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PATHWISE FLUCTUATIONS OF LIKELIHOOD RATIOS AND
CONSISTENT ORDER ESTIMATION

BY ELISABETH GASSIAT AND RAMON VAN HANDEL

Universit́e Paris-Sud and Princeton University

Consider an i.i.d. sequence of random variables whose distribution f⋆

lies in one of a nested family of modelsMq , q ≥ 1. We obtain a sharp char-
acterization of the pathwise fluctuations of the generalized likelihood ratio
statistic under entropy assumptions on the model classesMq . Moreover, we
develop a technique to obtain local entropy bounds from global entropy com-
putations, so that these results can be applied in models with non-regular ge-
ometric structure. Finally, the results are applied to prove strong consistency
and to identify minimal penalties for penalized likelihoodorder estimators
in the absence of prior upper bounds on the model order and theunderlying
parameter set. Location mixture models, which possess a notoriously compli-
cated geometric structure, are used as a case study throughout the paper, and
the requisite geometric analysis is of independent interest.
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2 E. GASSIAT AND R. VAN HANDEL

1. Introduction. Let (Xk)k≥1 be a sequence of random variables whose dis-
tribution f⋆ lies in one of a nested family of models(Mq)q≥1, indexed (and or-
dered) by the integers. We define the model order as the smallest indexq⋆ such that
the true distributionf⋆ lies in the corresponding model class. The model order typ-
ically determines the most parsimonious representation ofthe true distribution of
the underlying model (for example, it might determine the parametrization of the
model which has the smallest possible dimension). On the other hand, the model
order often has a concrete interpretation in terms of the modelling of the underly-
ing phenomenon (for example, the estimation of the number ofclusters in a data
set, or the number of regimes in an economic time series). Therefore, the problem
of estimating the model order from observed data is of significant practical, as well
as theoretical, interest.

Of course, a satisfactory solution to this problem must provide an estimation
method that does not assume prior knowledge on the underlying unknown distri-
butionf⋆. In particular, prior bounds on model order and on parametersets should
be avoided. Yet, in this light, even one of the most widely used model selection
criteria—the Bayesian Information Criterion (BIC) of Schwarz—is poorly under-
stood. The chief motivation for the use of BIC (as opposed to other model selec-
tion criteria, such as Akaike’s Information Criterion) is that it is expected to yield
a strongly consistent estimator of the model order. However, as is pointed out by
Csiszár and Shields [9], almost all existing consistency proofs assume a prior upper
bound on the order as well as compactness of the underlying parameter sets. This
is hardly satisfactory from the theoretical point of view, and provides little confi-
dence in the basic motivation for this method. More delicatequestions, such as the
minimal penalty that yields a strongly consistent order estimator in the absence of a
prior bound on the order, also remain open (the problem of identifying the minimal
penalty, which minimizes the probability of underestimating the model order, was
also raised in [9]).

Characterizing strong consistency of penalized likelihood order estimators hinges
on a precise understanding of the pathwise fluctuations of the likelihood ratio statis-
tic

sup
f∈Mq

ℓn(f)− sup
f∈Mq⋆

ℓn(f),

asn → ∞, uniformly in the model orderq > q⋆ (hereℓn(f) is the likelihood of
(Xk)k≤n under the distributionf ∈ Mq). When there is a known upper bound on
the orderq⋆ ≤ qmax < ∞ and the model classesMq are parametrized by a com-
pact subset of Euclidean space, an upper bound on the pathwise fluctuations can
be obtained by classical parametric methods: Taylor expansion of the likelihood
and an application of a law of iterated logarithm. This approach forms the basis
for most consistency proofs for penalized likelihood orderestimators in the litera-
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ture, for example [14, 22, 10, 16, 6]. However, such techniques fail in the absence
of a prior upper bound: even though each model classMq is finite dimensional,
the full modelM =

⋃

q Mq is infinite dimensional and, as such, the problem in
the absence of a prior upper bound is inherently nonparametric.1 When the model
classesMq are noncompact, one must introduce sievesMn

q ⊂ Mn+1
q ⊂ · · · ⊂ Mq

which complicate the problem further (in this case even the parametric theory re-
mains poorly understood, see [15, 3, 19]). An entirely different approach based on
universal coding theory [10, 12, 5, 7] yields pathwise upperbounds on the likeli-
hood ratio statistic that do not require prior bounds on the order or compactness
of the models. However, these bounds are far from tight and cannot even establish
consistency of BIC, let alone smaller penalties (this appears to be a fundamental
limitation of this approach due to Rissanen’s theorem, see [24, 2]).

To our knowledge, the only setting in which the pathwise fluctuations of the like-
lihood ratio statistic has been studied in the absence of a prior bound on the order is
that of higher-order Markov chains, where Csiszár and Shields [9, 8] proved consis-
tency of BIC. The proofs in [9, 8] use delicate estimates specific to Markov chains,
and do not yield minimal penalties. However, it was shown in [27] that a sharp
bound can be obtained in the Markov chain case using techniques from empiri-
cal process theory, the main difficulty being the dependencestructure of Markov
chains.

The aim of this paper is to obtain generally applicable upperand lower bounds
on the pathwise fluctuations of the likelihood ratio statistic uniformly in the model
orderq > q⋆, in the case of i.i.d. observations(Xk)k≥1, without a prior bound on
the model order and in possibly noncompact parameter spaces. We use empirical
process methods as in [27], but the difficulties to be surmounted in the present set-
ting are of a different nature. Though the Markov chain models in [9, 8, 27] suffer
from a lack of independence, geometrically these models areexceedingly simple:
the family ofqth-order Markov chains endowed with the Hellinger distanceis sim-
ply a Euclidean ball when viewed in the appropriate parametrization. In contrast, in
general order estimation problems, one is often faced with model classes that are
geometrically very complex. An important case study that will be considered in
this paper are finite mixture models (widely used in practicefor clustering), which
possess a notoriously complicated non-regular geometry. To obtain sharp bounds
in such models, we will develop tools that can be used to obtain local and weighted

1One of the key issues in this setting is to understand the dependence of the fluctuations of the
likelihood ratio statistic on the dimension of the model classesMq . However, one of the main results
of this paper shows that for regular parametric models, the fluctuations of the likelihood ratio statistic
uniformly in q > q⋆ are dimension independent when a prior upper bound is assumed (cf. Remark
2.7), which is certainly not the case in the absence of a priorupper bound. Therefore, we find that
the pathwise fluctuations of the likelihood ratio statisticwith and without a prior upper bound are
qualitatively different.
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entropy bounds, required for our pathwise fluctuation theorems, in models with
non-regular geometric structure. These results are of independent interest: we are
not aware of any existing local entropy results for models that possess a nontrivial
geometric structure (the difficulty of obtaining local entropy bounds for mixture
models is noted, for example, in [13, 21]). Finally, we will apply our results to
establish strong consistency of BIC and to identify minimalpenalties for order es-
timation for general model classes, in the absence of prior bounds on the order and
the underlying parameter set.

The remainder of this paper is organized as follows. Section2 introduces the
general model under consideration, and states our results on the pathwise fluctua-
tions of the likelihood ratio statistic. Section 3 states our general results on local and
weighted entropies, and considers also the special case of mixture models. Section
4 derives the consequences for order estimation. Proofs aregiven in section 5.

2. Pathwise fluctuations of the likelihood ratio statistic.

2.1. Basic setting and notation.Let (E,E, µ) be a measure space. For each
q, n ≥ 1, let Mn

q be a given family of strictly positive probability densities with
respect toµ (that is, we assume that

∫

fdµ = 1 and thatf > 0 µ-a.e. for every
f ∈ Mn

q ). Moreover, we assume that(Mn
q )q,n≥1 is a nested family of models in

the sense thatMn
q ⊆ Mn

q+1 andMn
q ⊆ Mn+1

q for all q, n ≥ 1. LetMq =
⋃

nM
n
q ,

Mn =
⋃

q M
n
q , M =

⋃

q,nM
n
q .

Consider an i.i.d. sequence ofE-valued random variables(Xk)k≥1 whose com-
mon distribution under the measureP⋆ is f⋆dµ, wheref⋆ ∈ Mq⋆\ clMq⋆−1 for
someq⋆ ≥ 1 (hereclMq denotes theL1(dµ)-closure ofMq). The indexq⋆ is called
themodel order. Let us define the log-likelihood function

ℓn(f) =
n
∑

i=1

log f(Xi), f ∈ M.

Evidently ℓn(f) is the log-likelihood of the i.i.d. sequence(Xk)k≤n whenXk ∼
fdµ. Our aim is to study the pathwise fluctuations of the likelihood ratio statistic

sup
f∈Mn

q

ℓn(f)− sup
f∈Mn

q⋆

ℓn(f)

asn → ∞, uniformlyover the order parameterq ≥ q⋆. Pathwise upper and lower
bounds on the likelihood ratio statistic are the key ingredient in the study of strong
consistency of penalized likelihood order estimators (seesection 4).

EXAMPLE 2.1 (Location mixtures). The guiding example for our theory, the
case of location mixtures, will be studied in detail in sections 3.2 and 4.2 below.
We presently introduce this example in order to clarify our basic setup.



PATHWISE FLUCTUATIONS OF LIKELIHOOD RATIOS 5

Let E = R
d (with its Borelσ-field E) and letµ be the Lebesgue measure on

R
d. We fix a strictly positive probability densityf0 with respect toµ, and define

fθ(x) = f0(x− θ) for x, θ ∈ R
d. Fix a sequenceT (n) ↑ ∞ and define

Mn
q =

{

q
∑

i=1

πifθi : πi ≥ 0,

q
∑

i=1

πi = 1, ‖θi‖ ≤ T (n)

}

.

ThenMq is the family of allq-component mixtures of translates of the densityf0,
whileMn

q is the subset of the mixturesMq whose translation parameters(θi)i=1,...,q

are restricted to a ball of radiusT (n). The number of componentsq⋆ of the true
mixturef⋆ ∈ M can be estimated from observations using the order estimator

q̂n = argmax
q≥1

{

sup
f∈Mn

q

ℓn(f)− pen(n, q)

}

.

Pathwise control of the likelihood ratio statistic allows us to identify what penalties
pen(n, q) and cutoff sequencesT (n) yield strong consistency of̂qn (cf. section
4.2).

REMARK 2.2. To avoid measurability problems and other technical compli-
cations, we employ throughout this paper the simplifying convention that all un-
countable suprema (such assupf∈Mn

q
ℓn(f)) are interpreted as essential suprema

with respect to the measureP⋆. In the majority of applications the model classes
Mn

q will be separable, in which case the supremum and essential supremum coin-
cide.

In the sequel, we will denote by‖ · ‖p the Lp(f⋆dµ)-norm, that is,‖g‖pp =
∫

|g(x)|pf⋆(x)µ(dx), and we denote by〈f, g〉 =
∫

f(x)g(x)f⋆(x)µ(dx) the Hilbert
space inner product inL2(f⋆dµ). Define the Hellinger distance

h(f, g)2 =

∫

(
√

f −√
g)2dµ, f, g ∈ M.

It is easily seen thath(f, f⋆) = ‖
√

f/f⋆ − 1‖2. Finally, we will denote by
N(Q, δ) for any class of functionsQ andδ > 0 the minimal number of brackets
of L2(f⋆dµ)-width δ needed to coverQ: that is,N(Q, δ) is the smallest cardinality
N of a collection of pairs of functions{gLi , gUi }i=1,...,N such thatmaxi≤N ‖gUi −
gLi ‖2 ≤ δ and for everyg ∈ Q we havegLi ≤ g ≤ gUi pointwise for somei ≤ N .

2.2. Upper bound. We aim to obtain a pathwise upper bound on the likelihood
ratio statistic that holdsuniformly in q > q⋆. To this end, define forq, n ≥ 1 and
ε > 0 the Hellinger ball

Hn
q (ε) = {

√

f/f⋆ : f ∈ Mn
q , h(f, f

⋆) ≤ ε}.
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Note that the definition ofHn
q (ε) depends onf⋆ (which is fixed throughout the

paper). The following result shows that the geometry of the Hellinger ballsHn
q (ε)

controls the pathwise fluctuations of the likelihood ratio statistic.

THEOREM 2.3. Suppose that for alln sufficiently large, we have

N(Hn
q (ε), δ) ≤

(

K(n)ε

δ

)η(q)

for all q ≥ q⋆ andδ ≤ ε, withK(n) ≥ 1 andη(q) ≥ q increasing functions. Then

lim sup
n→∞

1

logK(2n) ∨ log log n
sup
q≥q⋆

1

η(q)

{

sup
f∈Mn

q

ℓn(f)− sup
f∈Mn

q⋆

ℓn(f)

}

≤ C

P
⋆-a.s., whereC > 0 is a universal constant.

The proof of Theorem 2.3 is given in section 5.1 below.
The assumption of Theorem 2.3 on the entropy of the Hellingerballs Hn

q (ε)
states, roughly speaking, that the class of densitiesMn

q endowed with the Hellinger
distance has the same metric structure as a Euclidean ball ofdimensionη(q) and
radius of orderK(n), at least locally in a neighborhood of the true densityf⋆. The
effective dimensionη(q) controls the fluctuations of the likelihood ratio statisticas
a function of the model order, while the effective radiusK(n) controls the fluctua-
tions as a function of time up to a minimal rate of orderlog log n. In the following
section we will see that the minimallog log n rate is indeed optimal.

Let us note that the geometric structure required by Theorem2.3 is far from ob-
vious in many cases of practical interest. For example, in the case of finite mixtures,
the geometry of the parameter sets corresponding to Hellinger balls is notoriously
complex and highly non-regular, but we will nonetheless verify the assumption of
Theorem 2.3 (see section 3.2). In order to apply Theorem 2.3 in such cases, we
therefore need to develop tools to establish local entropy bounds in models that
possess nontrivial geometric structure. Section 3 below isdevoted to this problem.

2.3. Lower bound. Throughout this section, we specialize to the case thatMn
q =

Mq does not depend onn (this implies essentially thatMq is compact). In this set-
ting, Theorem 2.3 yields an upper bound of orderlog log n on the pathwise fluctua-
tions of the likelihood ratio statistic. The aim of this section is to obtain a matching
lower bound of orderlog log n, which shows that the minimal rate in Theorem 2.3
is essentially optimal. For the purposes of a lower bound, the uniformity inq is ir-
relevant, so that it suffices to restrict attention to some fixedq > q⋆. We will in fact
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obtain a much stronger result in this case, which completelycharacterizes the pre-
cise pathwise asymptotics of the likelihood ratio statistic for fixedq in sufficiently
smooth families.

The geometric structure required in the present section is somewhat different
than that of Theorem 2.3. Instead of Hellinger balls, we consider the classes of
weighted densitiesDq = {df : f ∈ Mq, f 6= f⋆} andD =

⋃

q Dq, where

df =

√

f/f⋆ − 1

h(f, f⋆)
, f ∈ M, f 6= f⋆.

In addition, we define forε > 0 andq ≥ 1 the local weighted classes

Dq(ε) = {df : f ∈ Mq, 0 < h(f, f⋆) ≤ ε}, D̄q =
⋂

ε>0

clDq(ε),

where the closureclDq(ε) is in L2(f⋆dµ). EvidentlyD̄q is the set of all possible
limit points of df ash(f, f⋆) → 0 in Mq. If the neighborhoods of̄Dq are suf-
ficiently rich, such limits can be taken along a continuous path in the following
sense.

DEFINITION 2.4. A pointd ∈ D̄q is calledcontinuously accessibleif there
is a path(ft)t∈]0,1] ⊂ Mq\{f⋆} such that the mapt 7→ h(ft, f

⋆) is continuous,
h(ft, f

⋆) → 0 ast → 0, anddft → d in L2(f⋆dµ) ast → 0. The subset of all
continuously accessible points in̄Dq will be denoted as̄Dc

q.

We can now formulate the main result of this section.

THEOREM 2.5. Letq⋆ ≤ p < q. Assume that

∫ 1

0

√

logN(Dq , u) du < ∞,

and that|d| ≤ D for all d ∈ Dq with D ∈ L2+α(f⋆dµ) for someα > 0. Then

lim sup
n→∞

1

log log n

{

sup
f∈Mq

ℓn(f)− sup
f∈Mp

ℓn(f)

}

≥

sup
g∈L2

0(f
⋆dµ)

{

sup
f∈D̄c

q

(〈f, g〉)2+ − sup
f∈D̄p

(〈f, g〉)2+

}

P
⋆-a.s.,
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as well as

lim sup
n→∞

1

log log n

{

sup
f∈Mq

ℓn(f)− sup
f∈Mp

ℓn(f)

}

≤

sup
g∈L2

0(f
⋆dµ)

{

sup
f∈D̄q

(〈f, g〉)2+ − sup
f∈D̄c

p

(〈f, g〉)2+

}

P
⋆-a.s.,

whereL2
0(f

⋆dµ) = {g ∈ L2(f⋆dµ) : ‖g‖2 ≤ 1, 〈1, g〉 = 0}.

Only the first (lower bound) part of the theorem is needed to conclude optimality
of the minimallog log n rate in Theorem 2.3. Indeed, we will obtain as a corollary
the following lower bound counterpart to Theorem 2.3.

COROLLARY 2.6. Suppose there existsq > q⋆ such that the following hold.

1. There is an envelope functionD : E → R such that|d| ≤ D for all d ∈ Dq

andD ∈ L2+α(f⋆dµ) for someα > 0. Moreover,
∫ 1
0

√

logN(Dq , u) du <
∞.

2. D̄c
q\D̄q⋆ is nonempty.

Letη(q) > 0 be an arbitrary positive function. Then

lim sup
n→∞

1

log log n
sup
q≥q⋆

1

η(q)

{

sup
f∈Mq

ℓn(f)− sup
f∈Mq⋆

ℓn(f)

}

≥ C0

P
⋆-a.s., whereC0 > 0 is nonrandom but may depend onf⋆ andη.

The proofs of Theorem 2.5 and Corollary 2.6 are given in section 5.2 below.
The fact that the geometric assumptions in Theorem 2.5 and Corollary 2.6 are

expressed in terms of weighted classes is not surprising, asthe sharp asymptotic
expression provided by Theorem 2.5 for the pathwise fluctuations of the likeli-
hood ratio statistic are expressed in terms of a variationalproblem on the weighted
classes. Nonetheless, we are naturally led to ask whether there is any relation be-
tween the geometric assumptions imposed in the upper bound Theorem 2.3 and the
lower bound Theorem 2.5, which appear to be quite different at first sight. In sec-
tion 3, we will show that the global entropy of the weighted class is closely related
to local entropy, so that the geometric assumptions for the upper and lower bounds
are not too far apart. Beside the fundamental value of this observation, the relation
between global and local entropies will prove to be an essential tool in order to
verify these geometric assumptions in models with a complicated geometry, such
as finite mixture models.
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REMARK 2.7. WhenD̄q andD̄p each contain anL2(f⋆dµ)-dense subset of
continuously accessible points (which is typically the case in sufficiently smooth
models), then Theorem 2.5 provides the exact characterization

lim sup
n→∞

1

log log n

{

sup
f∈Mq

ℓn(f)− sup
f∈Mp

ℓn(f)

}

=

sup
g∈L2

0(f
⋆dµ)

{

sup
f∈D̄q

(〈f, g〉)2+ − sup
f∈D̄p

(〈f, g〉)2+

}

P
⋆-a.s.

Beside its intrinsic interest, this result has a surprisingconsequence. In the case
thatMq andMp are regular parametric models withdim(Mq) > dim(Mp), one
can chooseg ∈ D̄q which is orthogonal tōDp. As D̄q, D̄p ⊆ L2

0(f
⋆dµ) (see the

proof of Corollary 2.6), it follows easily that in this case the right-hand side of
the previous equation display is precisely equal to1. In particular, we obtain the
curious conclusion that in regular parametric models, the magnitude of the fluctu-
ations of the likelihood ratio statistic does not depend on the dimensionsdim(Mq)
anddim(Mp). In contrast, it is well known that in regular parametric models, the
likelihood ratio statistic itself converges weakly to a chi-square distribution with
dim(Mq) − dim(Mp). degrees of freedom, so the tails of the distribution of the
likelihood ratio statistic do in fact depend strongly on thedimensionsdim(Mq)
anddim(Mp). Of course, the dimension independence of the pathwise fluctuations
will also cease to hold if we are interested in a result that isuniform in the orderq,
as in Theorem 2.3.

3. Entropy bounds. In section 2, we obtained pathwise bounds on the fluc-
tuations of the likelihood ratio statistic in terms of the geometry of the underlying
model classes. However, we have required two distinct typesof geometric condi-
tions: local entropy bounds for classes of densities, and global entropy bounds for
classes of weighted densities. In this section, we will showthat the latter implies
the former under appropriate conditions, so that a suitableglobal entropy bound
for weighted densities suffices for all the results in section 2. We will subsequently
show how the requisite entropy bounds can be obtained for thecase of location
mixtures (cf. Example 2.1). The latter is significant both asan important applica-
tion, and as a nontrivial case study in obtaining local entropy bounds in models
with a complicated geometry.

3.1. From global entropy to local entropy.We are going to establish that local
entropy estimates for a class of densitiesM can be obtained from global entropy
estimates on the associated weighted classD. To this end, let us consider for the
purposes of this section a general class of positive probability densitiesM with
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respect to some reference measureµ, a fixedf⋆ ∈ M, and define the class of
weighted densitiesD = {df : f ∈ M, f 6= f⋆}. In addition, we define forδ > 0
the Hellinger ballH(δ) = {

√

f/f⋆ : h(f, f⋆) ≤ δ}. We obtain the following
result, whose proof is given in section 5.3.

THEOREM 3.1. Suppose that there existq, C0 ≥ 1 andε0 > 0 such that

N(D, ε) ≤
(

C0

ε

)q

for everyε ≤ ε0.

LetR ≥ supf |df | be an envelope function such that‖R‖2 < ∞. Then

N(H(δ), ρ) ≤
(

C1δ

ρ

)q+1

for all δ, ρ > 0 such thatρ/δ < 4 ∧ 2‖R‖2, whereC1 = 8C0(1 ∨ ‖R‖2/4ε0).

Of course, in the setting of section 2, we would apply this result to Mn
q , Dn

q ,
Hn

q (ε) for givenn, q instead of toM, D, H(ε).

3.2. The entropy of mixtures.We now develop the requisite entropy bounds in
the case of mixtures (Example 2.1). In this section, letµ be the Lebesgue mea-
sure onRd. We fix a strictly positive probability densityf0 with respect toµ, and
consider mixtures of densities in the class

{fθ : θ ∈ R
d}, fθ(x) = f0(x− θ) ∀x ∈ R

d.

In everything that follows we fix a nondegenerate mixturef⋆ of the form

f⋆ =

q⋆
∑

i=1

π⋆
i fθ⋆i .

Nondegenerate means thatπ⋆
i > 0 for all i, andθ⋆i 6= θ⋆j for all i 6= j.

Let Θ ⊂ R
d be a bounded parameter set such that{θ⋆i : i = 1, . . . , q⋆} ⊆ Θ,

and denote its diameter by2T (that is,Θ is included in some closed Euclidean ball
of radiusT ). We consider forq ≥ 1 the family ofq-mixtures

Mq =

{

q
∑

i=1

πifθi : πi ≥ 0,

q
∑

i=1

πi = 1, θi ∈ Θ

}

,
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and define the class of weighted densities asDq = {df : f ∈ Mq, f 6= f⋆}. Let

H0(x) = sup
θ∈Θ

fθ(x)/f
⋆(x),

H1(x) = sup
θ∈Θ

max
i=1,...,d

|∂fθ(x)/∂θi|/f⋆(x),

H2(x) = sup
θ∈Θ

max
i,j=1,...,d

|∂2fθ(x)/∂θ
i∂θj|/f⋆(x),

H3(x) = sup
θ∈Θ

max
i,j,k=1,...,d

|∂3fθ(x)/∂θ
i∂θj∂θk|/f⋆(x)

whenf0 is sufficiently differentiable, and letM =
⋃

q≥1 Mq andD =
⋃

q≥1 Dq.

REMARK 3.2. In the setting of Example 2.1, the parameter setΘ = Θ(n) de-
pends onn, and we then writeMn

q instead ofMq, etc. However, as the dependence
onn is irrelevant for the entropy computation, we consider a fixed parameter setΘ
in this section, and drop the dependence onn in our notation for simplicity.

We can now state the result of this section, whose proof is given in section 5.4.

ASSUMPTIONA. The following hold:

1. f0 ∈ C3 andf0(x), (∂f0/∂θi)(x) vanish as‖x‖ → ∞.
2. Hk ∈ L4(f⋆dµ) for k = 0, 1, 2 andH3 ∈ L2(f⋆dµ).

THEOREM 3.3. Suppose that Assumption A holds. Then there exist constants
C⋆ andδ⋆, which depend ond, q⋆ andf⋆ but not onΘ, q or δ, such that

N(Dq, δ) ≤
(

C⋆(T ∨ 1)1/6(‖H0‖44 ∨ ‖H1‖44 ∨ ‖H2‖44 ∨ ‖H3‖22)
δ

)18(d+1)q

for all q ≥ q⋆, δ ≤ δ⋆. Moreover, there is a functionD ∈ L4(f⋆dµ) with

‖D‖4 ≤ K⋆(‖H0‖4 ∨ ‖H1‖4 ∨ ‖H2‖4),
whereK⋆ depends only ond andf⋆, such that|d| ≤ D for all d ∈ D.

Let us note that a key aspect of this result is that the dependence of the entropy
bound on the orderq and on the parameter setΘ is essentially explicit (see Exam-
ple 3.5 below, for example). However, even for fixedq andΘ, the existence of a
polynomial bound on the bracketing number ofDq is far from obvious (previous
claims [16, 6, 1] that such bracketing numbers are polynomial were stated without
proof).

Define the Hellinger ballHq(ε) = {
√

f/f⋆ : f ∈ Mq, h(f, f
⋆) ≤ ε}. Using

Theorem 3.1, we immediately obtain the following result on the local entropy of
Mq.



12 E. GASSIAT AND R. VAN HANDEL

COROLLARY 3.4. Suppose that Assumption A holds. Then

N(Hq(ε), δ) ≤
(

CΘ ε

δ

)18(d+1)q+1

for all q ≥ q⋆ andδ/ε ≤ 1, where

CΘ = L⋆ (T ∨ 1)1/6 (‖H0‖44 ∨ ‖H1‖44 ∨ ‖H2‖44 ∨ ‖H3‖22)5/4

andL⋆ is a constant that depends only ond, q⋆ andf⋆.

EXAMPLE 3.5 (Gaussian mixtures). Consider mixtures of standard Gaussian
densitiesf0(x) = (2π)−d/2e−‖x‖2/2, and letΘ(T ) = {θ ∈ R

d : ‖θ‖ ≤ T}.
Fix a nondegenerate mixturef⋆, and defineT ⋆ = maxi=1,...,q⋆ ‖θ⋆i ‖. Denote by
Hq(ε, T ) the Hellinger ball associated to the parameter setΘ(T ). Then

N(Hq(ε, T ), δ) ≤
(

C⋆
1e

C⋆
2T

2
ε

δ

)18(d+1)q+1

for all q ≥ q⋆, T ≥ T ⋆, andδ/ε ≤ 1, whereC⋆
1 , C

⋆
2 are constants that depend on

d, q⋆ andf⋆ only. To prove this, it evidently suffices to show that Assumption A
holds and that‖Hk‖4 for k = 0, 1, 2 and‖H3‖2 are of ordereCT 2

. These facts are
readily verified by a straightforward but tedious computation.

REMARK 3.6. We have not optimized the constants in Theorem 3.3 and Corol-
lary 3.4. In particular, the constant18 in the exponent can likely be improved.
On the other hand, it is unclear whether the dependence on thediameter ofΘ
is optimal. Indeed, if one is only interested in global entropy N(Hq , δ) where
Hq = {

√

f/f⋆ : f ∈ Mq}, then it can be read off from the proof of Theorem
3.3 that the constants in the entropy bound depend on‖H0‖1 and ‖H1‖1 only,
which are easily seen to scale polynomially inT due to the translation invariance
of the Lebesgue measure. Therefore, for example in the case of Gaussian mixtures,
one can obtain aglobal entropy bound which scales only polynomially as a func-
tion of T , whereas the abovelocal entropy bound scales aseCT 2

. The behavior of
local entropies is much more delicate than that of global entropies, however, and
we do not know whether it is possible to obtain a local entropybound that scales
polynomially inT .

The proof of Theorem 3.3 is long and rather technical. Nonetheless, there are
some key ideas underlying the proof, which we aim to briefly explain here.
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FIG 1. Let fθ(x) =
√

2/π e−2(x−θ)2 and f⋆ = f0.5, and consider the mixture familyM2 =
{pfθ1 + (1 − p)fθ2 : p, θ1, θ2 ∈ [0, 1]}. The plots illustrate (a) the set of parameters(p, θ1, θ2)
corresponding to the Hellinger ball{f ∈ M2 : h(f, f⋆) ≤ 0.05}; and (b) the set of parameters
{(p, θ1, θ2) : N(p, θ1, θ2) ≤ 0.05} withN(p, θ1, θ2) = |p(θ1−0.5)+(1−p)(θ2−0.5)|+ 1

2
p(θ1−

0.5)2 + 1
2
(1− p)(θ2 − 0.5)2. The two plots are related by the local geometry Theorem 5.11, which

yieldsc⋆N(p, θ1, θ2) ≤ h(pfθ1 + (1− p)fθ2 , f
⋆) ≤ C⋆N(p, θ1, θ2) for all p, θ1, θ2 ∈ [0, 1].

The classical approach to controlling local entropies of a parametric classG =
{gξ : ξ ∈ Ξ} with Ξ ⊂ R

d is as follows (cf. [26], Example 19.7). Suppose that the
square root densitieshξ =

√

gξ/gξ⋆ satisfy the pointwise Lipschitz condition

|hξ(x)− hξ′(x)| ≤ H(x) |||ξ − ξ′|||, ξ, ξ′ ∈ Ξ,

whereH is a function inL2 and|||·||| is a norm onΞ. Suppose, moreover, that

h(gξ , gξ⋆) ≥ c |||ξ − ξ⋆|||, ξ ∈ Ξ.

DefineΞ(ε) = {ξ ∈ Ξ : |||ξ−ξ⋆||| ≤ ε} andH(ε) = {hξ : ξ ∈ Ξ, h(gξ, gξ⋆) ≤ ε}.
If |||ξ − ξ′||| ≤ δ, thenhξ′ − δH ≤ hξ ≤ hξ′ + δH. Therefore, we can control the
local bracketing entropy byN(H(cε), 2δ‖H‖2) ≤ N(Ξ(ε), δ), whereN(Ξ(ε), δ)
denotes metric entropy. But the metric entropy of a ball can be controlled by a
standard volume comparison argument, yieldingN(Ξ(ε), δ) ≤ ((2ε + δ)/δ)d.

Clearly the above properties requirec|||ξ − ξ⋆||| ≤ h(gξ , gξ⋆) ≤ ‖H‖2|||ξ − ξ⋆|||
for all ξ ∈ Ξ. Therefore, such an approach can only work when the classG endowed
with the Hellinger distance has a regular geometry (i.e., equivalent to a subset of a
finite dimensional Banach space), at least in a neighborhoodof the true parameter.
This fails miserably in the case of mixture classesMq, which possess a highly non-
regular geometry in a neighborhood off⋆ whenq > q⋆. In fact, it is easily seen that
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h(f, f⋆) = 0 does not even select a unique set of parameters(πi, θi)i=1,...,q, as mix-
ture models are non-identifiable, and consequently the Hellinger ballsHq(ε) look
nothing like norm-balls when viewed as a subset of the parameters(πi, θi)i=1,...,q

(cf. Figure 1). Thus we are faced with two basic difficulties:

1. How does one control the subset of parameters(πi, θi)i=1,...,q corresponding
to the Hellinger ballsHq(ε)?

2. How does one control the metric entropy of these sets?

The resolution of the first problem requires us to develop a precise understanding
of the local geometry of mixture classes, which is done in Theorem 5.11 below.
One key consequence of this result, for example, is as follows: one can choose suf-
ficiently small neighborhoodsA1, . . . , Aq⋆ of θ1, . . . , θq⋆ , respectively, such that
the Hellinger distanceh(f, f⋆) is bounded above and below up to a constant by the
pseudodistance

∑

θj∈A0

πj +

q⋆
∑

i=1

{
∣

∣

∣

∣

∣

∑

θj∈Ai

πj −π⋆
i

∣

∣

∣

∣

∣

+

∥

∥

∥

∥

∥

∑

θj∈Ai

πj(θj − θ⋆i )

∥

∥

∥

∥

∥

+
1

2

∑

θj∈Ai

πj‖θj − θ⋆i ‖2
}

(heref =
∑q

i=1 πifθi andA0 = R
d\(A1 ∪ · · · ∪ Aq⋆)). This pseudodistance

quantifies precisely (and rather intuitively) the set of parameters with density close
to f⋆, see Figure 1 for an illustration in the simplest possible case.

As for the second problem, we avoid it entirely by exploitingTheorem 3.1 in-
stead of computing directly the local entropy. Using the local geometry Theorem
5.11 and Taylor expansion, we can approximate the weighted densitiesdf by linear
combinations of their first and second derivatives with coefficients in a Euclidean
ball. The entropy of the latter is easily estimated by the Lipschitz argument indi-
cated above. However, the details are somewhat intricate: Taylor expansion should
only be applied to parametersθj that lie close to someθ⋆i , which requires careful
bookkeeping.

The local geometry Theorem 5.11 and the relation between global entropy of
weighted densities and local entropy developed in Theorem 3.1 are key ideas that
allow us to obtain local entropy estimates in a geometrically nontrivial model. Let
us note that the restriction to location mixtures is only used in the proof of Theorem
5.11. We believe that the same technique is applicable to other classes of mixtures
(for example, Poisson mixtures or mixtures of densities in an exponential family)
provided that the proof of Theorem 5.11 can be adapted to thissetting.

4. Strongly consistent order estimation. The goal of this section is to apply
the results of sections 2 and 3 to identify what penalties andcutoffs yield strong
consistency of penalized likelihood order estimators. We first develop some general



PATHWISE FLUCTUATIONS OF LIKELIHOOD RATIOS 15

consistency and inconsistency results, and then consider specifically the problem
of mixture order estimation.

4.1. Consistency and minimal penalties.In this section we consider the gen-
eral setting introduced in section 2.1. We now suppose, however, that the true model
orderq⋆ (as well as the true densityf⋆) is not known, so that we must aim to esti-
mateq⋆ from an observation sequence(Xk)k≥1. To this end, define thepenalized
likelihood order estimatoras

q̂n = argmax
q≥1

{

sup
f∈Mn

q

ℓn(f)− pen(n, q)

}

,

wherepen(n, q) is a penalty function. Our goal is to show that the penalized likeli-
hood order estimator is strongly consistent, that is,q̂n → q⋆ asn → ∞P

⋆-a.s., for
a suitable choice of the penalty (that does not depend onq⋆ or f⋆). Let us empha-
size that the maximum in the definition ofq̂n is taken overall model ordersq ≥ 1,
that is, we do not assume that an a priori upper bound on the order is available,
in contrast to most previous work on this topic. We obtain thefollowing general
result.

THEOREM 4.1. Suppose that for alln sufficiently large, we have

N(Hn
q (ε), δ) ≤

(

K(n)ε

δ

)η(q)

for all q ≥ q⋆ andδ ≤ ε, whereK(n) ≥ 1 andη(q) ≥ q are increasing functions
and we assume thatlogK(n) = o(n). Letpen(n, q) be a penalty such that

lim
n→∞

sup
q>q⋆

η(q){logK(2n) ∨ log log n}
pen(n, q)− pen(n, q⋆)

= 0, lim
n→∞

max
q<q⋆

pen(n, q)

n
= 0,

andpen(n, q) is increasing inq. Thenq̂n → q⋆ asn → ∞ P
⋆-a.s.

Theorem 4.1 is proved in section 5.5 below.
Let us now specialize to the case thatMn

q = Mq does not depend onn, as in
section 2.3. In this case, Theorem 4.1 immediately yields the following corollary.

COROLLARY 4.2. Suppose that for allq ≥ q⋆ andδ ≤ ε

N(Hq(ε), δ) ≤
(

Kε

δ

)η(q)

,
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whereK ≥ 1 andη(q) ≥ q is a strictly increasing function. Define the penalty

pen(n, q) = η(q)̟(n),

where̟(n) is any function such that

lim
n→∞

log log n

̟(n)
= 0, lim

n→∞

̟(n)

n
= 0.

Thenq̂n → q⋆ asn → ∞ P
⋆-a.s.

Corollary 4.2 states that, whenMn
q = Mq does not depend onn, the penalized

likelihood order estimator is strongly consistent provided the penalty grows faster
thanlog log n and slower thann. Clearly thelog log n rate is the minimal one at-
tainable by applying Theorem 4.1. This raises the question whether thelog log n
rate is indeed minimal, in the sense that smaller penalties yield inconsistent esti-
mators. The following result (which follows easily from Theorem 2.5) shows that
this is indeed the case, so that the result of Corollary 4.2 isessentially optimal.

COROLLARY 4.3. Suppose there existsq > q⋆ such that the following hold.

1. There is an envelope functionD : E → R such that|d| ≤ D for all d ∈ Dq

andD ∈ L2+α(f⋆dµ) for someα > 0. Moreover,
∫ 1
0

√

logN(Dq , u) du <
∞.

2. D̄c
q\D̄q⋆ is nonempty.

Letη(q) > 0 be any strictly increasing function, and define the penalty

pen(n, q) = C η(q) log log n.

If the constantC > 0 is chosen sufficiently small, then̂qn 6= q⋆ infinitely often
P

⋆-a.s.

The proof of Corollary 4.3 is given in section 5.5. Let us notethat the proof of
Corollary 4.3 actually shows thatsupf∈Mq

ℓn(f)−pen(n, q) > supf∈Mq⋆
ℓn(f)−

pen(n, q⋆) infinitely oftenP⋆-a.s., so the conclusion of Corollary 4.3 is not altered
even if we were to impose a prior upper bound on the order.

In conclusion, we have shown that whenMn
q = Mq does not depend onn, penal-

ties growing faster thanlog log n are consistent while the penaltyC η(q) log log n
is inconsistent when the constantC is sufficiently small. From the proof of The-
orem 4.1, we can also see that the penaltyC η(q) log log n is consistent whenC
is sufficiently large. However, the critical value ofC may depend on the unknown
parameterf⋆, so that thisminimalpenalty may not be implementable. On the other
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hand, assuming thatη(q) does not depend onf⋆ (as is typically the case), penal-
ties satisfying the assumptions of Theorem 4.1 obviously donot depend on the
unknown parameterf⋆ and therefore define admissible estimators. WhenMn

q de-
pends onn, larger penalties may be required to ensure consistency, depending on
the growth rate ofK(n).

4.2. Mixture order estimation. We finally apply the results in the previous sec-
tion to mixture order estimation. Throughout this section,let E = R

d and letµ be
the Lebesgue measure onRd. Fix a strictly positive probability densityf0 with
respect toµ, and define

Mn
q =

{

q
∑

i=1

πifθi : πi ≥ 0,

q
∑

i=1

πi = 1, θi ∈ Θ(n)

}

,

wherefθ(x) = f0(x − θ) and· · · ⊆ Θ(n) ⊆ Θ(n+ 1) ⊆ · · · ⊂ R
d is an increas-

ing family of bounded subsets ofRd. We fix f⋆ ∈ M throughout this section. In
the following, we consider two separate cases. The first caseis that of a compact
parameter set, whereΘ(n) = Θ does not depend onn. In this setting, we obtain a
general result. Then, we consider the noncompact case in thesetting of Gaussian
mixtures, and illustrate how Theorem 4.1 can be used to obtain consistency results
in this case.

Let us first consider the case of a compact parameter set. Thenwe obtain a
general consistency result under Assumption A (cf. section3.2).

PROPOSITION 4.4. Suppose that the parameter setΘ(n) = Θ is a bounded
subset ofRd independent ofn, and that Assumption A holds. If we choose a penalty
of the form

pen(n, q) = q ω(n), lim
n→∞

log log n

ω(n)
= lim

n→∞

ω(n)

n
= 0,

thenq̂n → q⋆ asn → ∞ P
⋆-a.s. On the other hand, if we choose the penalty

pen(n, q) = C q log log n

with a sufficiently small constantC > 0, thenq̂n 6= q⋆ infinitely oftenP⋆-a.s.

We therefore find that in the setting of location mixtures with a compact pa-
rameter set, the minimal penalty is of orderlog log n. Moreover, the popular BIC
penalty

(4.1) pen(n, q) =
dq + q − 1

2
log n
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yields a strongly consistent mixture order estimator in this setting, without a prior
upper bound on the order. The requisite Assumption A is a verymild one, which
highlights the broad applicability of this result. However, the assumption of a com-
pact parameter space can be quite restrictive in practice.

Let us therefore consider a case where the parameter space isnoncompact.
For simplicity we restrict our attention to Gaussian mixtures, that is, we choose
f0(x) = (2π)−d/2e−‖x‖2/2, and we choose the restricted parameter setsΘ(n) =
{θ ∈ R

d : ‖θ‖ ≤ T (n)} for some sequenceT (n) ↑ ∞. Our aim is to choose the
penaltypen(n, q) and cutoffT (n) so that the penalized likelihood order estimator
is strongly consistent. In this setting, we obtain the following result.

PROPOSITION 4.5. Let f0(x) = (2π)−d/2e−‖x‖2/2 andΘ(n) = {θ ∈ R
d :

‖θ‖ ≤ T (n)}, and choose a penalty of the formpen(n, q) = q ω(n). If

lim
n→∞

log log n

ω(n)
= lim

n→∞

ω(n)

n
= 0, T (n) = O(

√

log log n),

thenq̂n → q⋆ asn → ∞ P
⋆-a.s. On the other hand, the BIC penalty (4.1) yields a

strongly consistent order estimator ifT (n) = o(
√
log n).

This result illustrates that our theory can establish consistency of the penalized
likelihood mixture order estimator without any prior upperbounds on the model
order or the magnitude of the true parameters. Let us note that there is nothing
particularly special about the Gaussian case: a similar result can be obtained, in
principle, for any mixture distribution, as long as one can obtain suitable estimates
on the quantities‖Hi‖4 that appear in Corollary 3.4 (see Example 3.5 for the Gaus-
sian case).

The proofs of Propositions 4.4 and 4.5 appear in section 5.6 below.

5. Proofs.

5.1. Proof of Theorem 2.3.The proof of Theorem 2.3 is based on the following
deviation bound for the log-likelihood ratio. This bound isessentially from [25],
Corollary 7.5, but the additional maximum inside the probability is essential for
our purposes.

THEOREM 5.1. LetM be a family of strictly positive probability densities with
respect to a reference measureµ, fix somef⋆ ∈ M, and define the Hellinger ball
H(ε) = {

√

f/f⋆ : f ∈ M, h(f, f⋆) ≤ ε} whereh(f, g)2 =
∫

(
√
f − √

g)2dµ.
Suppose that for some constantsK ≥ 1, p ≥ 1 and all δ ≤ ε

N(H(ε), δ) ≤
(

Kε

δ

)p

,
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whereN(H(ε), δ) is the minimal number of brackets ofL2(f⋆dµ)-width δ needed
to coverH(ε). Let(Xi)i∈N be i.i.d. with distributionf⋆dµ. Then

P



 max
n≤k≤2n

sup
f∈M

k
∑

j=1

log

(

f(Xj)

f⋆(Xj)

)

≥ α



 ≤ C e−α/C

for all α ≥ Cp(1 + logK) andn ≥ 1, whereC is a universal constant.

PROOF. Define f̄ = (f + f⋆)/2 for any f ∈ M, and define the empirical
processνn(g) = n−1/2

∑n
k=1{g(Xk) − E[g(Xk)]}. Using concavity oflog x we

have
k
∑

j=1

log

(

f(Xj)

f⋆(Xj)

)

≤ 2k1/2νk(log(f̄/f
⋆))− 2kD(f⋆||f̄),

whereD(f⋆||f) =
∫

log(f⋆/f)f⋆dµ is relative entropy. AsD(f⋆||f) ≥ h(f, f⋆)2

P



 max
n≤k≤2n

sup
f∈M

k
∑

j=1

log

(

f(Xj)

f⋆(Xj)

)

≥ α





≤ P

[

max
n≤k≤2n

sup
f∈M

{2k1/2νk(log(f̄ /f⋆))− 2kh(f̄ , f⋆)2} ≥ α

]

≤
S
∑

s=0

P

[

max
n≤k≤2n

sup
f∈M:nh(f̄ ,f⋆)2≤α2s

|k1/2νk(log(f̄/f⋆))| ≥ α2s−1

]

≤ 3
S
∑

s=0

max
n≤k≤2n

P

[

sup
f∈M:h(f̄ ,f⋆)2≤α2sn−1

|νk(log({f̄ /f⋆}1/2))| ≥ α2s−5n−1/2

]

,

whereS = min{s : α2sn−1 > 2}, and we have used Lemma 5.2 below for the
last inequality. The remainder of the proof is identical to that of [25], Theorem 7.4
provided we show that for̄H(ε) = {

√

f̄/f⋆ : f ∈ M, h(f̄ , f⋆) ≤ ε}

N(H̄(ε), δ) ≤
(

2
√
2Kε

δ

)p

.

To this end, fixδ ≤ ε, and note thath(f, f⋆) ≤ 4h(f̄ , f⋆) by [25], Lemma 4.2 so
that{f ∈ M : h(f̄ , f⋆) ≤ ε} ⊆ {f ∈ M : h(f, f⋆) ≤ 4ε}. By assumption, there
exist N ≤ (2

√
2Kε/δ)p and functionsg1, . . . , gN , h1, . . . , hN such that‖hi −

gi‖2 ≤ δ
√
2 for everyi, and for everyu ∈ H(4ε) there is ani such thatgi ≤ u ≤

hi. But for everyf ∈ M such thath(f̄ , f⋆) ≤ ε, we then have for somei

2−1/2
√

g2i + 1 ≤
√

f̄/f⋆ ≤ 2−1/2
√

h2i + 1.
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Moreover, using|
√
a+ c−

√
b+ c| ≤ |√a−

√
b| for a, b, c ≥ 0 we obtain

∥

∥

∥

∥

2−1/2
√

h2i + 1− 2−1/2
√

g2i + 1

∥

∥

∥

∥

2

≤ 2−1/2‖hi − gi‖2 ≤ δ.

The result now follows directly.

The following variant of Etemadi’s inequality was used in the proof. The proof
follows closely that of the classical Etemadi inequality, see [4], Appendix M19.

LEMMA 5.2. LetQ be a family of measurable functionsf : E → R. Then we
have for everyα > 0 andm,n ∈ N, m ≤ n

P
⋆

[

max
k=m,...,n

sup
f∈Q

|Sk(f)| ≥ 3α

]

≤ 3 max
k=m,...,n

P
⋆

[

sup
f∈Q

|Sk(f)| ≥ α

]

,

whereSn(f) = n1/2νn(f).

PROOF. Define the stopping timeτ = inf
{

k ≥ m : supf∈Q |Sk(f)| ≥ 3α
}

.
Then

P
⋆

[

max
k=m,...,n

sup
f∈Q

|Sk(f)| ≥ 3α

]

= P
⋆[τ ≤ n]

≤ P
⋆

[

sup
f∈Q

|Sn(f)| ≥ α

]

+

n
∑

k=m

P
⋆

[

τ = k and sup
f∈Q

|Sn(f)| < α

]

.

But on the event{τ = k and supf∈Q |Sn(f)| < α}, we clearly have

2α ≤ sup
f∈Q

|Sk(f)| − sup
f∈Q

|Sn(f)| ≤ sup
f∈Q

|Sk(f)− Sn(f)|.

Therefore, we can estimate

P
⋆

[

max
k=m,...,n

sup
f∈Q

|Sk(f)| ≥ 3α

]

≤ P
⋆

[

sup
f∈Q

|Sn(f)| ≥ α

]

+
n
∑

k=m

P
⋆

[

τ = k and sup
f∈Q

|Sn(f)− Sk(f)| ≥ 2α

]

≤ P
⋆

[

sup
f∈Q

|Sn(f)| ≥ α

]

+ max
k=m,...,n

P
⋆

[

sup
f∈Q

|Sn(f)− Sk(f)| ≥ 2α

]

,

where we have used thatsupf∈Q |Sn(f)− Sk(f)| and{τ = k} are independent to
obtain the last inequality. The proof is now easily completed.
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We can now complete the proof of Theorem 2.3.

PROOF OFTHEOREM 2.3. By assumption, we havef⋆ ∈ Mn
q for all q ≥ q⋆

whenn is sufficiently large. Then by Theorem 5.1, we have forn sufficiently large

P
⋆

[

max
n≤k≤2n

sup
f∈M2n

q

{ℓk(f)− ℓk(f
⋆)} ≥ α

]

≤ C e−α/C

for all α ≥ Cη(q)(1 + logK(2n)) andq ≥ q⋆. Using thatMk
q ⊆ M2n

q for n ≤
k ≤ 2n andℓk(f⋆) ≤ supf∈Mk

q⋆
ℓk(f), we have forn sufficiently large

P
⋆



 max
n≤k≤2n

sup
q≥q⋆

1

η(q)

{

sup
f∈Mk

q

ℓk(f)− sup
f∈Mk

q⋆

ℓk(f)

}

≥ α



 ≤
∞
∑

q=q⋆

C e−αη(q)/C

for all α ≥ C(1 + logK(2n)). Letβ(n) be an increasing function. Then

P
⋆



 max
2n≤k≤2n+1

1

β(k)
sup
q≥q⋆

1

η(q)

{

sup
f∈Mk

q

ℓk(f)− sup
f∈Mk

q⋆

ℓk(f)

}

≥ 2C



 ≤ 2C

n2

for all n sufficiently large, provided thatβ(2n) ≥ logK(2n+1) ∨ log log 2n. The
proof is now easily completed using the Borel-Cantelli lemma.

5.2. Proof of Theorem 2.5.The proof of Theorem 2.5 is based on a sequence
of auxiliary results. First, we will need a compact law of iterated logarithm for the
Strassen functional

In(g) =
1√

2n log log n

n
∑

i=1

{g(Xi)−E
⋆(g(X1))} .

We state the requisite result for future reference.

THEOREM 5.3. LetQ be a family of measurable functionsf : E → R with

∫ 1

0

√

logN(Q, u) du < ∞.

Then,P⋆-a.s., the sequence(In)n≥0 is relatively compact inℓ∞(Q), and its set of
cluster points coincides precisely with the setK = {f 7→ 〈f, g〉 : g ∈ L2

0(f
⋆dµ)}.

Proofs of this result can be found in [23], Theorem 4.2 or in [17], Theorem 9.
We will also need the following simple result, whose proof isomitted.
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LEMMA 5.4. Let (Xi)i≥1 be an i.i.d. sequence of random variables, and sup-
poseE[|X1|p] < ∞. Thenn−1/pmaxi=1,...,n |Xi| → 0 a.s. asn → ∞.

Finally, we will need the following likelihood inequality that relates the log-
likelihood ratioℓn(f)−ℓn(f

⋆) to the empirical process. Related inequalities appear
in [11, 18, 6], but the following form is perhaps the most natural.

LEMMA 5.5. For any strictly positive probability densityf 6= f⋆, we have

ℓn(f)− ℓn(f
⋆) ≤ |νn(df )|2,

whereνn(g) = n−1/2
∑n

k=1{g(Xk)−E
⋆[g(Xk)]} denotes the empirical process.

PROOF. Note that

h(f, f⋆)2 = 2−
∫

2
√

ff⋆ dµ = −2h(f, f⋆)E⋆(df (X1)).

Using log(1 + x) ≤ x, we can estimate

ℓn(f)− ℓn(f
⋆) =

n
∑

i=1

2 log(1 + h(f, f⋆) df (Xi)) ≤
n
∑

i=1

2h(f, f⋆) df (Xi)

= 2 νn(df )h(f, f
⋆)
√
n− h(f, f⋆)2 n ≤ sup

p∈R

{

2 νn(df ) p − p2
}

.

The proof is easily completed.

We can now obtain the following asymptotic expansion of the log-likelihood,
which provides a pathwise counterpart to the weak convergence theory in [11, 18].

PROPOSITION5.6. Let q ≥ q⋆. Assume that

∫ 1

0

√

logN(Dq , u) du < ∞,

and that|d| ≤ D for all d ∈ Dq with D ∈ L2+α(f⋆dµ) for someα > 0. Then

sup
f∈Mq(4

√
log logn/n)

{

2 In(df )h(f, f
⋆)

√

2n

log log n
− h(f, f⋆)2

2n

log log n

}

− 1

log log n

{

sup
f∈Mq

ℓn(f)− ℓn(f
⋆)

}

n→∞−−−→ 0 P
⋆-a.s.,

where we have definedMq(ε) = {f ∈ Mq : h(f, f
⋆) ≤ ε}.
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PROOF. We proceed in several steps.
Step 1(localization). As q ≥ q⋆ (hencef⋆ ∈ Mq), clearly

sup
f∈Mq

ℓn(f)− ℓn(f
⋆) = sup

f∈Mq :ℓn(f)−ℓn(f⋆)≥0
{ℓn(f)− ℓn(f

⋆)} .

Now note that, as in the proof of Lemma 5.5,

ℓn(f)− ℓn(f
⋆) ≤ 2 νn(df )h(f, f

⋆)
√
n− h(f, f⋆)2 n.

Therefore, we can estimate

sup
f∈Mq :ℓn(f)−ℓn(f⋆)≥0

h(f, f⋆)

≤ sup
f∈Mq :ℓn(f)−ℓn(f⋆)≥0

{

h(f, f⋆) +
ℓn(f)− ℓn(f

⋆)

nh(f, f⋆)

}

≤ 2√
n

sup
f∈Mq :ℓn(f)−ℓn(f⋆)≥0

νn(df ) ≤
√

8 log log n

n
sup
d∈Dq

In(d).

Now note that we can estimate

sup
d∈Dq

In(d) ≤ inf
g∈L2

0(f
⋆dµ)

sup
d∈Dq

|In(d)− 〈d, g〉| + sup
d∈Dq

sup
g∈L2

0(f
⋆dµ)

〈d, g〉.

The first term on the right converges to zeroP
⋆-a.s. asn → ∞ by Theorem 5.3,

while the second term is easily seen to equalsupd∈Dq
‖d−〈1, d〉‖2 ≤ 1. Therefore

sup
f∈Mq :ℓn(f)−ℓn(f⋆)≥0

h(f, f⋆) ≤ (1 + ε)

√

8 log log n

n

eventually asn → ∞ P
⋆-a.s. for anyε > 0. In particular, we find that

{f ∈ Mq : ℓn(f)− ℓn(f
⋆) ≥ 0} ⊆

{

f ∈ Mq : h(f, f
⋆) ≤ 4

√

log log n/n
}

eventually asn → ∞ P
⋆-a.s. This implies thatP⋆-a.s. eventually asn → ∞

sup
f∈Mq

ℓn(f)− ℓn(f
⋆) ≤ sup

f∈Mq :h(f,f⋆)≤4
√

log logn/n

{ℓn(f)− ℓn(f
⋆)} .

But the reverse inequality clearly holds for alln ≥ 0, so that in fact

sup
f∈Mq

ℓn(f)− ℓn(f
⋆) = sup

f∈Mq(4
√

log logn/n)

{ℓn(f)− ℓn(f
⋆)}
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eventually asn → ∞ P
⋆-a.s.

Step 2(Taylor expansion). Taylor expansion gives2 log(1 + x) = 2x − x2 +
x2R(x), whereR(x) → 0 asx → 0. Thus we can write, for anyf ∈ Mq,

ℓn(f)− ℓn(f
⋆) =

n
∑

i=1

2 log(1 + h(f, f⋆) df (Xi)) =

2h(f, f⋆)

n
∑

i=1

{

df (Xi) +
1

2
h(f, f⋆)

}

− h(f, f⋆)2
n
∑

i=1

(df (Xi))
2

− nh(f, f⋆)2 + h(f, f⋆)2
n
∑

i=1

(df (Xi))
2R(h(f, f⋆) df (Xi)).

Using thatE⋆(df (X1)) = −h(f, f⋆)/2, we therefore have

1

log log n
{ℓn(f)− ℓn(f

⋆)} =

2 In(df )h(f, f
⋆)

√

2n

log log n
− h(f, f⋆)2

2n

log log n
+Rf,n

nh(f, f⋆)2

log log n

where we have defined

Rf,n =
1

n

n
∑

i=1

{1− (df (Xi))
2}+ 1

n

n
∑

i=1

(df (Xi))
2R(h(f, f⋆) df (Xi)).

It follows easily that
∣

∣

∣

∣

∣

sup
f∈Mq(4

√
log logn/n)

{

2 In(df )h(f, f
⋆)

√

2n

log log n
− h(f, f⋆)2

2n

log log n

}

− 1

log log n

{

sup
f∈Mq

ℓn(f)− ℓn(f
⋆)

} ∣

∣

∣

∣

∣

≤ sup
f∈Mq(4

√
log logn/n)

|Rf,n|
nh(f, f⋆)2

log log n
≤ 16 sup

f∈Mq(4
√

log logn/n)

|Rf,n|

eventually asn → ∞ P
⋆-a.s.

Step 3(end of proof). We can easily estimate

sup
f∈Mq(4

√
log logn/n)

|Rf,n| ≤ sup
f∈Mq

∣

∣

∣

∣

∣

1

n

n
∑

i=1

{(df (Xi))
2 − 1}

∣

∣

∣

∣

∣

+

(

sup
|x|≤4

√
log logn/nmaxi=1,...,n D(Xi)

|R(x)|
)

1

n

n
∑

i=1

(D(Xi))
2.
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As N(Dq , δ) < ∞ for everyδ > 0, the class{d2 : d ∈ Dq} can be covered by a
finite number of brackets with arbitrary smallL1(f⋆dµ)-norm and is thereforeP⋆-
Glivenko-Cantelli. Moreover, by constructionE⋆[(df (Xi))

2] = 1 for all f ∈ Mq.
Therefore, the first term in this expression converges to zero asn → ∞P

⋆-a.s. On
the other hand, by Lemma 5.4 and the fact thatD ∈ L2+α(f⋆dµ), we haveP⋆-a.s.

√

log log n/n max
i=1,...,n

D(Xi) =

√
log log n

nα/2(2+α)
n−1/(2+α) max

i=1,...,n
D(Xi)

n→∞−−−→ 0.

Therefore the second term converges to zero also, and the proof is complete.

PROPOSITION5.7. Let q ≥ q⋆. Assume that
∫ 1

0

√

logN(Dq , u) du < ∞,

and that|d| ≤ D for all d ∈ Dq with D ∈ L2+α(f⋆dµ) for someα > 0. Then

lim inf
n→∞

{

sup
d∈D̄q

(In(d))
2
+ − 1

log log n

{

sup
f∈Mq

ℓn(f)− ℓn(f
⋆)

}}

≥ 0 P
⋆-a.s.

PROOF. By Proposition 5.6, we have

lim inf
n→∞

{

sup
d∈D̄q

(In(d))
2
+ − 1

log log n

{

sup
f∈Mq

ℓn(f)− ℓn(f
⋆)

}}

≥ lim inf
n→∞







sup
d∈D̄q

(In(d))
2
+ − sup

f∈Mq(4
√

log logn/n)

sup
p≥0

{

2 In(df ) p− p2
}







= lim inf
n→∞







sup
d∈D̄q

(In(d))
2
+ − sup

f∈Mq(4
√

log logn/n)

(In(df ))
2
+







.

Suppose that the right hand side is negative with positive probability. Then there is
anε > 0 and a sequenceτn ↑ ∞ of random times such that

(5.1) sup
d∈D̄q

(Iτn(d))
2
+ − sup

f∈Mq(4
√

log log τn/τn)

(Iτn(df ))
2
+ ≤ −ε for all n

with positive probability. We will show that this entails a contradiction.
By Theorem 5.3 (which can be applied here asN(Dq, δ) = N(clDq, δ) for all

δ > 0), the process(Iτn)n≥0 is P
⋆-a.s. relatively compact inℓ∞(clDq) with

(5.2) inf
g∈L2

0(f
⋆dµ)

sup
d∈clDq

|Iτn(d)− 〈d, g〉| n→∞−−−→ 0 P
⋆-a.s.
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Then there is a set of positive probability on which (5.1) and(5.2) hold simul-
taneously. We now concentrate our attention on a single sample path in this set.
For any such path, we can clearly find a further subsequenceσn ↑ ∞ such that
supd∈clDq

|Iσn(d) − 〈d, g〉| → 0 asn → ∞ for someg ∈ L2
0(f

⋆dµ). Therefore

sup
d∈clDq

|(Iσn(d))
2
+ − (〈d, g〉)2+| ≤ sup

d∈clDq

|Iσn(d)− 〈d, g〉|2

+ 2 sup
d∈clDq

|Iσn(d)− 〈d, g〉| sup
d∈clDq

|〈d, g〉| n→∞−−−→ 0,

where we have used the elementary estimate|a2+ − b2+| = |a+ − b+|(a+ + b+) ≤
|a+ − b+|(|a+ − b+| + 2b+) ≤ |a − b|(|a − b| + 2|b|) for anya, b ∈ R, and the
fact thatsupd∈clDq

|〈d, g〉| ≤ supd∈clDq
‖d‖2‖g‖2 ≤ 1. Thus (5.1) gives

lim inf
n→∞







sup
d∈D̄q

(〈d, g〉)2+ − sup
f∈Mq(4

√
log logσn/σn)

(〈df , g〉)2+







=

lim inf
n→∞







sup
d∈D̄q

(Iσn(d))
2
+ − sup

f∈Mq(4
√

log log σn/σn)

(Iσn(df ))
2
+







≤ −ε.

But asd 7→ 〈d, g〉 is continuous inL2(f⋆dµ) andclDq(4
√

log log σn/σn) is com-
pact inL2(f⋆dµ) (which follows fromN(Dq , δ) < ∞ for all δ > 0), we have

sup
f∈Mq(4

√
log log σn/σn)

(〈df , g〉)2+ = sup
d∈clDq(4

√
log log σn/σn)

(〈d, g〉)2+
n→∞−−−→

sup
d∈

⋂
n≥0 clDq(4

√
log log σn/σn)

(〈d, g〉)2+ = sup
d∈D̄q

(〈d, g〉)2+.

Thus we have a contradiction, completing the proof.

We now obtain a converse to the previous result.

PROPOSITION5.8. Let q ≥ q⋆. Assume that
∫ 1

0

√

logN(Dq , u) du < ∞,

and that|d| ≤ D for all d ∈ Dq with D ∈ L2+α(f⋆dµ) for someα > 0. Then

lim sup
n→∞

{

sup
d∈D̄c

q

(In(d))
2
+ − 1

log log n

{

sup
f∈Mq

ℓn(f)− ℓn(f
⋆)

}}

≤ 0 P
⋆-a.s.
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PROOF. Suppose that the result does not hold true. By Proposition 5.6, there is
anε > 0 and a sequenceτn ↑ ∞ of random times such that

sup
d∈D̄c

q

(Iτn(d))
2
+ − sup

f∈Mq(4
√

log log τn/τn)

{

− h(f, f⋆)2
2τn

log log τn

+ 2 Iτn(df )h(f, f
⋆)

√

2τn
log log τn

}

≥ ε for all n

with positive probability. Proceeding as in the proof of Proposition 5.7, we can then
show that there is a sequence of timesσn ↑ ∞ and someg ∈ L2

0(f
⋆dµ) such that

lim sup
n→∞

{

sup
d∈D̄c

q

(〈d, g〉)2+ − sup
f∈Mq(4

√
log log σn/σn)

{

− h(f, f⋆)2
2σn

log log σn

+ 2 〈df , g〉h(f, f⋆)

√

2σn
log log σn

}}

≥ ε.

We will show that this entails a contradiction.
Let d0 ∈ D̄q be a continuously accessible point. Then there exists anα0 > 0

(depending ond0) and a path(fα)α∈]0,α0] such thath(fα, f⋆) = α for all α ∈
]0, α0] anddfα → d0 in L2(f⋆dµ) asα → 0. Now choose the sequence

αn = {(〈d0, g〉)+ + σ−1
n }
√

log log σn
2σn

.

As (〈d0, g〉)+ ≤ ‖d0‖2‖g‖2 ≤ 1, we clearly have

0 < αn < α0 ∧ 4
√

log log σn/σn

for all n sufficiently large. In particularfαn ∈ Mq(4
√

log log σn/σn), so that

sup
f∈Mq(4

√
log log σn/σn)

{

2 〈df , g〉h(f, f⋆)

√

2σn
log log σn

−h(f, f⋆)2
2σn

log log σn

}

≥ 2 〈dfαn
, g〉 {(〈d0 , g〉)+ + σ−1

n } − {(〈d0, g〉)+ + σ−1
n }2.

Therefore, we have

lim sup
n→∞

{

sup
d∈D̄c

q

(〈d, g〉)2+ − sup
f∈Mq(4

√
log log σn/σn)

{

− h(f, f⋆)2
2σn

log log σn

+ 2 〈df , g〉h(f, f⋆)

√

2σn
log log σn

}}

≤ sup
d∈D̄c

q

(〈d, g〉)2+ − (〈d0, g〉)2+
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for any continuously accessible elementd0 ∈ D̄q. But clearly we can choosed0
to make the right hand side of this expression arbitrarily small. Thus we have the
desired contradiction, completing the proof.

We can now complete the proof of Theorem 2.5.

PROOF OFTHEOREM 2.5. We obtain separately the lower and upper bounds.
Lower bound. By Propositions 5.7 and 5.8, we have

lim sup
n→∞

1

log log n

{

sup
f∈Mq

ℓn(f)− sup
f∈Mp

ℓn(f)

}

≥

lim sup
n→∞

{

sup
d∈D̄c

q

(In(d))
2
+ − sup

d∈D̄p

(In(d))
2
+

}

P
⋆-a.s.

Now fix anyg ∈ L2
0(f

⋆dµ). By Theorem 5.3 (which applies here asN(Dq, δ) =
N(clDq, δ) ≥ N(D̄q , δ) for all δ > 0), there is a sequenceτn ↑ ∞ of random
times such thatIτn → 〈 · , g〉 in ℓ∞(D̄q) P

⋆-a.s. Therefore

sup
d∈D̄c

q

(Iτn(d))
2
+ − sup

d∈D̄p

(Iτn(d))
2
+

n→∞−−−→ sup
d∈D̄c

q

(〈d, g〉)2+ − sup
d∈D̄p

(〈d, g〉)2+ P
⋆-a.s.,

so that certainly

lim sup
n→∞

1

log log n

{

sup
f∈Mq

ℓn(f)− sup
f∈Mp

ℓn(f)

}

≥ sup
d∈D̄c

q

(〈d, g〉)2+ − sup
d∈D̄p

(〈d, g〉)2+

P
⋆-a.s. But as this inequality holds for everyg ∈ L2

0(f
⋆dµ), taking the supremum

overg gives the requisite lower bound.
Upper bound. By Propositions 5.7 and 5.8, we have

lim sup
n→∞

1

log log n

{

sup
f∈Mq

ℓn(f)− sup
f∈Mp

ℓn(f)

}

≤

lim sup
n→∞

{

sup
d∈D̄q

(In(d))
2
+ − sup

d∈D̄c
p

(In(d))
2
+

}

P
⋆-a.s.

It is elementary that for anyd, d′ ∈ D̄q andg ∈ L2
0(f

⋆dµ)

(In(d))
2
+ − (In(d

′))2+

≤ |(In(d))2+ − (〈d, g〉)2+|+ |(In(d′))2+ − (〈d′, g〉)2+|+ (〈d, g〉)2+ − (〈d′, g〉)2+
≤ 2 sup

d∈D̄q

|(In(d))2+ − (〈d, g〉)2+|+ (〈d, g〉)2+ − (〈d′, g〉)2+.
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Taking the supremum overd ∈ D̄q and the infimum overd′ ∈ D̄c
p, we find that

sup
d∈D̄q

(In(d))
2
+ − sup

d∈D̄c
p

(In(d))
2
+

≤ 2 sup
d∈D̄q

|(In(d))2+ − (〈d, g〉)2+|+ sup
d∈D̄q

(〈d, g〉)2+ − sup
d∈D̄c

p

(〈d, g〉)2+

≤ 2 sup
d∈D̄q

|(In(d))2+ − (〈d, g〉)2+|

+ sup
g∈L2

0(f
⋆dµ)

{

sup
d∈D̄q

(〈d, g〉)2+ − sup
d∈D̄c

p

(〈d, g〉)2+

}

.

But as this holds for anyg ∈ L2
0(f

⋆dµ), we finally obtain

sup
d∈D̄q

(In(d))
2
+ − sup

d∈D̄c
p

(In(d))
2
+ ≤ 2 inf

g∈L2
0(f

⋆dµ)
sup
d∈D̄q

|(In(d))2+ − (〈d, g〉)2+|

+ sup
g∈L2

0(f
⋆dµ)

{

sup
d∈D̄q

(〈d, g〉)2+ − sup
d∈D̄c

p

(〈d, g〉)2+

}

.

It follows as in the proof of Proposition 5.7 that the first term in this expression
converges to zeroP⋆-a.s. The requisite upper bound follows immediately.

Finally, we now complete the proof of Corollary 2.6

PROOF OFCOROLLARY 2.6. It evidently suffices to prove that

(5.3) Γ := sup
g∈L2

0(f
⋆dµ)

{

sup
d∈D̄c

q

(〈d, g〉)2+ − sup
d∈D̄q⋆

(〈d, g〉)2+

}

> 0.

To this end, note that by direct computation

〈1, df 〉 =
∫ √

ff⋆ dµ− 1

h(f, f⋆)
= −h(f, f⋆)

2
.

Choose(fn)n≥0 ⊂ Mq\{f⋆} such thath(fn, f⋆) → 0 anddfn → d0 ∈ D̄q, then

〈1, d0〉 = lim
n→∞

〈1, dfn〉 = − lim
n→∞

h(fn, f
⋆)

2
= 0.

Moreover, it is immediate that‖d0‖2 ≤ 1. We have therefore shown thatD̄q ⊂
L2
0(f

⋆dµ). Now chooseg ∈ D̄c
q\D̄q⋆ . As D̄q⋆ is closed, it follows directly that

sup
d∈D̄c

q

(〈d, g〉)2+ = 1, sup
d∈D̄q⋆

(〈d, g〉)2+ < 1.

Therefore (5.3) holds, and the proof is complete.
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5.3. Proof of Theorem 3.1.

PROOF OFTHEOREM 3.1. The assumption implies that

N(D, ε) ≤
(

C0

ε ∧ ε0

)q

for everyε > 0.

If ε < ‖R‖2/4, then
ε

ε ∧ ε0
≤ 1 ∨ ‖R‖2

4ε0
.

DefiningC = C0(1 ∨ ‖R‖2/4ε0), we find that

N(D, ε) ≤
(

C

ε

)q

for everyε < ‖R‖2/4.

The remainder of the proof is devoted to establishing that

N(H(δ), ρ) ≤
(

8Cδ

ρ

)q+1

for all δ, ρ > 0 such thatρ/δ < 4 ∧ 2‖R‖2, which is the desired result.
Fix ε, δ > 0 and letN = N(D, ε). Then there existl1, u1, . . . , lN , uN such that

‖ui− li‖2 ≤ ε for all i and for everyf , there is ani such thatli ≤ df ≤ ui. Choose
f such thatr−nδ ≤ h(f, f⋆) ≤ r−n+1δ (with r > 1). Then there is ani so that

(r−nli ∧ r−n+1li) δ + 1 ≤
√

f/f⋆ ≤ (r−nui ∨ r−n+1ui) δ + 1.

Note that

‖ui r−nδ − li r
−nδ‖2 ≤ r−nδε,

‖ui r−n+1δ − li r
−n+1δ‖2 ≤ r−n+1δε,

‖ui r−n+1δ − li r
−nδ‖2 ≤ (r − 1)r−nδ + r−n+1δε,

‖ui r−nδ − li r
−n+1δ‖2 ≤ (r − 1)r−nδ + r−n+1δε,

where the latter two estimates follow fromli ≤ df ≤ ui, ‖df‖2 = 1, and

(ui − li) r
−nδ ≤ ui r

−n+1δ − li r
−nδ − df (r − 1)r−nδ ≤ (ui − li) r

−n+1δ,

(ui − li) r
−nδ ≤ ui r

−nδ − li r
−n+1δ + df (r − 1)r−nδ ≤ (ui − li) r

−n+1δ.

As |a ∨ b− c ∧ d| ≤ |a− c|+ |a− d|+ |b− c|+ |b− d|, we can estimate

‖(r−nui ∨ r−n+1ui) δ − (r−nli ∧ r−n+1li) δ‖2 ≤ 2(r − 1)r−nδ + 4r−n+1δε.
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Therefore, we have shown that

N({
√

f/f⋆ : r−nδ ≤ h(f, f⋆) ≤ r−n+1δ}, 2(r−1)r−nδ+4r−n+1δε) ≤ N(D, ε)

for arbitraryε, δ > 0, r > 1, n ∈ N. In particular,

N({
√

f/f⋆ : r−nδ ≤ h(f, f⋆) ≤ r−n+1δ}, ρ) ≤ N(D, 14r
n−1ρ/δ − 1

2 (1− 1/r))

for everyδ > 0, r > 1, n ∈ N, ρ > 2(r − 1)r−nδ.
Note that, by finiteness of the bracketing entropies, we can choose an envelope

functionR ≥ supf |df | such that‖R‖2 < ∞. Then we evidently have

1− r−nδR ≤
√

f/f⋆ ≤ 1 + r−nδR

wheneverh(f, f⋆) ≤ r−nδ. Therefore

N({
√

f/f⋆ : h(f, f⋆) ≤ r−⌈H⌉δ}, 2r−Hδ‖R‖2) = 1

for all δ > 0, r > 1, H > 0. Thus we can estimate

N({
√

f/f⋆ : h(f, f⋆) ≤ δ}, 2r−Hδ‖R‖2)

≤ 1 +

⌈H⌉
∑

n=1

N({
√

f/f⋆ : r−nδ ≤ h(f, f⋆) ≤ r−n+1δ}, 2r−Hδ‖R‖2)

≤ 1 +

⌈H⌉
∑

n=1

N(D, {rn−H−1‖R‖2 − (1− 1/r)}/2)

wheneverδ > 0, r > 1, H > 0 such that‖R‖2 > (1− 1/r)rH . In particular,

N({
√

f/f⋆ : h(f, f⋆) ≤ δ}, 2r−Hδ‖R‖2) ≤ 1 +

⌈H⌉
∑

n=1

N(D, rn−H−1‖R‖2/4)

wheneverδ > 0, r > 1, H > 0 such that‖R‖2 ≥ 2(1 − 1/r)rH , where we have
used that the bracketing number is a nonincreasing functionof the bracket size.

Now recall that

N(D, ε) ≤
(

C

ε

)q

for every0 < ε < ‖R‖2/4,

whereq, C ≥ 1. Thus

N({
√

f/f⋆ : h(f, f⋆) ≤ δ}, 2r−Hδ‖R‖2) ≤ 1 +

⌈H⌉
∑

n=1

r−(n−1)q

(

8C

2r−H‖R‖2

)q
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wheneverδ > 0, r > 1, H > 0 such that‖R‖2 ≥ 2(1 − 1/r)rH . But

⌈H⌉
∑

n=1

r−(n−1)q ≤ 1

1− 1/rq
≤ 1

1− 1/r
≤ ‖R‖2

2(1 − 1/r)rH
4C

2r−H‖R‖2

asr > 1 andq, C ≥ 1. We can therefore estimate

N({
√

f/f⋆ : h(f, f⋆) ≤ δ}, 2r−Hδ‖R‖2) ≤
‖R‖2

2(1 − 1/r)rH

(

8C

2r−H‖R‖2

)q+1

wheneverδ > 0, r > 1, H > 0 such that‖R‖2 ≥ 2(1 − 1/r)rH .
We now fixδ, ρ > 0 such thatρ/δ < 4 ∧ 2‖R‖2, and choose

r =
4

4− ρ/δ
, H =

log(2‖R‖2δ/ρ)
log r

.

Clearlyr > 1 andH > 0. Moreover, note that our choice ofr andH implies that
‖R‖2 = 2(1− 1/r)rH andρ = 2r−Hδ‖R‖2. We have therefore shown that

N({
√

f/f⋆ : h(f, f⋆) ≤ δ}, ρ) ≤
(

8Cδ

ρ

)q+1

for all δ, ρ > 0 such thatρ/δ < 4 ∧ 2‖R‖2.

5.4. Proof of Theorem 3.3.

5.4.1. The local geometry of mixtures.Define the Euclidean ballsB(θ, ε) =
{θ′ ∈ R

d : ‖θ − θ′‖ < ε}, denote by〈u, v〉 the inner product of two vectors
u, v ∈ R

d, and denote by〈A, u〉 = {〈θ, u〉 : θ ∈ A} ⊆ R the inner product of a set
A ⊆ R

d with a vectoru ∈ R
d.

LEMMA 5.9. It is possible to choose a bounded convex neighborhoodAi of θ⋆i
for everyi = 1, . . . , q⋆ such that, for some linearly independent familyu1, . . . , ud ∈
R
d, the sets{〈Ai, uj〉 : i = 1, . . . , q⋆} are disjoint for everyj = 1, . . . , d.

PROOF. We first claim that one can choose linearly independentu1, . . . , ud
such that|{〈θ⋆i , uj〉 : i = 1, . . . , q⋆}| = q⋆ for everyj = 1, . . . , d. Indeed, note
that the set{u ∈ R

d : |{〈θ⋆i , u〉 : i = 1, . . . , q⋆}| < q⋆} is a finite union of
(d− 1)-dimensional hyperplanes, which has Lebesgue measure zero. Therefore, if
we draw a rotation matrixT at random from the Haar measure onSO(d), and let
ui = Tei for all i = 1, . . . , d where{e1, . . . , ed} is the standard Euclidean basis in
R
d, then the desired property will hold with unit probability.To complete the proof,

it suffices to chooseAi = B(θ⋆i , ε/4) with ε = mink mini 6=j |〈θ⋆i − θ⋆j , uk〉|.
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A1

A2

A3

θ⋆1

θ⋆2

θ⋆3

u2

u1

〈A1, u1〉

〈A3, u1〉
〈A2, u1〉

〈A1, u2〉

〈A2, u2〉

〈A3, u2〉

FIG 2. Illustration of the construction of the setsAi for a mixture withd = 2 and q⋆ = 3. The
setsAi are chosen in such a way that their projections on some linearly independent vectorsu1, u2

are disjoint. Note that the choice ofu1, u2 is not arbitrary (e.g., consider the projections on the
coordinate axes).

We now fix once and for all a family of neighborhoodsA1, . . . , Aq⋆ that satisfy
the conditions of Lemma 5.9. The precise choice of these setsonly affects the
constants in the proofs below and is therefore irrelevant toour final result; we only
presume thatA1, . . . , Aq⋆ remain fixed throughout the proofs. Let us also define
A0 = R

d\(A1 ∪ · · · ∪ Aq⋆). Then{A0, . . . , Aq⋆} partitions the parameter setRd

in such a way that each bounded elementAi, i = 1, . . . , q⋆ contains precisely
one component of the mixturef⋆, while the unbounded elementA0 contains no
components off⋆. This construction is illustrated in Figure 2.

Let us define for each finite measureλ onR
d the function

fλ(x) =

∫

fθ(x)λ(dθ).

We also define the derivativesD1fθ(x) ∈ R
d andD2fθ(x) ∈ R

d×d as

[D1fθ(x)]i =
∂

∂θi
fθ(x), [D2fθ(x)]ij =

∂2

∂θi∂θj
fθ(x).

Denote byP(A) the space of probability measures supported onA ⊆ R
d, and

denote byMd
+ the family of alld× d positive semidefinite (symmetric) matrices.
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DEFINITION 5.10. Let us write

D = {(η, β, ρ, τ, ν) : η1, . . . , ηq⋆ ∈ R, β1, . . . , βq⋆ ∈ R
d, ρ1, . . . , ρq⋆ ∈ Md

+,

τ0, . . . , τq⋆ ≥ 0, ν0 ∈ P(A0), . . . , νq⋆ ∈ P(Aq⋆)}.

Then we define for each(η, β, ρ, τ, ν) ∈ D the function

ℓ(η, β, ρ, τ, ν) = τ0
fν0
f⋆

+

q⋆
∑

i=1

{

ηi
fθ⋆i
f⋆

+ β∗
i

D1fθ⋆i
f⋆

+Tr

[

ρi
D2fθ⋆i
f⋆

]

+ τi
fνi
f⋆

}

,

and the nonnegative quantity

N(η, β, ρ, τ, ν) = τ0 +

q⋆
∑

i=1

|ηi + τi|+
q⋆
∑

i=1

∥

∥

∥

∥

βi + τi

∫

(θ − θ⋆i ) νi(dθ)

∥

∥

∥

∥

+

q⋆
∑

i=1

Tr[ρi] +

q⋆
∑

i=1

τi
2

∫

‖θ − θ⋆i ‖2νi(dθ).

We now formulate the key result on the local geometry of the mixture classM.

THEOREM 5.11. Suppose that

1. f0 ∈ C2 andf0(x), D1f0(x) vanish as‖x‖ → ∞.
2. ‖[D1f0]i/f

⋆‖1 < ∞ and‖[D2f0]ij/f
⋆‖1 < ∞ for all i, j = 1, . . . , d.

Then there exists a constantc⋆ > 0 such that

‖ℓ(η, β, ρ, τ, ν)‖1 ≥ c⋆ N(η, β, ρ, τ, ν) for all (η, β, ρ, τ, ν) ∈ D.

[The constantc⋆ may depend onf⋆ andA1, . . . , Aq⋆ but not onη, β, ρ, τ, ν.]

Before we turn to the proof, let us introduce a notion that is familiar in quantum
physics. If(Ω,Σ) is a measurable space, call the mapλ : Σ → R

d×d astate2 if

1. A 7→ [λ(A)]ij is a signed measure for everyi, j = 1, . . . , d;
2. λ(A) is a nonnegative symmetric matrix for everyA ∈ Σ;
3. Tr[λ(Ω)] = 1.

2Our terminology is in analogy with the usual notion of a stateon theC∗-algebraCd×d⊗CC(Ω),
whereΩ is a compact metric space andCC(Ω) is the algebra of complex-valued continuous functions
onΩ. Such states are precisely represented by the complex-valued counterpart of our definition.
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It is easily seen that for any unit vectorξ ∈ R
d, the mapA 7→ 〈ξ, λ(A)ξ〉 is a

sub-probability measure. Moreover, ifξ1, . . . , ξd ∈ R
d are linearly independent,

there must be at least oneξi such that〈ξi, λ(Ω)ξi〉 > 0. Finally, letB ⊂ R
d be

a compact set and let(λn)n≥0 be a sequence of states onB. Then there exists a
subsequence along whichλn converges weakly to some stateλ onB in the sense
that

∫

Tr[M(θ)λn(dθ)] →
∫

Tr[M(θ)λ(dθ)] for every continuous functionM :
B → R

d×d. To see this, it suffices to note that we may extract a subsequence
such that all matrix elements[λn]ij converge weakly to a signed measure by the
compactness ofB, and it is evident that the limit must again define a state.

PROOF OFTHEOREM 5.11. Suppose that the conclusion of the theorem does
not hold. Then there must exist a sequence of coefficients(ηn, βn, ρn, τn, νn) ∈ D

with
‖ℓ(ηn, βn, ρn, τn, νn)‖1
N(ηn, βn, ρn, τn, νn)

n→∞−−−→ 0.

Let us fix such a sequence throughout the proof.
Applying Taylor’s theorem tou 7→ fθ⋆i +u(θ−θ⋆i )

, we can write fori = 1, . . . , q⋆

ηni
fθ⋆i
f⋆

+ βn∗
i

D1fθ⋆i
f⋆

+Tr

[

ρni
D2fθ⋆i
f⋆

]

+ τni
fνni
f⋆

= (ηni + τni )
fθ⋆i
f⋆

+

(

βn
i + τni

∫

(θ − θ⋆i ) ν
n
i (dθ)

)∗ D1fθ⋆i
f⋆

+Tr

[

ρni
D2fθ⋆i
f⋆

]

+
τni
2

∫

‖θ − θ⋆i ‖2 νni (dθ)
∫

Tr

[{
∫ 1

0

D2fθ⋆i +u(θ−θ⋆i )

f⋆
2(1 − u) du

}

λn
i (dθ)

]

whereλn
i is the state onAi defined by

∫

Tr[M(θ)λn
i (dθ)] =

∫

Tr[M(θ) (θ − θ⋆i )(θ − θ⋆i )
∗] νni (dθ)

∫

‖θ − θ⋆i ‖2 νni (dθ)

(it is clearly no loss of generality to assume thatνni has no mass atθ⋆i for anyi, n,
so that everything is well defined). We now define the coefficients

ani =
ηni + τni

N(ηn, βn, ρn, τn, νn)
, bni =

βn
i + τni

∫

(θ − θ⋆i ) ν
n
i (dθ)

N(ηn, βn, ρn, τn, νn)
,

cni =
ρni

N(ηn, βn, ρn, τn, νn)
, dni =

τni
2

∫

‖θ − θ⋆i ‖2 νni (dθ)
N(ηn, βn, ρn, τn, νn)

for i = 1, . . . , q⋆, and

an0 =
τn0

N(ηn, βn, ρn, τn, νn)
.
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Note that

|an0 |+
q⋆
∑

i=1

{|ani |+ ‖bni ‖+Tr[cni ] + |dni |} = 1

for all n. We may therefore extract a subsequence such that:

1. There existai ∈ R, bi ∈ R
d, ci ∈ Md

+, anda0, di ≥ 0 (for i = 1, . . . , q⋆)

with |a0|+
∑q⋆

i=1 {|ai|+ ‖bi‖+Tr[ci] + |di|} = 1, such thatan0 → a0 and
ani → ai, bni → bi, cni → ci, dni → di asn → ∞ for all i = 1, . . . , q⋆.

2. There exists a sub-probability measureν0 supported onA0, such thatνn0
converges vaguely toν0 asn → ∞.

3. There exist statesλi supported onclAi for i = 1, . . . , q⋆, such thatλn
i con-

verges weakly toλi asn → ∞ for everyi = 1, . . . , q⋆.

It follows that the functionsℓ(ηn, βn, ρn, τn, νn)/N(ηn, βn, ρn, τn, νn) converge
pointwise along this subsequence to the functionh/f⋆ defined by

h = a0 fν0 +

q⋆
∑

i=1

{

ai fθ⋆i + b∗i D1fθ⋆i +Tr[ci D2fθ⋆i ]

+ di

∫

Tr

[{
∫ 1

0
D2fθ⋆i +u(θ−θ⋆i )

2(1− u) du

}

λi(dθ)

]

}

.

But as‖ℓ(ηn, βn, ρn, τn, νn)‖1/N(ηn, βn, ρn, τn, νn) → 0, we have‖h/f⋆‖1 =
0 by Fatou’s lemma. Asf⋆ is strictly positive, we must haveh ≡ 0.

To proceed, we need the following lemma.

LEMMA 5.12. The Fourier transformF [h](s) :=
∫

ei〈x,s〉h(x)dx is given by

F [h](s) = F [f0](s)

[

a0

∫

ei〈θ,s〉 ν0(dθ) +

q⋆
∑

i=1

{

ai e
i〈θ⋆i ,s〉 + i〈bi, s〉 ei〈θ

⋆
i ,s〉

− 〈s, cis〉 ei〈θ
⋆
i ,s〉 − di e

i〈θ⋆i ,s〉

∫

φ(i〈θ − θ⋆i , s〉) 〈s, λi(dθ)s〉
}]

for all s ∈ R
d. Here we defined the functionφ(u) = 2(eu − u− 1)/u2.

PROOF. Theai, bi, ci terms are easily computed using integration by parts. It
remains to compute the Fourier transform of the function

[Ξi(x)]jk =

∫
{
∫ 1

0
[D2fθ⋆i +u(θ−θ⋆i )

(x)]jk 2(1 − u) du

}

[λi(dθ)]kj .
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We begin by noting that

∫ ∫ ∫ 1

0
|[D2fθ⋆i +u(θ−θ⋆i )

(x)]jk| 2(1 − u) du dx |[λi]kj|(dθ) =

‖[λi]kj‖TV

∫

|[D2f0(x)]jk| dx < ∞.

We may therefore apply Fubini’s theorem, giving

F [[Ξi]jk](s) = −F [f0](s) sjsk e
i〈θ⋆i ,s〉

∫
{
∫ 1

0
eiu〈θ−θ⋆i ,s〉2(1 − u)du

}

[λi(dθ)]kj

= −F [f0](s) sjsk e
i〈θ⋆i ,s〉

∫

φ(i〈θ − θ⋆i , s〉) [λi(dθ)]kj ,

where we have computed the inner integral using integrationby parts.

Let u1, . . . , ud ∈ R
d be a linearly independent family satisfying the condition

of Lemma 5.9. AsF [h](s) = 0 for all s ∈ R
d, we obtain

Φℓ(it) := a0 Φ
ℓ
0(it)+

q⋆
∑

i=1

eit〈θ
⋆
i ,uℓ〉

{

ai+it〈bi, uℓ〉−t2〈uℓ, ciuℓ〉−di t
2Φℓ

i(it)
}

= 0

for all ℓ = 1, . . . , d andt ∈ [−ι, ι] ⊂ R for someι > 0, where we defined

Φℓ
i(it) =

∫

φ(it〈θ − θ⋆i , uℓ〉) 〈uℓ, λi(dθ)uℓ〉

for i = 1, . . . , q⋆, and

Φℓ
0(it) =

∫

eit〈θ,uℓ〉 ν0(dθ).

Indeed, it suffices to note thatF [f0](0) = 1 and thats 7→ F [f0](s) is continuous,
so that this claim follows from Lemma 5.12 and the fact thatF [f0](s) is nonvan-
ishing in a sufficiently small neighborhood of the origin.

As all λi have compact support, it is easily seen that for everyi = 1, . . . , q⋆, the
functionΦℓ

i(z) is defined for allz ∈ C by a convergent power series. The function
Ψℓ(it) := Φℓ(it)−a0 Φ

ℓ
0(it) is therefore an entire function with|Ψℓ(z)| ≤ k1e

k2|z|

for somek1, k2 > 0 and allz ∈ C. But asΦℓ(it) = 0 for t ∈ [−ι, ι], it follows from
[20], Theorem 7.2.2 thata0Φℓ

0(it) is the Fourier transform of a finite measure with
compact support. Thus we may assume without loss of generality that the law of
〈θ, uℓ〉 under the sub-probabilityν0 is compactly supported for everyℓ = 1, . . . , d,
so by linear independenceν0 must be compactly supported. Therefore, the function
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Φℓ(z) is defined for allz ∈ C by a convergent power series. But asΦℓ(z) vanishes
for z ∈ i[−ι, ι], we must haveΦℓ(z) = 0 for all z ∈ C, and in particular
(5.4)

Φℓ(t) = a0 Φ
ℓ
0(t) +

q⋆
∑

i=1

et〈θ
⋆
i ,uℓ〉

{

ai + t〈bi, uℓ〉+ t2〈uℓ, ciuℓ〉+ di t
2 Φℓ

i(t)
}

= 0

for all t ∈ R andℓ = 1, . . . , d. In the remainder of the proof, we argue that (5.4)
can not hold, thus completing the proof by contradiction.

At the heart of our proof is an inductive argument. Recall that by construction,
the projections{〈Ai, uℓ〉 : i = 1, . . . , q⋆} are disjoint open intervals inR for every
ℓ = 1, . . . , d. We can therefore relabel them in increasing order: that is,define
(ℓ1), . . . , (ℓq⋆) ∈ {1, . . . , q⋆} so that〈θ⋆(ℓ1), uℓ〉 < 〈θ⋆(ℓ2), uℓ〉 < · · · < 〈θ⋆(ℓq⋆), uℓ〉.
The following key result provides the inductive step in our proof.

PROPOSITION5.13. Fix ℓ ∈ {1, . . . , d}, and define

Φ̃ℓ
0(t) := a0 Φ

ℓ
0(t) +

q⋆
∑

i=1

ai e
t〈θ⋆i ,uℓ〉.

Suppose that for somej ∈ {1, . . . , q⋆} we haveΦℓ,j(t) = 0 for all t ∈ R, where

Φℓ,j(t) := Φ̃ℓ
0(t) +

j
∑

i=1

e
t〈θ⋆

(ℓi)
,uℓ〉
{

t〈b(ℓi), uℓ〉+ t2〈uℓ, c(ℓi)uℓ〉+ d(ℓi) t
2 Φℓ

(ℓi)(t)
}

.

Thend(ℓj)〈uℓ, λ(ℓj)(R
d)uℓ〉 = 0, 〈uℓ, c(ℓj)uℓ〉 = 0, and〈b(ℓj), uℓ〉 = 0.

PROOF. Let us write for simplicityθℓi = 〈θ⋆i , uℓ〉, and denote byλℓ
i andνℓ0 the

finite measures onR defined such that
∫

f(x)λℓ
i(dx) =

∫

f(〈θ, uℓ〉)〈uℓ, λi(dθ)uℓ〉
and

∫

f(x)νℓ0(dx) =
∫

f(〈θ, uℓ〉)ν0(dθ), respectively. For notational convenience,
we will assume in the following that(ℓi) = i and νℓ0({θℓi}) = 0 for all i =
1, . . . , q⋆. This entails no loss of generality: the former can always beattained
by relabeling of the pointsθ⋆i , while Φ̃ℓ

0 is unchanged if we replaceνℓ0 andai by
νℓ0( · ∩ R\{θℓ1, . . . , θℓq⋆}) andai + a0 ν

ℓ
0({θℓi}), respectively. Note that

〈Ai, uℓ〉 = ]θℓ−i , θℓ+i [, where θℓ−i < θℓi < θℓ+i < θℓ−i+1 for all i

by our assumptions (〈Ai, uℓ〉 must be an interval asAi is convex).
Step 1. We claim that the following hold:

ai = 0 for all i ≥ j + 1 and a0 ν
ℓ
0([θ

ℓ
j+1,∞[) = 0.
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Indeed, suppose this is not the case. Then it is easily seen that

lim inf
t→∞

|Φ̃ℓ
0(t)|

etθ
ℓ
j+1

> 0,

where we have used thatνℓ0 has no mass at{θℓ1, . . . , θℓq⋆}. On the other hand, asφ
is positive and increasing and asλi is supported onclAi, we can estimate

0 ≤ t2 etθ
ℓ
i Φℓ

i(t)

etθ
ℓ
j+1

≤ t2 e−t(θℓj+1−θℓi ) φ(t{θℓ+j − θℓi})λℓ
i(R)

t→∞−−−→ 0

for i = 1, . . . , j. But then we must have

0 = lim inf
t→∞

|Φℓ,j(t)|
etθ

ℓ
j+1

> 0,

which yields the desired contradiction.
Step 2. We claim that the following hold:

djλ
ℓ
j([θ

ℓ
j,∞[) = 0, 〈uℓ, cjuℓ〉 = 0, and a0 ν

ℓ
0([θ

ℓ
j,∞[) = 0.

Indeed, suppose this is not the case. Asνℓ0({θℓj}) = 0, we can chooseε > 0 such
thatνℓ0([θ

ℓ
j + ε,∞[) ≥ νℓ0([θ

ℓ
j ,∞[)/2. As a0, dj ≥ 0, and using thatφ is positive

and increasing withφ(0) = 1 and thateεt ≥ (εt)2/2 for t ≥ 0, we can estimate

a0 Φ
ℓ
0(t) + etθ

ℓ
j
{

t2〈uℓ, cjuℓ〉+ dj t
2Φℓ

j(t)
}

≥

t2 etθ
ℓ
j

{

ε2

4
a0 ν

ℓ
0([θ

ℓ
j ,∞[) + 〈uℓ, cjuℓ〉+ dj λ

ℓ
j([θ

ℓ
j,∞[)

}

> 0

for all t ≥ 0. On the other hand, it is easily seen that

1

t2 etθ
ℓ
j

[

j
∑

i=1

etθ
ℓ
i

{

ai + t〈bi, uℓ〉
}

+

j−1
∑

i=1

etθ
ℓ
i

{

t2〈uℓ, ciuℓ〉+ di t
2 Φℓ

i(t)
}

]

t→∞−−−→ 0.

But this would imply that

0 = lim
t→∞

Φℓ,j(t)

a0 Φℓ
0(t) + etθ

ℓ
j{t2〈uℓ, cjuℓ〉+ dj t2Φℓ

j(t)}
= 1,

which yields the desired contradiction.
Step 3. We claim that the following hold:

dj λ
ℓ
j([θ

ℓ−
j , θℓj [) = 0 and a0 ν

ℓ
0([θ

ℓ−
j , θℓj [) = 0.
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Indeed, suppose this is not the case. We can compute

0 =
d2

dt2

(

Φℓ,j(t)

etθ
ℓ
j

)

= dj

∫

et(θ−θℓj) λℓ
j(dθ) + a0

∫

et(θ−θℓj) (θ − θℓj)
2 νℓ0(dθ)

+

j−1
∑

i=1

d2

dt2
e−t(θℓj−θℓi )

{

ai + t〈bi, uℓ〉+ t2〈uℓ, ciuℓ〉+ di t
2 Φℓ

i(t)
}

,

where the derivative and integral may be exchanged by [28], Appendix A16. We
now note that asa0, dj ≥ 0, we can estimate fort ≥ 0

dj

∫

et(θ−θℓj ) λℓ
j(dθ) + a0

∫

et(θ−θℓj ) (θ − θℓj)
2 νℓ0(dθ) ≥

et(θ
ℓ−
j −θℓj)

{

dj λ
ℓ
j([θ

ℓ−
j , θℓj[) + a0

∫

[θℓ−j ,θℓj [
(θ − θℓj)

2 νℓ0(dθ)

}

> 0.

On the other hand, as(ex − 1)/x is positive and increasing, we obtain fort ≥ 0

e−t(θℓ−j −θℓj)

∣

∣

∣

∣

d2

dt2
e−t(θℓj−θℓi ) t2 Φℓ

i(t)

∣

∣

∣

∣

= e−t(θℓ−j −θℓj) × e−t(θℓj−θℓi ) ×
∣

∣

∣

∣

∣

(θℓj − θℓi )
2

∫

t2φ(t{θ − θℓi})λℓ
i(dθ)

− 2(θℓj − θℓi )

∫

et(θ−θℓi ) − 1

θ − θℓi
λℓ
i(dθ) +

∫

et(θ−θℓi ) λℓ
i(dθ)

∣

∣

∣

∣

∣

≤ e−t(θℓ−j −θℓi )

{

(θℓj − θℓi )
2 t2 φ(t{θℓ+i − θℓi})

+ 2 (θℓj − θℓi )
et(θ

ℓ+
i −θℓi ) − 1

θℓ+i − θℓi
+ et(θ

ℓ+
i −θℓi )

}

λℓ
i(R),

which converges to zero ast → ∞ for everyi < j. It follows that

0 = lim
t→∞

d2

dt2

(

Φℓ,j(t)/etθ
ℓ
j

)

dj
∫

et(θ−θℓj) λℓ
j(dθ) + a0

∫

et(θ−θℓj ) (θ − θℓj)
2 νℓ0(dθ)

= 1,

which yields the desired contradiction.
Step 4. Recall thatλℓ

j is supported on[θℓ−j , θℓ+j ] by construction. We have there-
fore established in the previous steps that the following hold:

dj〈uℓ, λj(R
d)uℓ〉 = 〈uℓ, cjuℓ〉 = a0 ν

ℓ
0([θ

ℓ−
j ,∞[) = 0, ai = 0 for i > j.
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It is therefore easily seen that

0 = lim
t→∞

Φℓ,j(t)

t etθ
ℓ
j

= 〈bj , uℓ〉.

Thus the proof is complete.

We can now perform the induction by starting from (5.4) and applying Propo-
sition 5.13 repeatedly. This yieldsdj〈uℓ, λj(R

d)uℓ〉 = 〈uℓ, cjuℓ〉 = 〈bj, uℓ〉 = 0
for all j = 1, . . . , q⋆ andℓ = 1, . . . , d. Asu1, . . . , ud are linearly independent and
cj ∈ Md

+, this implies thatbj = 0, cj = 0 anddj = 0 for all j = 1, . . . , q⋆, so that

a0

∫

ei〈θ,s〉 ν0(dθ) +

q⋆
∑

i=1

ai e
i〈θ⋆i ,s〉 = 0

for all s ∈ R
d (this follows as above by Lemma 5.12,h ≡ 0, F [f0](s) 6= 0 for s

in a neighborhood of the origin, and using analyticity). Butby the uniqueness of
Fourier transforms, this implies that the signed measurea0 ν0 +

∑q⋆

i=1 ai δ{θ⋆i } has
no mass. Asν0 is supported onA0, this implies thataj = 0 for all j = 1, . . . , q⋆.
We have therefore shown thatai, bi, ci, di = 0 for all i = 1, . . . , q⋆. But recall that
|a0|+

∑q⋆

i=1{|ai|+ ‖bi‖+Tr[ci] + |di|} = 1, so that evidentlya0 = 1.
To complete the proof, it remains to note that

∫

ℓ(ηn, βn, ρn, τn, νn)

N(ηn, βn, ρn, τn, νn)
f⋆dµ =

q⋆
∑

i=0

ani
n→∞−−−→ 1.

But this is impossible, as
∥

∥

∥

∥

ℓ(ηn, βn, ρn, τn, νn)

N(ηn, βn, ρn, τn, νn)

∥

∥

∥

∥

1

n→∞−−−→ 0

by construction. Thus we have the desired contradiction.

5.4.2. Proof of Theorem 3.3.The proof of Theorem 3.3 consists of a sequence
of approximations, which we develop in the form of lemmas.Throughout this sec-
tion, we always presume that Assumption A holds.

We begin by establishing the existence of an envelope function.

LEMMA 5.14. DefineS = (H0 +H1 +H2) d/c
⋆. ThenS ∈ L4(f⋆dµ), and

|f/f⋆ − 1|
‖f/f⋆ − 1‖1

≤ S for all f ∈ M.
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PROOF. ThatS ∈ L4(f⋆dµ) follows directly from Assumption A. To proceed,
let f ∈ Mq, so that we can writef =

∑q
i=1 πifθi . Then

f − f⋆

f⋆
=

∑

j:θj∈A0

πj
fθj
f⋆

+

q⋆
∑

i=1

{(

∑

j:θj∈Ai

πj − π⋆
i

)

fθ⋆i
f⋆

+
∑

j:θj∈Ai

πj
fθj − fθ⋆i

f⋆

}

.

Taylor expansion gives

fθj(x)− fθ⋆i (x) = (θj − θ⋆i )
∗D1fθ⋆i (x)+

1

2

∫ 1

0
(θj − θ⋆i )

∗D2fθ⋆i +u(θj−θ⋆i )
(x) (θj − θ⋆i ) 2(1 − u) du.

Using Assumption A, we find that

∣

∣

∣

∣

f − f⋆

f⋆

∣

∣

∣

∣

≤
[

∑

j:θj∈A0

πj +

q⋆
∑

i=1

{∣

∣

∣

∣

∣

∑

j:θj∈Ai

πj − π⋆
i

∣

∣

∣

∣

∣

+

∥

∥

∥

∥

∥

∑

j:θj∈Ai

πj(θj − θ⋆i )

∥

∥

∥

∥

∥

+
1

2

∑

j:θj∈Ai

πj‖θj − θ⋆i ‖2
}]

(H0 +H1 +H2) d.

On the other hand, Theorem 5.11 gives

∥

∥

∥

∥

f − f⋆

f⋆

∥

∥

∥

∥

1

≥ c⋆

[

∑

j:θj∈A0

πj +

q⋆
∑

i=1

{∣

∣

∣

∣

∣

∑

j:θj∈Ai

πj − π⋆
i

∣

∣

∣

∣

∣

+

∥

∥

∥

∥

∥

∑

j:θj∈Ai

πj(θj − θ⋆i )

∥

∥

∥

∥

∥

+
1

2

∑

j:θj∈Ai

πj‖θj − θ⋆i ‖2
}]

.

The proof follows directly.

COROLLARY 5.15. |d| ≤ D for all d ∈ D, whereD = 2S ∈ L4(f⋆dµ).

PROOF. Using‖f − f⋆‖TV ≤ 2h(f, f⋆) and|√x− 1| ≤ |x− 1|, we find

|df | =
|
√

f/f⋆ − 1|
h(f, f⋆)

≤ |f/f⋆ − 1|
1
2‖f/f⋆ − 1‖1

≤ 2S,

where we have used Lemma 5.14.

Next, we prove that the Hellinger normalized densitiesdf can be approximated
by chi-square normalized densities for smallh(f, f⋆).
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LEMMA 5.16. For anyf ∈ M, we have
∣

∣

∣

∣

∣

√

f/f⋆ − 1

h(f, f⋆)
− f/f⋆ − 1
√

χ2(f ||f⋆)

∣

∣

∣

∣

∣

≤ {4‖S‖24S + 2S2}h(f, f⋆),

where we have defined the chi-square divergenceχ2(f ||f⋆) = ‖f/f⋆ − 1‖22.

PROOF. Let us define the functionR as
√

f

f⋆
− 1 =

1

2

{

f − f⋆

f⋆
+R

}

.

Then we have

√

f/f⋆ − 1

h(f, f⋆)
− f/f⋆ − 1
√

χ2(f ||f⋆)
=

f/f⋆ − 1 +R

‖f/f⋆ − 1 +R‖2
− f/f⋆ − 1

‖f/f⋆ − 1‖2
=

(f/f⋆ − 1 +R){‖f/f⋆ − 1‖2 − ‖f/f⋆ − 1 +R‖2}+R‖f/f⋆ − 1 +R‖2
‖f/f⋆ − 1 +R‖2 ‖f/f⋆ − 1‖2

,

so that by the reverse triangle inequality and Corollary 5.15
∣

∣

∣

∣

∣

√

f/f⋆ − 1

h(f, f⋆)
− f/f⋆ − 1
√

χ2(f ||f⋆)

∣

∣

∣

∣

∣

≤ 2‖R‖2S + |R|
‖f/f⋆ − 1‖2

.

Now note that for allx ≥ −1

−x2

2
≤ −(

√
1 + x− 1)2

2
=

√
1 + x− 1− x

2
≤ 0.

Therefore, by Lemma 5.14,

|R| ≤
(

f − f⋆

f⋆

)2

≤ S2

∥

∥

∥

∥

f − f⋆

f⋆

∥

∥

∥

∥

2

1

≤ S2

∥

∥

∥

∥

f − f⋆

f⋆

∥

∥

∥

∥

1

∥

∥

∥

∥

f − f⋆

f⋆

∥

∥

∥

∥

2

.

The proof is easily completed using‖f − f⋆‖TV ≤ 2h(f, f⋆).

Finally, we need one further approximation step.

LEMMA 5.17. Let q ∈ N and α > 0. Then for everyf ∈ Mq such that
h(f, f⋆) ≤ α, it is possible to choose coefficientsηi ∈ R, βi ∈ R

d, ρi ∈ Md
+ for



44 E. GASSIAT AND R. VAN HANDEL

i = 1, . . . , q⋆, andγi ≥ 0, θi ∈ Θ for i = 1, . . . , q, such that
∑q⋆

i=1 rank[ρi] ≤
q ∧ dq⋆,

q⋆
∑

i=1

|ηi| ≤
1

c⋆
+

1√
c⋆α

,

q⋆
∑

i=1

‖βi‖ ≤ 1

c⋆
+

2T√
c⋆α

,

q⋆
∑

i=1

Tr[ρi] ≤
1

c⋆
,

q
∑

j=1

|γj | ≤
1√

c⋆α ∧ c⋆
,

and
∣

∣

∣

∣

∣

f/f⋆ − 1
√

χ2(f ||f⋆)
− ℓ

∣

∣

∣

∣

∣

≤ d3/2
√
2

3(c⋆)5/4
{‖H3‖2 S +H3}α1/4,

where we have defined

ℓ =

q⋆
∑

i=1

{

ηi
fθ⋆i
f⋆

+ β∗
i

D1fθ⋆i
f⋆

+Tr

[

ρi
D2fθ⋆i
f⋆

]}

+

q
∑

j=1

γj
fθj
f⋆

.

PROOF. As f ∈ Mq, we can writef =
∑q

j=1 πjfθj . Note that by Theorem
5.11

h(f, f⋆) ≥ c⋆

4

q⋆
∑

i=1

∑

j:θj∈Ai

πj‖θj − θ⋆i ‖2.

Therefore,h(f, f⋆) ≤ α impliesπj‖θj − θ⋆i ‖2 ≤ 4α/c⋆ for θj ∈ Ai. In particular,
wheneverθj ∈ Ai, eitherπj ≤ 2

√

α/c⋆ or ‖θj − θ⋆i ‖2 ≤ 2
√

α/c⋆. Define

J =
⋃

i=1,...,q⋆

{

j : θj ∈ Ai, ‖θj − θ⋆i ‖2 ≤ 2
√

α/c⋆
}

.

Taylor expansion gives

fθj(x)−fθ⋆i (x) = (θj−θ⋆i )
∗D1fθ⋆i (x)+

1

2
(θj−θ⋆i )

∗D2fθ⋆i (x) (θj−θ⋆i )+Rji(x),

where|Rji| ≤ 1
6d

3/2‖θj − θ⋆i ‖3H3. We can therefore write

f − f⋆

f⋆
= L+

q⋆
∑

i=1

∑

j∈J :θj∈Ai

πjRji,
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where we have defined

L =

q⋆
∑

i=1

{(

∑

j∈J :θj∈Ai

πj − π⋆
i

)

fθ⋆i
f⋆

+
∑

j∈J :θj∈Ai

πj(θj − θ⋆i )
∗
D1fθ⋆i
f⋆

+
1

2

∑

j∈J :θj∈Ai

πj(θj − θ⋆i )
∗
D2fθ⋆i
f⋆

(θj − θ⋆i )

}

+
∑

j 6∈J

πj
fθj
f⋆

.

Now note that
∣

∣

∣

∣

∣

f/f⋆ − 1
√

χ2(f ||f⋆)
− L

‖L‖2

∣

∣

∣

∣

∣

≤ |f/f⋆ − 1|
‖f/f⋆ − 1‖2

‖f/f⋆ − 1− L‖2
‖L‖2

+
|f/f⋆ − 1− L|

‖L‖2

≤ ‖f/f⋆ − 1− L‖2 S + |f/f⋆ − 1− L|
‖L‖2

,

where we have used Lemma 5.14. By Theorem 5.11, we obtain

‖L‖2 ≥ ‖L‖1 ≥
c⋆

2

q⋆
∑

i=1

∑

j∈J :θj∈Ai

πj‖θj − θ⋆i ‖2.

Therefore, we can estimate

|f/f⋆ − 1− L|
‖L‖2

≤ d3/2H3

3c⋆

∑q⋆

i=1

∑

j∈J :θj∈Ai
πj‖θj − θ⋆i ‖3

∑q⋆

i=1

∑

j∈J :θj∈Ai
πj‖θj − θ⋆i ‖2

≤
(

4α

c⋆

)1/4 d3/2H3

3c⋆

where we have used the definition ofJ . Settingℓ = L/‖L‖2, we obtain
∣

∣

∣

∣

∣

f/f⋆ − 1
√

χ2(f ||f⋆)
− ℓ

∣

∣

∣

∣

∣

≤ d3/2
√
2

3(c⋆)5/4
{‖H3‖2 S +H3}α1/4.

It remains to show that for our choice ofℓ = L/‖L‖2, the coefficientsη, β, ρ, γ in
the statement of the lemma satisfy the desired bounds. Thesecoefficients are

ηi =
1

‖L‖2

(

∑

j∈J :θj∈Ai

πj − π⋆
i

)

, βi =
1

‖L‖2
∑

j∈J :θj∈Ai

πj(θj − θ⋆i ),

ρi =
1

2‖L‖2
∑

j∈J :θj∈Ai

πj(θj − θ⋆i )(θj − θ⋆i )
∗, γj =

πj1j 6∈J
‖L‖2

.
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Clearlyrank[ρi] ≤ #{j : θj ∈ Ai} ∧ d, so
∑q⋆

i=1 rank[ρi] ≤ q ∧ dq⋆. Moreover,

‖L‖2 ≥ c⋆

[

∑

j:θj∈A0

πj +

q⋆
∑

i=1

{∣

∣

∣

∣

∣

∑

j:θj∈Ai

πj − π⋆
i

∣

∣

∣

∣

∣

+

∥

∥

∥

∥

∥

∑

j:θj∈Ai

πj(θj − θ⋆i )

∥

∥

∥

∥

∥

+
1

2

∑

j:θj∈Ai

πj‖θj − θ⋆i ‖2
}]

by Theorem 5.11. It follows that
∑q⋆

i=1 Tr[ρi] ≤ 1/c⋆. Now note that forj 6∈ J
such thatθj ∈ Ai, we have‖θj − θ⋆i ‖2 > 2

√

α/c⋆ by construction. Therefore

‖L‖2 ≥ c⋆

[

∑

j 6∈J :θj∈A0

πj +
1

2

q⋆
∑

i=1

∑

j 6∈J :θj∈Ai

πj‖θj − θ⋆i ‖2
]

≥ (
√
c⋆α∧ c⋆)

∑

j 6∈J

πj.

It follows that
∑q

j=1 |γj| ≤ 1/(
√
c⋆α ∧ c⋆). Next, we note that

q⋆
∑

i=1

∣

∣

∣

∣

∣

∑

j∈J :θj∈Ai

πj − π⋆
i

∣

∣

∣

∣

∣

≤
q⋆
∑

i=1

∣

∣

∣

∣

∣

∑

j:θj∈Ai

πj − π⋆
i

∣

∣

∣

∣

∣

+
∑

j 6∈J :θj 6∈A0

πj .

Therefore
∑q⋆

i=1 |ηi| ≤ 1/c⋆ + 1/
√
c⋆α. Finally, note that

q⋆
∑

i=1

∥

∥

∥

∥

∥

∑

j∈J :θj∈Ai

πj(θj − θ⋆i )

∥

∥

∥

∥

∥

≤
q⋆
∑

i=1

∥

∥

∥

∥

∥

∑

j:θj∈Ai

πj(θj − θ⋆i )

∥

∥

∥

∥

∥

+ 2T
∑

j 6∈J :θj 6∈A0

πj.

Therefore
∑q⋆

i=1 ‖βi‖ ≤ 1/c⋆ + 2T/
√
c⋆α. The proof is complete.

We can now complete the proof of Theorem 3.3.

PROOF OFTHEOREM 3.3. Letα > 0 be a constant to be chosen later on, and

Dq,α = {df : f ∈ Mq, f 6= f⋆, h(f, f⋆) ≤ α}.

Then clearly
N(Dq , δ) ≤ N(Dq,α, δ) +N(Dq\Dq,α, δ).

We will estimate each term separately.
Step 1(the first term). Define

Mq = {(m1, . . . ,mq⋆) ∈ Z
q⋆

+ : m1 + · · ·+mq⋆ = q ∧ dq⋆}.
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For everym ∈ Mq, we define the family of functions

Lq,m,α =

{

q⋆
∑

i=1







ηi
fθ⋆i
f⋆

+ β∗
i

D1fθ⋆i
f⋆

+

mi
∑

j=1

ρ∗ij
D2fθ⋆i
f⋆

ρij







+

q
∑

j=1

γj
fθj
f⋆

:

(η, β, ρ, γ, θ) ∈ Iq,m,α

}

,

where

Iq,m,α =

{

(η, β, ρ, γ, θ) ∈ R
q⋆×(Rd)q

⋆×(Rd)m1×· · ·×(Rd)mq⋆ ×R
q×Θq :

q⋆
∑

i=1

|ηi| ≤
1

c⋆
+

1√
c⋆α

,

q⋆
∑

i=1

‖βi‖ ≤ 1

c⋆
+

2T√
c⋆α

,

q⋆
∑

i=1

mi
∑

j=1

‖ρij‖2 ≤
1

c⋆
,

q
∑

j=1

|γj| ≤
1√

c⋆α ∧ c⋆

}

.

Define the family of functions

Lq,α =
⋃

m∈Mq

Lq,m,α

From Lemmas 5.16 and 5.17, we find that for any functiond ∈ Dq,α, there exists
a functionℓ ∈ Lq,α such that (here we use thath(f, f⋆) ≤

√
2 for anyf )

|d− ℓ| ≤ {4‖S‖24S + 2S2} (α ∧
√
2) +

d3/2
√
2

3(c⋆)5/4
{‖H3‖2 S +H3}α1/4.

Usingα ∧
√
2 ≤ 23/8α1/4 for all α > 0, we can estimate

|d− ℓ| ≤ α1/4 U, U =

(

1 + ‖H3‖2
(c⋆)5/4

+ 8‖S‖24 + 4

)

d3/2 {S + S2 +H3},

whereU ∈ L2(f⋆dµ) by Assumption A. Now note that ifm1 ≤ ℓ ≤ m2 for some
functionsm1,m2 with ‖m2 −m1‖2 ≤ ε, thenm1 − α1/4 U ≤ d ≤ m2 + α1/4 U
with ‖(m2 + α1/4 U)− (m1 − α1/4 U)‖2 ≤ ε+ 2α1/4‖U‖2. Therefore

N(Dq,α, ε+ 2α1/4‖U‖2) ≤ N(Lq,α, ε) ≤
∑

m∈Mq

N(Lq,m,α, ε) for ε > 0.

Of course, we will ultimately chooseε, α such thatε+ 2α1/4‖U‖2 = δ.
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We proceed to estimate the bracketing numberN(Lq,m,α, ε). To this end, let
ℓ, ℓ′ ∈ Lq,m,α, whereℓ is defined by the parameters(η, β, ρ, γ, θ) ∈ Iq,m,α andℓ′

is defined by the parameters(η′, β′, ρ′, γ′, θ′) ∈ Iq,m,α. Note that

q⋆
∑

i=1

mi
∑

j=1

∣

∣

∣

∣

∣

ρ∗ij
D2fθ⋆i
f⋆

ρij − (ρ′ij)
∗
D2fθ⋆i
f⋆

ρ′ij

∣

∣

∣

∣

∣

≤ 2d√
c⋆

H2

q⋆
∑

i=1

mi
∑

j=1

‖ρij − ρ′ij‖.

We can therefore estimate

|ℓ− ℓ′| ≤ H0

q⋆
∑

i=1

|ηi − η′i|+H1

√
d

q⋆
∑

i=1

‖βi − β′
i‖+H0

q
∑

j=1

|γj − γ′j|+

√
d√

c⋆α ∧ c⋆
H1 max

j=1,...,q
‖θj − θ′j‖+

2d
√
dq⋆√
c⋆

H2

[

q⋆
∑

i=1

mi
∑

j=1

‖ρij − ρ′ij‖2
]1/2

.

where we have used that|fθ − fθ′ |/f⋆ ≤ ‖θ − θ′‖H1

√
d by Taylor expansion.

Therefore, writingV = (H0 +H1 +H2) d
√
dq⋆, we have

|ℓ− ℓ′| ≤ V |||(η, β, ρ, γ, θ) − (η′, β′, ρ′, γ′, θ′)|||q,m,α,

where|||·|||q,m,α is the norm onR(1+d)q⋆+d(q∧dq⋆)+(1+d)q defined by

|||(η, β, ρ, γ, θ)|||q,m,α =

q⋆
∑

i=1

|ηi|+
q⋆
∑

i=1

‖βi‖+
q
∑

j=1

|γj|

+
1√

c⋆α ∧ c⋆
max

j=1,...,q
‖θj‖+

2√
c⋆

[

q⋆
∑

i=1

mi
∑

j=1

‖ρij‖2
]1/2

.

Note that if|||(η, β, ρ, γ, θ)−(η′, β′, ρ′, γ′, θ′)|||q,m,α ≤ ε′, then we obtain a bracket
ℓ′− ε′V ≤ ℓ ≤ ℓ′+ ε′V of size‖(ℓ′+ ε′V )− (ℓ′− ε′V )‖2 = 2ε′‖V ‖2. Therefore,
if we denote byN(Iq,m,α, |||·|||q,m,α, ε

′) the cardinality of the largest packing of
Iq,m,α by ε′-separated points with respect to the|||·|||q,m,α-norm, then

N(Lq,m,α, ε) ≤ N(Iq,m,α, |||·|||q,m,α, ε/2‖V ‖2) for ε > 0.

But note that, by construction,Iq,m,α is included in a|||·|||q,m,α-ball of radius not

exceeding(6+3T )/(
√
c⋆α∧c⋆). Therefore, using the standard fact that the packing

number of ther-ball B(r) = {x ∈ B : |||x||| ≤ r} in anyn-dimensional normed
space(B, |||·|||) satisfiesN(B(r), |||·|||, ε) ≤ (2r+ε

ε )n, we can estimate

N(Lq,m,α, ε) ≤
(

4‖V ‖2(6 + 3T )/(
√
c⋆α ∧ c⋆) + ε

ε

)(1+d)q⋆+d(q∧dq⋆)+(1+d)q

.
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In particular, ifε ≤ 1 andα ≤ c⋆, then

N(Lq,m,α, ε) ≤
(

(24 + 12T )‖V ‖2/
√
c⋆ +

√
c⋆

ε
√
α

)3(d+1)q

.

Finally, note that the cardinality ofMq can be estimated as

#Mq =

(

q⋆ + q ∧ dq⋆ − 1

q ∧ dq⋆

)

≤ eq∧dq
⋆

(

q⋆ + q ∧ dq⋆ − 1

q ∧ dq⋆

)q∧dq⋆

≤ 23q,

where we have used thatq ≥ q⋆. We therefore obtain

N(Dq,α, δ) ≤
∑

m∈Mq

N(Lq,m,α, δ − 2α1/4‖U‖2)

≤
(

24(2 + T )‖V ‖2/
√
c⋆ +

√
c⋆

(δ − 2α1/4‖U‖2)
√
α

)3(d+1)q

wheneverδ ≤ 1 andα ≤ (δ/2‖U‖2)4 ∧ c⋆.
Step 2(the second term). Forf, f ′ ∈ Mq with h(f, f⋆) > α andh(f ′, f⋆) > α,

|df − d′f | =
|(
√

f/f⋆ − 1)‖
√

f ′/f⋆ − 1‖2 − (
√

f ′/f⋆ − 1)‖
√

f/f⋆ − 1‖2|
h(f, f⋆)h(f ′, f⋆)

≤ ‖
√

f ′/f⋆ −
√

f/f⋆‖2|
√

f/f⋆ − 1|+
√
2 |
√

f/f⋆ −
√

f ′/f⋆|
α2

,

where we have used thath(f, f⋆) ≤
√
2 for anyf . Now note that

∣

∣

√
a−

√
b
∣

∣

2 ≤
∣

∣

√
a−

√
b
∣

∣

(√
a+

√
b
)

= |a− b|

for anya, b ≥ 0. We can therefore estimate

|df − d′f | ≤
‖(f − f ′)/f⋆‖1/21 (

√
H0 + 1) +

√
2 |(f − f ′)/f⋆|1/2

α2
,

where we have used that|
√

f/f⋆ − 1| ≤
√
H0 + 1 for anyf ∈ M. Now note that

if we write f =
∑q

i=1 πifθi andf ′ =
∑q

i=1 π
′
ifθ′i , then we can estimate

∣

∣

∣

∣

f − f ′

f⋆

∣

∣

∣

∣

≤ H0

q
∑

i=1

|πi − π′
i|+H1

√
d max
i=1,...,q

‖θi − θ′i‖.

Defining

W = (
√

H0 + 1)‖H0 +H1

√
d‖1/21 +

√
2 (H0 +H1

√
d)1/2,
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we obtain

|df − d′f | ≤
W

α2
|||(π, θ)− (π′, θ′)|||1/2q , |||(π, θ)|||q =

q
∑

i=1

|πi|+ max
i=1,...,q

‖θi‖

(clearly |||·|||q defines a norm onR(d+1)q). Now note that if|||(π, θ) − (π′, θ′)|||q ≤
ε, then we obtain a bracketd′f − ε1/2W/α2 ≤ df ≤ d′f + ε1/2W/α2 of size

‖(d′f + ε1/2W/α2)− (d′f − ε1/2W/α2)‖2 = 2ε1/2‖W‖2/α2. Therefore

N(Dq\Dq,α, δ) ≤ N(∆q ×Θq, |||·|||q, α4δ2/4‖W‖22),

where we have defined the simplex∆q = {π ∈ R
q
+ :
∑q

i=1 πi = 1}. We can now
estimate the quantity on the right hand side of this expression as before, giving

N(Dq\Dq,α, δ) ≤
(

8(1 + T )‖W‖22 + (c⋆)4

α4δ2

)(d+1)q

for δ ≤ 1 andα ≤ c⋆.
End of proof. Chooseα = (δ/4‖U‖2)4. Collecting the various estimates above,

we find that forδ ≤ 1 ∧ 4(c⋆)1/4 (as‖U‖2 ≥ ‖S‖1 ≥ 1 by Lemma 5.14)

N(Dq , δ) ≤
(

768(2 + T )‖U‖22‖V ‖2/
√
c⋆ + 32‖U‖22

√
c⋆

δ3

)3(d+1)q

+

(

418(1 + T )‖U‖162 ‖W‖22 + 416‖U‖162 (c⋆)4

δ18

)(d+1)q

≤
(

c⋆0 (T ∨ 1)1/6 (‖U‖2 ∨ ‖V ‖2 ∨ ‖W‖2)
δ

)18(d+1)q

wherec⋆0 = 12(c⋆)−1/12 + 2(c⋆)1/12 + 4(c⋆)4/18 + 8. It follows that

N(Dq, δ) ≤
(

C⋆(T ∨ 1)1/6(‖H0‖44 ∨ ‖H1‖44 ∨ ‖H2‖44 ∨ ‖H3‖22)
δ

)18(d+1)q

for all δ ≤ δ⋆, whereC⋆ andδ⋆ are constants that depend only onc⋆, d, andq⋆.
This establishes the estimate given in the statement of the Theorem. The proof of
the second half of the Theorem follows from Corollary 5.15 and ‖H0‖4 ≥ 1.

5.5. Proof of Theorem 4.1.The proof of Theorem 4.1 is based on Theorem 2.3
and the following result.
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PROPOSITION5.18. Let Mn for n ≥ 1 be a family of strictly positive prob-
ability densities with respect to a reference measureµ such thatMn ⊆ Mn+1

for all n. DefineM =
⋃

nM
n, and letf⋆ be another probability density with re-

spect toµ such thatf⋆ 6∈ clM, whereclM denotes theL1(dµ)-closure ofM. Let
Hn = {

√

f/f⋆ : f ∈ Mn}, and suppose there existK(n) ≥ 1 andp ≥ 1 so that

N(Hn, δ) ≤
(

K(n)

δ

)p

for all δ ≤ 1 and n ≥ 1, whereN(Hn, δ) is the minimal number of brackets
of L2(f⋆dµ)-width δ needed to coverHn. Let (Xi)i∈N be i.i.d. with distribution
f⋆dµ. If in addition logK(n) = o(n), then we have

lim sup
n→∞

sup
f∈Mn

1

n

n
∑

j=1

log

(

f(Xj)

f⋆(Xj)

)

< 0 a.s.

PROOF. As in the proof of Theorem 5.1, we have

1

n

n
∑

j=1

log

(

f(Xj)

f⋆(Xj)

)

≤ 4n−1/2νn(log({f̄ /f⋆}1/2))− 2D(f⋆||f̄).

The following claim will be proved below:

lim
n→∞

sup
f∈Mn

n−1/2νn(log({f̄ /f⋆}1/2)) = 0 a.s.

Using the claim, the proof is easily completed: indeed, we then have

lim sup
n→∞

sup
f∈Mn

1

n

n
∑

j=1

log

(

f(Xj)

f⋆(Xj)

)

≤ −2 inf
f∈M

D(f⋆||f̄) < 0 a.s.,

where the last inequality follows from Pinsker’s inequality andf⋆ 6∈ clM.
It therefore remains to prove the claim. To this end we apply [25], Theorem 5.11

as in the proof of [25], Theorem 7.4 (cf. Theorem 5.1 above), which yields

P

[

sup
f∈Mn

|n−1/2νn(log({f̄ /f⋆}1/2))| ≥ α

]

≤ C e−nα2/C

for everyα > 0 such thatC
√
p (1 +

√

logK(n)) ≤ α
√
n ≤ 32

√
n andn ≥ 1,

whereC is a universal constant. AslogK(n) = o(n), we have

∑

n≥1

P

[

sup
f∈Mn

|n−1/2νn(log({f̄ /f⋆}1/2))| ≥ α

]

< ∞

for all 0 < α ≤ 32, so the claim follows from the Borel-Cantelli lemma.
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We can now complete the proof of Theorem 4.1.

PROOF OFTHEOREM 4.1. By Theorem 2.3 and easy manipulations,P
⋆-a.s.

lim sup
n→∞

sup
q>q⋆

1

pen(n, q)− pen(n, q⋆)

{

sup
f∈Mn

q

ℓn(f)− sup
f∈Mn

q⋆

ℓn(f)

}

≤ lim
n→∞

sup
q>q⋆

η(q){logK(2n) ∨ log log n}
pen(n, q)− pen(n, q⋆)

×

lim sup
n→∞

1

logK(2n) ∨ log log n
sup
q>q⋆

1

η(q)

{

sup
f∈Mn

q

ℓn(f)− sup
f∈Mn

q⋆

ℓn(f)

}

= 0.

Therefore,P⋆-a.s. eventually asn → ∞

sup
f∈Mn

q

ℓn(f)− pen(n, q) < sup
f∈Mn

q⋆

ℓn(f)− pen(n, q⋆)

for all q > q⋆. It follows that lim supn→∞ q̂n ≤ q⋆ P
⋆-a.s., that is, the penalized

likelihood order estimator does not asymptotically overestimate the order.
On the other hand, we note that for everyq < q⋆

lim sup
n→∞

1

n

{

sup
f∈Mn

q

ℓn(f)− sup
f∈Mn

q⋆

ℓn(f)

}

≤ lim sup
n→∞

sup
f∈Mn

q

1

n

n
∑

j=1

log

(

f(Xj)

f⋆(Xj)

)

which is strictly negativeP⋆-a.s. by Proposition 5.18, where we have used that
logK(n) = o(n) and thatN(Hn

q (2), δ) ≤ N(Hn
q⋆(2), δ) ≤ (2K(n)/δ)η(q

⋆) for
all δ ≤ 2 andn sufficiently large. Aspen(n, q)/n → 0 asn → ∞ for q < q⋆

lim sup
n→∞

max
q<q⋆

1

n

{

sup
f∈Mn

q

ℓn(f)− pen(n, q)− sup
f∈Mn

q⋆

ℓn(f) + pen(n, q⋆)

}

< 0

P
⋆-a.s. In particular, we find thatP⋆-a.s. eventually asn → ∞

sup
f∈Mn

q

ℓn(f)− pen(n, q) < sup
f∈Mn

q⋆

ℓn(f)− pen(n, q⋆)

for all q < q⋆. It follows that lim infn→∞ q̂n ≥ q⋆ P
⋆-a.s., that is, the penalized

likelihood order estimator does not asymptotically underestimate the order.

Finally, let us prove Corollary 4.3.
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PROOF OFCOROLLARY 4.3. It is shown in the proof of Corollary 2.6 that

Γ := sup
g∈L2

0(f
⋆dµ)

{

sup
d∈D̄c

q

(〈d, g〉)2+ − sup
d∈D̄q⋆

(〈d, g〉)2+

}

> 0.

By Theorem 2.5, we have

lim sup
n→∞

1

pen(n, q)− pen(n, q⋆)

{

sup
f∈Mq

ℓn(f)− sup
f∈Mq⋆

ℓn(f)

}

≥

1

C{η(q)− η(q⋆)} sup
g∈L2

0(f
⋆dµ)

{

sup
d∈D̄c

q

(〈d, g〉)2+ − sup
d∈D̄q⋆

(〈d, g〉)2+

}

P
⋆-a.s.

Therefore, choosingC < Γ/{η(q) − η(q⋆)}, we find that

sup
f∈Mq

ℓn(f)− pen(n, q) > sup
f∈Mq⋆

ℓn(f)− pen(n, q⋆)

infinitely oftenP⋆-a.s., so that̂qn 6= q⋆ infinitely oftenP⋆-a.s.

5.6. Proof of Proposition 4.4. The proofs of the consistency results in Propo-
sitions 4.4 and 4.5 follow almost immediately from Theorem 4.1, Corollary 3.4,
and Example 3.5. The main difficulty is to establish the condition D̄c

q\D̄q⋆ 6= ∅ of
Corollary 4.3, which is needed to prove the inconsistency part of Proposition 4.4.
To this end, we will need the following lemma characterizingD̄q⋆ (here we adopt
the same notations as in section 3.2).

LEMMA 5.19. Suppose that Assumption A holds. Then we have

D̄q⋆ =

{

L

‖L‖2
: L =

q⋆
∑

i=1

{

ηi
fθ⋆i
f⋆

+β∗
i

D1fθ⋆i
f⋆

}

, ηi ∈ R, βi ∈ R
d,

q⋆
∑

i=1

ηi = 0

}

.

PROOF. Let (fn)n≥1 ⊂ Mq⋆ be such thath(fn, f⋆) → 0 anddfn → d0 ∈
D̄q⋆ . By Theorem 5.11, we may assume without loss of generality that fn =
∑q⋆

i=1 π
n
i fθni with θni → θ⋆i andπn

i → π⋆
i for every i = 1, . . . , q⋆. Taylor ex-

pansion gives

fn − f⋆

f⋆
= Ln +Rn, |Rn| ≤

d

2
H2

q⋆
∑

i=1

πn
i ‖θni − θ⋆i ‖2,

where

Ln =

q⋆
∑

i=1

{

(πn
i − π⋆

i )
fθ⋆i
f⋆

+ πn
i (θ

n
i − θ⋆i )

∗
D1fθ⋆i
f⋆

}

.
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Proceeding as in Lemmas 5.16 and 5.17, we can estimate
∥

∥

∥

∥

dfn − Ln

‖Ln‖2

∥

∥

∥

∥

2

≤ 2‖S‖24{2‖S‖2 + 1}h(fn, f⋆) + {‖S‖2 + 1} ‖Rn‖2
‖Ln‖2

.

But using Theorem 5.11, we find that forn sufficiently large

‖Ln‖2 ≥ ‖Ln‖1 ≥ c⋆
q⋆
∑

i=1

πn
i ‖θni − θ⋆i ‖.

Thus we have

‖Rn‖2
‖Ln‖2

≤ d‖H2‖2
2c⋆

∑q⋆

i=1 π
n
i ‖θni − θ⋆i ‖2

∑q⋆

i=1 π
n
i ‖θni − θ⋆i ‖

≤ d‖H2‖2
2c⋆

max
i=1,...,q⋆

‖θni − θ⋆i ‖
n→∞−−−→ 0.

We have therefore shown thatLn/‖Ln‖2 → d0 in L2(f⋆dµ). Now define

ηni =
πn
i − π⋆

i

Zn
, βn

i =
πn
i (θ

n
i − θ⋆i )

Zn
, Zn =

q⋆
∑

i=1

{|πn
i −π⋆

i |+‖πn
i (θ

n
i −θ⋆i )‖}.

As
∑q⋆

i=1{|ηni | + ‖βn
i ‖} = 1 for all n, we may extract a subsequence such that

ηni → ηi, βn
i → βi, and

∑q⋆

i=1{|ηi|+ ‖βi‖} = 1. We obtain immediately

d0 =
L

‖L‖2
, L =

q⋆
∑

i=1

{

ηi
fθ⋆i
f⋆

+ β∗
i

D1fθ⋆i
f⋆

}

.

Clearly
∑q⋆

i=1 ηi = 0. Thus we have shown that anyd0 ∈ D̄q⋆ has the desired form.
It remains to show that any function of the desired form is in fact an element of

D̄q⋆ . To this end, fixηi ∈ R, βi ∈ R
d with

∑q⋆

i=1 ηi = 0, and defineft for t > 0 as

ft =

q⋆
∑

i=1

(π⋆
i + tηi) fθ⋆i +βit/π⋆

i
.

Clearlyft ∈ Mq⋆ for all t sufficiently small, andft → f⋆ ast → 0. But

ft − f⋆

t
=

q⋆
∑

i=1

π⋆
i

fθ⋆i +βit/π⋆
i
− fθ⋆i

t
+

q⋆
∑

i=1

ηi fθ⋆i +βit/π⋆
i
.

Therefore clearly

1

t

ft − f⋆

f⋆

t→0−−→
q⋆
∑

i=1

{

ηi
fθ⋆i
f⋆

+ β∗
i

D1fθ⋆i
f⋆

}

= L.
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Using Lemma 5.16, we obtain

lim
t→0

dft = lim
t→0

(ft − f⋆)/tf⋆

‖(ft − f⋆)/tf⋆‖2
=

L

‖L‖2
.

Thus any function of the desired form is in̄Dq⋆ , and the proof is complete.

REMARK 5.20. The proof of Lemma 5.19 in fact shows thatD̄q⋆ = D̄c
q⋆ .

We can now complete the proof of Propositions 4.4 and 4.5.

PROOF OFPROPOSITION4.4. We begin by proving consistency of the penalty
pen(n, q) = q ω(n). Note that by Corollary 3.4, the assumption of Corollary 4.2
holds withη(q) = 18(d+1)q+1 ≤ 19(d+1)q. Thus consistency ofpen(n, q) =
q ω(n) follows from Corollary 4.2 using̟ (n) = ω(n)/19(d + 1).

To prove inconsistency of the penaltypen(n, q) = C q log log n with C > 0
sufficiently small, it suffices to show that̄Dc

q⋆+1\D̄q⋆ is nonempty. Indeed, if this
is the case then we can apply Corollary 4.3 withq = q⋆ + 1, where the requisite
entropy assumption follows immediately from Theorem 4.1.

Fix v ∈ R
d, and consider the functionft defined fort > 0 as follows:

ft =
π⋆
1

2
(fθ⋆1+vt + fθ⋆1−vt) +

q⋆
∑

i=2

π⋆
i fθ⋆i .

Clearlyft ∈ Mq⋆+1 for all t sufficiently small,ft → f⋆ ast → 0, and

ft − f⋆

t2
=

π⋆
1

2

fθ⋆1+vt − 2 fθ⋆1 + fθ⋆1−vt

t2
t→0−−→ π⋆

1

2
v∗D2fθ⋆1v.

As in the proof of Lemma 5.19, we find that

lim
t→0

dft = lim
t→0

(ft − f⋆)/t2f⋆

‖(ft − f⋆)/t2f⋆‖2
=

v∗D2fθ⋆1v

‖v∗D2fθ⋆1v‖2
= d0.

By construction,d0 ∈ D̄c
q⋆+1. But by Theorem 5.11, the functionsfθ⋆i , D1fθ⋆i , and

v∗D2fθ⋆i v (i = 1, . . . , q⋆) are all linearly independent. Together with Lemma 5.19,
this shows thatd0 6∈ D̄q⋆ . Thusd0 ∈ D̄c

q⋆+1\D̄q⋆ , and the proof is complete.

PROOF OFPROPOSITION4.5. By Example 3.5, the assumption of Theorem
4.1 holds withη(q) = 18(d + 1)q + 1 andlogK(n) = logC⋆

1 + C⋆
2T (n)

2. The
desired consistency results now follow immediately from Theorem 4.1.
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