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PATHWISE FLUCTUATIONS OF LIKELIHOOD RATIOS AND
CONSISTENT ORDER ESTIMATION

BY ELISABETH GASSIAT AND RAMON VAN HANDEL
Universié Paris-Sud and Princeton University

Consider an i.i.d. sequence of random variables whosdhilison f*
lies in one of a nested family of modéld,, ¢ > 1. We obtain a sharp char-
acterization of the pathwise fluctuations of the generdlitideelihood ratio
statistic under entropy assumptions on the model clasggedMoreover, we
develop a technique to obtain local entropy bounds fromajlehtropy com-
putations, so that these results can be applied in modetsneit-regular ge-
ometric structure. Finally, the results are applied to prstrong consistency
and to identify minimal penalties for penalized likelihoodder estimators
in the absence of prior upper bounds on the model order andnttherlying
parameter set. Location mixture models, which possessaioosly compli-
cated geometric structure, are used as a case study thrdupegaper, and
the requisite geometric analysis is of independent interes
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2 E. GASSIAT AND R. VAN HANDEL

1. Introduction. Let (X});>1 be a sequence of random variables whose dis-
tribution f* lies in one of a nested family of mode{3(,),>1, indexed (and or-
dered) by the integers. We define the model order as the shialtkexg* such that
the true distributionf™* lies in the corresponding model class. The model order typ-
ically determines the most parsimonious representatichefrue distribution of
the underlying model (for example, it might determine theapzetrization of the
model which has the smallest possible dimension). On ther dtand, the model
order often has a concrete interpretation in terms of theatliod of the underly-
ing phenomenon (for example, the estimation of the numbetusters in a data
set, or the number of regimes in an economic time seriesyefdre, the problem
of estimating the model order from observed data is of sicgnifi practical, as well
as theoretical, interest.

Of course, a satisfactory solution to this problem must jgi®wan estimation
method that does not assume prior knowledge on the undgnyiknown distri-
bution f*. In particular, prior bounds on model order and on paransstts should
be avoided. Yet, in this light, even one of the most widelydusedel selection
criteria—the Bayesian Information Criterion (BIC) of Scim&—is poorly under-
stood. The chief motivation for the use of BIC (as opposedtheromodel selec-
tion criteria, such as Akaike’s Information Criterion) et it is expected to yield
a strongly consistent estimator of the model order. Howeagis pointed out by
Csiszar and Shields [9], almost all existing consistenmop{s assume a prior upper
bound on the order as well as compactness of the underlyiragneder sets. This
is hardly satisfactory from the theoretical point of viewdagprovides little confi-
dence in the basic motivation for this method. More delicptestions, such as the
minimal penalty that yields a strongly consistent ordeingstor in the absence of a
prior bound on the order, also remain open (the problem aitifyeng the minimal
penalty, which minimizes the probability of underestimgtthe model order, was
also raised in [9]).

Characterizing strong consistency of penalized likelthooder estimators hinges
on a precise understanding of the pathwise fluctuationsedikélihood ratio statis-
tic

sup £n(f) — sup Ln(f),

feMy FeMgx
asn — oo, uniformly in the model ordey > ¢* (here,,(f) is the likelihood of
(X%)k<n under the distributiorf € M,). When there is a known upper bound on
the orderg* < gmax < oo and the model classé¥, are parametrized by a com-
pact subset of Euclidean space, an upper bound on the patfiugsuations can
be obtained by classical parametric methods: Taylor exparef the likelihood
and an application of a law of iterated logarithm. This apploforms the basis
for most consistency proofs for penalized likelihood orestimators in the litera-
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ture, for example [14, 22, 10, 16, 6]. However, such techesdfail in the absence
of a prior upper bound: even though each model clgsis finite dimensional,
the full modelM = |J, M, is infinite dimensional and, as such, the problem in
the absence of a prior upper bound is inherently nonparameivhen the model
classes\(, are noncompact, one must introduce sieh&sc M/ C --- € M,
which complicate the problem further (in this case even drametric theory re-
mains poorly understood, see [15, 3, 19]). An entirely dife approach based on
universal coding theory [10, 12, 5, 7] yields pathwise ugpaunds on the likeli-
hood ratio statistic that do not require prior bounds on tfte0or compactness
of the models. However, these bounds are far from tight andateeven establish
consistency of BIC, let alone smaller penalties (this appéabe a fundamental
limitation of this approach due to Rissanen’s theorem, 2ée7)).

To our knowledge, the only setting in which the pathwise fiations of the like-
lihood ratio statistic has been studied in the absence abalppund on the order is
that of higher-order Markov chains, where Csiszar andi&[®, 8] proved consis-
tency of BIC. The proofs in [9, 8] use delicate estimates jgeo Markov chains,
and do not yield minimal penalties. However, it was shown2®][that a sharp
bound can be obtained in the Markov chain case using techsiffom empiri-
cal process theory, the main difficulty being the dependatreesture of Markov
chains.

The aim of this paper is to obtain generally applicable ugpet lower bounds
on the pathwise fluctuations of the likelihood ratio statishiformly in the model
orderg > ¢*, in the case of i.i.d. observatiofis’; ), >, without a prior bound on
the model order and in possibly honcompact parameter spatesise empirical
process methods as in [27], but the difficulties to be surrtealim the present set-
ting are of a different nature. Though the Markov chain medel[9, 8, 27] suffer
from a lack of independence, geometrically these modelgxreedingly simple:
the family of gth-order Markov chains endowed with the Hellinger distaiscgm-
ply a Euclidean ball when viewed in the appropriate paramaton. In contrast, in
general order estimation problems, one is often faced wiblehclasses that are
geometrically very complex. An important case study thdt be considered in
this paper are finite mixture models (widely used in pradiiceclustering), which
possess a notoriously complicated non-regular geometrgbiain sharp bounds
in such models, we will develop tools that can be used to nlwaial and weighted

10One of the key issues in this setting is to understand therdigmee of the fluctuations of the
likelihood ratio statistic on the dimension of the modekslesM,. However, one of the main results
of this paper shows that for regular parametric models, tlttfations of the likelihood ratio statistic
uniformly in ¢ > ¢* are dimension independent when a prior upper bound is ass(cheRemark
2.7), which is certainly not the case in the absence of a pipper bound. Therefore, we find that
the pathwise fluctuations of the likelihood ratio statistith and without a prior upper bound are
qualitatively different.
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entropy bounds, required for our pathwise fluctuation thexs, in models with
non-regular geometric structure. These results are opiergent interest: we are
not aware of any existing local entropy results for modedd fossess a nontrivial
geometric structure (the difficulty of obtaining local ey bounds for mixture
models is noted, for example, in [13, 21]). Finally, we wipy our results to
establish strong consistency of BIC and to identify minipahalties for order es-
timation for general model classes, in the absence of pdonts on the order and
the underlying parameter set.

The remainder of this paper is organized as follows. Se@idmtroduces the
general model under consideration, and states our resultseopathwise fluctua-
tions of the likelihood ratio statistic. Section 3 states@eneral results on local and
weighted entropies, and considers also the special casxnfrenmodels. Section
4 derives the consequences for order estimation. Proofgiae in section 5.

2. Pathwise fluctuations of the likelihood ratio statistic.

2.1. Basic setting and notation.Let (F, &, 1) be a measure space. For each
q,n > 1, let My be a given family of strictly positive probability densgievith
respect tou (that is, we assume thgtfdu = 1 and thatf > 0 p-a.e. for every
[ € My). Moreover, we assume théMy ), »>1 is a nested family of models in
the sense tha(; € M7, , andM; C M2t forall g,n > 1. Let M, = U, M7,
M=y, Mg, M=U,, M.

Consider an i.i.d. sequence Bfvalued random variablgsX},) >, whose com-
mon distribution under the measulRe is f*du, where f* € Mg« \ cl My+_; for
someg* > 1 (herecl M, denotes thé.! (du)-closure ofM,). The indexg* is called
themodel order Let us define the log-likelihood function

() = log f(Xi), fem.
i=1

Evidently ¢,,(f) is the log-likelihood of the i.i.d. sequen¢&y,),<, WhenX; ~
fdu. Our aim is to study the pathwise fluctuations of the liketiigatio statistic

sup gn(f) — sup gn(f)

femn femr,
asn — oo, uniformly over the order parameter> ¢*. Pathwise upper and lower
bounds on the likelihood ratio statistic are the key ingeatin the study of strong
consistency of penalized likelihood order estimators ¢geion 4).

ExXAMPLE 2.1 (Location mixtures). The guiding example for our theahng
case of location mixtures, will be studied in detail in seet 3.2 and 4.2 below.
We presently introduce this example in order to clarify oasib setup.
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Let £ = R? (with its Borel o-field &) and let; be the Lebesgue measure on
R?. We fix a strictly positive probability density, with respect tgu, and define
fo(x) = fo(x — 0) for 2,0 € RY. Fix a sequencé (n) 1 co and define

q q
= {megi cm >0, Zm =1, ||6:] < T(n)}
i=1 i=1

ThenM, is the family of allg-component mixtures of translates of the dengity
while My is the subset of the mixturéd, whose translation parametés);— .,

are restricted to a ball of radiu§(n). The number of componentg of the true
mixture f* € M can be estimated from observations using the order estimato

G = argmax { sup £, (f) — pen(n, q>} .
q>1 femz

Pathwise control of the likelihood ratio statistic allowssto identify what penalties

pen(n,q) and cutoff sequences(n) yield strong consistency af,, (cf. section

4.2).

REMARK 2.2. To avoid measurability problems and other technicatpp
cations, we employ throughout this paper the simplifyingwamtion that all un-
countable suprema (such A e ¢, (f)) are interpreted as essential suprema
with respect to the measul®*. In the majority of applications the model classes
My will be separable, in which case the supremum and esseapegsum coin-
cide.

In the sequel, we will denote by - ||, the Lp(f*du) norm that is,||g|[b =
[ 19(z)|P £*(z)p(dz), and we denote byf, g) = [ f(x) (z)p(dz) the Hilbert
space inner product ih?( f*du). Define the Helllnger dlstance

h(f7g)2:/(\/?_\/§)2d/% fngM-

It is easily seen thab(f, f*) = |[\/f/f* — 1||2. Finally, we will denote by
N(Q, ) for any class of function® ando > 0 the minimal number of brackets
of L?(f*du)-width 6 needed to cove®: that is,N(Q, ¢) is the smallest cardinality
N of a collection of pairs of function§g”, ¢V }:—1__n such thatmax;<y ||g¥ —
gF|l2 < 6 and for everyy € Q we haveg” < g < gV pointwise for someé < N.

2.2. Upper bound. We aim to obtain a pathwise upper bound on the likelihood
ratio statistic that holdaniformlyin ¢ > ¢*. To this end, define fog,n» > 1 and
e > 0 the Hellinger ball

e) ={Vf/f*:feMy, h(f, [") <e}.
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Note that the definition of(7 (c) depends orf* (which is fixed throughout the
paper). The following result shows that the geometry of tiedlikger ballsJ(y ()
controls the pathwise fluctuations of the likelihood ratatistic.

THEOREM2.3. Suppose that for alk sufficiently large, we have

NI (<), 6) < (K (5n)5>n<q>

forall ¢ > ¢* andd < e, with K(n) > 1 andn(q) > ¢ increasing functions. Then

1 1
lim sup sup sup £n(f) — sup L,(f)p <C
n—oo 10g K(2n) Vloglogn ¢>¢+ n(q) {feavtg; n(f) e, n(f)

P*-a.s., where” > 0 is a universal constant.

The proof of Theorem 2.3 is given in section 5.1 below.

The assumption of Theorem 2.3 on the entropy of the Hellitgis 3} (¢)
states, roughly speaking, that the class of densitigsendowed with the Hellinger
distance has the same metric structure as a Euclidean hgilinehsion,(q) and
radius of orderk (n), at least locally in a neighborhood of the true dengityThe
effective dimensiom(q) controls the fluctuations of the likelihood ratio statisie
a function of the model order, while the effective radii$n) controls the fluctua-
tions as a function of time up to a minimal rate of ordtarlog n. In the following
section we will see that the minimhlig log » rate is indeed optimal.

Let us note that the geometric structure required by The@&nms far from ob-
vious in many cases of practical interest. For example grcése of finite mixtures,
the geometry of the parameter sets corresponding to Hellibglls is notoriously
complex and highly non-regular, but we will nonethelessfyehe assumption of
Theorem 2.3 (see section 3.2). In order to apply Theoremr2si¢ch cases, we
therefore need to develop tools to establish local entrapyntls in models that
possess nontrivial geometric structure. Section 3 belaeisted to this problem.

2.3. Lowerbound. Throughout this section, we specialize to the caselttjat=
M, does not depend am (this implies essentially that(, is compact). In this set-
ting, Theorem 2.3 yields an upper bound of orligrlog n on the pathwise fluctua-
tions of the likelihood ratio statistic. The aim of this deatis to obtain a matching
lower bound of ordetog log n, which shows that the minimal rate in Theorem 2.3
is essentially optimal. For the purposes of a lower bourel uthiformity ingq is ir-
relevant, so that it suffices to restrict attention to somedix> ¢*. We will in fact
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obtain a much stronger result in this case, which completieracterizes the pre-
cise pathwise asymptotics of the likelihood ratio statistr fixedq in sufficiently
smooth families.

The geometric structure required in the present sectioorisewhat different
than that of Theorem 2.3. Instead of Hellinger balls, we mm®rsthe classes of
weighted densitied, = {d; : f € My, f # f*} andD = {J, Dy, where

_\/f/f*—l *
ST O R

In addition, we define for > 0 andq > 1 the local weighted classes

QQ(‘L:) = {df 1 fe My, 0 < h(f?f*) Sg}7 ®q = ﬂCIQQ(g)v

e>0

where the closurel D,(e) is in L*(f*du). Evidently D, is the set of all possible
limit points of d; ash(f, f*) — 0in M,. If the neighborhoods oD, are suf-
ficiently rich, such limits can be taken along a continuouth pa the following
sense.

DEFINITION 2.4. A pointd € D, is calledcontinuously accessiblié there
is a path(f;):cj0,1) € Mg\{f*} such that the map — h(f;, f*) is continuous,
h(fi, f*) — 0ast — 0, anddy, — d in L*(f*du) ast — 0. The subset of all
continuously accessible points By, will be denoted ag¢.

We can now formulate the main result of this section.

THEOREM2.5. Letg* < p < ¢. Assume that

1
/ \/1og N(Dy, u) du < oo,
0

and that|d| < D for all d € D, with D € L?*°(f*du) for somea > 0. Then

1
limsup ———— < sup £, (f) — sup £,(f) p >
n—oo loglogn feMq FeMp

sup {sup((f,9>)i—Sup(<f,g>)i} P*-a.s,

geLd(f*du) ( feDg f€Dyp
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as well as

1imsup; { sup £,(f) — sup En(f)} <
JeMq

n—oo loglogn Fem,

sup {sup(<f,9>)i—Sup(<f,g>)i} P*-a.s,

geLF(f*dp) | f€D, fedy
whereL2(f*du) = {g € L*(f*dp) : ||lgll2 < 1, (1,9) = 0}.

Only the first (lower bound) part of the theorem is needed thkale optimality
of the minimallog log n rate in Theorem 2.3. Indeed, we will obtain as a corollary
the following lower bound counterpart to Theorem 2.3.

COROLLARY 2.6. Suppose there exiss> ¢* such that the following hold.

1. There is an envelope functidn : E — R such thatd| < D forall d € D,,
andD € L?*%(f*du) for somea > 0. Moreover,fo1 log N(Dy, u) du <
Q.

2. DE\Dg+ is nonempty.

Letn(q) > 0 be an arbitrary positive function. Then

1 1
lim sup sup sup ln(f) — sup £n(f) 0 = Co
n—oo loglogmn q>q* n(q) FeMy JEMgx

P*-a.s., whereCy > 0 is nonrandom but may depend ¢handn.

The proofs of Theorem 2.5 and Corollary 2.6 are given in eachi.2 below.

The fact that the geometric assumptions in Theorem 2.5 andll@y 2.6 are
expressed in terms of weighted classes is not surprisintheasharp asymptotic
expression provided by Theorem 2.5 for the pathwise flucnstof the likeli-
hood ratio statistic are expressed in terms of a variatipralem on the weighted
classes. Nonetheless, we are naturally led to ask whetber ih any relation be-
tween the geometric assumptions imposed in the upper booeorgm 2.3 and the
lower bound Theorem 2.5, which appear to be quite differefits sight. In sec-
tion 3, we will show that the global entropy of the weightedsd is closely related
to local entropy, so that the geometric assumptions for gpeuand lower bounds
are not too far apart. Beside the fundamental value of trsgation, the relation
between global and local entropies will prove to be an essetobl in order to
verify these geometric assumptions in models with a corafgitt geometry, such
as finite mixture models.
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REMARK 2.7. WhenD, and D, each contain ad.?(f*du)-dense subset of
continuously accessible points (which is typically theecassufficiently smooth
models), then Theorem 2.5 provides the exact characterzat

1imsup; { sup £n(f) — sup En(f)} =

n—oo loglogn | ren, Fem,

sup { sup ((f,9))% — sup ({f, g>)i} P*-as.

geLE(f*dpu)  feD, feDy

Beside its intrinsic interest, this result has a surprisiogsequence. In the case
that M, andM,, are regular parametric models witlim (M,) > dim(M,), one
can choosg € D, which is orthogonal t,,. As D,, D, C L3(f*du) (see the
proof of Corollary 2.6), it follows easily that in this cadeetright-hand side of
the previous equation display is precisely equal tén particular, we obtain the
curious conclusion that in regular parametric models, thgmitude of the fluctu-
ations of the likelihood ratio statistic does not dependhendimensionslim(M,)
anddim(M,). In contrast, it is well known that in regular parametric ralsd the
likelihood ratio statistic itself converges weakly to a-skjuare distribution with
dim(M,) — dim(M,). degrees of freedom, so the tails of the distribution of the
likelihood ratio statistic do in fact depend strongly on ttimensionsdim(M,)
anddim(M,). Of course, the dimension independence of the pathwisaufitiohs
will also cease to hold if we are interested in a result thahigorm in the ordeg,

as in Theorem 2.3.

3. Entropy bounds. In section 2, we obtained pathwise bounds on the fluc-
tuations of the likelihood ratio statistic in terms of theogeetry of the underlying
model classes. However, we have required two distinct tpbegometric condi-
tions: local entropy bounds for classes of densities, aodaglentropy bounds for
classes of weighted densities. In this section, we will skizat the latter implies
the former under appropriate conditions, so that a suitgldbal entropy bound
for weighted densities suffices for all the results in secBoWe will subsequently
show how the requisite entropy bounds can be obtained focdke of location
mixtures (cf. Example 2.1). The latter is significant botraasmportant applica-
tion, and as a nontrivial case study in obtaining local gutrbounds in models
with a complicated geometry.

3.1. From global entropy to local entropy.We are going to establish that local
entropy estimates for a class of densitidscan be obtained from global entropy
estimates on the associated weighted clas3o this end, let us consider for the
purposes of this section a general class of positive prétyadensitiesM with
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respect to some reference measurea fixed f/* € M, and define the class of
weighted densitie® = {d; : f € M, f # f*}. In addition, we define fo§ > 0
the Hellinger ball3{(6) = {\/f/f* : h(f, f*) < §}. We obtain the following
result, whose proof is given in section 5.3.

THEOREM 3.1. Suppose that there exigtCy > 1 andesy > 0 such that

q
N(D,e) < (%) for everye < g.

Let R > supy |dy| be an envelope function such thak||2 < co. Then

C15> q+1

NW@Mﬁ(p

for all 6, p > 0 such thatp/6 < 4 A 2| R||2, whereCy = 8Cy(1 V || R||2/4e0).

Of course, in the setting of section 2, we would apply thisite® M, Dg,
3 () for givenn, g instead of taV(, D, H(e).

3.2. The entropy of mixtures.We now develop the requisite entropy bounds in
the case of mixtures (Example 2.1). In this section,ddie the Lebesgue mea-
sure onR?. We fix a strictly positive probability densitf with respect tqu, and
consider mixtures of densities in the class

{fo:0€RY,  fo(x) = folx —0) VazeRL

In everything that follows we fix a nondegenerate mixtyiteof the form

q*
2= 7 for
=1

Nondegenerate means thgt > 0 for all ¢, andf; # 67 for all i # ;.

Let © ¢ R? be a bounded parameter set such figait: i =1,...,¢°} C O,
and denote its diameter ¢ (that is,0 is included in some closed Euclidean ball
of radiusT’). We consider fogy > 1 the family of g-mixtures

q q
M, = {megi s > 0, Zm =1,0; € @},
i=1 i=1
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and define the class of weighted densitiedgs= {d; : f € My, f # f*}. Let
Ho(x) = sup fo(z)/f* (@),
0cO

Hy(x) = sup max [0fo(x)/00']/ (),

0eco =1,

Ho(z) =sup max |0?fy(x)/00°067|) f*(x),
0cO 1,j=1,....d

Hs(z) =sup max |0%fs(x)/00'00706% |/ f*(x)
9o i,J,k=1,....d

when f is sufficiently differentiable, and It = (J -, My andD = |~ Dy.

REMARK 3.2. In the setting of Example 2.1, the parameteicset O(n) de-
pends om, and we then writév[g instead ofM,, etc. However, as the dependence
onn is irrelevant for the entropy computation, we consider afigarameter sed
in this section, and drop the dependence:dn our notation for simplicity.

We can now state the result of this section, whose proof imgin section 5.4.

AsSsSUMPTIONA. The following hold:
1. fo € C3andfy(z), (0fy/00%)(x) vanish ag|z| — oo.
2. Hy € L*(f*dp) fork =0,1,2 andHs € L?(f*du).

THEOREM 3.3. Suppose that Assumption A holds. Then there exist constants
C* andé*, which depend od, ¢* and f* but not on®, ¢ or §, such that

18(d+1)q
N(Dy,0) < (C*<T v )YS(| Holl} v ||5H1u3 LAY HH3II%)>

forall ¢ > ¢*, § < 6*. Moreover, there is a functioP € L4(f*du) with
[Dlla < K*(|Holla V [[Hilla V || Hzll4),
where K* depends only od and f*, such thatd| < D for all d € D.

Let us note that a key aspect of this result is that the deperdef the entropy
bound on the ordey and on the parameter gtis essentially explicit (see Exam-
ple 3.5 below, for example). However, even for fixgdnd ©, the existence of a
polynomial bound on the bracketing numberJof is far from obvious (previous
claims [16, 6, 1] that such bracketing numbers are polynbweae stated without
proof).

Define the Hellinger ball{,(c) = {\/f/f* : f € My, h(f, f*) < e}. Using
Theorem 3.1, we immediately obtain the following result ba tocal entropy of
M.
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COROLLARY 3.4. Suppose that Assumption A holds. Then

18(d+1)g+1
Ny e).) < (227

forall ¢ > ¢g*andd /e < 1, where
Co = L* (TV 1) (|[Hol|{ v | Hall3 v | Ha1§ v || Ha13)**
and L* is a constant that depends only dng* and f*.

ExAMPLE 3.5 (Gaussian mixtures). Consider mixtures of standarcsSan
densitiesfo(z) = (2r)~42~1=I°/2, and leto(T) = {§ € R% : ||6]| < T}.
Fix a nondegenerate mixturg’, and defineél™* = max;—; ., ||6;|. Denote by
H,(e,T) the Hellinger ball associated to the parametercsét). Then

* 2
Cre®T ¢

18(d+1)g+1
N(g{q(gv T)7 5) S ( 6 )

forallg > ¢*, T > T*, andd/e < 1, whereC5, C5 are constants that depend on
d, ¢* and f* only. To prove this, it evidently suffices to show that Asstimmp A
holds and thal| H||4 for k = 0,1, 2 and||H||; are of order®?”. These facts are
readily verified by a straightforward but tedious compuatati

REMARK 3.6. We have not optimized the constants in Theorem 3.3 anal-Co
lary 3.4. In particular, the constanB in the exponent can likely be improved.
On the other hand, it is unclear whether the dependence odidngeter of©
is optimal. Indeed, if one is only interested in global epyroN(3(,,d) where
Hy = {V/f/f*: f € My}, then it can be read off from the proof of Theorem
3.3 that the constants in the entropy bound depend /gi|; and ||H;||; only,
which are easily seen to scale polynomiallyZirdue to the translation invariance
of the Lebesgue measure. Therefore, for example in the ¢&aussian mixtures,
one can obtain global entropy bound which scales only polynomially as a func-
tion of T', whereas the abouecal entropy bound scales aS™”. The behavior of
local entropies is much more delicate than that of globalopigs, however, and
we do not know whether it is possible to obtain a local entrbpynd that scales
polynomially inT'.

The proof of Theorem 3.3 is long and rather technical. Nagle#ls, there are
some key ideas underlying the proof, which we aim to brieflyl@x here.
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(@ ()

FIG 1. Let fo(z) = \/2/me 29" and f* = fo.5, and consider the mixture familyl, =
{pfo, + (1 —p)fo, : p,61,02 € [0,1]}. The plots illustrate (a) the set of parametéfs 61, 62)
corresponding to the Hellinger ballf € M. : h(f, f*) < 0.05}; and (b) the set of parameters
{(p7 017 (92) : ]V(p7 (917 02) < 0405} with ]\7(])7 01, (92) = |p((91 —045) + (1 —p) ((92 —0.5)| + %p(91 —
0.5)* + (1 — p)(f2 — 0.5)*. The two plots are related by the local geometry Theorem, Svhich
yi6|dSC*N(p, 01, 92) < h(pf91 + (1 — p)fgz, f*) < C*N(p, 01, 92) forall p,01,02 € [0, 1].

The classical approach to controlling local entropies ofemetric clas§ =
{ge : € e Z}with= C R% is as follows (cf. [26], Example 19.7). Suppose that the
square root densities: = |/ g¢/g¢+ satisfy the pointwise Lipschitz condition

|he(@) = he ()] < H) 1€ =€l ¢ €E,
whereH is a function inL? and||-||| is a norm orE. Suppose, moreover, that
hge, g9ex) = cllE =&l € €&

Define=(e) = {{ € Z: ||€=&"|| < e} andH(e) = {he : £ € B, h(ge, g¢») < €}
If |I€ —¢&'|| <6, thenhe — dH < he < he + 0H. Therefore, we can control the
local bracketing entropy b3 (H(ce),26||H|l2) < N(E(e), ), whereN(Z(¢), d)
denotes metric entropy. But the metric entropy of a ball carcéntrolled by a
standard volume comparison argument, yieldWi¢E (), 6) < ((2¢ + 6)/6).
Clearly the above properties requingé — £*|| < h(ge, ger) < || H||2]1€ — &
forall ¢ € =. Therefore, such an approach can only work when the glasslowed
with the Hellinger distance has a regular geometry (i.aujvadent to a subset of a
finite dimensional Banach space), at least in a neighborbbtuk true parameter.
This fails miserably in the case of mixture clas3€g, which possess a highly non-
regular geometry in a neighborhood fsfwhenq > ¢*. In fact, it is easily seen that
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h(f, f*) = 0 does not even select a unique set of parameters; );—1. . 4, as mMix-
ture models are non-identifiable, and consequently thartdelt ballsd(,(c) look
nothing like norm-balls when viewed as a subset of the patensier;, 6;)i—1.... 4
(cf. Figure 1). Thus we are faced with two basic difficulties:

1. How does one control the subset of parameterd;);1.,... , corresponding
to the Hellinger ballsH,(¢)?
2. How does one control the metric entropy of these sets?

The resolution of the first problem requires us to developegipe understanding

of the local geometry of mixture classes, which is done inofém 5.11 below.
One key consequence of this result, for example, is as fellowe can choose suf-
ficiently small neighborhoodsl, ..., A, of 1, ...,0,+, respectively, such that
the Hellinger distancé( f, f*) is bounded above and below up to a constant by the
pseudodistance

Z”ﬁi{

09j€A0 =1

+

*

9]' cA;

> w0 —0;)

GjGAi

1 *
t3 > 7TjH@j—3iH2}

9]' cA;

(heref = Y7 | mifp, and Ay = R\ (A; U --- U Ag)). This pseudodistance
guantifies precisely (and rather intuitively) the set ofgmaeters with density close
to f*, see Figure 1 for an illustration in the simplest possibkeca

As for the second problem, we avoid it entirely by exploitiflgeorem 3.1 in-
stead of computing directly the local entropy. Using thealageometry Theorem
5.11 and Taylor expansion, we can approximate the weigldasitiesd ; by linear
combinations of their first and second derivatives with fioeits in a Euclidean
ball. The entropy of the latter is easily estimated by thestiptz argument indi-
cated above. However, the details are somewhat intricatgdoifexpansion should
only be applied to parametefs that lie close to somé;, which requires careful
bookkeeping.

The local geometry Theorem 5.11 and the relation betweedpagkentropy of
weighted densities and local entropy developed in Theordnai® key ideas that
allow us to obtain local entropy estimates in a geometsiaadintrivial model. Let
us note that the restriction to location mixtures is onlydlisethe proof of Theorem
5.11. We believe that the same technique is applicable t&r athsses of mixtures
(for example, Poisson mixtures or mixtures of densitiesniexgonential family)
provided that the proof of Theorem 5.11 can be adapted te#tigg.

4. Strongly consistent order estimation. The goal of this section is to apply
the results of sections 2 and 3 to identify what penalties andffs yield strong
consistency of penalized likelihood order estimators. Vét fievelop some general
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consistency and inconsistency results, and then congueifieally the problem
of mixture order estimation.

4.1. Consistency and minimal penaltiedn this section we consider the gen-
eral setting introduced in section 2.1. We now suppose, hexvthat the true model
orderg* (as well as the true densitfy) is not known, so that we must aim to esti-
mateq* from an observation sequent&});>,. To this end, define thpenalized
likelihood order estimatorns

(n = argmax { sup £,(f) — pen(n, C])} ;

q=1 femz

wherepen(n, ¢) is a penalty function. Our goal is to show that the penaliiesli}
hood order estimator is strongly consistent, tha,is;+ ¢* asn — oo P*-a.s., for
a suitable choice of the penalty (that does not depengt@n f*). Let us empha-
size that the maximum in the definition &f is taken overll model orders; > 1,
that is, we do not assume that an a priori upper bound on ther éscavailable,
in contrast to most previous work on this topic. We obtain ftiiowing general
result.

THEOREM4.1. Suppose that for alk sufficiently large, we have

N(H (e),6) < (@)n(q)

forall ¢ > ¢* andé < ¢, whereK (n) > 1 andn(q) > ¢ are increasing functions
and we assume th&ig K (n) = o(n). Letpen(n, ¢q) be a penalty such that

log K(2n) V log
i sup M08 K2n) Vieglogn} _ - pen(ng) _
n—% g5 pen(n, q) — pen(n, ¢*) n—o0 g<g* n
andpen(n, q) is increasing ing. Theng,, — ¢* asn — oo P*-a.s.

Theorem 4.1 is proved in section 5.5 below.
Let us now specialize to the case thdf = M, does not depend om, as in
section 2.3. In this case, Theorem 4.1 immediately yieldSalowing corollary.

COROLLARY 4.2. Suppose thatforalf > ¢* andd < ¢

voee. < (K",
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whereK > 1 andn(q) > ¢ is a strictly increasing function. Define the penalty

pen(n, q) = 1(q) @(n),
wherew(n) is any function such that

log 1
lim —22%8" _ im 2
n—00 w(n) n—oo

=0.

Theng, — ¢* asn — oo P*-a.s.

Corollary 4.2 states that, whevty = M, does not depend om, the penalized
likelihood order estimator is strongly consistent proddee penalty grows faster
thanlog log n and slower tham. Clearly thelog log n rate is the minimal one at-
tainable by applying Theorem 4.1. This raises the questibether thdog log n
rate is indeed minimal, in the sense that smaller penali&d jnconsistent esti-
mators. The following result (which follows easily from Tdrem 2.5) shows that
this is indeed the case, so that the result of Corollary 4e3sentially optimal.

COROLLARY 4.3. Suppose there exisis> ¢* such that the following hold.

1. There is an envelope functidn : £ — R such thatd| < D for all d € D,
andD € L?*t%(f*du) for somea > 0. Moreover,fo1 log N(Dy, u) du <
Q.

2. DE\Dg+ is nonempty.

Letn(q) > 0 be any strictly increasing function, and define the penalty

pen(n,q) = Cn(q) loglogn.

If the constantC' > 0 is chosen sufficiently small, thep # ¢* infinitely often
P*-ass.

The proof of Corollary 4.3 is given in section 5.5. Let us nittat the proof of
Corollary 4.3 actually shows thatip <y, £n(f) —pen(n,q) > SUP e, . o(f)—
pen(n, ¢*) infinitely often P*-a.s., so the conclusion of Corollary 4.3 is not altered
even if we were to impose a prior upper bound on the order.

In conclusion, we have shown that WHEFEL = M, does not depend on penal-
ties growing faster thatvg log n are consistent while the penaltyn(q) log log n
is inconsistent when the constatitis sufficiently small. From the proof of The-
orem 4.1, we can also see that the penélty(q) log log n is consistent whe
is sufficiently large. However, the critical value 6fmay depend on the unknown
parameterf*, so that thisninimalpenalty may not be implementable. On the other
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hand, assuming that(q) does not depend ofi* (as is typically the case), penal-
ties satisfying the assumptions of Theorem 4.1 obvioushnakbdepend on the
unknown parametef* and therefore define admissible estimators. Whghde-
pends om, larger penalties may be required to ensure consistenpgndiéng on
the growth rate of< (n).

4.2. Mixture order estimation. We finally apply the results in the previous sec-
tion to mixture order estimation. Throughout this sectienF = R¢ and let;;, be
the Lebesgue measure @&f. Fix a strictly positive probability density, with
respect tqu, and define

q q
i=1 =1

wherefp(z) = fo(x —0) and--- C ©O(n) CO(n+1) C --- C R¥is an increas-
ing family of bounded subsets &<. We fix f* € M throughout this section. In
the following, we consider two separate cases. The firstisadet of a compact
parameter set, whe@(n) = © does not depend om. In this setting, we obtain a
general result. Then, we consider the noncompact case ietting of Gaussian
mixtures, and illustrate how Theorem 4.1 can be used tombtaisistency results
in this case.
Let us first consider the case of a compact parameter set. Wheobtain a

general consistency result under Assumption A (cf. se@i@h

PROPOSITION4.4. Suppose that the parameter $tn) = O is a bounded
subset oR? independent of,, and that Assumption A holds. If we choose a penalty
of the form

pen(n, q) = qw(n), lim
theng,, — ¢* asn — oo P*-a.s. On the other hand, if we choose the penalty
pen(n,q) = C'q loglogn

with a sufficiently small constaxit > 0, theng,, # ¢* infinitely oftenP*-a.s.

We therefore find that in the setting of location mixtureshwat compact pa-
rameter set, the minimal penalty is of ordeg log n. Moreover, the popular BIC
penalty

dg+q—1

(4.1) pen(n,q) = 5

logn
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yields a strongly consistent mixture order estimator is g@tting, without a prior
upper bound on the order. The requisite Assumption A is a mehy one, which
highlights the broad applicability of this result. Howewvde assumption of a com-
pact parameter space can be quite restrictive in practice.

Let us therefore consider a case where the parameter spammésmpact.
For simplicity we restrict our attention to Gaussian migsyrthat is, we choose
folz) = (2m)~%2¢~1I=I1*/2 and we choose the restricted parameter Géts) =
{6 € RY: ||0|| < T(n)} for some sequencE(n) 1 oo. Our aim is to choose the
penaltypen(n, ¢) and cutoffl’(n) so that the penalized likelihood order estimator
is strongly consistent. In this setting, we obtain the follny result.

PROPOSITION4.5. Let fo(z) = (27) %2~ 121*/2 and ©(n) = {# € R? :
|6|] < T'(n)}, and choose a penalty of the fogpan(n, ) = qw(n). If

. loglogn w(n) B B
JLHC}OW = 11113507 =0, T(n) = O(y/loglogn),
theng,, — ¢* asn — oo P*-a.s. On the other hand, the BIC penalty (4.1) yields a
strongly consistent order estimatorffn) = o(v/log n).

This result illustrates that our theory can establish ciescy of the penalized
likelihood mixture order estimator without any prior updmErunds on the model
order or the magnitude of the true parameters. Let us notethibee is nothing
particularly special about the Gaussian case: a similadtrean be obtained, in
principle, for any mixture distribution, as long as one catam suitable estimates
on the quantitie§ H; |4 that appear in Corollary 3.4 (see Example 3.5 for the Gaus-
sian case).

The proofs of Propositions 4.4 and 4.5 appear in section &db

5. Proofs.

5.1. Proof of Theorem 2.3. The proof of Theorem 2.3 is based on the following
deviation bound for the log-likelihood ratio. This boundeissentially from [25],
Corollary 7.5, but the additional maximum inside the praligbis essential for
our purposes.

THEOREMS5.1. LetM be a family of strictly positive probability densities with
respect to a reference measuyrefix somef* € M, and define the Hellinger ball
H(e) = {\/F/F*: [ €M, h(f,[*) < e} whereh(f,9)> = [(VT — 9)*dp.
Suppose that for some constaifs> 1,p > 1and alld < ¢

N(H(e),6) < (%)p
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whereN(H (), §) is the minimal number of brackets bf(f*du)-width § needed
to coverH(e). Let(X;);en be i.i.d. with distributionf*dyu. Then

1 >
[m e Z o (i) 2

forall « > Cp(1 + log K) andn > 1, whereC' is a universal constant.

< Ce—Oé/C

PROOF. Definef = (f + f*)/2 for any f € M, and define the empirical
process/, (g) = n~ Y237 {9(Xx) — E[g(Xx)]}. Using concavity olog = we

have
k

f()() I px * (| £
S log (m) < 2K 2w l0g (/1)) — 2kD(F11),

j=1

whereD(f*||£) = [ log(f*/f)f*dyuis relative entropy. AD(f*]|f) = h(f, f*)?

1
[m a3 Z o« (725) 2 }

<P | max sup {2k (log(F/f*)) — 2kh(f, 1) }>O‘]
n<k<2nf€
S
<SPl max s B ulog(F/F)] = a2t
g NSKS20 peninh(f,f*)2<a2s
S
< 7/ px1/2 s—5,—1/2
<3)° max P|swp wlog({F/f 1) 2 a2 ]
s=0 FEM:R(f,f*)2<a2n

whereS = min{s : a2*n~! > 2}, and we have used Lemma 5.2 below for the
last inequality. The remainder of the proof is identicalhattof [25], Theorem 7.4

provided we show that fak((e) = {\/f/f*: f € M, h(f, f*) < e}
N(F(e), 8) < (NiKE)

)

To this end, fix§ < ¢, and note that(f, f*) < 4h(f, f*) by [25], Lemma 4.2 so
that{f € M : h(f, f*) < e} C {f € M : h(f, f*) < 4¢}. By assumption, there
exist N < (2v/2Ke/$)P and functionsgi, ..., g, h1, ..., hy such that||h; —
gill2 < 5+/2 for everyi, and for everyu € H(4e) there is an such thaty; < u <
h;. But for everyf € M such that(f, f*) < ¢, we then have for some

2*1/2\/93 +1< \/f/f* <2712\ /h2 +1.
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Moreover, usingv/a + ¢ — Vb + ¢| < |\/a — v/b| for a, b, ¢ > 0 we obtain

Hz—lﬂm— 2—1/2\/931“ <272 h; — gill2 < 6.
2

The result now follows directly. O

The following variant of Etemadi’s inequality was used ie froof. The proof
follows closely that of the classical Etemadi inequalige $4], Appendix M19.

LEMMA 5.2. LetQ be a family of measurable functiorfs: £ — R. Then we
have for everyy > 0 andm,n € N,m <n

P-k

k=m,...n req feQ

max sup |Sk(f)| > 3a] < 3kmax P*
=m

sup |5y (f)] = a] ;

whereS,, (f) = n'/?v,(f).

PrOOF. Define the stopping time = inf {k > m : sup;cq |Sk(f)| > 3a}.
Then

P* | max sup|Sp(f)| > 3a| =P*[r <n]
k=m,...n rcq
< P* |sup[Su(f)| > o + > P* |7 =kandsup|Su(f)| < o] .

feQ fea

k=m

But on the even{r = k and sup;cq [Sn(f)| < o}, we clearly have

2o < sup [Sk(f)| = sup [Sn(f)] < sup [Sk(f) — Sn(f)]-
feQ feq feQ

Therefore, we can estimate

P*| max sup|Sk(f)| 23@]
k=m.,..., n feQ
< P* [sup |Sn(f)] > af + Z P* |7 = kandsup|S,(f) — Sk(f)| > 2«
feQ [ feQ
<P* |sup|Su(f)] > a| + max P*|sup|Sa(f) — Su(f)] > 2a] |
feQ =My n feq

where we have used thatp s |5, (f) — Sk(f)| and{r = k} are independent to
obtain the last inequality. The proof is now easily complete O
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We can now complete the proof of Theorem 2.3.

PROOF OFTHEOREM 2.3. By assumption, we have € My for all ¢ > ¢*
whenn is sufficiently large. Then by Theorem 5.1, we haverf@ufficiently large

P* | max sup {((f) — b(f*)} > o <Ce/°

n<k<2n femzn
q

for all @ > Cn(q)(1 + log K(2n)) andq > ¢*. Using thatM% C M2" for n <
k <2nandfi(f*) < SUP feyk Lk (f), we have fom sufficiently large
q*

1 o0
P* | max sup ——< sup lx(f) — sup lp(f) p > af < C e—n@)/C
n<k<2n g>q+ 1(q) { Fents Fentk, ng:*

foralla > C(1 + log K(2n)). Let 3(n) be an increasing function. Then

1 1 2
P* max —— sup ——< sup x(f) — sup Cx(f) p >2C| < —g
ansk<2vtt B(K) g>q+ 1(0) | rencs fentt, n

for all n sufficiently large, provided that(2") > log K (2"*1) V loglog 2". The
proof is now easily completed using the Borel-Cantelli lemm O

5.2. Proof of Theorem 2.5. The proof of Theorem 2.5 is based on a sequence
of auxiliary results. First, we will need a compact law of#ied logarithm for the
Strassen functional

1
v2nloglogn

We state the requisite result for future reference.

In(g) = > {9(Xi) = E*(g(X1))} .
i=1

THEOREMb5.3. LetQ be a family of measurable functioifs: £ — R with

1
/ V1ogN(Q,u) du < oo.
0

Then,P*-a.s., the sequendd,, ), > is relatively compact i, (Q), and its set of
cluster points coincides precisely with the $et= {f — (f,g) : g € L3(f*du)}.

Proofs of this result can be found in [23], Theorem 4.2 or if][Theorem 9.
We will also need the following simple result, whose proobisitted.
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LEMMA 5.4. Let(X;);>1 be ani.i.d. sequence of random variables, and sup-
poseE[| X1 [P] < co. Thenn™V/P max;—; | X;| — 0 a.s. asn — oco.

Finally, we will need the following likelihood inequalityhat relates the log-
likelihood ratiol,,(f)—¢,(f*) to the empirical process. Related inequalities appear
in [11, 18, 6], but the following form is perhaps the most matu

LEMMA 5.5. For any strictly positive probability density # f*, we have

Co(f) — En(f*) < |Vn(df)|2a

wherev,,(g) = n= /237 _ {9(Xy) — E*[¢(X})]} denotes the empirical process.

PrROOFE Note that
W =2 - / 2/ FF* du = —2h(f, *) B (ds (X)),

Usinglog(1 + z) < x, we can estimate

n

bn(f) = La(f) =D 21og(1+ h(f, ) dp(X:)) < 2h(f, f*) ds(X3)
=1

= i=1
= 2un(dg) h(f, ) V/n = h(f, f*)*n < sup {2vald)p —p°}.
p

The proof is easily completed. O

We can now obtain the following asymptotic expansion of thg-likelihood,
which provides a pathwise counterpart to the weak convergéreory in [11, 18].

PROPOSITIONS.6. Letg > ¢*. Assume that
1
/ log N(Dg, u) du < oo,
0
and that|d| < D for all d € D, with D € L?*(f*du) for somea > 0. Then

2n
loglogn

sup {2In(df)h(f, f*)

N 2n
h(f. 1) }
FEMq(44/loglogn/n)

loglogn

1 n o.]
— ———— ¢ sup L(f) = Lu(f*) p 250 Praass,
loglogn | ren,

where we have definéd,(¢) = {f € M, : h(f, f*) <e}.
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PROOF. We proceed in several steps.
Step 1(localization). As ¢ > ¢* (hencef* € M,), clearly

sup £,(f) = lu(f*) = Sup n(f) — ()}

fent, M la(F)—a(F)20
Now note that, as in the proof of Lemma 5.5,
n(f) = Cn(f*) < 2vn(dg) B(f, f*) /n = h(f, f*)* n.

Therefore, we can estimate

sup h(f, f*)

FeEMg:ln (f)—Ln(f*)20

< sup {h(ﬂ )+ Lﬂ&f}f{*) }

FEMn (f)—n (F4)>0

D 8logl
<= sup valdy) < | 2228 sup 1,(d).
VI FEN it (f)—n(F4)20 nodeD,

Now note that we can estimate

sup In(d) < inf  sup [I(d) — (d,g)| + sup  sup (d,g).
deDy 9ELF(f*dp) deD, deDq ge L3 (f*dp)

The first term on the right converges to zd?¢-a.s. asw — oo by Theorem 5.3,
while the second term is easily seen to equal;cp, [|d— (1, d)[[2 < 1. Therefore

log 1
sup  B(f ) < (14 e)y 2Bl
FEMgln (f)—Ln(f*)=0 n

eventually as: — oo P*-a.s. for anye > 0. In particular, we find that

{f €My alf) = talf) = 0} € {f €M, : h(f. %) < 4/loglogn/n |
eventually as: — oo P*-a.s. This implies thaP*-a.s. eventually a8 — oo

sup £n(f) = €u(f*) < Sup n(f) — ()}

feMqy FEM:h(f,f*)<4+/loglogn/n
But the reverse inequality clearly holds for all> 0, so that in fact

sup £ (f) —En(f*) = sSup {n(f) _En(f*)}
re, Fet, (4y/logTog n/m)
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eventually as: — oo P*-a.s.
Step 2(Taylor expansiop Taylor expansion give8log(1l + =) = 2z — 2% +
2?R(z), whereR(z) — 0 asz — 0. Thus we can write, for any € M,,

Ua(f) = bul(f Zzlog L+ h(f, f*)dp(X;)) =

=1

2h<f,f*>2{d< g+l h(ff} Sy
i=1 i=1

—nh(f, f*)? + h(f, [ Y (dp(X0)*R(h(f, ) dy(X3)).

i=1
Using thatE*(d¢(X1)) = —h(f, f*)/2, we therefore have
b
loglogn

where we have defined

{En(f) - gn(f*)} =

*\2
n__ h(f, f*)? 2n n nh(f, f*)*

loglogn loglogn loglogn

n

2{1— (X)) + - S dg (X RO, ) dy(X0).

=1
It follows easny that

sup {mn(df)h(f,f*) U }

FEMy(44/loglogn/n) log log n log logn

1 *
- m {fseujvlgq en(f) - gn(f )} '

h *\2
< sup IRyl M <16 sup |R¢ ]

FEMy(44/1oglogn/n) log logn FEMy(44/loglogn/n)
eventually as: — oo P*-a.s.
Step 3(end of prooj. We can easily estimate

18
sup [Rpnl < sup |= > {(dp(X,))* =1}
feMy(44/loglogn/n) feMg | i=1
18
n ( sup \R(w)!> LSy
|z|<44/loglogn/nmax;=1, ..., D(X;) i=1
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As N(D,,8) < oo for everys > 0, the class{d? : d € D,} can be covered by a
finite number of brackets with arbitrary smalt (f*du)-norm and is therefor®*-
Glivenko-Cantelli. Moreover, by constructidd*[(d(X;))?] = 1 for all f € M,.
Therefore, the first term in this expression converges to ash — oo P*-a.s. On
the other hand, by Lemma 5.4 and the fact that L2+ (f*du), we haveP*-a.s.

VIog]
VIoglogn/n max D(X;) = Y2808 —1/2+a) way D(X;) 222 0.
L

=1,...,n o na/2(2+0‘) i=1,...,n

Therefore the second term converges to zero also, and tbéipmomplete. [

PROPOSITIONS.7. Letg > ¢*. Assume that

1
/ log N(Dg, u) du < oo,
0

and that|d| < D for all d € D, with D € L?*°(f*du) for somea > 0. Then

lim inf { sup (I,(d))% ! { sup £n(f) — En(f*)}} >0 Pras.

n=0o | ged, loglogn | ren,

PROOF. By Proposition 5.6, we have

lim inf { sup (In(d))i sup £n(f) — gn(f*)}}

n=oe | gep, - log logn {fqu

> liminf { sup (In(d))i_ — sup sup{2 In(df)P—pQ}
n—o0 deD, feMqy(44/loglogn/n) P20

= liminf ¢ sup ([n(d))i — sup (In(df))i
n—00 deDy FEMG(44/1oglogn/n)

Suppose that the right hand side is negative with positieeatility. Then there is
ane > 0 and a sequence, T oo of random times such that

(5.1) sup (I, (d))3 — sup (I, (df)): < —e foralln
deDy feMqy(4y/loglog mn /Tn)

with positive probability. We will show that this entails ardradiction.
By Theorem 5.3 (which can be applied heréN®,, ) = N(cl D, d) for all
d > 0), the process$l,, ),>o is P*-a.s. relatively compact it (cl D,) with

(5.2) inf sup |1, (d) — (d, g)]| =0 P*-a.s.
9eL3(f*du) decl Dy
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Then there is a set of positive probability on which (5.1) #&6®) hold simul-
taneously. We now concentrate our attention on a single leapgth in this set.
For any such path, we can clearly find a further subsequepcé oo such that
SUPgec p, [Lon (d) — (d, g)| — 0 asn — oo for someg € L&(f*dp). Therefore

sup |(L, (d))} — ((d,9)3| < sup |L, (d) — (d, g)[

decl Dy decl Dy
+2 sup |I,,(d) —(d,g)| sup |(d,g)| “—>0,
decl D, decl D,

where we have used the elementary estinate— % | = |a; — by |(at + by) <
lay — by|(Jay — by] +2b4) < |a — b|(Ja — b] + 2|b]) for anya,b € R, and the
fact thatsupea o, |{d: 9)| < subgears, dlllglls < 1. Thus (5.1) gives

linnlg)réf sup ((d, g>)i — sup ((df,9>)?|— =
deDy FEMG(44/1loglogon/on)
liminf ¢ sup (15, (d))i - sup (Lo, (df))i < &
n=eo | dged, FeMy(4y/loglog o /o)

Butasd — (d, g) is continuous in.2(f*du) andcl D, (4+/log log 0, /) is com-
pact inL?( f*du) (which follows fromN(D,,, §) < oo for all § > 0), we have

3 2 3 2 Nn—00
sup (df,9)5 = sup (d, 9)y ——
feEMq(4y/loglogon /on) decl Dy(44/loglog on /on)
sup ((d,9))% = sup ({d, 9))%.
d€M,, >0 <1 Dq(44/loglogon /om) deDy
Thus we have a contradiction, completing the proof. O

We now obtain a converse to the previous result.

PROPOSITIONS.8. Letg > ¢*. Assume that

1
/ \/1og N(Dy, u) du < oo,
0

and that|d| < D for all d € D, with D € L?*°(f*du) for somea > 0. Then

limsup{ sup (I,(d))% ! { sup Cn(f) — En(f*)}} <0 P*as.

n—oo | dede ~loglogn
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PROOF. Suppose that the result does not hold true. By Proposit@ntiere is
ane > 0 and a sequence, 1 co of random times such that

N 27y,
sup (I, (d))3 — sup {—h(ﬂf [ v p
deDs; FEMy(4+/10g10g 7 /7) 8108 Tn
2T,
21 (de)h(f, f*) ] —2— % >¢ forall
+ 215, (dy) h(f, f*) loglong} >e n

with positive probability. Proceeding as in the proof of pwsition 5.7, we can then
show that there is a sequence of tinagst oo and somey € L3(f*du) such that

. 20,
hmsup{ sup ((d, )% - sup { — h(f, f*)? o
n—oo | deDe FEMq(4+/1oglog on /o) 8708 n
. 20,
+2(dy, 9) h(f, f7) m}}za

We will show that this entails a contradiction.

Letdy € D, be a continuously accessible point. Then there existspan 0
(depending ondy) and a path(fa)aejo,qa0] SUCh thath(fa, f*) = a for all a €
10, ] @anddy, — do in L?(f*du) asa — 0. Now choose the sequence

_1, /loglog o,
Oén:{(<d0,g>)++0'n1} T

As ({do, 9))+ < |ldo]|2]lgll2 < 1, we clearly have

0 < ay < ag Ady/loglog oy, /o,

for all  sufficiently large. In particulaf,,, € M,(4+/loglog o, /0y), SO that

« 20, . 20,
N {2<df’g>h(f’f e >ﬁ}
feEMq(4y/loglogon /on) g log on g 10g Oy

> 2(dy,, ,9) {({do, 9))+ + 0, '} = {({do, 9)) 4 + 0, '}
Therefore, we have

20p
umsup{ sup ((d, )2 - sup { — h(f £
n—00 deDs FEM4(44/1oglog o /o) oglog oy
20
h * n < g d 2 d 2
+2(dy, g) h(f, [*) nggan}} _5;9%“ )3 — ((do, )3
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for any continuously accessible elemegte D,. But clearly we can choosg,
to make the right hand side of this expression arbitrarilalénThus we have the
desired contradiction, completing the proof. O

We can now complete the proof of Theorem 2.5.

PROOF OFTHEOREM 2.5. We obtain separately the lower and upper bounds.
Lower bound. By Propositions 5.7 and 5.8, we have

1
lim sup sup £n(f) — sup £n(f) p >
n—oo loglogmn | ren, FEM,

limsup { sup (1,,(d))3 — sup (1,(d))3 P*-a.s.
n—oo | deDs deD,

Now fix any g € L_%(f*dy). By Theorem 5.3 (which applies here WD, §) =
N(clDg,8) > N(Dy, o) for all § > 0), there is a sequencs, 1 oo of random

times such that,, — (-, g) in {(D,) P*-a.s. Therefore

sup (I, ()% — sup (Ir, (d)} = sup ({d,9)} — sup ((d,)) P*-as,
deDg deD, deDs deDy

so that certainly

lim sup sup Lo(f) — sup Lu(f) ¢ > sup ({d, 9))% — sup ({d, g))?
n—o0 log logn {fqu feMp de@g - dE@p -

P*-a.s. But as this inequality holds for everye LZ(f*du), taking the supremum
over g gives the requisite lower bound.
Upper bound. By Propositions 5.7 and 5.8, we have

lim sup
n—oo loglogn

(o 0]
feMy

feMp

limsup { sup (1,,(d))3 — sup (1,(d))3 P*-a.s.
n—oo | deD, deDg

It is elementary that for any,d’ € D, andg € L3(f*dp)
(In(d))3 = (In(d)%
< NI d)E = (dy g)) 2|+ [(In(d)F = (@ 903+ ((dy ) = ((d, )}

< 2dsu%) |(In(d))% = ((d, 9)3 | + ((d. 90 — ({d', 9))3-
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Taking the supremum ovelre D, and the infimum over’ € @;, we find that

sup (In(d))3 — sup (In(d))%

deD, deDg
<2 sup |(In(d)2 = ({d, g))3 | + sup ({d, )3 — sup ({d, g))3
deDy deD, deDy
<2 sup |(In(d)% — ((d, g))%|
deDy

+  sup {sup(<d7g>)i—sup(<d79>)3}-

g€L3(f*du) \deDy deDg

But as this holds for any € L3(f*du), we finally obtain

sup (In(d))3 — sup (In(d))} <2 inf  sup [(In(d)] — ((d, 9))} |
deDy deDs 9eLo(f*du) ged,

+  sup {sup(<d,g>)i—Sup((d,g>)2+}-
gEL3(f*du) | deDy deDg

It follows as in the proof of Proposition 5.7 that the firstntein this expression
converges to zerP*-a.s. The requisite upper bound follows immediately. [

Finally, we now complete the proof of Corollary 2.6

PROOF OFCOROLLARY 2.6. It evidently suffices to prove that
(5.3) = sup { sup ((d, g))5 — sup ((d,9>)2+} > 0.
geL3(f*du) | deDg deD g«

To this end, note that by direct computation

1,d;) = - .
) =) 2
Choos€(f,,)n>0 C M \{f*} such thatu(f,,, f*) — 0 anddy, — do € D, then
. . h(fn, f”
(1) = Jiy (1) = fim 5 <o

Moreover, it is immediate thatdy|l» < 1. We have therefore shown thax, C
L3(f*dp). Now choosgy € DE\Dy+. As D+ is closed, it follows directly that

deDg d€D

Therefore (5.3) holds, and the proof is complete. O
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5.3. Proof of Theorem 3.1.

PROOF OFTHEOREM 3.1. The assumption implies that

C q
N(D,e) < ( 0 ) for everye > 0.
eNgg
If e < ||R]|2/4, then
ey IRl
eNeg 4eq

DefiningC = Cy(1 V || R||2/4¢0), we find that

q
N(D,e) < (%) for everye < ||R||2/4.

The remainder of the proof is devoted to establishing that

805)‘1“

N(H(5). ) < ( ;

for all 0, p > 0 such thap/0 < 4 A 2||R||2, which is the desired result.

Fixe,0 > 0 and letN = N(D, ¢). Then there exist, u1, ..., Iy, uy such that
|lus —1;||2 < e for all ¢ and for everyf, there is ari such that; < d; < u;. Choose
fsuch that-—"§ < h(f, f*) < r~"*1§ (with » > 1). Then there is anso that

(r L ArT TN S 1<V F < (M Vo T ) 8 4 1
Note that

lu; 7™ "6 — ;762 < 7 "de,
Hul T,fnJrl(s o lz Tfn+15H2 < T'inJrl(SE,
|| p LS — r "l < (r—1r "0+ P ge,
lu; "6 — I 7“_”+16||2 <(r—1r "5+ 7“_”+156,

where the latter two estimates follow frain< d; < u;, ||d¢||2 = 1, and

(u; = Li)r "6 <y P — e — de (r=1)r7"0 < (u; — 1) r g,
wi —l)r "0 <wu;r "o —l;rT + r—1)r""0 < (u; —l;)r~ .
( l) ns ng l n+16 df( ) ns ( l) n+16

AslaVb—cAd| <|a—c|+|a—d|l +|b—c|+|b—d| we can estimate

I|(r~"u; vV 7“_"+1ui) 0—(r " A 7"_"+1l,~) Ol <2(r—1)r "0+ 4p—H e,
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Therefore, we have shown that

NEVF/f*:r™ ™6 < h(f, %) < "6}, 2(r—1)r " 04-4r " 16e) < N(D, )

for arbitrarye, o > 0, r > 1, n € N. In particular,

NUVf/f* o078 < h(f, f*) <r7"Ha}, p) S N(D, 3" /6 — 5(1 = 1/r))

foreveryd > 0,r > 1,n €N, p > 2(r — 1)r—".
Note that, by finiteness of the bracketing entropies, we taoge an envelope
function R > supy |dy| such that| R||2 < oc. Then we evidently have

—r "R <\ f/f*<14+7r"0R

wheneveri(f, f*) < r~"4. Therefore

NAVF/ o h(f, ) < v 16} 2r 15| R|l) =

foralld > 0, > 1, H > 0. Thus we can estimate

NV (S 1) < 63,20 76| R||2)
[H]
<14+ NV or"8 <h(f, f7) < r "6}, 20 76| R]lo)
n=1

[H]
< T4 N {r" YR - (1= 1/r)}/2)

n=1
wheneve > 0, > 1, H > 0 such that| || > (1 — 1/r)r. In particular,

[H]

NEVE/F bl 1) <6520 H6|Rll2) < 1+ ) N, v H7R|2/4)
n=1

whenevers > 0, r > 1, H > 0 such that|R||» > 2(1 — 1/r)r", where we have
used that the bracketing number is a nonincreasing funofitime bracket size.
Now recall that

q
N(D,e) < (g) for every0 < e < ||R|2/4,

whereq, C > 1. Thus

[H]

NEVF/FF o h(f 1) <6320 Po|Rllp) <14 ) rm (e 1e (%ﬁ@)q
n=1
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wheneven > 0, > 1, H > 0 such that| R|| > 2(1 — 1/r)r". But

[H]

— T 1-1/r1 T 1-1/r = 2(1 = 1/r)r 2r=H||R]|5

asr > 1 andg, C' > 1. We can therefore estimate

- - IRl 8¢\
NAV /1 b5 1) < 8% 20 T8IR) < g sm (m—Huan)

wheneven > 0, r > 1, H > 0 such that| R|| > 2(1 — 1/r)rf.
We now fixd, p > 0 such thap/d < 4 A 2| R||2, and choose

L4 IR
4—p/§’ logr

r

Clearlyr > 1 andH > 0. Moreover, note that our choice efand H implies that
R[> = 2(1 — 1/7)rf andp = 2r=H§||R||2. We have therefore shown that

8Co\ !
NUVITT* - h(f, %) < 6}.p) < <7>
for all 0, p > 0 such thap/0 < 4 A 2| R]|2. 0

5.4. Proof of Theorem 3.3.

5.4.1. The local geometry of mixturesDefine the Euclidean ballB(¢,¢) =
{6/ € RY: ||§ — 0| < €}, denote by(u,v) the inner product of two vectors
u,v € R, and denote byA, u) = {(f,u) : § € A} C R the inner product of a set
A C R% with a vectoru € R?.

LEMMA 5.9. Itis possible to choose a bounded convex neighborhoof 67
foreveryi = 1, ..., ¢* such that, for some linearly independent family. . . , ug €
R4, the setq(A;,u;) : i =1,...,¢*} are disjoint for everyj = 1,... ,d.

PrROOF. We first claim that one can choose linearly independent .., uy
such that{(0;,u;) : i = 1,...,¢*}| = ¢* foreveryj = 1,...,d. Indeed, note
that the set{u € R? : |{(07,u) : i = 1,...,¢"}| < ¢*} is a finite union of
(d — 1)-dimensional hyperplanes, which has Lebesgue measureTdeefore, if
we draw a rotation matrif” at random from the Haar measure $0(d), and let
u; =Te;foralli =1,...,dwhere{ey,...,e4} is the standard Euclidean basis in
R?, then the desired property will hold with unit probabilifio complete the proof,
it suffices to choosel; = B(0;,e/4) with e = miny min,.; (6 — 07, ux)|. O
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u2 A
\
\
\ et a
v Al “ L.
\ A B .-"".‘ 5
(Avue) & [T Az
1 . -" . ...'.‘, . ." ."
(As, uz) \‘
\ . 3 —’—’
A \ IR A _-
< 37U2> \ . ,‘—’.’, <A2,u1>
v "._ - <A3,U1>
! P - <A1,u1>
>

FiG 2. lllustration of the construction of the sett; for a mixture withd = 2 and¢* = 3. The
setsA; are chosen in such a way that their projections on some liggéadependent vectors: , u2
are disjoint. Note that the choice afi, u2 is not arbitrary (e.g., consider the projections on the
coordinate axes).

We now fix once and for all a family of neighborhoods, . .., A, that satisfy
the conditions of Lemma 5.9. The precise choice of these @#ys affects the
constants in the proofs below and is therefore irrelevanttdinal result; we only

presume thatd,, ..., A,~ remain fixed throughout the proofs. Let us also define
Ag = RN\(A; U--- U Ag). Then{A,,..., A} partitions the parameter s@t
in such a way that each bounded elemdnt: = 1,...,¢* contains precisely

one component of the mixturg*, while the unbounded elemedt, contains no
components of *. This construction is illustrated in Figure 2.
Let us define for each finite measuxe®n R? the function

falz) = / fol) (d6).

We also define the derivatives; fy(z) € R? and D, fo(x) € R?*? as

0 0?

[D1fo(x)]; = wfe(wh [Da fo(x)]ij = mf@(ﬂc)-

Denote byJ3(A) the space of probability measures supporteddo R¢, and
denote byM ¢ the family of alld x d positive semidefinite (symmetric) matrices.
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DEFINITION 5.10. Let us write
D= {(naﬁap’Tay) BN I € Ra 51"",5(]* € Rda Ply -+ Pg* € M-Cf—,
TOy - - -5 Tgr > 0, vy € m(A()), Ly Vgr € %(Aq*)}
Then we define for eachy, 3, p, 7,v) € © the function
q*

fw fe* D for D3 for fv:
((n, B, p,7,v) = To=52 +Z{ 7 +T{p 2 ]+Zf }

and the nonnegative quantity

q q
N, B,pmv) =10+ > Ini+7il+Y 5¢+T¢/(9—9¢*)%‘(d9)u+
i=1 i=1

q T
Somilp)+ Yo 3 [ 1667 Pwitas).
i=1 i=1

We now formulate the key result on the local geometry of thetuné class\V..

THEOREM5.11. Suppose that

1. fo € C? and fo(z), D1 fo(x) vanish ag|z| — oo.
2. |[D1foli/ f*[lr < oo @and||[D2 folij/f*|1 < ooforalli,j=1,...,d.

Then there exists a constagit > 0 such that

€(n, B,p,T,v)||1 = c* N(n,B,p,7,v) forall (n,5,p,7,v) €D.

[The constant* may depend orf* and A, ..., A, butnot oy, 3, p, 7,v.]

Before we turn to the proof, let us introduce a notion thaamsifiar in quantum
physics. If(2, ¥) is a measurable space, call the map® — R%*9 astaté if

1. A [A(A)];; is a signed measure for eveiryj = 1,...,d;
2. A(A) is a nonnegative symmetric matrix for evetyc ¥;
3. Tr[A(Q)] = 1.

20ur terminology is in analogy with the usual notion of a stateheC*-algebraC?*? ® C(Q2),
where(2 is a compact metric space a6 (2) is the algebra of complex-valued continuous functions
on ). Such states are precisely represented by the complege/abunterpart of our definition.
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It is easily seen that for any unit vectérc R?, the mapA — (£, \(A)¢) is a
sub-probability measure. Moreover,df, ..., ¢; € R? are linearly independent,
there must be at least odg such that(&;, A\(2)¢;) > 0. Finally, let B C R be

a compact set and l€d,,),~o be a sequence of states #h Then there exists a
subsequence along which, converges weakly to some staten B in the sense
that [ Tr[M (0)\,(dA)] — [ Tr[M(0)\(d)] for every continuous functiod/ :

B — R4 To see this, it suffices to note that we may extract a subseque
such that all matrix elemenfs,,};; converge weakly to a signed measure by the
compactness aB, and it is evident that the limit must again define a state.

PrROOF OFTHEOREM5.11. Suppose that the conclusion of the theorem does
not hold. Then there must exist a sequence of coefficiefitss™, p™, 7", v") € ©

with
HE(T/”7 5117 Pn7 Tnv Vn)Hl n—o0

0.
N(n”’ ﬁn7 pn7 7—11, yn)
Let us fix such a sequence throughout the proof.
Applying Taylor’s theorem ta; — fgimru(e_ei*), we can write for = 1,...,¢*
Jor . D1for Ds for fur
i o 2 oy [ 2

— o T (s [o-onupan) 2 e 220

n 1D f’f u(0—0%*
+%/||9—9;\|2y;%(d9)/TrH/o wM—u)du} A?(d&)]

where)\? is the state omd; defined by

[ tnr o xpgany = L 010000 01570

(it is clearly no loss of generality to assume thgthas no mass &' for anyi, n,
so that everything is well defined). We now define the coefiisie

M g BT (0 67) v (df)
‘ N(n”?ﬁ”’/)n?,rn’ Vn)’ ‘ N(n”?ﬁ”’pn?7n7 Vn) ’
o p O o A A0
‘o N@m B et T ) ‘o N@, B pt T V)
fori=1,...,q¢%, and
n
ay = 70
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Note that

*

q
lagl + Y {lai| + B3] + Trlef] + |df [} = 1
=1
for all n. We may therefore extract a subsequence such that:

1. There exist;; € R, b; € R%, ¢; € M¢, andag,d; > 0 (fori = 1,...,q")
with |CLO| + 23;1 {|CLZ| + ||sz + TI”[CZ‘] + |dl|} =1, such thatzg — Qg and
al = a;, b = by, ¢} = ¢, d} —d;asn —ooforalli=1,...,q"

2. There exists a sub-probability measugesupported on4,, such thatvy
converges vaguely tey asn — oco.

3. There exist states; supported orl A; fori = 1,...,¢*, such that\} con-
verges weakly to\; asn — oo foreveryi = 1,...,¢*.

It follows that the functiond(n™, g™, p", 7™, v™) /N (0™, 5", p™, 7", V™) converge
pointwise along this subsequence to the functigii* defined by

*

q
h = ag fu, + Z {ai for + b7 D1 for + Trle; Ds for]

i=1
+d; / Tr H /01 Dafor (o) 2(1 — u) du} Ai(de)} }

But as||¢(n™, 8", p", 7", ")\ /N (", B, p", 7", ") — 0, we have||h/f*||1 =
0 by Fatou’s lemma. Ag™ is strictly positive, we must havie = 0.
To proceed, we need the following lemma.
LEMMA 5.12. The Fourier transforn¥[h](s) := [ /@) h(x)dx is given by
. q* . .
FIbl(s) = FIfol(s) [‘m [ ¢ vtan) + 3 { HO) {100

=1

— (s, ¢38) €050 — @ £1009) /(b(i(& — 67, s)) (s, Ai(d9)3>}]

for all s € RY. Here we defined the functiai(u) = 2(e* — u — 1) /u?.

PrROOF. Thea,, b;, ¢; terms are easily computed using integration by parts. It
remains to compute the Fourier transform of the function

[Zi()] = / { /01[D2f9;+u(9—9;)(5'3)]jk 2(1 —u) du} (i (d0)] ;-
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We begin by noting that

///0 (D2 for ruto—or) ()] 21 — w) du dz | [Nk (d6) =
H[)‘i]ijTV/’[DQfO(x)]jk’dl' < 0.

We may therefore apply Fubini’s theorem, giving

1
FIEN () = ~FUfol(s) sy [ { / en6=61.5)3(1 —u)du}uxde)]m—
~Flfol(s) sy [ 660~ 67.5) ),
where we have computed the inner integral using integratjoparts. O

Letui,...,uq € R? be a linearly independent family satisfying the condition
of Lemma 5.9. As[h](s) = 0 for all s € R?, we obtain

*

q
D (it) := ag <I>€(it)+z (67 ue) {ai+it(bs, ue) — > (ug, ciug) —d; 2 @f(it)} =0
i=1

forall¢ =1,...,dandt € [—¢,¢] C R for some. > 0, where we defined

B4(it) = / B0 — 67, ue)) (g, Ai(d6)ug)

fori=1,...,¢% and
®f(it) = / et0:ue) o (dp).

Indeed, it suffices to note th#t]fy](0) = 1 and thats — F'[fy](s) is continuous,
so that this claim follows from Lemma 5.12 and the fact thfy](s) is nonvan-
ishing in a sufficiently small neighborhood of the origin.

As all \; have compact support, it is easily seen that for evesyl, . .., ¢*, the
function ®£( ) is defined for all: € C by a convergent power series. The function
l(it) := ®L(it) —ag B(it) is therefore an entire function witlr (z)| < kek2l2l
for someky, ks > 0 and allz € C. Butas®d’(it) = 0fort € [—, ], it follows from
[20], Theorem 7.2.2 thaty ®{(it) is the Fourier transform of a finite measure with
compact support. Thus we may assume without loss of getyethadit the law of
(0, ug) under the sub-probability, is compactly supported for evefy= 1, ... ,d,
so by linear independeneg must be compactly supported. Therefore, the function
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®(z) is defined for all: € C by a convergent power series. But®sz) vanishes
for z € i[—, ¢], we must haveéd’(z) = 0 for all z € C, and in particular
(5.4)

*

q
(t) = ap B (t) +Z K07 ) {a; + t{bs, ug) + t*(ug, ciug) + d; 2 DL(t) } = 0
i=1

forallt € Rand/ = 1,...,d. In the remainder of the proof, we argue that (5.4)
can not hold, thus completing the proof by contradiction.

At the heart of our proof is an inductive argument. Recalt thaconstruction,
the projectiong (A;,u¢) : i = 1,...,¢*} are disjoint open intervals IR for every
¢ =1,...,d. We can therefore relabel them in increasing order: thatefine
(1),...,(bg*) € {1,...,¢*} so that(H(*m), up) < <9&2),Ug> < e < <0&q*),U,g>.
The following key result provides the inductive step in otwaf.

PROPOSITIONS.13. Fix /¢ € {1,...,d}, and define

D (t) 1= ag B (¢ —i—ZaZ H07 ue)

Suppose that for somjec {1,...,¢*} we haved®J(t) = 0 for all t € R, where

J
q)é,] (t) = (I)g(t) + Z et(e(“),ue) {t<b(ﬁ),Ug> + t2 <Ug, C(gi)Ug> + d(gz) t2 q)fh') (t)}

Thend(gj)<ug, )\(gj)(Rd)Ug> =0, <Ug, c(gj)u@ =0, and <b(gj), Ug> =0.

PROOF. Let us write for simplicityd? = (67, u,), and denote by} andv§ the
finite measures oR defined such thaf f(z)\i(dx) = [ £((0,ue)){ue, Ni(d)uy)
and [ f(z)vi(dz) ff((&,u@)uo(da),respectlvely For notational convenience,
we will assume in the following thatti) = i andv§({6¢}) = 0 for all i =
1,...,¢*. This entails no loss of generality: the former can alwaysatiained
by relabeling of the pointg?, while ®§ is unchanged if we replacé; anda; by
v(- NR\{6{,...,0%}) anda; + ao v§({6}), respectively. Note that

T 7

(Aj,ue) = 105,057, where 0/~ < 0! <0/ <0, foralli

by our assumptions 4;, uy) must be an interval ag; is convex).
Step 1 We claim that the following hold:

a;=0foralli>j+1 and agvi([6),,,00[) = 0.
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Indeed, suppose this is not the case. Then it is easily saén th

PL(t
lim 1nf| o(t)]

4
t—o00 e 9J+1

>0,

where we have used thaf has no mass g, ..., 6%.}. On the other hand, as
is positive and increasing and asis supported orl A;, we can estimate

14
0 < t26t9 (I)Z( )

— 4
et€]+1

< +2 e_t(95+1—9f) d)(t{ﬂf* _ 95}) )\f(R) t—00 0

fori =1,...,j. Butthen we must have

dLI(t
O:Iiminf’ [()‘ > 0,
t—o00 e €]+1

which yields the desired contradiction.
Step 2 We claim that the following hold:

dj)\ﬁ([ﬁf,oo[) =0, (up,cjue) =0, and ag VO([H oo[) = 0.
Indeed, suppose this is not the case.ué(s{@f}) = 0, we can choose > 0 such
that (105 + &, 00[) > v5([0%, 00[) /2. As ag, d; > 0, and using thab is positive
and increasing witl»(0) = 1 and thake®* > (¢t)2/2 for t > 0, we can estimate

ap B (1) —|—et€1{t (ug, cjup) + dj t? @Z 6} >
2
2% {5 an 18090 + {urs i) + o X (80D > 0

for all ¢ > 0. On the other hand, it is easily seen that

1 J ¢ iy ¢
T [Z et {a; + t(bi,ue) } + Z et {t*(ug, cyug) + d; t* @f(t)} 2.
€7 Li=1 i=1

But this would imply that

P (¢

=0 qg f (1) + el {2 (ug, cjug) + dj t2 D5(t)}

which yields the desired contradiction.
Step 3 We claim that the following hold:

d; Nj([65,650) =0 and aqug([6,65]) =
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Indeed, suppose this is not the case. We can compute

2 0,7
0= 55 () =y [0 X0+ an [0 0 a0
e'Vi

=1 9
d
+ E a2 eit(ef*ef) {ai + t(bi, ug) + t2 (ug, ciug) + d; t2 ‘I’f(t)},
i=1

where the derivative and integral may be exchanged by [28heAdix A16. We
now note that aag, d; > 0, we can estimate far> 0

—p¢ 9t
d; / %) XE(dB) + ag / "% (0 — 05)? v (do) >
l— 0 _
et Gﬂ{dj Xi([657,65) + aq /[ef- el[(e—ef)%g(de)} > 0.
Jj v

On the other hand, g8” — 1) /x is positive and increasing, we obtain fop 0

2
d_ e*t((’f*@f) t2 (I)f(t)‘

—t(05"—0%)
e J J
dt?

_ l— _pt _ l_pl
— e U0 —05) o omt0=00) o

(0! — 0)? / 26(1{0 — 6°3) X (do)

_pt
_9pt _ ¢! & \(do t0—-99) \C(qp

< etwf@”{wf R o0l — o)

SO =08 _

(3

¢ pt
+2(0; —6;) pTE—

J

64t —pt ¢
+ et 1)} A (R),
which converges to zero as— oo for every: < j. It follows that

5 ) ¢
0= 1 j? <q>f7] (t)/ewj)
= 1l1m
1500 . fet(efejf) )\g(dg) + ag fet((?*@f) 6 — 9§)2 vE(d6)

=1,

which yields the desired contradiction.
Step 4 Recall that)\ﬁ is supported or[Hf‘, 9§+] by construction. We have there-
fore established in the previous steps that the followinid:ho

dj(ug, )\j(Rd)Ug> = (ug, cjup) = agp Vé([@ff, o) =0, a; =0fori > j.
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It is therefore easily seen that

PLI(t
0= lim (*)

t—o0 t et‘gf

= <bj7u5>'
Thus the proof is complete. O

We can now perform the induction by starting from (5.4) andlgpg Propo-
sition 5.13 repeatedly. This yields (ug, A;(RY)ug) = (ug, cjue) = (bj,up) = 0
forallj=1,...,¢vandf¢ =1,...,d. Asuy,...,uy are linearly independent and
c; € M4, this implies thab; = 0, ¢; = 0 andd; = 0forall j = 1,...,¢*, so that

q‘k
ap / e 03) vy (df) + Z a; 9% =

i=1

for all s € R? (this follows as above by Lemma 5.12,= 0, F[fo](s) # 0 for s
in a neighborhood of the origin, and using analyticity). Bytthe uniqueness of
Fourier transforms, this implies that the signed meaayig + 23;1 a; pry has
no mass. As/ is supported o, this implies thatz; = Oforall j = 1,...,¢".
We have t*herefore shown that b;,¢;,d; =0foralli =1,...,q¢*. But recall that
laol + D1 {lail + ||bill + Tr[e;] + |di]} = 1, so that evidently,y = 1.

To complete the proof, it remains to note that

E(n”’ﬁ”’pn77—n7yn) q* n—oo
/ N, G, gy = D L

i=0
But this is impossible, as
H L™, B p" 7 V) || oo
N (™, B, p, 7 ™) ||
by construction. Thus we have the desired contradiction. O

5.4.2. Proof of Theorem 3.3. The proof of Theorem 3.3 consists of a sequence
of approximations, which we develop in the form of lemmBstoughout this sec-
tion, we always presume that Assumption A holds.

We begin by establishing the existence of an envelope fomcti

LEMMA 5.14. DefineS = (Hy + Hy + Hs)d/c*. ThenS € L*(f*du), and

[f/f =1

WSS forall f € M.
- 1
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PROOF. ThatS € L*(f*du) follows directly from Assumption A. To proceed,
let f € M,, so that we can writ¢ = >7_; m; fp,. Then

e D o Ml (DO s

j:@jGAQ j:@jEAi J:0; €A;

Taylor expansion gives
fo;(x) = for (x) = (0; — 07)" D1 for (x)+
1 ! * *
3 | 6= 8 Dadi ooy (@) 65 = 0201~ .

Using Assumption A, we find that

'f;*f*'gl 3 mif;{

Soom—m | YD w6 -6
J:0;€A0 J:0;€A; J:0;€A;
1
T3 ) lelﬂj—ﬂi*IIZ} (Ho + Hy + Hz)d.
j:@jGAi

On the other hand, Theorem 5.11 gives

* q
‘ff*f zc*[ Z 7Tj+2{ Z T — T}
1 j:6;€Aq i=1 Ul j:0,e4;
+1 > w0 67) > 7TjH9j—9¢*HQH-
J:0;€EA; Ji0;€A;
The proof follows directly. O

COROLLARY 5.15. |d| < D forall d € D, whereD = 25 € L*(f*dpu).
PROOF. Using|f — f*||tv < 2h(f, f*) and|\/z — 1| < |z — 1], we find

VITF -1 i -1
drs| = 28,
= G S T =

where we have used Lemma 5.14. O

Next, we prove that the Hellinger normalized densitigsan be approximated
by chi-square normalized densities for snidlf, f*).
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LEMMA 5.16. For any f € M, we have

‘\/f/f*—-l Fle =1
n(f, f* (I

where we have defined the chi-square divergeytdg || f*) = || f/f* — 1/|3.

< {4]|S)3S +2S%} h(f, ),

PROOF. Let us define the functio® as
[ f 1 {f - f* }
1= +R5.
I* 2 I*
Then we have

VITF =1 /=1 _ J/fF-14R  j/fo1
WA U I —1+Rl I/ =1
(F/F* =14 RIS/ = Vo = £/ * = 1+ Rla} + RIS/ f* 1+ Ry
1777 =1+ R 11777 1l

so that by the reverse triangle inequality and Corollanp5.1

VITF =1 J/ff =1 | _2|RLS+IR
WEFY AR | Il

Now note that for all: > —1

2

2 Vive-1? e

X
< = .
2 = 2 2~ =0
Therefore, by Lemma 5.14,
f—ﬁ)Q 2 2 || = -1
R| < <SH||———| <S8 .
1Bl < < f* B f ol T A | PN | B A | Y
The proof is easily completed usifig — f*||rv < 2h(f, f*). O

Finally, we need one further approximation step.

LEMMA 5.17. Letqg € Nanda > 0. Then for everyf € M, such that
h(f,f*) < a, itis possible to choose coefficiense R, 3; € R?, p; € M¢ for
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t=1,...,¢5,and~; > 0,0; € ©fori =1,...,q, such thatzg;l rank[p;] <
q A dg*,

=1 c v cra =1 v o

q* q

1 1
T 7 < T j
ZZ:; I‘[p]—c* ;’7]‘ \/%/\C*
and
* 3/2
% . g‘ - % {|Hsl2 S + Hs} a4,
X

where we have defined

< for Dy for
€=Z{mfj T+ T
=1

Dot ]\ NS T,
Pi f* ]}+Z’ij*.

Jj=1

PROOF. As f € M,, we can writef = Z?:1 7; fp;- Note that by Theorem
511

*
s}

* c *
Wf 1)z > mlle; — 671
=1 jGJEArL

Therefore i(f, f*) < aimpliesm;||0; — 0%|? < 4a/c* for 0; € A;. In particular,
wheneven; € A;, eitherr; < 2y/a/c* or ||6; — 07]|* < 2/a/c*. Define

7= U {j:HjEAZ-, 16; — 07]% < 2 a/c*}.

izly---yq*

Taylor expansion gives
* O\ * 1 * )k *
fo; (@) = for (x) = (0;—07)" D1 fo (2) + 5 (0; = 07)" D2 fo; () (6; —67) + Rji(),

where|R;;| < 2d%/2||0; — 6||> Hs. We can therefore write

— f* 7
ff*f :L—i-z Z WjRji,

i=1 jeJ:0;€A;
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where we have defined

q* f@* le@*
N S
i=1 jeJ:0,€A; JEJ:0;€A;
1 Do
+5 > w0600 ff 9—9*}+Z]f*.
jeJ:0;€A; j€J

Now note that

flrr=1 L A=A == Llle /S =1 = L
VSN )~ I/ = e 1L]12 1Ll
M= Ll S+ |f/F7 =1 - LI
1L]12

where we have used Lemma 5.14. By Theorem 5.11, we obtain

c* a
12l 2 L2 53 S mle; - o)

i=1 jeJ:0,€A;

Therefore, we can estimate

<4_Oz>1/4 d3/2H3

|f/f* -1- L| < d3/2H3 2321 ZjGJZGjGAi Tr]HH] - 6:”3 <
o 3c*

L]z o3 YL ZjerejeAi m;ll0; — 071>

where we have used the definition.bf Settingl = L/||L||2, we obtain

C*

* _ d3/2
‘%ﬁj . f{) —e‘ < —wﬁ {1 Hsll2 S + Hs} o}/

It remains to show that for our choice 6f= L/||L||2, the coefficients), 3, p,~ in
the statement of the lemma satisfy the desired bounds. Toeticients are

! 1
2 mom) = > (0 =07,
Lig\ & ILll2 . 4= =
JeJ:0;€A; el aed:

Moo om0, -0, -0, = \JILJIIi .

pi =
2|12 jeT:0;€A;

ni =
ol
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Clearlyrank[p;] < #{j : 0; € A;} N d, sozg;l rank[p;] < ¢ A dg*. Moreover,

HLszc*[ ) m+i{

j:@jEAo i=1

*

7:0; €A;

> w6 —67)

jGJ €A;

+

1 *
33 muej—eiw}]

]QJEArL

by Theorem 5.11. It follows thazlq;1 Tr[p;] < 1/c¢*. Now note that forj ¢ J
such that; € A;, we have||d; — 0%||? > 2y/a/c* by construction. Therefore

1
|L||2 > ¢* i+ = mill0; — 0517 | > (VeraAch) j.
ity il

j€J19j€A0 i=1 jQJ:@jGAZ’ J€J
It follows that> 7, || < 1/(Ve*a A ¢*). Next, we note that
a a
2 <)
i=1

=1

*

jEJ:QjeAi

*

]QJEArL

+ Z ;.

J&J:0;¢ Ao

Therefore> %", |ni| < 1/¢* + 1/v/c*a. Finally, note that

> om0 —6)) > w6 —67)

*

>

*

q

<> +or Y om.

i=1 || jeJ:0,€A; i=1 || j:6;€4; J@J:0;¢ Ao
Thereforezlq;1 18:|| < 1/c*+ 2T /+/c*a. The proof is complete. O

We can now complete the proof of Theorem 3.3.
PrROOF OFTHEOREM 3.3. Leta > 0 be a constant to be chosen later on, and

Dy ={ds: f €M, f# [, b(f, [7) <o}

Then clearly
N(Dy,0) < N(Dg.a,0) + N(Dg\Dy.a,9).

We will estimate each term separately.
Step 1(the first term. Define

Mq:{(ml,...,mq*)ezz: Sy A+ Mg = g Adg*).
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For everym € M, we define the family of functions

T fer . Difer 5 Dafer TS,
0r 1o . P2]6; 0;
Lgma = {Z f* + 6B; I + ZPUTPU + Z%’f_i :
j=1

=1
(77a By, s 9) € jq,m,cu }a

where

Jyma = {(n,ﬁ,p,v,@) € RY x (Rd)q* X (Rd)ml XX (Rd)mfﬁ xR % O7 ;

2T
- 1
121321 llps;]I” < e Z 1v;] < e AC*}

Define the family of functions
L a — U 'Cq,m,oz
meMy

From Lemmas 5.16 and 5.17, we find that for any functioa D, ,,, there exists
a function? € £, such that (here we use thatf, f*) < v/2 for any f)

d32\/_

3/ LIHsllz S + Hs} o/t

d — 0] < {4]|S]12S + 252} (a A V2) +
Usinga A V2 < 23/8a1/4 for all « > 0, we can estimate

1 H
d—t <o*U, U= (% +8|1S|17 + 4) 42 {S + S% + Hy},

whereU € L?(f*du) by Assumption A. Now note that if2; < ¢ < my for some
functionsmy, ms with ||mg — mq|j2 < ¢, thenm, — AU <d<mg+ /AU
with ||(mg + &4 U) = (my — /4 U)||s < € + 2a'/4||U||2. Therefore

N(ﬂq,a,6+2a1/4”U||2) <N(Lyg,ar€ Z N(Lgm,a,e) fore>0.
meMy

Of course, we will ultimately choose « such that + 2a!/4||U||y = §
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We proceed to estimate the bracketing numiNg£, ., o, ). To this end, let
0,0 € Lyma Wherel is defined by the parametefs, 3, p,7,6) € Jgm,o and?’
is defined by the parametefs’, 5, p’,~,0") € J4.m.o. Note that

q* m;

. sze* D for
33 22— gt 22 < 2,8 o
=1 j=1 =1 j=1

We can therefore estimate

€ - f’!<HoZ\m m!JrHl\/—ZHﬁz 5H+Hozm jl+

7=1

& 1/2
Vd 2d\/dq
Hy max [|6; — 05| + i AR .
L a0~ 0] ; 1}j§1j lois — o1

where we have used thfy — fo|/f* < || — 6’| H1/d by Taylor expansion.
Therefore, writing” = (Hy + Hy + Hs) dv/dg*, we have

’g - g” S V ‘H(TI? 57 p?V? 9) - (77/7 5/7 pl77/7 6/)”’q7m7a7

is the norm orR(1+d)¢" +d(andg*)+(1+d)q defined by

wheref-|

q7m7a

G2, 852,75 Ol g 1,00 = Z il + Z 1Bl + Z il

* 1/2
\/C*—/\C* max Ha H +—= \/— [ZZ HPUH2] .

=1 j=1

Note that ifl[|(n, 5, p,7,0) = (7', B/, 0", 7, ')l .o < €5 then we obtain a bracket
U=V <t <U+Vofsize||({! +£'V)— (0! —£'V)|2 = 2¢'||V]|2. Therefore,
if we denote byN (Jg.m.a; [I-ll,.m.q-€") the cardinality of the largest packing of
J4.m.o Dy €’-separated points with respect to tjé| -norm, then

q7m7a

N(Lgm,ar) < N(Tgm,a Il e/2|Vll2) fore>0.

(1717/1’7CV7

But note that, by constructior, ,,,  is included in a-|| -ball of radius not

q,m,x
exceeding6+37) /(v c*aNc*). Therefore, using the standard fact that the packing
number of ther-ball B(r) = {x € B : ||z|| < r} in anyn-dimensional normed
space(B, ||-||) satisfiesN (B(r), |-, &) < (2”5) we can estimate

4V 26 + 37)/(VFa n ) + e) (rdsdandr) (b da

N('Cqmuomg) S < €
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In particular, ife <1 anda < ¢*, then

< (d+1)q
N(Eymonc) < ((24+12T)H€V\/H_/\/c—+ \/—>

Finally, note that the cardinality dfl, can be estimated as

d *
#M, = ¢ +andgt =1\ _ gpag (€ +aNdg 1 ahdq < gt
! q A dg* - q A dg* -0
where we have used that> ¢*. We therefore obtain
Dyar0) < Y N(Lgmard — 224|U]|2)
meM,

<24(2+T)IIVH2NC_*+\F> (@)
=\ (6 22V4|Ul]2) Ve

wheneven < 1 anda < (6/2||U]]2)* A ¢*.
Step 2(the second terinFor f, f' € M, with h(f, f*) > aandh(f’, f*) > «,

;- | = \WITF = DIVITF — U = VT = DIVITF = 1
A h(f, f*YR(F', )
o WITF = T FIWITF = U+ VR IVTTT = VT

a2

where we have used that f, f*) < v/2 for any f. Now note that

Va = vA[* < [Va— Vbl (Va+Vb) = la—b)
for anya, b > 0. We can therefore estimate

I = PP W + 1) + VI = £/ £

a2

|df —d}| <

where we have used thay/ f/ f* — 1] < Vv Hp+ 1foranyf € M. Now note that
if we write f = Y7, m; fp, and f’ = f9/ then we can estimate

zlz

ff’

HOZ i = il + HyvVd max 6; = 0]

Defining
= (V/Ho +1)||Ho + HyVd|}"? + V2 (Hy + HiVd)'?,
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we obtain

174 q
dy =yl < 5 ll(m.0) = @Ol N0l = Iml + [max {16
i=1

-----

(clearly ||-]|, defines a norm of(¢+1)7). Now note that iff| (=, 6) — (', ¢")]|, <
e, then we obtain a bracket, — e?W/a? < dy < dy + e2W/a? of size
(d; + ' /2W/a?) — (d} — £'/2W/a?)||y = 21/2||W||2/a?. Therefore

N(Dg\Dg,a,0) < N(Ag x O, [|-[l, a'6* /4 W |3),

where we have defined the simpléy = {7 € R% : }>°7 |, m; = 1}. We can now
estimate the quantity on the right hand side of this expoesas before, giving

8(1+ )| W2 + <c*>4> (@)

I

foro < 1anda < ¢*.
End of proof. Choosen = (5/4(|U||2)*. Collecting the various estimates above,
we find that ford < 1 A 4(¢*)Y/* (as||U||2 > ||S||: > 1 by Lemma 5.14)

2 T 2 * 2 2 * 3(d+1)q
Dy, < (T TIVIEIV IV 2V

A8(1 4+ T) U35 (|W |13 + 418 | U]|36 () (D
+ 518

. 18(d+1)q
< (Co (@ V)V (U]l v [V]l2 v erm)

0

wherecy = 12(c*) =112 4 2(c*)/12 4 4(¢*)4/18 + 8. It follows that

18(d+1)q
N(Dy, 6) < (C*<T v )V (|[Hollf v ||5H1u3 V || Half v HHsll%)>

for all § < 6*, whereC* andé* are constants that depend only €n d, andg*.
This establishes the estimate given in the statement of lleer€m. The proof of
the second half of the Theorem follows from Corollary 5.18 af|[, > 1. O

5.5. Proof of Theorem 4.1. The proof of Theorem 4.1 is based on Theorem 2.3
and the following result.
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PrROPOSITIONS.18. LetM™ for n > 1 be a family of strictly positive prob-
ability densities with respect to a reference measursuch thatm® C M"+!
for all n. DefineM = | J,, M", and let f* be another probability density with re-
spect toy such thatf* ¢ cl M, wherecl M denotes the.! (du)-closure ofM. Let
H" ={\/f/f*: f € M"}, and suppose there exi&i(n) > 1 andp > 1 so that

NH™ 6) < (K((Sn)>p

forall § < 1andn > 1, whereN(H",0) is the minimal number of brackets
of L?(f*du)-width 6 needed to cove#(". Let (X;);en be i.i.d. with distribution
f*dp. Ifin additionlog K (n) = o(n), then we have

1o X;
lim sup sup —Zlog(f( ) > <0 a.s.

n—oo feMr T ot f*(Xj)

PrROOF. As in the proof of Theorem 5.1, we have
1 ¢ f(X))
— log ( J
n ]Z; fH(X5)
The following claim will be proved below:

lim sup n~Y%u,(log({f/f*}?) =0 as.
n—o0 femn

) < 40~ V20, (l0g({F/1}Y/2)) — 2D(F |1 ).

Using the claim, the proof is easily completed: indeed, vemthave

n—oo femn N [ (X;5)

where the last inequality follows from Pinsker’s inequalind /* ¢ cl M.
It therefore remains to prove the claim. To this end we appb},[Theorem 5.11
as in the proof of [25], Theorem 7.4 (cf. Theorem 5.1 abovéictvyields

1 « X; ~
limsup sup — E 10g<f( j)> < —2fianWD(f*Hf) <0 as,
€
j=1

P | sup [n 20, (log({f/F}V2)] > a| < Ceme?/C

femn

for everya > 0 such that”',/p (1 + y/log K(n)) < ay/n < 32¢/nandn > 1,
whereC' is a universal constant. Asg K (n) = o(n), we have

P

n>1

sup [n~" 2w, (log({f/f*}'/?))] = a] < oo
femn

for all 0 < a < 32, so the claim follows from the Borel-Cantelli lemma. O
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We can now complete the proof of Theorem 4.1.

PROOF OFTHEOREM4.1. By Theorem 2.3 and easy manipulatioBs;a.s.

lim sup sup ! { sup £, (f) — sup fn(f)}

n—oo g>¢* Pen(n, q) —pen(n, q*) | revn Femr,
log K(2n) V log 1
< lim sup MO {log K(2n) Vieglogn}

n=o0gsgr  pen(n,q) — pen(n, q*)

1 1
lim sup sup sup £,(f)— sup £,(f) p =0.
nooo log K(2n) Vloglogn ¢~q¢ n(q) {feMg n(f) ronn, n(f)

Therefore P*-a.s. eventually ag — oo

sup (n(f) — pen(n,q) < sup ln(f) — pen(n,q*)
re ey,

for all ¢ > ¢*. It follows thatlim sup,,_, ., ¢, < ¢* P*-a.s., that is, the penalized
likelihood order estimator does not asymptotically oveneste the order.
On the other hand, we note that for every. ¢*

hmsupl{ Sup £n(f) — sup mf)} <limsup sup =3 log ( /X)) )

n—oo M | fenp e, N R et fH(X5)

which is strictly negativeéP*-a.s. by Proposition 5.18, where we have used that

log K (n) = o(n) and thatN(H?(2),8) < N(H%(2),6) < (2K(n)/8)"7) for
all § < 2 andn sufficiently large. Ayen(n, q)/n — 0 asn — oo for ¢ < ¢*

1
limsupmax — ¢ sup £,(f) —pen(n,q) — sup £,(f)+ pen(n,q*) » <0
n—oo 4<¢" M | feMn feMy,

P*-a.s. In particular, we find th&*-a.s. eventually as8 — oo

sup £,(f) —pen(n,q) < sup £,(f) — pen(n,q*)
femy feMg*

for all ¢ < ¢*. It follows thatlim inf, ., ¢, > ¢* P*-a.s., that is, the penalized
likelihood order estimator does not asymptotically undéneate the order. [

Finally, let us prove Corollary 4.3.
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PROOF OFCOROLLARY 4.3. Itis shown in the proof of Corollary 2.6 that

I':= sup { sup ((d, g>)i — sup ((d,g))i} > 0.
geL3(f*du) | deDg deD

By Theorem 2.5, we have

1
lim sup sup 4p(f) — sup £y, >
n—oo pen(n,q) —Pen(n,Q*){fqu (/) FEM )
1
sup sup ((d, g))2 — sup ({d,g))2 ¢ P*-as.
C{n(g) —n(g*)} geL%(f*du){deDg T e, i

Therefore, choosing' < I'/{n(q) — n(¢*)}, we find that

sup £, (f) — pen(n,q) > sup £,(f) —pen(n,q*)
feMy FEMgx

infinitely often P*-a.s., so thaf,, # ¢* infinitely often P*-a.s. O

5.6. Proof of Proposition 4.4. The proofs of the consistency results in Propo-
sitions 4.4 and 4.5 follow almost immediately from Theorerh, £orollary 3.4,
and Example 3.5. The main difficulty is to establish the ctoiDS\D,+ # @ of
Corollary 4.3, which is needed to prove the inconsistenaey @iaProposition 4.4.
To this end, we will need the following lemma characterizibg (here we adopt
the same notations as in section 3.2).

LEMMA 5.19. Suppose that Assumption A holds. Then we have

~ L a for . Difor P
pq*: mL:Z 772.]3*—’_/87, f* 7772€R7526R72772:0 -
i=1

i=1

~ PrROOFR. Let (fn)n>1 C Mg+ be such thak(fy,, f*) — 0 anddy, — do €
Dg+. By Theorem 5.11, we may assume without loss of generalidy th =

iy 7 for with 07 — 60F andn} — nf for everyi = 1,...,¢*. Taylor ex-
pansion gives

fu— I i & "
— Ln ny n < —H Zn Hzn - 9@ 5
& +R (Rl <5 2Z_§1j7r [ [
where
a . D+ foe
L= {w B L TS et }
i=1 f f
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Proceeding as in Lemmas 5.16 and 5.17, we can estimate

Ln Rn 2
den — || < 2081320812 + 13 (s 1) + {I1S]l2 + 1} ”L Iz
ol Zal

But using Theorem 5.11, we find that fersufficiently large

*

q
IZallz = Lol = € w167 — 65|
i=1

Thus we have

*
R d|| H-: T qn|ler — 0|12 d||H:
I ”H2§ I in i=1 T 07 — 07|l < I f”?max 1o — 6| 22 0,
ILalls = 2 ST wrfor— 6 © 27 =L —

We have therefore shown that, /|| L, |2 — do in L?(f*du). Now define

[ (" — g* a
———", b= M, Zn =Y Almf=wt |+ 77 (67 =07}
Zn Zn i=1

n

n; =

As Z?;l{]m"\ + |18} = 1 for all n, we may extract a subsequence such that
et — n;, B — B, andz‘iil{]m\ + ||Bill} = 1. We obtain immediately

L < for Dy for
do = L= {m -+ B 1}-
L ]]2 ZZ:; I* I*

Clearlyzgl1 n; = 0. Thus we have shown that ady € D« has the desired form.
_ Itremains to show that any function of the desired form isaict fan element of
Dy+. Tothis end, fixy; € R, §; € R? with Z?A n; = 0, and definef; for ¢t > 0 as

*

q

ft= Z(W: + i) for+pit/mr-

i=1

Clearly f; € My« for all ¢ sufficiently small, andf; — f* ast — 0. But

R
— = > ; +) i forapmr
i=1 =1

Therefore clearly

Lfi— f* 150, { Jor *leGZ}
" i - = L.
1

T AT

-
Il
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Using Lemma 5.16, we obtain

lim df, = lim (fi=f)tf L

0 =0 |(fe = f*)/tfll2 L]l

Thus any function of the desired form isTh,-, and the proof is complete. [

REMARK 5.20. The proof of Lemma 5.19 in fact shows thag = D¢..
We can now complete the proof of Propositions 4.4 and 4.5.

PROOF OFPROPOSITION4.4. We begin by proving consistency of the penalty
pen(n,q) = qw(n). Note that by Corollary 3.4, the assumption of Corollary 4.2
holds withn(q) = 18(d+1)g +1 < 19(d + 1)q. Thus consistency gfen(n, ¢) =
qw(n) follows from Corollary 4.2 usingo(n) = w(n)/19(d + 1).

To prove inconsistency of the penalpgn(n,q) = C g loglogn with C > 0
sufficiently small, it suffices to show théig*+1\®q* is nonempty. Indeed, if this
is the case then we can apply Corollary 4.3 wijte- ¢* + 1, where the requisite
entropy assumption follows immediately from Theorem 4.1.

Fix v € R%, and consider the functiofy defined fort > 0 as follows:

¥ 7
fe= 71 (for ot + for—vt) + Y 71 for.

=2
Clearly f; € My~ for all ¢t sufficiently small,f; — f* ast — 0, and

fo—=f* w7 Soprot — 2 for + for—ut 10 T D
t2 - 9 t2 5 v Qfgf?}.

As in the proof of Lemma 5.19, we find that

(fe — [*) /2 f* v* Dy forv

limdy, = lim = =dn.

=0T S0 (= )/l o Defagells —
By constructiond, € @g*ﬂ. But by Theorem 5.11, the functiorfs:, D; fyx, and
v*Ds forv (i = 1,...,¢*) are all linearly independent. Together with Lemma 5.19,

this shows thatly ¢ D+. Thusdy € D¢, \Dy+, and the proof is complete. O

PROOF OFPROPOSITION4.5. By Example 3.5, the assumption of Theorem
4.1 holds withn(q) = 18(d + 1)¢ + 1 andlog K (n) = log Cf + C3T(n)?. The
desired consistency results now follow immediately froneditem 4.1. O
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