variable associated
with the activator is required.

As a consequence, we create these variables “on demand”, i.e. when transi-
tions are newly enabled. Moreover, when creating a new variable, we reuse those
that are no longer used (because every associated transition has been disabled),
by always choosing the first available index. Furthermore, we use only one vari-
able for transitions for which valuations are necessarily equal, i.e. transitions
that are simultaneously enabled, as long as they are running together, with the
same evolution rate. Note that this configuration occurs fairly often.

Applying this policy for the creation of variables allows us to obtain a state-
class hybrid automaton with a fairly low number of variables, in practical cases.

A maximum bound on the number of continuous variables is the maximum
number of simultaneously enabled transitions in the Scheduling-TPN.

4.6 DBM over-approximation

As we have seen in definition 3, the domain of state classes is represented by a
convex polyhedron. When dealing with timed systems where all variables evolve
at rate one (e.g. time Petri nets or timed automata), the constraints on the con-
tinuous variables have the special form: θi − θj ≤ dij or −d0i ≤ θi ≤ di0. This
allows the recourse to a more efficient data structure: the matrix whose coeffi-
cients are dij , which is called a Difference Bound Matrix (DBM) (Berthomieu
and Menasche 1983, Dill 1989).

With more complex dynamics, like those in which we are interested in this
paper, the special form of the constraints is lost and DBMs cannot be used for an

4 In a Scheduling-TPN, these are actually the transition valuations.

exact computation of the state-space. We can however approximate each poly-
hedron by the smallest containing DBM. This leads to an over-approximation
as the DBM contains states that are not part of the actual state-space of the
Scheduling-TPN. So, an analysis directly based on the over-approximated state-
space would be somehow “pessimistic” (e.g. it would declare that the model of
the system is not schedulable whereas it actually is) but safe in the sense that
if a bad state is declared not reachable, then it really is not reachable.

The over-approximation of domains by DBMs can be used to compute ex-
tended state-classes. This may lead to additional locations in the state class
hybrid automaton. But, as the guards and invariants are statically computed
from the parameters of the Scheduling-TPN itself, these additional locations are
actually not reachable in the LHA. As a consequence, the relation R of theo-
rem 2 is also a bisimulation between the over-approximated state class hybrid
automaton and the Scheduling-TPN:

Theorem 3 (Bisimulation). Let QT be the set of states of the Scheduling-
TPN T and QA the set of states of the DBM over-approximated state class
hybrid automaton A = (L, l0, X, A, E, Inv). Let R ⊂ QT × QA be a binary
relation such that ∀s = (MT , νT) ∈ QT , ∀a = (l, νA) ∈ QA, sRa ⇔ MT = MA

where MA is the marking of the extended state-class l and ∀t ∈ enabled(MT),
∃xt ∈ X, νT (t) = νA(xt) and ẋt = Flow(t).

R is a bisimulation.

The proof is the same as for the exact computation. Indeed, to make this
clearer, let us suppose that in location l there is an outgoing edge e = (l, δ, t, R, ρ, l′)
because t is firable in the approximated state class l whereas it is not in the cor-
responding exact state class. If we suppose that before reaching the location l,
the behavior of the automaton was correct, then right at the entry in the class
l the automaton is in a state a = (M, νA) which is in relation with some state
s = (M, νT) of the Scheduling-TPN by R. On the one hand, since t is actu-
ally not firable, that means that some other transition t′ must be fired before
it: α(t) − νT (t) > β(t′) − νT (t′). So, by definition of R, there exists xt such
that α(t) − νA(xt) > β(t′) − νT (t′). Since, by definition of a Scheduling-TPN,
β(t′) ≥ νT (t′), this gives α(t) − νA(xt) > 0. On the other hand, by definition of
the guards of the state class LHA, “δ is true” is equivalent to α(t)− νA(xt) ≤ 0.
With the previous statement we can conclude that the guard δ is false and
therefore that l′ is not reachable.

As a conclusion, we can compute the state-class hybrid automaton with the
fast DBM-based over-approximating algorithm. It may produce a few extra loca-
tions but the latter are not reachable and will be discarded during the HyTech
analysis. It keeps a low cost for the translation in comparison to the verifica-
tion cost. Moreover, we can benefit from the expressivity and ease of use of the
Scheduling-TPN model. Finally, the state class LHA is, in general, easier to
verify than a direct model using a product of LHA, since it has less continuous
variables.

5 Verification

The analysis we perform on the state-class LHA has two goals: verify the schedu-
lability of the system and verify its functional correctness. These formal verifi-
cations may be performed with HyTech. This tool carries out a symbolic anal-
ysis of LHA using polyhedra, called “regions”. HyTech provides a number of
functions to handle regions, including the computation of reachable states from
a given region, the computation of successor states, existential quantification,
convex hull and basic boolean operations (equality, emptiness, etc.).

We have compared the efficiency of our method, implemented in the Romeo (Gardey
et al. 2005) tool, with a generic direct modeling using hybrid automata.

5.1 Direct modeling

This modeling requires one automaton per task and one per scheduler (and
therefore per processor). The result is then a synchronized product à la Arnold-
Nivat (Arnold 1994).

Figure 9 gives the generic automaton modeling a task τi periodic with the
period Ti and whose execution time belongs to the interval [αi, βi]. This model is
inspired by the model of extended tasks in Osek/Vdx (OSEK 2001). Notably,
message waiting is modeled by a Waiting location. The synchronization mech-
anisms which produce the releasei! and waitEventi! events, and which react to
the sendEventi! events are modeled aside, as additional automata. They are not
presented here since they are specific to each synchronization mechanism and do
not feature any clock nor continuous variable. This task model uses one clock oi

for the periodic activation and one continuous variable xi which measures the
execution time.

Figure 10 gives the model for a fixed priority scheduler. At each event which
requires a rescheduling, all the tasks receive a preemption signal; the task with
the greatest priority is then started. Priorities are implicit here, and are given
by the order in which the scheduler tries to start the tasks. The structure of
the scheduler model depends on the number of tasks n and thus the location
Scheduling has to be duplicated n−1 times. We use one clock u and an invariant
u ≤ 0 to force transitions to be taken without letting time elapse in every location
of the scheduler, except in Idle.

When possible, we have modeled the periodic activations of tasks with the
same period by using only one clock. This however adds one dedicated automaton
in the product. The relevance of this step lies in the fact that the verification
algorithm complexity is more sensitive to the number of continuous variables
than to the number of locations.

Although not presented here, the modeling using Scheduling-TPNs, is also
generic. Details on this modeling can be found in (Lime and Roux 2003).

5.2 Results

We have compared our method and the direct modeling on a set of systems of
increasing complexity: from two processors with four tasks to seven processors

Suspended

oi ≤ Ti

ẋi = 0

Ready

true

ẋi = 0

Running

xi ≤ βi

ẋi = 1

Waiting

true

ẋi = 0

oi = Ti,

activatei!,
xi := 0, oi := 0

true,

preempt?∨ nopi?

true,

preempt?

true,

starti?

xi ≥ αi,

terminatei!,
xi := 0

true,

preempt?

true,

waitEventi?

true,

sendEventi!

true,

releasei?

true,

preempt?∨ nopi?

Fig. 9. LHA modeling a real-time task

linked by a CAN bus with eighteen tasks. In these examples, tasks are periodic
or launched by periodic tasks (but aperiodic or sporadic tasks can of course be
easily treated). There are some precedence constraints modeled by semaphores
and some tasks on different processors communicate through the CAN bus. The
increasing complexity has been obtained by adding up processors, tasks, depen-
dencies and communications to the first example.

For this kind of models, analytical methods such as presented in (Liu and
Layland 1973, Tindell 1994) or computationally simpler formal methods as in
(McManis and Varaiya 1994, Fersman et al. 2006) are unapplicable or would not
give exact results.

Table 1 gives the obtained results.
Columns 2 and 3 give the number of processors and tasks in the system.

Columns 4, 5 and 6 describe the direct modeling in HyTech results by giving
respectively the number of LHA in the product, the number of continuous vari-
ables and the time taken by HyTech to compute the state space. Columns 7, 8,

Idle

true

Preempt

u ≤ 0

Scheduling

u ≤ 0

StartTwo

u ≤ 0

true,

activate1? ∨ activate2?
∨terminate1? ∨ terminate2?
∨release1? ∨ release2?,
u := 0

true,

preempt!

true,

start1!

true,

nop1!

true,

nop2! ∨ start2!

Fig. 10. LHA modeling a Fixed Priority scheduler for two tasks

9 give the results for our method. We give the number of locations, transitions
and stopwatches of the LHA generated by our method as well the time taken
for its generation. Finally, the last column gives the time used by HyTech to
compute the state space of the LHA generated by our method. Times are given
is seconds and NA means that the HyTech computation could not give a result
on the machine used (a PowerPC G4 1.25GHz with 512MB of RAM).

Size Direct modeling (LHA) Our method (Scheduling-TPN
Romeo
−→ LHA

HyTech
−→ state-space)

Ex. Proc. Tasks LHA Var. HyTech time Locations Transitions Var. Romeo time HyTech time
1 2 4 8 7 77.8 20 29 3 ≤0.1 0.2
2 3 6 11 9 590.3 40 58 4 ≤0.1 0.5
3 3 7 12 10 NA 52 84 4 ≤0.1 0.7
4 3+CAN 7 13 11 NA 297 575 7 0.3 5.3
5 4+CAN 9 15 13 NA 761 1677 8 0.9 29.8
6 5+CAN 11 17 15 NA 1141 2626 9 6 60.1
7 5+CAN 12 18 16 NA 2155 5576 9 8.3 56.5
8 6+CAN 14 . . NA 4587 12777 10 59.7 438.8
9 6+CAN 15 . . NA 4868 13155 11 96.5 1364.3
10 6+CAN 16 . . NA 5672 15102 11 439.1 1372.5
11 7+CAN 18 . . NA 8817 25874 12 1146.7 NA

Table 1. Experimental results

To compare the efficiency of the two approaches, we can compare the sum of
the last two columns to the values in column 6. We see that the computation on
a direct modeling as a product of LHA quickly becomes intractable (Example 3).
However, with our method, we are able to deal with systems of much greater size,
but in the end, the produced automata are too complex for HyTech to analyse.
This is the case with the last example: the computation is still possible with

Romeo but the state space of the resulting LHA is not computable anymore. In
this case, if checking safety properties, we can directly exploit the DBM-based
extended state-class graph generated by Romeo by using classical methods such
as observers, but keeping in mind that this is an over-approximation.

6 Conclusion

In this paper, we have proposed a method for the verification of timed proper-
ties of real-time systems featuring a preemptive scheduling policy including Fixed
Priority and Earliest Deadline First, possibly using Round-Robin for tasks with
the same priority. The system, modeled as a scheduling time Petri net, is trans-
lated into a linear hybrid automaton. We have proved that the initial Schedul-

ing-TPN and the obtained LHA are time-bisimilar.

The advantage of this method is manifold: modeling real-time concurrent
systems by Scheduling-TPNs is quite natural and the resulting state-class LHA
can be analyzed and verified using HyTech, a well-known tool on LHA. Finally
the proposed method is efficient for several reasons:

– the additional cost compared to the state-class graph computation is quite
low, and the obtained LHA is generally smaller (usually much smaller) than
the corresponding state-class graph, so the LHA is often faster to compute
than the classical state-class graph;

– this method leads to a single LHA with fewer variables (clocks) than in the
initial Scheduling-TPN and also than the product of LHA obtained through
a generic direct modeling with LHA. As the number of variables of LHA is a
critical parameter for the verification efficiency, the ensuing model-checking
using HyTech is much more likely to be tractable;

– the translation can be done by using a fast DBM-based over-approximating
method, while still having a resulting LHA that is time-bisimilar to the
Scheduling-TPN. Then the cost of the translation is fairly lower (almost neg-
ligible) than the verification of properties on a direct modeling as a product
of LHA.

Practical experimentations show that our method greatly increases the size
and complexity of systems for which the state-space can be computed with
HyTech.

Finally, the method may also allow us to specify a real-time system as a
mixed model of Scheduling-TPN and LHA, and then obtain a LHA modeling
the behavior of the whole system.

Acknowledgements.

The authors want to thank Charlotte Seidner for her useful comments on this
paper.

References

Altisen, K., G. Gössler, A. Pnueli, J. Sifakis, S. Tripakis and S. Yovine (1999). A
framework for scheduler synthesis. In: 20th IEEE Real-Time Systems Symposium
(RTSS’99). IEEE Computer Society Press. Phoenix, Arizona, USA. pp. 154–163.

Altisen, K., G. Gössler and J. Sifakis (2000). A methodology for the construction
of scheduled systems. In: 6th International Symposium on Formal Techniques in
Real-Time and Fault-Tolerant Systems (FTRTFT’00). Vol. 1926 of Lecture Notes
in Computer Science. Springer-Verlag. Pune, India. pp. 106–120.

Altisen, K., G. Gössler and J. Sifakis (2002). Scheduler modelling based on the con-
troller synthesis paradigm. Journal of Real-Time Systems 23, 55–84. Special issue
on control-theoritical approaches to real-time computing.

Alur, R. and D.L. Dill (1994). A theory of timed automata. Theoretical Computer
Science 126(2), 183–235.

Alur, R., C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis and S. Yovine (1995). The algorithmic analysis of hybrid
systems. Theoretical Computer Science 138, 3–34.

Alur, R., T.A. Henzinger and P.-H. Ho (1996). Automatic symbolic verification of
embedded systems. IEEE Transactions on Software Engineering 22, 181–201.

Arnold, A. (1994). Finite Transition System. Prentice Hall.
Aura, T. and J. Lilius (2000). A causal semantics for time Petri nets. Theoretical

Computer Science.
Bardin, S., A. Finkel, J. Leroux and L. Petrucci (2003). FAST : Fast acceleration of

symbolic transition systems. In: Proceedings of the 15th International Conference
on Computer Aided Verification (CAV’03). Vol. 2725 of Lecture Notes in Computer
Science. Springer-Verlag. pp. 118–121.

Berthomieu, B. and M. Diaz (1991). Modeling and verification of time depen-
dent systems using time Petri nets. IEEE Transactions on Software Engineering
17(3), 259–273.

Berthomieu, B. and M. Menasche (1983). An enumerative approach for analyzing time
Petri nets.. IFIP Congress Series 9, 41–46.

Berthomieu, B., D. Lime, O.H. Roux and F. Vernadat (2007). Reachability problems
and abstract state spaces for time petri nets with stopwatches. Journal of Discrete
Event Dynamic Systems (jDEDS) 17(2), 133–158.

Brémond-Grégoire, Patrice, Insup Lee and Richard Gerber (1993). Acsr: An algebra
of communicating shared resources with dense time and priorities. In: 4th In-
ternational Conference on Concurrency Theory (CONCUR’93). Springer-Verlag.
London, UK. pp. 417–431.

Bucci, G., A. Fedeli, L. Sassoli and E. Vicario (2003). Modeling flexible real time
systems with preemptive time Petri nets. In: 15th Euromicro Conference on Real-
Time Systems (ECRTS’2003). pp. 279–286.

Bucci, G., A. Fedeli, L. Sassoli and E. Vicario (2004). Time state space analysis of real-
time preemptive systems. IEEE transactions on software engineering 30(2), 97–
111.

Cassez, F. and K.G. Larsen (2000). The impressive power of stopwatches. In: 11th
International Conference on Concurrency Theory, (CONCUR’2000) (Catuscia
Palamidesi, Ed.). number 1877 In: LNCS. Springer-Verlag. University Park, P.A.,
USA. pp. 138–152.

Cassez, F. and O.H. Roux (2006). Structural translation from time petri nets to timed
automata – model-checking time petri nets via timed automata. The journal of
Systems and Software 79(10), 1456–1468.

Dantzig, G.B. (1963). Linear programming and extensions. IEICE Transactions on
Information and Systems.

Daws, C. and S. Yovine (1996). Reducing the number of clock variables of timed au-
tomata. In: 1996 IEEE Real-Time Systems Symposium (RTSS’96). IEEE Com-
puter Society Press. Washington, DC, USA. pp. 73–81.

Dill, D.L. (1989). Timing assumptions and verification of finite-state concurrent sys-
tems. In: Workshop Automatic Verification Methods for Finite-State Systems. Vol.
407. pp. 197–212.

Fersman, E. and W. Yi (2004). A generic approach to schedulability analysis of real
time tasks. Nordic J. of Computing 11(2), 129–147.

Fersman, E., L. Mokrushin, P. Pettersson and W. Yi (2003). Schedulability analysis
using two clocks. In: 9th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2003) (Hubert Garavel and John
Hatcliff, Eds.). Vol. 2619 of LNCS. Springer-Verlag. pp. 224–239.

Fersman, E., L. Mokrushin, P. Pettersson and W. Yi (2006). Schedulability analy-
sis of fixed-priority systems using timed automata. Theoretical Computer Science
354, 301–317.

Fersman, E., P. Petterson and W. Yi (2002). Timed automata with asynchronous
processes : Schedulability and decidability. In: 8th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’02).
Vol. 2280 of LNCS. Springer-Verlag. Grenoble, France. pp. 67–82.

Gardey, G., D. Lime, M. Magnin and O.H. Roux (2005). Roméo: A tool for analyzing
time Petri nets. In: 17th International Conference on Computer Aided Verification
(CAV 2005) (Kousha Etessami and Sriram K. Rajamani, Eds.). Vol. 3576 of Lecture
Notes in Computer Science. Springer-Verlag. Edinburgh, Scotland, UK. pp. 418–
423.

Gardey, G., O.H. Roux and O.F. Roux (2006). State space computation and analysis of
time Petri nets. Theory and Practice of Logic Programming (TPLP). Special Issue
on Specification Analysis and Verification of Reactive Systems 6(3), 301–320.

Harbour, M.G., M.H. Klein and J.P. Lehoczky (1991). Fixed priority scheduling of peri-
odic tasks with varying execution priority. In: 12th IEEE Real-Time Systems Sym-
posium (RTSS’91). IEEE Computer Society Press. San Antonio, USA. pp. 116–128.

Henzinger, T.A., P.-H. Ho and H. Wong-Toi (1997). Hytech: A model-checker for hybrid
systems. Journal of Software Tools for Technology Transfer 1(1-2), 110–122.

Henzinger, T.A., X. Nicollin, J. Sifakis and S. Yovine (1994). Symbolic model-checking
for real-time systems. Information and Computation 111(2), 193–244.

Hladik, P.-E. and A.-M. Déplanche (2003). Analyse d’ordonnançabilité de tâches temps-
réel avec offset et gigue. In: 11th international Conference on Real-Time Systems
(RTS’03). Paris, France.

Larsen, K.G., P. Pettersson and W. Yi (1995). Model-checking for real-time systems.
In: Fundamentals of Computation Theory. pp. 62–88.

Lime, D. and O.H. Roux (2003). Expressiveness and analysis of scheduling extended
time Petri nets. In: 5th IFAC International Conference on Fieldbus Systems and
their Applications, (FET 2003). Elsevier Science. Aveiro, Portugal.

Lime, D. and O.H. Roux (2004). A translation-based method for the timed analysis of
scheduling extended time Petri nets. In: 25th IEEE Real-Time Systems Symposium
(RTSS 2004). IEEE Computer Society Press. Lisbon, Portugal. pp. 187–196.

Lime, D. and O.H. Roux (2006a). Model-checking of time Petri nets using the state
class timed automaton. Journal of Discrete Event Dynamic Systems (jDEDS)
16(2), 179–205.

Lime, D. and O.H. Roux (2006b). Vérification formelle des systèmes temps réel avec or-
donnancement préemptif. Techniques et Sciences Informatiques (TSI) 25(3), 347–
375.

Liu, C. and J.W. Layland (1973). Scheduling algorithms for multiprogramming in a
hard real-time environment. Journal of ACM 20(1), 44–61.

Magnin, M., D. Lime and O.H. Roux (2005). An efficient method for computing the
exact state-space of petri nets with stopwatches. In: 3rd International Workshop
on Software Model-Checking (SoftMC 2005). Vol. 144 of Electronic Notes in The-
oretical Computer Science. Elsevier. Edinburgh, Scotland, UK. pp. 59–77.

McManis, J. and P. Varaiya (1994). Suspension automata: A decidable class of hy-
brid automata. In: 6th International Conference on Computer Aided Verification
(CAV’94) (David L. Dill, Ed.). Vol. 818 of Lecture Notes in Computer Science.
Springer-Verlag. Stanford, CA, USA. pp. 105–117.

Merlin, P.M. (1974). A Study of the Recoverability of Computing Systems. PhD thesis.
Dep. of Information and Computer Science. University of California, Irvine, CA.

Okawa, Y. and T. Yoneda (1996). Schedulability verification of real-time systems
with extended time Petri nets. International Journal of Mini and Microcomputers
18(3), 148–156.

OSEK, Group (2001). OSEK/VDX specification. http://www.osek-vdx.org.
Palencia, J.C. and M.G. Harbour (1998). Schedulability analysis for tasks with static

and dynamic offsets. In: 19th IEEE Real-Time Systems Symposium (RTSS’98).
IEEE Computer Society Press. Madrid, Spain. pp. 26–37.

Palencia, J.C. and M.G. Harbour (1999). Exploiting precedence relations in the schedul-
ing analysis of distributed real-time systems. In: 20th IEEE Real-Time Systems
Symposium (RTSS’99). IEEE Computer Society Press. Phoenix, USA. pp. 328–
339.

Roux, O. H. and A.-M. Déplanche (2002). A t-time Petri net extension for real time-task
scheduling modeling. European Journal of Automation (JESA) 36(7), 973–987.

Roux, O.H. and D. Lime (2004). Time Petri nets with inhibitor hyperarcs. Formal
semantics and state space computation. In: The 25th International Conference
on Application and Theory of Petri Nets, (ICATPN 2004) (Jordi Cortadella and
Wolfgang Reisig, Eds.). Vol. 3099 of Lecture Notes in Computer Science. Springer-
Verlag. Bologna, Italy. pp. 371–390.

Tindell, K. (1994). Fixed priority scheduling of hard real-time systems. PhD thesis.
Department of Computer Science. University of New York.

