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CONSISTENT ORDER ESTIMATION AND THE LOCAL
GEOMETRY OF MIXTURES

BY ELISABETH GASSIAT AND RAMON VAN HANDEL
Universié Paris-Sud and Princeton University

Consider an i.i.d. sequence of random variables whosdhlison f*
lies in one of a nested family of modg®1(, ) qen, My C Mg41. The smallest
index ¢* such thatM,+ containsf™* is called the model order. We establish
strong consistency of the penalized likelihood order estimin a general
setting with penalties of ordef(q) log log n, wheren(q) is a dimensional
guantity. Moreover, such penalties are shown to be minitnatontrast to
previous work, an a priori upper bound on the model order isasumed.

The local dimensiom(q) of the modelM, is defined in terms of the
bracketing entropy of a class of weighted densities, whosepatation is a
nonstandard problem which is of independent interest. Wiopa the req-
uisite computations for the case of one-dimensional locatnixtures, thus
demonstrating the consistency of the penalized likelihaixture order es-
timator. The proof requires a delicate analysis of the lgeadmetry of the
mixture family M, in a neighborhood of *, for ¢ > ¢*. The extension to
more general mixture models remains an open problem.

1. Introduction. Let (X%)ren be a sequence of random variables whose dis-
tribution f* lies in one of a nested family of mode(31,),cn, indexed (and or-
dered) by the integers. We define the model order as the shalliexq* such
that the true distribution of the model lies in the corresping model class. Model
order estimation from observed data is a statistical prolbésignificant practical
interest. On the one hand, the model order typically deteemthe most parsimo-
nious representation of the true distribution of the undieg model (for example,
it might determine the parametrization of the model whichth& smallest possible
dimension). On the other hand, in many cases the model oedea lconcrete in-
terpretation in terms of the modelling of the underlying pbi@enon (for example,
the estimation of the number of distinct clusters in a datasethe estimation of
the number of regimes in an economic time series). For tleesmns, order estima-
tion problems appear in a wide variety of applications. Tgpexamples of order
estimation problems include Markov order estimation, Biddarkov model or-
der estimation, and mixture model order estimation. Froth bwe theoretical and
practical prespective, a challenging problem is to devslopngly consistent or-

AMS 2000 subject classificatior82G20, 60F15, 60F10, 41A46, 41A25
Keywords and phrasesonsistent order estimation, penalized likelihood, Iikebd inequalities,
uniform law of iterated logarithm, empirical process thedaracketing entropy, location mixtures
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2 E. GASSIAT AND R. VAN HANDEL

der estimators which can be applied in a general setting drichvdo not suffer
from restrictive assumptions which are rarely satisfiedppliaations, such as the
availability of an a priori upper bound on the model order.

In this paper, we focus on independent and identically idisted sequences
(Xk)ken and on penalized likelihood order estimators of the form

Gn = argmax { sup €,(f) — pen(n, q>} ,

geN feM,

wherel,,(f) is the log-likelihood of the sequen¢&}, )<, with distribution f and
pen(n, q) is a given penalty function. In this setting, we aim to detieerwhich
penaltiespen(n, ¢) give rise to strongly consistent order estimators (thasush
thatg, — ¢* a.s. asn — o0). The investigation of strong consistency requires
a detailed understanding of the fluctuations of the likedthoatio statistic. The
guiding motivation for this paper was to obtain an undewitag of mixture order
estimation problems, where the behavior of the likelihoatibrstatistic is notori-
ously complicated due to a fundamental lack of identifibilHowever, the main
results of this paper establish consistency and incomsigteesults for model order
estimation problems in a very general setting, going fapheythe problem of mix-
ture order estimation. In addition to these general resuléswill obtain specific
results for mixture models which require a rather delicatalysis of their geo-
metric structure. The latter sheds light also on otherstiedil problems in mixture
models (such as hypothesis testing) and is of independemesi.

1.1. Previous work. There are two main approaches towards studying strong
consistency of the penalized likelihood model order ediima

The first approach (which forms the foundation also for tsipgr) stems from
the observation that the likelihood ratio statistic can jpgraximated by the square
of an empirical process. In regular parametric models, fthllews by a simple
Taylor expansion argument, similar to the one used in thesghare theory of
likelihood ratio tests. The situation is more delicate im+identifiable models, but
such a correspondence was nonetheless obtained in a vemabsetting by one of
us [10] (see alsd[17] for related results). Once this edeinee is established, the
law of iterated logarithm implies directly that the likedibd ratio statistic has path-
wise fluctuations of orddbg log n, thus giving rise to strongly consistent penalties
of orderpen(n, q) ~ loglogn. This approach has been employed in a variety of
order estimation problems: for ARMA models [n]14], for réguparametric mod-
els in [19], for Markov order estimation irf][9], and for mixeuorder estimation
in [L5, [4]. However, the drawback of this approach is thati#weof iterated loga-
rithm only applies to the likelihood ratio statistic for angle model class, so that
one has no control over the fluctuations of the likelihoodbratatistic uniformly
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in the model order. For this reason, the results in the abefegences must assume
that one has prior knowledge that the true model order isnippgnded by some

known constant. As is pointed out ifj [7], this restrictioruissatisfactory as such
an upper bound is rarely available in practice.

The second approach is entirely different in nature and sedb@n the approx-
imation of penalized likelihood order estimators by minmmudescription length
(MDL) order estimators, which can be studied using techesginom information
theory (see[]3], Chapter 15 for a primer). This approach wasleyed for the hid-
den Markov model order estimation problem[ih[[9, i1, 5], ad3aussian or Pois-
son mixture order estimation iff [5]. In contrast to the fipgdaach, the information
theoretic approach does not require an a priori upper boarideomodel order. On
the other hand, the strongly consistent penalties obtahredgh this approach are
typically of orderpen(n,q) ~ logn and grow rather rapidly in the model order
g. Therefore, such penalties are substantially larger thaset obtained through
the first approach, and are therefore expected to be sukaptinmost cases (it
should be noted that small penalties are highly desirabpgantice, as they min-
imize the probability of underestimating the order). In itidd, the computations
involved in the information-theoretic approach are spedtifiparticular families of
densities (such as discrete distributiofjs[[9, 11] or Ganssiixtures and Poisson
mixtures [$]) and do not appear to admit a general consigtéreorem that applies
simultaneously to a large class of order estimation problem

The inadequacies of these approaches was highlighted wattkeof Csiszar and
Shields [J [], who present a detailed study of the Markoepgsstimation prob-
lem. They establish consistency of the BIC Markov ordemestodr pen(n, q) =
% dim(q) log n, wheredim(q) is the dimension of the parameter space of the model
of orderq, without a prior upper bound on the order. The analysis isghgapers
is very delicate, however, and relies heavily on the avditatof an explicit ex-
pression for the maximum likelihood estimator for Markowaiis. Such explicit
expressions are rarely available in more general ordanatitin problems.

Recently, one of us has shown|[24] that penalties of dkelglog n already lead
to strongly consistent estimators for Markov order estiomteven in the absence
of a prior upper bound. This refinement of the results[pf[[7regjuires an en-
tirely different method of proof: the key idea is to use magtle concentration
inequalities and techniques from empirical process thémgbtain a law of iter-
ated logarithm for the likelihood ratio statistic which dsuniformlyin the model
order. In particular, this approach does not rely on an eXmixpression for the
maximum likelihood estimator, and is therefore much momeegally applicable.

1.2. Contributions of this paper. The goal of this paper is to investigate which
penalties give rise to strongly consistent model ordenegtrs in the i.i.d. setting.
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Our main contributions are threefold.

First, Theoren} 2]4 establishes in a very general settingtiieapenalized like-
lihood model order estimator with penalty of ordg;) log log n is strongly con-
sistent in the absence of a prior upper bound. Hgtg is a dimensional quantity
related to the bracketing entropy of a certain weightedsabéslensitiesD, derived
from the model clas3(,. The proof of this result is inspired by the method devel-
oped in [2}#] for Markov order estimation, though we followarsewhat different
approach here to obtain a much more widely applicable result

Second, Theorefn 2]10 shows that penalties of the @ry(y) log log n give rise
to inconsistent order estimators when the constaig chosen sufficiently small.
This implies that penalties of ordirg log n are in fact minimal when the aim is to
achieve strong consistency. Thus our results essentiadisacterize those strongly
consistent penalties which minimize the probability of erestimating the order.
The main ingredient of the proof of is an exact characteomabf the fluctuations
of the generalized likelihood ratio test, which may be ofeipendent interest.

Finally, we aim to apply our general results to the mixturdeorestimation prob-
lem. The key difficulty here is to compute the bracketing @mgrof the weighted
model classe®,. To our knowledge, this has hitherto remained an open pnuble
despite that one may find various clainps][[[5[]4, 1] that theKkeéng numbers
are polynomial, no proof supports these claims. Moreovewaaim to establish
results that hold uniformly in the model order, it is of keygartance that the con-
stants that appear in estimated on the bracketing entrapéemdependent of the
model order. The computation of entropies of weighted moldsilses appears to be
a nonstandard problem in empirical process thfiamd the lack of identifiability
in mixture models makes this a novel and rather delicatelenob

In Theorem[ 2.72, we establish explicit (polynomial) boundsthe bracketing
entropies of the weighted classPg in the case of one-dimensional location mix-
tures. The requisite assumptions are mild and easily vérifie require only some
smoothness assumpions and the existence of exponentiabmt&nT his result is
of independent interest, and could have a variety of apjdies. to other statisti-
cal problems involving mixtures. The proof of Theorém P.&uires a delicate
analysis of the local geometry of mixture models in the neaghood of the true
distribution. We believe that essentially the same reshitaild hold in much more

! The standard approach for dealing with weighted empiricat@sses is to employ a so-called
peeling device (se3]) to reduce the problem to the coatiout of entropies of unweighted model
classes. Unfortunately, in parametric models, this giigssto additional terms of ordéwsg n unless
on can compute thiecal entropies of the model classes. In nonidentifiable models as mixtures,
whose geometry is notoriously delicate, such local entoapgputations do not appear to be feasible.
Therefore, the direct computation of the entropies of wieidhmodel classes becomes essential in
such models. Note that any additioiag n factors would dominate entirely the corrdog log n
growth rate of the likelihood, and would therefore lead toffam optimal results.
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general mixture models, but we were not able to complete epgart of the proof.
This remains a challenging open problem.

1.3. Organization of this paper. The remainder of this paper is organized as
follows. Sectior]2 describes our main results: the stromgistency theorem (sec-
tion [2.3), the inconsistency theorem (sectjor} 2.2), andafication to mixture
order estimation (sectidn 2.3). The proofs of the resulthé@se sections are given
in sectiong[3[]4, and 5, respectively. Finally, the Appemdoalls some inequalities
for empirical processes that play a fundamental role in ooofs.

2. Main results.

2.1. Consistent order estimation.Let (E, &, u) be a measure space. For each
g € N, let M, be a given family of strictly positive probability densgiavith
respect tou (that is, we assume thdt fdu = 1 and thatf > 0 p-a.e. for every
f € M,). Moreover, we assume th@l(, ) ,c is a nested family of models, that is,
My C Mgy forall g € N. We also definevl = |, M.

Consider an i.i.d. sequence Bfvalued random variabl€s}, ),y Whose com-
mon distribution under the measul is f*du, where f* € Mg\ cl My«_; for
someg* € N (hereclM, denotes the.!(du)-closure ofM,). The indexq* is
called themodel order Neitherg* nor f* are presumed to be known. Our aim is to
estimateg* from an observation sequent&},).cn. To this end, let

=1

Evidently ¢, (f) is the log-likelihood of the i.i.d. sequen¢&,);<,, under the mea-
sure whereX;, ~ fdu. Thepenalized likelihood order estimatis defined by

gn = argmax { sup £n(f) — pen(n, C])} ;
geN feM,

wherepen(n, q) is a penalty function. Our main goal is to show that the pesdli

likelihood order estimator is strongly consistent, thatjjs— ¢* asn — oo P*-

a.s., for a suitable choice of penalty. Let us emphasizettigatmaximum in the

definition ofg, is taken overll model orderg € N, that is, we do not assume that

an a priori upper bound on the order is available.

REMARK 2.1. To avoid measurability problems and other technicaipla-
tions, we employ throughout this paper the simplifying camion that uncount-
able suprema (such a8p sy, ¢, (f)) are interpreted as essential suprema with
respect to the measuR®*. In applications the model class®§, will typically be
separable, so that the supremum and essential supremuaideoin
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Let us begin by recalling the notion of bracketing.

DEFINITION 2.2. Given a clas8 of measurable functiong: £ — R, a finite
collection of pairs of functiongg’, g },=1,. v is called aQ, §)-bracketing set if
for everyg € Q, thereis g € {1,..., N} such that

9 <9<g95, E*[(9 (X1) — g7 (X1))?] < &%
We denote ad\(Q, ¢) the cardinalityN of the smalles{Q, §)-bracketing set.

Our general consistency result is stated in terms of thekbteng numbers of a
certain class of weighted densiti®g derived fromM,, which we define presently.
The significance ofD, follows immediately from the likelihood inequality ob-
tained in Lemmé 3]1 below, which plays a fundamental rolééngroof.

DEFINITION 2.3. Forany > ¢*andf € M, (f # f*), define

—M *\2 _ %) 2
dy= 2w = [ (VTP

(thatis,h(f, f*) is the Hellinger distance between the densifieend f*). Define
Dy ={ds: feMy, f# f}forqg>qg*, andletD = Uq>q* Dy

We can now formulate the main result of this section.

THEOREM2.4. Assume that the following hold.

1. There is an envelope functidn : E — R such thatd| < D forall d € D
and R? = E*(D(X;)?) < co. Moreover, for every, > ¢*, we have

R
/ \/1og N(Dy, u) du < .
0

2. Foreveryg < ¢*, the family

SCORES

is aP*-Glivenko-Cantelli class.

Define the penalty
pen(n, q) = 1(g) w(n)loglogn,
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wherew is any function such thatr(n) — oo asn — oo (arbitrarily slowly),
n~lw(n)loglogn — 0asn — oo, andn is any function such that(¢) > n(q—1)
for all ¢ > ¢* and such that for some constaht> 0, we have for every > ¢*

R
VBq v/o \/10g N(Dy, u) du < \/n(q) < co.

Theng, — ¢* asn — oo P*-a.s.
The proof of this theorem is given in sectifin 3.

REMARK 2.5. The scaling functiom(q) is closely related to the dimension
of the the modeM,. Indeed, ifD, is a finite-dimensional family, one would typ-
ically expect thatf, log!/2 N(Dg,u) du o (dimD,)"/2. As the scaling factor
h(f, £*)~1 in the definition ofd; becomes singular a6— f*, one could think of
n(q) as the “local dimension” ai(, in a neighborhood of the true densify.

REMARK 2.6. An alternative set of assumptions under which the cimmh
of Theoren{ 24 holds can be obtained by adapting the methpbof used in[[24]
for the Markov order estimation problem. The key requiretiiemne is that

N(M,(e),0) < <%> "

for some constant’ and for any=,§ > 0 andq € N, where we have defined the
Hellinger ballsM,(¢) = {\/f : f € My, h(f, f*) < e}. In this case, a peeling
device can be employed to avoid dealing with the weightedscly,. However,
the proof relies crucially on the exact dependence of thal lbacketing entropy
log N(M,(¢g),d) one/é given above. It is not sufficient to obtain a global entropy
bound (that is, where the scalingdns omitted), as additional logarithmic factors
then appear in the proof which give rise to suboptimal p&slt

We must therefore choose between two alternatives: eittabksh (i) alocal
entropy bound directly on the model clasg,, or (i) a global entropy bound on
theweightedmodel clas9,. Alternative (i) implies essentially that the famil,,
endowed with the Hellinger distance, has the same metrctsiie as a subset of
R"7(@) endowed with the Euclidean metric. However, in the exampleshave in
mind, this is not typically the case. For example, finite migtmodels (cf. section
B.3) possess a notoriously complicated geometry which aitgtively different
than that of Euclidean space, so that the local entropy appr@s not well suited
to such models. In this paper, we have therefore chosen &agethe more flexible
alternative (ii). The interested reader may easily adapptioof in [24] to obtain a
version of Theorerh 2.4 under assumptions correspondintjetmative (i).
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Alternative definitions of the weighted model clabg are possible, however,
without changing the conclusion of Theor¢m 2.4. See Refndrb&@ow.

2.2. Minimal penalties. Theorem[2]4 shows that any penalty that increases
faster tham(q) log log n defines a strongly consistent order estimator. In this sec-
tion, we will establish (under some mild additional assuoms) that this result is
essentially optimal: we will show that the order estimat@thwenaltypen(n, q) =
C'n(q)loglogn is inconsistent when the constafitis chosen sufficiently small.
Therefore Theorerp 3.4 identifies in essence the minimallpyetieat gives rise to
strong consistency. The identification of the minimal pgnialrelevant in practice,
as such penalties minimize the probability of underesiimgathe order.

REMARK 2.7. Though the penaltyen(n,q) = Cn(q)loglogn gives an in-
consistent order estimator for sufficiently small constarit we have not yet dis-
cussed the consistency of this penalty for largelA careful reading of the proof
of Theorem[2J4 shows that consistency is in fact achieved frepenalties of the
form pen(n,q) = Cn(q)loglogn, provided thatC' > C for a certain thresh-
old Cy (see Remark 3.4). Unfortunately, the value(af depends omy*, so that
such penalties cannot be used for the purpose of order distimia the absence of
a prior upper bound on the order. It therefore appears thatameidentify three
regimes: that of inconsistent estimatiopefi(n,q) = Cn(q)loglogn with C
small), consistent estimation with a prior upper bound endtder pen(n,q) =
C'n(q)loglogn with C large), and consistent estimation without a prior upper
bound on the ordempgn(n, q¢) = n(q) w(n)log log n with w(n) — o0).

To state the main result of this section, we will need sométiaddl notation.

DeFINITION 2.8. Forg € N ande > 0, define the families

Dy(e) ={df: f €My, 0<h(f, f*) <e},  Dg=[)clDy(e),

e>0

where the closurel D, (¢) is in L?(f*du).

Evidently D, is the set of all possible limit points af; ash(f, f*) — 01in M.
We will require some assumptions on the richness of neididmats ofD,,.

DEFINITION 2.9. A pointd € D, is calledcontinuously accessiblié there
is a path(fi)iej0,1] € M \{f*} such that the map — h(f;, f*) is continuous,
h(fi, f*) — 0 ast — 0, anddy, — d in L?(f*du) ast — 0. The subset of all
continuously accessible points 1, will be denoted aé_)g.
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We can now formulate the main result of this section.

THEOREM 2.10. Assume there exists> ¢* such that the following hold.

1. There is an envelope functidn: £ — R such thatd| < D for all d € D,
andD € L**t*(f*du) for somea > 0. Moreover,

1
/ log N(Dy, u) du < oco.
0

2. DE\Dg+ is nonempty.

Define the penalty
pen(n, q) = C'n(q)loglogn,

wheren is any nonnegative function such thay) > n(q¢*). If the constanC' > 0
is chosen sufficiently small, thégp # ¢* infinitely oftenP*-a.s.

The proof of this theorem is given in sectifin 4.

REMARK 2.11.  The proof of Theorefn 2110 will show thatp ¢y, £n(f) —
pen(n,q) > SUD e, 0, (f) — pen(n, ¢*) infinitely often P*-a.s. Thus imposing
a prior upper bound on the order does not alter the conclugidieoren{ 2.7)0.

2.3. Application to mixtures. The general mixture order estimation problem
can be defined as follows. L& be a given family of strictly positive probability
densities with respect to. Forq € N, we define the model class

q q
M, = {mei:m >0, Zm: 1, f; Eﬂ’}
i=1 i=1

to be the family of mixtures aof elements of. In this setting, the model order is the
smallest number of mixture components that is needed taidegbe distribution

of the data(X},)x>o. We aim to apply Theorerp 2.4 to obtain strongly consistent
penalized likelihood mixture order estimators.

The key problem is evidently to bound the bracketing numkeb,, d). This
appears to be a novel and nontrivial problem. As the normalizf, f*)~! in the
definition of the weighted clasB, becomes singular g5— f*, it is thelocal ge-
ometry of the mixture family in a neighborhood £f that is of interest (in contrast
to the unweighted entropy computations([in|[[[3, 13]). Unfoetely, the geometry
of finite mixtures is notoriously complicated due to the latkdentifiability (see,
for example, [B]), and we are not aware of any quantitativilts in this direc-
tion. To complicate matters further, the application of diteen[2.} requires that
our bounds oiN(D,, §) hold uniformly in the model ordey.
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In the present paper, we provide a detailed analysis of tted geometry of one-
dimensional location mixtures, which leads to the reqaibitunds ofN(D,, d) in
this setting. Let’ = R and letu be the Lebesgue measurelRnWe fix a constant
T > 0 and a strictly positive probability densitf with respect tou. We will
consider mixtures of probability densities in the class

P=A{fo:0€[-T,T]}, fo(x) = fo(x —0) Yz e R.

The mixtures iV, are known as location mixtures, as each mixture component is
obtained from the mother functiofy by a shift of location.
To obtain our main result, we impose some regularity assiompon fj.

ASSUMPTIONA. fj has three continuous derivatives, such that:

1. The functionsr — €' fo(x), z — ' fi(z), z — e fY(z) are in L (du)
andz — €' fo(z),  — e f{(x) vanish at infinity for each € R.

2. Define the functions: — Hy(z) = supge(_r.71 0% fo(x)/0z"|/f*. Then
Hy, € L*(f*du) for k = 0,1,2 andHs € L?(f*du).

It is easily verified that Assumption A is satisfied fof(z) = e~*°/27" /\/2102
(and anyf* € M), so that our results apply directly to Gaussian locatioxtanes.
We can now formulate the main result of this section.

THEOREM2.12. Suppose that Assumption A holds. Then there exist constants
C* andé§*, which depend orf* but not ong or 4, such that

C* 36q
N(Dy,0) < (T) forall ¢ > ¢*, § < §*.

Moreover, there is a functio® € L*(f*du) such thatid| < D forall d € D.

The proof of this result is given in secti¢h 5. Though the gehapproach of
the proof should extend to a much larger class of mixture fisptiee details of the
analysis of the local geometry &f rely on Laplace transform techniques which
are specific to the location mixture model under considemati he extension of
our results to more general mixture models remains a clraiigropen problem.

REMARK 2.13. We have made no attempt to optimize the constants in-The
rem[2.IP. In particular, the fact86 in the exponent can likely be improved.

Combining Theoremp 2.4 aijd 2112, we can now obtain the faligwesult.
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COROLLARY 2.14. Suppose that Assumption A holds. Define the penalty

pen(n, q) = qw(n)loglogn,

wherew is any function withu(n) — oo andn~'w(n)loglogn — 0 asn — co.
Then the penalized likelihood mixture order estimatoriiergjly consistent.

On the other hand, Theorgm 2.10 can be used to prove the fotiow
PrROPOSITION2.15. Suppose that Assumption A holds. Define the penalty
pen(n,q) = C qloglogn.

If the constantC' > 0 is chosen sufficiently small, then the penalized likelihood
mixture order estimator is not strongly consistent.

The proofs of Corollary 2.4 and Propositipn 2.15 are givesectior{}.

3. Proof of Theorem P.4. Define the empirical process

va(g) = % > (9(X0) ~ B(9(X1))

The proof of Theorenh 214 is based on a simple likelihood rasgmuality, which
relates the log-likelihood ratié,, (f) — ¢,,(f*) to the empirical process. Related
inequalities appear ifi [[L{J, 4], but the following form is paps the most natural.

LEmMMA 3.1. For any strictly positive probability density # f*, we have
En(f) - gn(f*) < |Vn(df)|2'

PROOF. Note that
M(F 2 =2 = [ 2V/FF du = —2h(f. £ B (A (X)),
Usinglog(1 + x) < z, we can estimate
Co(f) — 0o (f*) = Zzlog1+h(f,f*)df <Zzhff* ds(X;)
= 2v,(dy) ( )V = h(f, f)? né;lel]g{%n df)p—p°}.

The proof is easily completed. O
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REMARK 3.2. Along similar lines, one can prove the inequalities

) ( log(//*) )‘2
"\ VD)

(which improves on[J4], Proposition A.1) and

o1
b)) = talf) < ¢

2

ba(f) = u(f7) <

1
21 \VDFIF+ 132 )|

where D(f*||f) = [log(f*/f)f*du is the relative entropy. By using these in-
equalities instead of Lemmia B.1, the proof below can be tefem show that

Theoren( 2}4 still holds if we replace the definitiondgfin Definition[2.3 byd; =
log(f/f*)//D(f*IIf) orbydy =log({f + f*}/2f*)//D(F*I{f + f*}/2).

At the heart of the proof of Theore P.4 lies the following lafiterated loga-
rithm, which holds uniformly in the model order> ¢*.

) ( log({f + /*}/2/*) )

THEOREM3.3. Assume thatup,cq |d| < D for a functionD : E — R with
R? = E*(D(X1)?) < o0, and thatp : N — R, and3 > 0 are defined such that

R
\/ﬁ_q \//O log N(Dy, u) du < \/n(q) < 0o

for everyq > ¢*. Then

1 1 ~
lim sup sup sup £,(f)— sup £,(f)p <C P*-as.
n—oo 10glogn g+ 1(q) | fem, FEM

for a sufficiently large constart’ > 0 (depending only o and R).

PROOF. We proceed in several steps.
Step 1 (blocking and truncatiop By Lemma3.JL, we have

sup £n(f) = sup €u(f) < sup {€a(f) = €u(f*)} < sup |va(dp)[*.
feMy FEMgx feMy feMy
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Therefore, we can estimate as follows:

1 sup ! {sup Co(f) — sup En(f)}

max
n=2N 2N+t loglogn g>q+ 1(q) | renm, FEM

2
< sup |vp(d
( 2N+1 w/loglogn q>q /N fqu‘ nl fﬂ)

< sup |vp(del
- ( 2N+1 1/10g10gnq>q / fEJVI:[)q‘ n f D>GN( ))’

2
. sup run<df1D<aN<q>>\) ,

2N+1 \/loglogn q>q V/n(q) fem,

where we introduce

2N
(D) =\ Gy loglog 2

and(C5 is a constant to be chosen later on.
Step 2 (the first term. Note that forn = 2V, ... 2N+!

’Vn(df1D>aN (9) ) ’

n

1
= T Z {df 1D>aN( )(Xi) - E*(df(X1)1D>aN(Q)(X1))}
=1
<= Z {D(Xi)1psay (g)(Xi) + EX(D(X1)1psay(q)(X1))}
2N+1
)2+ R?).
Therefore,
lim sup sup |vy( dflpsan(q ))|
Nooo n= 2N. 2N+1 VloglognQ>q \/77 q feM,y
N+1
24/Co 2 2 2 /
= N—)oo ON+1 Z {D ‘R }: AR°/Cy Pras.

by the law of large numbers.
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Step 3 (the second terinLet C3 be a constant to be chosen later on. Note that

P*

<

1 1
max su sup |v,(ds1 > 3C
n=2N..2n8+1 /log log n q>£ ?7((1) feJ\I/gq’ n( ! DSaN(q))‘ ’

o
> P
q=q*+1

whereS,,(f) = /nvy,(f). By Propositior[A.R, we have

n=2N .. 2N+1 ey,

max  sup |Su(dflp<ay(q)l > 303\/77(q)2N log log 2N]

P*

1 1
max su sup |vn(dsl > 3C5| <
n=2N .. 2N+1 y/loglogn q>¢§)* n(q) ferIt)q| n(drloav()! 1=

[e.e]

3 max P
n:2N,___72N+1

sup [Vn(dlp<qy(g)l > 03\/ 3n(q) loglog 2V ] :
q=q*+1 deDy

Now note that

sup HdngaN(q)HOO < aN(q)7 sup E*[{d(Xl)lDSaN(q)(Xl)}Q] < R27
deD, deD,
and

Cs >R2\/2_N<< Cs >R2\/ﬁ
R2/2Cy) an(q) ~— \R*/2C3) an(q)

foralln =2V ... 2N+L Moreover, if{ fL, fV} is a(D,, 6)-bracketing set, then
{fF1p<an(e), [ 1D<an(g)} 1S @(Dglp<ay (q), §)-bracketing set. Therefore

R
Cv/Cq —l—l/ \/logN(DqngaN(q),u) du
0

R
SC\/Cl—i—l/ log N(Dg, u) du
0
<CyC+1vn(g) < 03\/%77(61) log log 2%

for all ¢ > ¢* simultaneously whe®V is sufficiently large, regardless of the choice
of C;. ChoosingCy = Cs/R?\/2Cs, Propositio AJL gives

Csy/4n(g) loglog 2V = (

P*

1 1
max su sup |vp(drl > 3C

> C2n(q) log log 2V
< 6 _23
- q=qz*+1 o [ 20%(C + 1)R? ]
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for N sufficiently large. But we clearly have

i 6 oxp | Canla) loglog 2"
P70, T DR?

9]
< Z 6 <670§ log log 2/2C?(C1+1)R? N,cg/QCQ(ClJrl)RQ)n(q)

q
<12 efﬁcg loglog2/2CQ(Cl+1)R2N*BC§/2CQ(C1+1)R2

for N sufficiently large. AsC; = C3/R?\/2Cs, we may choos€, = C3/2R*
andCj sufficiently large so thatC3 /2C%(Cy + 1)R? = C3/4C%R? > 1. Then

00
> P
N=1

1 1
max su sup |v,(dsl > 3C
n=2nN .. 2N+1 \/loglogn q>£ /—77((]) fej\g[)q |[n( f DSaN(Q))| 3
< 00,

so that in particulaP*-a.s.

lim sup ma;

1 1
X sup sup |vn(dsl < 3C5
Nosoo n=2N_._2N+1 /Toglogn ¢>q* /—77((]) fqu| i f DSaN(Q))|

by the Borel-Cantelli lemma.
Step 4 (end of prooj. Putting it all together, we obtain

1 1
hzrvnjélop n=aN o1 loglog 1 gsgr 7(q) { Ferty tnlf) = leml%;* g"(f)}
< C? <3 + 2\/§>2 P*-a.s.
for C3 > 2CR/+/B. The proof is easily completed. O
We can now complete the proof of Theorgnj 2.4.

PROOF OFTHEOREMP.4. By Theorenj 3}3 and easy manipulations, we have

lim sup sup ! { sup £n(f) — sup fn(f)}

n—oo q>q* pen(% Q) - pen(n, q*) feMq FEM 4%

n(g* +1) . 1
< limsup———— X
n(g* +1) = n(q*) n—oo @(n)loglogn

sup 1 { sup 4,(f) — sup En(f)} =0 P*-as.

g>q¢* 1(q) feM, FEM
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Therefore P*-a.s. eventually ag — oo

sup £(f) = pen(n,q) < sup £n(f) = pen(n,g¢*)
FeM, FEM
for all ¢ > ¢*. It follows thatlimsup,,_, ., ¢, < ¢* P*-a.s., that is, the penalized
likelihood order estimator does not asymptotically oveneste the order.
On the other hand, note that kg = is a concave function, we have the basic
inequalitylog x < 2log({x 4+ 1}/2) for all x > 0. Therefore, we obtail*-a.s.

limSUpl { sup £, (f) — sup En(f)} < limsup sup tn(f) = ()

n—oo T | feM, FeEMx n—oo  feMy n
i)+ (X ))
li 2 lo

< Jim sup o ; ("5

_ . f(X1)+f*(X1)>]

B 2fS€quI[)q B [log < 2f*(X1)

= —2 inf D(f* f+f*>

JeMy

for ¢ < ¢* using the Glivenko-Cantelli property, whef¥ f*|| f) denotes the rela-
tive entropy (see Remafk 3.2). We now claim that

e R

Indeed, suppose this is not the case. Then for s@ree ¢*, there is a sequence
(fr)nen C Mgy such thatD(f*||{f, + f*}/2) — 0 asn — oo. By Pinsker’s
inequality, this implies thaff,, — f* in L'(du), so thatf* € clM, for some
g < ¢ ButcdM, C cIlMg_; and f* € Mg\ cl My+—1 by assumption, giving
a contradiction. Thus the claim is established. To completeoroof, it suffices to
note that by assumptiopen(n, ¢)/n — 0 asn — oco. ThereforeP*-a.s.

min inf D (f*
q<q* feMy

1
lim sup max — { sup 4,(f) — pen(n,q) — sup £,(f)+ pen(n, q*)} <0,

n—oo 4<¢* M | reM, FEM 1«

so thatP*-a.s. eventually ag — oo

sup £, (f) — pen(n,q) < sup £,(f) — pen(n,q*)
feM, FEMgx

for all ¢ < ¢*. It follows thatlim inf, ., ¢, > ¢* P*-a.s., that is, the penalized
likelihood order estimator does not asymptotically undeneate the order. [
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REMARK 3.4. If we were to chooses(n) = Cy to be constant, rather than
w(n) — oo as required by Theore P.4 (see secfioh 2.2), then we wotinoi
the first equation display of the above proof the upper bound

n¢+1)  C
n(g* +1) —n(g*) Co’

whereC' depends on8 and R. To obtain a consistent order estimator, we must
chooseC sufficiently large so that this constant is less than one.ypgally
sup,>oin(g+1)/(n(g+1)—n(q))} = oo, however, we cannot control this constant
without prior knowledge of*. Itis for this reason that we must requitén) — oo

to obtain a computable order estimator. Let us note that #wsa were to have
sup,>oin(g+1)/(n(g+1)—n(q))} < oo (thatis, whem/(q) grows exponentially
with ¢), it will still typically be the case that the bracketing nbetsN(D,, )
depend ory™ (as the clas9, itself depends orf*), so that we cannot choosg
without prior knowledge off*. The Markov order estimation problem treated in
[B4] is a special case where all these parameters can bercimoipendent of*
and f*, which accounts for the slightly smaller penalty used there

4. Proof of Theorem P.I0. The main ingredient of the proof of Theor¢m 2.10
is a precise characterization of the fluctuations of thdiliked ratio test for two
model classedv(, and M,, which may be of independent interest. The proof of
Theorem[2.70 will follow easily from this result. In the sefjuwe denote by
(f,9) = [ fgf*du be the Hilbert space inner product Ir¥(f*du), and we de-
note by||g||3 = (g, g) the corresponding Hilbert space norm.

THEOREM4.1. Letg* < p < q. Assume that

1
/ log N(Dg, u) du < oo,
0

and that|d| < D for all d € D, with D € L?*(f*dpu) for somea > 0. Then

lim sup
n—oo loglogn

{ sup £, (f) — sup En(f)} 2

feMq feM,

sup {sup((f,9>)3—Sup(<f,g>)i} P*-a.s,

geL3(f*du) ( feDg f€Dyp
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as well as

1imsup; {fseujvl? ln(f) — sup En(f)} <

n—oo loglogn Fem,

sup {sup((f,9>)i—Sup(<f,g>)i} P*-as,

geLF(f*dp) | f€D, feDy
whereL2(f*du) = {g € L*(f*dp) : ||lgll2 < 1, (1,9) = 0}.

REMARK 4.2. WhenD, andD,, each contain ad.?(f*du)-dense subset of
continuously accessible points (which is typically theecassufficiently smooth
models), then Theorefn 4.1 provides the exact characterizat

1imsup; { sup £n(f) — sup En(f)} =

n—oo loglogn | rex, FeM,
sup {Sup((f, 9N — sup ({f, 9>)3} P*-as.
geLF(f*dp) | f€Dq €Dy

However, only the first (lower bound) part of the theorem Wwél needed to prove
Theoren{ 2.70. We provide the more precise version of ther¢nedere due to its
independent interest: we are not aware of a similar charaat®on of the pathwise
fluctuations of the likelihood ratio test in the literature.

The proof of Theorenh 4.1 is based on a sequence of auxilianjtse First, we
will need a compact law of iterated logarithm for the Strasismctional

In(9) —E*(g(X1))}-

1 n
v2nloglogn ZZ; fo(Xs)
We state the requisite result for future reference.

THEOREM4.3. LetQ be a family of measurable functiorfs: £ — R with

1
/ V10gN(Q,u) du < oo.
0

Then,P*-a.s., the sequendd,, ), > is relatively compact i, (Q), and its set of
cluster points coincides precisely with the $et= {f — (f,g) : g € L3(f*du)}.

Proofs of this result can be found inJ20], Theorem 4.2 of @] [Theorem 9.
We will also need the following simple result on partial nrazi.
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LEMMA 4.4. Let(X;);>1 be ani.i.d. sequence of random variables, and sup-
poseE[| X1 [P] < oo. Thenn™V/P max;—; | X;| — 0 a.s. asn — oco.

PROOF. Fixa > 0. ASE[|X; ] < co and(X;);>; are i.i.d., we have

> P[X,| > n'Pa] =Y P[IX1P/aP > n] =

n=1 n=1

Z/n P[|X1|P/a?f > [z]]dx < E[|X1]P]/af < 0.
n=17n"1

By the Borel-Cantelli lemmdX,,| < n'/Po eventually a.s. Let < oo a.s. be such
that| X,,| < nY/Paforalln > 7. Thenmax;—1 | X;| < nl/pa\/maxi:L___J | X
for all n > . It follows directly thatlim sup,, ,.. n~ /P max,—; ., |X;| < a as.
But asa was arbitrary, this establishes the claim. O

We can now obtain the following asymptotic expansion of thgg-likelihood,
which provides an almost sure counterpart to the correspgndsults in [2p[ 17].

PrROPOSITION4.5. Letg > ¢*. Assume that
1
/ log N(Dy, u) du < oo,
0

and that|d| < D for all d € D, with D € L?*°(f*du) for somea > 0. Then

« 2n " on
sup {2In(df)h(f,f ) oalonn —h(f, f )2 o7l n}
FEMq(44/loglogn/n) g log g log

1 n o
— ———— ¢ sup L(f) = bu(f*) p 250 Praass,
loglogn | ren,

where we have definéd,(¢) = {f € M, : h(f, f*) <e}.

PROOF. We proceed in several steps.
Step 1 (localization). As ¢ > ¢* (hencef* € M,), clearly

sup £,(f) = Lu(f*) = Sup n(f) = ()}

feMg FEMg:n (f)—En(f*)20

Now note that, as in the proof of Lemrha]3.1,

Ca(f) = € (f*) < 2vn(dyg) B(S, f*)v/n = h(f, f*)* .
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Therefore, we can estimate

sup h(f, f*)
FEMLn (f)—Ln(f*)>0
o () — ﬁn(f*)}
< h(f, ) = Il )
FeMy: en(sfl)lpen(f*po{ 55+ nh(f, f*)

2 /8loglogn
Sup vn(dy) <\ ————— sup I,(d).
= VR retgta itz no ded,

Now note that we can estimate

sup In(d) < inf  sup [I(d) — (d,g)| + sup  sup (d,g).
deDy geL(f*du) deD, deDq geL2(f*dp)

The first term on the right converges to z&6-a.s. as: — oo by Theoren( 4]3,
while the second term is easily seen to equal;cp, [|d— (1, d)[[2 < 1. Therefore

log 1
sup RS < (14 e)y ) T8
FeMgiln (f)—Ln(f*)>0 n

eventually as: — oo P*-a.s. for anye > 0. In particular, we find that

{f € My a(f) = £alf*) 2 0} € {f € My s h(f, f*) < 4/loglogn/n |
eventually as: — oo P*-a.s. This implies thaP*-a.s. eventually ag — oo
sup /. (f)_gn(f*) < sup {gn(f)_gn(f*)}
JeMq FEMy:h(f,f*)<4~/loglogn/n
But the reverse inequality clearly holds for all> 0, so that in fact
sup On(f) = n(f*) = sup {n.(f) — ()}
feMg fFEMq(44/1oglogn/n)

eventually a1 — oo P*-a.s.
Step 2 (Taylor expansiop Taylor expansion giveslog(1l + z) = 2z — 2% +
22R(z), whereR(z) — 0 asz — 0. Thus we can write, for any € M,,

Ca(f) = bu(f*) = Zzlog1+h<f,f*)df< i) =

2h<f,f*>2{d< )+ 2 h(ff} Sy

i=1 =1
n

—nh(f, )+ h(f, £ (dp(Xi)*R(h(f, £*) ds(X,)).

=1
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Using thatE*(d;(X1)) = —h(f, f*)/2, we therefore have

1
loglogn

{En(f) - gn(f*)} =

2n

2n nh(f, f*)?
B + ry, MUY
loglogn loglogn ’

*\2
Wit £7) log logn

where we have defined

n

Ry = =3 {0 (X)) + S (dg (X0 RO(, ) dy(X0).
i=1

i=1

It follows easily that

2n
loglogn

! { sup £n(f) — Mf*)} '

_10glogn
h *\2
< swp R BTN g Gy Ry

sup {2 In(dg) h(f, f*)

2n
—h(f, f*)? 7}
FEMG(44/loglogn/n)

loglogn

FEMq(44/loglogn/n) loglogn FEMq(44/loglogn/n)

eventually a1 — oo P*-a.s.
Step 3 (end of prooj. We can easily estimate

18
sup [Bpnl < sup |~ > {(dp(X0)* =1}
FEMq(44/loglogn/n) FeMq i=1

1
+ ( sup |R(5'3)|> EZ(D(XD)Z-
|z|<44/loglogn/nmax;=1, ... » D(X;) i=1

As N(D,,8) < oo for everys > 0, the class{d? : d € D,} can be covered by a
finite number of brackets with arbitrary smalt (f*du)-norm and is therefor®*-
Glivenko-Cantelli. Moreover, by constructidd*[(d(X;))?] = 1 for all f € M,.
Therefore, the first term in this expression converges to asn — oo P*-a.s. On
the other hand, by Lemnfa #.4 and the fact that L2+ (f*du), we haveP*-a.s.

VIog]
Vloglogn/n max D(X;) = Y28 08T [ —1/(2+0) yay D(X;) 2225 0.
1=1,...,n

- na/2(2+0‘) i=1,...,n

Therefore the second term converges to zero also, and tbéipmomplete. [
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PROPOSITION4.6. Letg > ¢*. Assume that

1
/ log N(Dg, u) du < oo,
0

and that|d| < D for all d € D, with D € L**°(f*dp) for somea > 0. Then

lim inf { sup (I,(d))% ! { sup £n(f) — En(f*)}} >0 Pras.

n=% | gep, B loglogn

PROOF. By Propositior[ 4]5, we have

o0 | deD, loglogn | rem,

lim inf { sup (I(d))% 1 { sup £n(f) — fn(f*)}}

> liminf { sup ([n(d))i — sup sup {2 I (dy) p — p2}
n—00 deDy feMqy(44/loglogn/n) p=0

= liminf ¢ sup ([n(d))i — sup (In(df))i
n—oo deDy FEMy(44/loglogn/n)

Suppose that the right hand side is negative with positiebatuility. Then there is
ane > 0 and a sequence, 1 co of random times such that

4.1) sup (I, (d))3 — sup (I, (ds))3 < —e foralln
de@q FEMg(44/loglog T /Tn)

with positive probability. We will show that this entails argradiction.
By Theoren{ 4]3 (which can be applied heréN®,, §) = N(cl D, ) for all
d > 0), the process$/,, ),>o is P*-a.s. relatively compact ifi (cl D,) with

(4.2) inf  sup |I, (d) — (d,g)] =30 P*-as.
9ELF(f*dp) decl D,

Then there is a set of positive probability on whi¢h [4.1) &) hold simul-
taneously. We now concentrate our attention on a single leapgth in this set.
For any such path, we can clearly find a further subsequepcé oo such that
SUpgec p, |Lon (d) — (d, g)| — 0 asn — oo for someg € L2(f*dp). Therefore

sup |(L, (d))} — ((d,9)3| < sup |L, (d) — (d, g)[?
declDy decl Dy

n—o0

+2 sup |Iy,(d) = {d,g)| sup [{d,g)] ——0,
decl D, decl D,
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where we have used the elementary estinate— b% | = |a; — by |(ay + by) <
lay — by|(Jay — by| +2b4) < |a —b|(Ja — b + 2|b]) for anya,b € R, and the
fact thatsupc o, [(d. 9| < subgean, |]2llgll2 < 1. Thus [&11) gives

ligggéf sup ((d, N)E - sup ((ds, g3 ¢ =
deDy fFEMG(44/loglogon/on)
lim inf ¢ sup (15, (d))% — sup (I, (dp)% p < —e.
n—o0 deDy FEMG(44/loglogon /on)

But asd — (d, g) is continuous in.2(f*du) andcl D, (4+/log log 0, /) is com-
pact inL?( f*du) (which follows fromN(D,,, §) < oo for all § > 0), we have

) 2 3 2 Nn—00
sup (df,9)5 = sup (d,9))7 —
feEMq(4y/loglogon /on) decl Dy(44/loglog on /on)
sup ({d,9))% = sup ({d, 9))%.
d€M,, >0 <1 Dq(44/loglogon /om) deDy
Thus we have a contradiction, completing the proof. O

We now obtain a converse to the previous result.

PROPOSITION4.7. Letg > ¢*. Assume that
1
/ log N(Dy, u) du < oo,
0

and that|d| < D for all d € D, with D € L**°(f*dp) for somea > 0. Then

limsup{ sup (I,,(d))% sup £, (f) — En(f*)}} <0 P*as.

n—00 dE@g IOg log n { feMy

PROOF. Suppose that the result does not hold true. By Propogititdere is
ane > 0 and a sequence, 1 co of random times such that

. 27,
sup (Ir, ()} — sup {—h(ﬁf )2m
deDg FEM (41/10g10g T/ 7) 8108 Tn
27,
2L (de)h(f, f*) ] —2— % >¢ forall
+ 21, (dg) h(f, f*) IOgIOng} >e n
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with positive probability. Proceeding as in the proof of Busition[4., we can then
show that there is a sequence of tinagst oo and somey € L3(f*du) such that

) . 20,
lim sup { sup ((d, g>)i — sup { —h(f, f*)? oo loo o
n—00 deDg fFEMG(44/loglogon /on) 08 108 In
20
2(ds, g) h(f, f*) | ———1p ¢ > &
+2{ds, g) h(f. [7) loglogan}} E

We will show that this entails a contradiction.

Letdy € D, be a continuously accessible point. Then there existspan 0
(depending ondp) and a path(fa)aejo,qa0] SUCh thath(fa, f*) = a forall a €
10, 0] anddy, — do in L?(f*du) asa — 0. Now choose the sequence

_ loglog oy,
an = {({do, 9))+ + Unl}\/ oy

As ((do, 9))+ < [l dollallglls < 1, we clearly have

0 < ay < ag Ady/loglog oy, /o,

for all  sufficiently large. In particulaf,,, € M,(4+/loglog o, /0y), SO that

20 20
2(ds,g) h(f, f*) | ——— = (S, f*)? 7"}
fEMq(4 \/Slllgﬁog O'n/o'n) { ! ! 1Og log On 1Og 1Og On
>2(dy,.,9) {((do, 9))+ + 0, "} = {((do, 9)) + + 0, }*.

Therefore, we have

) 20
lim sup { sup ((d, ) sup { —h(f, f*)° #
n—00 deDyg fEMy(44/loglogon /on) 08 108 Tn

+2(dys, 9) h(f, ") L}} < sup ((d, 9)3 — ((do, 9))}

log log o, deDe

for any continuously accessible elemepte D,. But clearly we can choosé,
to make the right hand side of this expression arbitrarilalénThus we have the
desired contradiction, completing the proof. O

We can now complete the proof of Theorgni 4.1.
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PROOF OFTHEOREMM.]. We obtain separately the lower and upper bounds.
L ower bound. By Propositiond 4]6 ar[d 4.7, we have

lim sup
n—oo loglogn

(g 10 g 00}

feMy FeMp

limsup { sup (1,,(d))3 — sup (1,(d))3 P*-a.s.
n—oo | deDs deD,

Now fix any g € LZ(f*du). By Theorem[4]3 (which can be applied here as
N(Dy, ) = N(cl Dy, 8) > N(D,, §) for all 6 > 0), there is a sequeneg, T oo of
random times such thdt, — (-, g) in {o(D,) P*-a.s. Therefore

sup (I, (d))} — sup (I, (d))} “== sup ((d, g))3 — sup ((d,g))] P*-as,
deDg ded, deDg deD,

so that certainly

. 1
limsup ———— & sup £u(f) = sup Lu(f) p = sup ((d:g))3 — sup ((d. )2
n—oo 10108T | feM, feMy, deDs deD,

P*-a.s. But as this inequality holds for everye LZ(f*du), taking the supremum
over g gives the requisite lower bound.
Upper bound. By Propositiong 4]6 and 4.7, we have

1
lim sup sup £n(f) — sup £n(f) ¢ <
n—oo loglogmn | ren, FEM,

lim sup { sup (I(d))% — sup (In(d))i} P*-a.s.

n—oo | deD, deDg

It is elementary that for any,d’ € D, andg € L3(f*dpu)

(In(d)} = (In(d)}
< [In( @) = ({dg)3 |+ |In(d) = (d g))3 ]+ ((d 9)F — (d',9)}
<2 sup |(In(d)} = ((d, 90|+ ((d,9)3 — ({d',9)%
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Taking the supremum ovelre D, and the infimum over’ € @;, we find that

sup (I,,(d))% — sup (1,(d))%

de@tl dE@;
< 2 sup [(In(d))} — ({d, 9)3| + sup ({d, 9)5 — sup ({d, 9))}
deD, d€Dq deby
<2 sup [(In(d))% = ({d, 9)3 |
deDy

+  sup {sup(<d7g>)i—Sup(<d,g>)3}-

g€LE(f*dp) \deDqy deDg

But as this holds for any € L3(f*du), we finally obtain

sup (In(d))3 — sup (In(d))} <2 inf  sup [(Ln(d)] — ((d, 9))} |
deD, deDs 9eLF(f*dp) 4ed,

+  sup {sup(<d,g>)i—Sup((d,g>)2+}-

gELE(f*du) | deDq deDg

It follows as in the proof of Propositioh 4.6 that the firstntemn this expression
converges to zerP*-a.s. The requisite upper bound follows immediately. [

Finally, we now complete the proof of Theor¢m 2.10.

PROOF OFTHEOREMP.10. It suffices to prove that

(4.3) I''= sup { sup ((d, g))3 — sup ((d,g>)i} > 0.
geL3(f*dp) | deDg deD g«

Indeed, by Theorerp 4.1, we have

lim sup ! { sup £,(f) — sup En(f)} >

n—oo Pen(n,q) —pen(n,q*) | renm, FEM

1
- sup sup ((d, g))% — sup ({(d, g))* P*-as.
C{n(a) = n(a*)} gera(rrap) { deDe T dep, i

Thus if (4.3) holds, then choosirn@ < T'/{n(q) — n(¢*)}, we find that

sup £n(f) — pen(n,q) > sup £,(f) — pen(n,q*)
feMy fEMq*
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infinitely oftenP*-a.s., so thag,, # ¢* infinitely oftenP*-a.s.

To prove [4.B), note that ag/f* — 1 = (\/f/f* — V)(\/f/f* + 1), we can

estimate for any’ € M, \{f*} using Holder's inequality

_ « [l
ldf’ ‘/dffdu‘ /‘df_thf*

Choos€(f,,)n>0 C M, \{f*} such thatu(f,,, f*) — 0 anddy, — do € D, then
h(fn, [*)
2

M)

<
frdp < 5

(1, do)| = JLII&O'/dfnf*dp 0.

< lim
n—oo

Moreover, it is immediate thdtdy||2 < 1. We have therefore shown th&, C
L3(f*dp). Now choosgy € DE\Dyx. As D is closed, it follows directly that

sSup (<da g>)+ = 17 sup (<d7 g>)+ <1
deDg deD
Therefore [(4]3) holds, and the proof is complete. O

5. Proof of Theorem p.13.

5.1. The local geometry d¥l. As f* € M.+, we can clearly write

q*
fr=2"wtfor
=1
Without loss of generality, we will assume that
—T<0f<03<---<05 <T.
In the following, let us fix some parametéts ..., 0, € [T, T] such that
—T =01 <01 <0p<03<-<0p <07 <T.

The precise choice @, . .., 6, only affects the constants in the proofs below, and
is therefore irrelevant to our flnal result. We only presufre €y, . .., 0, remain
fixed throughout. Define the intervalé; = [0;,0;,1[fori = 1,...,¢* — 1 and
Ay = [0, T). ThenAy,..., A, partition the parameter st 7, 7] in such a
way that each interval contains precisely one componerteofitixturef™.

Let us define for each > 0 and probability measurgon [T, T'| the functions

ok p OF
Dufu(w) = g fo@) =~V fo@). o) = [ fala) M)

Denote byJ3(A) the space of probability measures supportedion [—7, 7.
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DEFINITION 5.1. Let us write

D= {(777/87p77—7y) :777B€Rq*7 p7T€R(-1:7 Veq:;(Al) Xovee Xm(Aq*)}-

Then we define for eachy, 3, p, 7, v) € © the function

a7 * D * D * Ui
o =3 [ D Dol ),

=1

and the nonnegative quantity
N(n,B,p,7,v) =
q

Z{WH—TH +

Bi + 7 /(9 —0r) ui(da)' +pi + % /(9 — 9;)2yl-(d9)} .
i=1
Denote by| - ||, the LP(f*du)-norm, that is|| f||5 = [ f(x)? f*(z)p(dz). We
can now formulate the key result on the local geometry of theure classM.

THEOREMS5.2. Suppose that Assumption A holds. Then there exists a constan
¢* > 0 (depending orf* and#é, ..., 6, but not onn, 3, p, T, v) such that

e(n, B, p,m,v)|l1 > N(n,B,p,7,v) forall (n,B,p,1,v) €D.

This result has several important consequences. To preuitie basic intuition,
recall that the total variation distance betwefeand f* is defined as

f-r
f*

Let f € M, so that we may writ¢ = >_7_, ; f5,. Then Theorerfi 52 shows that

I = £l = [ 17 = 1= |

1

q*
1
If=Fllov=ed S Y m—nf +3 > w0 —6;)”

i=1 | |j:0;€4; J:0;€A;

As||f—f*|lrv < 2h(f, f*) (see, for example[]21], chapter IlI, section 9) this pro-
vides control on the geometry of Hellinger neighborhoodg ofvhen viewed as

a subset of the mixture parameters, ..., 7y, 61,...,6,). Similarly, using Theo-
rem[5.2 and a Taylor expansion §f, one can show that any limit point df; as

f — f*isin the closure of¢(n, 8, p,7,v) : (n,B,p,7,v) € D}. The proof of
Theoren 2.1]2 is based on more precise variants of these ideas
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We now turn to the proof of Theoren b.2. Define the bilatergilaee transform

LIf(t) = [ € f(z) da
for all t € R. Note that under Assumption A, integration by parts gives

LIf)(t) = —tL[f)(t), L") = LIfI),

and we have
LDy fo](t) = t* P L[f] (1), k=0,1,2.

The fundamental use of Laplace transform techniques inrhef pf Theoren{ 5]2

is the main reason that our main result is restricted to iocanixtures. We conjec-
ture that the conclusion of Theordm]5.2 holds in a much manergé setting, but a
proof for general mixture models would likely require a difint approach. Let us
note that the use of Laplace transforms is somewhat rereinisuf the approach
used in [2P] to establish weak identifiability of finite mixes.

PROOF OFTHEOREM5.2. Suppose that the conclusion of the theorem does not
hold. Then there must exist a sequence of coefficients 5", p™, 0", v") € D
such that|¢(n™, 8™, p™, 0™, v™) |1 /N (0™, 5™, p™, 6™, v™) tends ta0.

Applying Taylor’s theorem t@ — fy, we can write

o Jor D1 for Dsfor — , fur
L P

for D for Do for
— (g g ) 2 nyon g Xy un(de I Satetidc
(m+n)f*+<ﬁz+n Jo-envr >) L

n LD f’f u(0—0*
+%/(9—9;)2y?(d9)/{/0 meU RS 91;*(9 o 2(1—u)du} A (d6),

where\? is the probability measure a#; defined by
n [ g(0) (6 —07)* v (dh)
JECEER =mry

(it is clearly no loss of generality to assume thgthas no mass &' for anyi, n,
so that everything is well defined). We now define the coefiisie
p_ T y_ BT [0 = 67) v (do)
! ]\r(/r]n7/8n7pn75”‘71/”)7 ’ N(Tln7ﬂn7pn75n7yn) 7

. i O -0 (a0)

C, = 5 Z = .
Y N B e 6t vn) N(n™, g, pn, 6™, vm)
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Note that

q*
D Alaf 1+ b7+ |} + [df )y =1
=1
for all n. Moreover, the intervalgl; have compact closure. We may therefore ex-
tract a subsequence such that the following hold:

1. There exist constants,b; € R and¢;,d; € Ry (fori = 1,...,¢*) such
that 37" {|a:| + [bs| + |ei| + |ds|} = 1, and we haver® — a;, b7 — b,
! — ¢, andd} — d; asn — ooforalli =1,...,¢".

2. There exist probability measurég i = 1, ..., ¢*, such that\; is supported
oncl A; for eachi, and\}' converges weakly ta; forall: =1,...,¢*.

Thent(n™, g™, p", 6™, v™) /N (n™, 5", p", 6™, ™) converges pointwise along this
subsequence to the functiéuf f* defined by

q*

h=>Y" {ai for + bi D1 for + ¢i Da for

i=1
1
+di/{/0 D2f02+u(99;)2(1—u)du} )\Z-(dg)}‘

Butas||¢(n", 5", p", 6™, v™)||1/N(n™, 8", p", 0", v"™) — 0, we have|h/ |1 =0
by Fatou's lemma. Ag™ is strictly positive, we must havie = 0.
To proceed, we need the following lemma.

LEMMA 5.3. The Laplace transforni.[h](t) exists for allt € R:

7
éj{%g; = Zl {az‘ eei*t%—biteei*t—i-ci t? 69;t+dz‘ 2 eeﬁ/ﬁb((e—e;)t) )‘i(da)}'

(2

Here we defined the positive increasing convex funetiar) = 2(e* —u — 1) /u?.

PrROOF. Thea;, b;, ¢; terms are easily computed using Assumption A and inte-
gration by parts. It remains to compute the Laplace transfoirthe function

1
Ei(z) :/{/0 D fortu(o—or) 2(1 — u) du} Ai(dD).
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We begin by noting that, using Assumption A,

1
/// €' | Da for ru(o—or)| 2(1 — ) du Xi(df) dz =
0

1
/etxlf”(w)ldw x/{/ O Hul0=60) 9(1 — ) du} Ai(df) < oo
0

for everyt € R. We may therefore apply Fubini’s theorem, giving

1
LIE]() = % LIf)() / { /O 000 9(1 _ ) du} A(d6)

= LA E e [ 66 - 67)0) M(as),
where we have computed the inner integral using integrdtjoparts. O

By this lemma, and a&[f](t) > 0 andL[r](t) = 0 for all ¢ € R, we must have

*

q
G.1)  e()=)_ {ai et bt et 4 e t? Pt 4 dyt? bt Q)i(t)} =0
=1

for all ¢ € R, where we have defined

Bi(t) = / 6((0 — 07)1) Xi(d0).

In the remainder of the proof, we argue tHat](5.1) can not,hblds completing the
proof by contradiction. We distinguish between three défe cases.

Case 1. Suppose thah«([0;.,T]) > 0. As ¢ is positive and increasing, we
can estimated, (t) > Ag«([0;.,T]) > 0 for all t > 0. Now divide (5.]1) by
12" @+ (t), and lett — +o0. As ), is supported if—T, 8] for everyi < ¢*,
G 0]

(5.2) et < 2O O (B, — 07)t) S 0
e a

for everyi < ¢*. It follows easily that for some constakt > 0

P(t
0 = limsup ®

— Dy, = doy + K cyx.
totoe 2 D (t) !

As ¢+, d,~ > 0, this clearly implies thatl,~ = 0. Using {5.2), we now obtain
lmy s oo ®(£)/12 %" = ¢pe = 0, which implieslimy_, o ®(t)/t ' = by =
0, and consequentlyim;_, ., ©(¢) /602*15 = aq = 0.
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Case 2. Suppose thah-([0;.,T]) = 0 and Ap=(0,+, 05.[) > 0. It is easily
established, using the dominated convergence theorem quatien (5.R), that
im0 ®(1)/12 " = c,v, SO thate,» = 0. Next, dividing [5.]1) by’ " and
taking two derivatives with respect towe obtain for allt > 0

d® (2(t) (0-0%, )t Ll PR
0:W<W>:dq*/e q )\q*(da)—klzlw a;e q g
tbite OO0t g2 e 00D o g, 42 ¢ O =00 @i(t)},

where the derivative and integral may be exchanged By [2ppefdix A16. Now

note that as\;+ (]0,+, 0%.[) > 0, there is an: > 0 such that\« ([0~ + ¢, 0%.[) > 0.
Therefore, a® is positive and increasing, we can estimate for al 0

/ 00300 ) (dB) > O T N (B 42,05 ]) > 0.
On the other hand, g8 — 1)/« is positive and increasing, we obtain

6—(§q* +e—07)t
dt?

2
42 =001t q%-(t)‘

—_(hH _pA* _(A* _p*
R ) AR OIS

(67, — 07 / £26((6 — 67)1) M:(d6)

* * =0t —1 (6—61)t
— Q(Qq* - 91) W )\Z(dG) + [ e i )\Z(dG)

< o0 +g_9;)t{(9} — 0728 $((Bip1 — 0)t)

B;11—07 _
X -0 % + (@i =0t L
Oiv1— 07

which converges to zero as—+ +oo for everyi < ¢*. It follows easily that

0= 1 d_2 <<I)(t)> totoo
I L0050t M- (d6) a2 \ Ot g*-

Finally, using [5), we obtaitim,_, o, ®(t)/te’" = b,» = 0, and this subse-

quently givedim,_, ;o ®(t)/e’*" = ag = 0.
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Case 3. Suppose thak,« (J0,+,7]) = 0. Then® .« (t) = qﬁ((é « — 65.)t) for all

t. Using equation[(5}2), we now obtalim;_, o, ®(t)/t> = ¢y = 0, then
im0 ®(£)/t €% = by = 0, andlimy_, oo ®(£)/e’" = apr = 0. Finally,
29t 9,(2) to+oo,

R (A 07:)t)
foralli < ¢* by (6.2) and ag® ¢((0,+ — 0}.)t) — +o0 ast — +oo. Therefore

Dt
0 = limsup ®)

— = dg
toroo 1200t §((0p — O2)E)

End of proof. We have now shown thai,, by« ¢+, dg» = 0, and we are left
with ¢* — 1 terms in equation[(5.1). But proceeding by induction, we filmat
ai, b, ¢;,d; = 0 for all i. This is impossible, a3 _? 1{\%\ +|bi| + el + |dil} =1
by construction. Thus we have a contradiction, and the geocdmplete. O

5.2. Proof of Theorenh 2.12. The proof of Theorerp 2.12 consists of a sequence
of approximations, which we develop in the form of lemmBEsroughout this sec-
tion, we always presume that Assumption A holds.

We begin by establishing the existence of an envelope fomcti

LEMMA 5.4. DefineS = (Hy + Hy + Hy)/c*. ThenS € L*(f*du), and

[f/f* =1
1f/ =1

PROOF. ThatS € L*(f*du) follows directly from Assumption A. To proceed,
let f € M,, so that we can writ¢ = >"7 | 7, fp,. Then

-1 & .\ for fo, = To;
f* :Z ij—wi ;*+Z7Tj<9f*9>

i=1 Ji0;EA; Ji0;€A;

< S forall f e M.

Taylor expansion givegy, (z)— fo: (x) = D1 for (z) (0,—07)+5 D2 fo,, () (x) (6,—
0r)? for somed;;(x) € [T, T). Using Assumption A, we find that

q
Z{ doom—w | Y] 0 —67)
= J:0;€A;

jGJEAz
1 *
+5 2wl —91-)2} (Ho + Hy + Hy).

ff*
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On the other hand, Theorem]5.2 gives

‘f—f* S { >
" > T — Ty
f 1 i=1 \|j:0;€4,;
1 *
+| > w0 —67) +3 > (0 9)}
]QJEAZ ]QJEArL
The proof follows directly. O

COROLLARY 5.5. |d| < Dforall d € D, whereD = 2S € L*(f*dpu).
PROOF. Using||f — f*|ltv < 2h(f, f*) and|y/xz — 1] < |z — 1|, we find

! AR

where we have used Lemrhal5.4. O

Next, we prove that the Hellinger normalized densitiggan be approximated
by chi-square normalized densities for snidlf, f*).

LEMMA 5.6. Foranyf € M, we have

‘x/f/f* -1 f/fr-1
h(f, [*) R

where we have defined the chi-square divergeydg || /*) = || f/f* — 1]|3.

< {4S]1%S + 28} h(f, f*),

PROOF. Let us define the functio® as
[ f 1 {f - f* }
1= +Ry.
I* 2 I*
Then we have

VIF=-1 o f -1 fff -1+ R ff -1
h(f, f*) U W/ =1+ Rl f/ =12
=14+ B{IS /= U2 = IF/f* =1+ R]2 }+RHf/f*—1+RHz
1/ f* =1+ Rli2[[f/f* = 12
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so that by the reverse triangle inequality and Corolfary 5.5

fl— fl—1

h(f, f*) XA

Elementary arguments show that foralk> —1

2[|R[[25 + |R]
1/ =12

562

X
—-— <1 —-1-=-<0.
5 = +x 5 =

Therefore, by Lemmp3§.4,

2

F=1\ e f =1 o || — -1
ms () <o [ <o | 5 1S
The proof is easily completed usifig — f*||rv < 2h(f, f*). O

Finally, we need one further approximation step.

LEMMA 5.7. Letgq € N anda > 0. Then for everyf € M, such that
h(f, f*) < o, there exist), 5, p € R?", v € R?, andd € [T, T)? such that

1 2T
z<_+ ) z<_+ 9
zm N Zw —

«

and

|Hslla S + Hs} /4

7 et S PRI
) e‘ = gty |

where we have defined
& for Dy for D for 0 fo
= + B =+ pi : } + i
Z { f* f* P f* ; Vi f*

PROOF. As f € M,, we can writef = > 9_, 7; fo,. Note that by Theorerp §.2

*

q*
) sz N om0 - 6%

=1 j:0,€A;
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Therefore h(f, *) < aimpliesw;(0; — 07)? < 4a/c* for §; € A;. In particular,
wheneveld; € A;, eitherm; < 2y/a/c* or (0; — 07)* < 2y/a/c*. Define

7= U {j:HjGAi, (0, — 07)2 < 2 a/c*}.
i=1,...,q*

Taylor expansion givegy, (z) — fo: (v) = D1 for (x) (0; — 07F) + %Dgfgz (x) (6 —
07)? + $ D3 fy,, () (x) (6; — 07)? for somedy;(x) € [T, T). Therefore

f f Lz Z Z 9 _9* 3f€;£m)(w)7

i=1 jeJ:0,€A;

where we have defined

q N
E(Er Y 5o

i=1 JET:0;€A; JET:0,€A;

+% Z (05 — 2f0*}*’2] e

jEJ:QjEA,'

Now note that

flrr—1 L A=A == Llle /S =1 = L

RGN WLl | T IF /=12 (L] Il
N1 L S 41/ =1 - L]
IZ ]2

where we have used Lemrhal5.4. By Theoferh 5.2, we obtain

IILH2>IILH1>—Z S (0 - 02

i=1 jeJ:0;€A;

Therefore, we can estimate

C-k

[f/f*—1—L| _ Hy S Yierosea mil0; — 071 _ <4a>1/4 H,
1Ll T3yt ZjeJ:GjeAi mi(0; —05)* e

where we have used the definition.bf Setting¢ = L/||L||2, we obtain

‘M _ g‘ < i {|
VI | 3le)or

|Hsl|s S + Hs} o'/



CONSISTENT ORDER ESTIMATION 37

It remains to show that for our choice 6f= L/||L||2, the vectors), 3, p,~ in the
statement of the lemma satisfy the desired bounds. To tkisnerte that

1
|L][2 > ¢* Z{ > m—wtl+ Z mj(0;—=07)|+35 Z Wj(Hj—Hi*)Q}
7:0; €A; ]ZGjGAi ]:ejGAi
by Theoren{5]2, while we have

1 1
= T — 7, B; = mi(6; — 67),
1L 2. ™ [[L]l2 2. il

ll2

jeJ:0;€A; JjeJ:0;€eA;
1 2 miljgs
M, 2 =g,
2 jerb,ea; 2

It follows immediately thalzg;l |pil < 1/¢*. Now note that forj ¢ J such that
0; € A;, we have(d; — 07)% > 2,/a/c* by construction. Therefore

C *
h=5% S n-02=vEa Y
i=1 j¢&J:0;€A; j&J
It follows that> %, |;| < 1/v/c*a. Next, we note that
q q
S D SEERES 5 3l DIETRE I 3o
i=1 |jeJ:0;€A,; i=1 |j:0,€4; igT

Therefore> %", || < 1/¢* + 1/+v/c*a. Finally, note that

i > om0 - 65) <Z > om0y — 0| +2T ) m.

=1 |jeJ:0;€A; 1=1 |5:0;€A; J€J
Thereforezzq;1 |Bi| <1/c¢* + 2T /v/c*a. The proof is complete. O

We can now complete the proof of Theorfm 2.12.
PROOF OFTHEOREMP.12. Leta > 0 be a constant to be chosen later on, and

Dya = {ds : f € My, | # % B(f, 1) < a}.

Then clearly
N(Dyg,0) < N(Dg.a:0) + N(Dg\Dg,a,9)-
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We will estimate each term separately.
Step 1 (the first term. Define the family of functions

Lo =
a . Difo: . Dafs: a
{Z{ J;i+ﬂi }{9 2f9} Z ?— (1, 8, 0,7, )Gﬁq,a},

where

Yo = {("’ﬁ’fwe) ERT X RY x RY x RY x [T, T

3 1427 1
Zﬂm B+l < o T Dol < *a}.
From Lemmag 5|6 and %.7, we find that for any functiba D, ., there exists a
function/ € £, , such that (here we use thatf, f*) < /2 for any f)

V2

|d— ¢ < {4]lS]1S +25%} (@ A V2) + 3(c )5 {l

|Hslls S + Hs} o'/

Usinga A v2 < 23/8a1/4 for all o > 0, we can estimate

1 H

d—t <o'*U, U= (% +8|1S13 + 4) {S + 5% + Hs},
C

whereU € L?(f*du) by Assumption A. Now note that if2; < ¢ < my for some

functionsmy, ms with ||mg — mq|j2 < ¢, thenm, — AU <d<my+ /AU

with ||(ma + &/4U) = (my — /4 U)||s < € + 2a'/4||U||2. Therefore

N(Dya»€ + 204|Ull2) < N(Lyare) fore > 0.

Of course, we will ultimately choose a such thak + 2a!/4(|U || = 4.

We proceed to estimate the bracketing nunieg, ., ). To this end, let, ¢ €
L4.0, Wherel is defined by the parametefs, 5, p,~,6) € J, and?’ is defined
by the parametersy, 3, p',~/,0’) € J,.o. Then we can estimate

*

|6 — 0 < (Ho+ Hy + Ho) Y {lmi — nj| + 18i — Bil + i — P}
i=1

q
Hy
+Hoz |v; —’y}! + mjinax 16 — 6;\,

1.
j=1 !
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where we have used thafy, — fo/|/f* < |0; — 0| H, by Taylor expansion.
Therefore, writing” = Hy + Hy + Ho, we have

|€ - £,| S Vv |||(77a 5ap,%9) - (77/’ 5/apl,7,,9,)|||q,aa

where]|-||,, ., is the Banach space norm &i? +2¢ defined by

I, Bs 057 Ol oo = Z{\mH!ﬁzH!pz!}JrZ!%H\/—Jmax 101

1

Note that if||(n, 8, p,7,0) — (', 8, 0", 7', )l .. < €', then we obtain a bracket
U=V <t <V +£Vofsize||({! +£'V) — (6’ —&'V)||2 = 2¢'||V||2. Therefore,

if we denote byNo(Jg.q, Il-ll,... €") the cardinality of the smallest proper cover of
Jg,0 BY (Il ,-balls or radius’ (the cover is callegrroperif each ball is centered
at some point insidg, ,,), then we have shown that

N(Lg.are) < No(Tgas lll-llgare/2IV]2)  fore>0.

q7a7

But note that,  is included in the|-[, ,-ball

x 3 24 3T
~ 3 2 .
Jqﬂc%qﬂ:{?}GRq+q_m’l)”’q,agc—*+ m}.

We now use the following standard facts:

1. No(S,d,e) < N(S,d,e/2) for any subset5 C B of a metric spacé¢B, d),
where N (S, d, ) is the cardinality of the smallest (not necessarily proper)
cover of S consisting ofd-balls of radius:.

2. For anyn-dimensional Banach spa¢®, ||-||), the covering number of the
r-ball B(r) = {z € B : ||z|| < r} satisfiesN (B(r), |||, &) < (2’“+5)

Using these facts, we can estimate

No(Tgas [Illlg.a0e/2[V1I2) < No(Byg.a, |||-|||q,a,6/2HVH )

3q*+2q
8”[ H2( x / ) 1
C
<N % as ||| 5 4 [/ <
— ( q, ||| |||q704 6/ H H2) = < 8\/_

for £ /4||V ||z < 1, a < 1. Choosings + 2a/4||U ||z = &, we obtain

NG
(6 — 2a/4|[U]2) Ver

1 BV 22 + 220) + 1\
N(Dq,aaé) < N(Lq,aa‘S — 20!/ 1U]l2) <
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for § < 4[|V ||z anda < (5/2||U|[2)* A 1.
Step 2 (the second terinFor f, f' € M, with h(f, f*) > a andh(f’, f*) > a,

;- | = \WITF = DIVITF — U = VT = DIVITF = 1]
AR h(f, f*)h(f', )
o WFTF = VIR =1+ V2 IVTTF = VFTF|

a2

where we have used that f, f*) < v/2 for any f. Now note that
2
Va— Vo[ <|va—vb| (Va+vb) =la—t
foranya, b > 0. We can therefore estimate

RO [V Y RV R 0
! fl = 2 ;

(6%
where we have used thay/ f/ f* — 1| < /Hy + 1 for any f € M. Now note that
if we write f =>"7 | m;fp, and f' = >"7 | 7; fo:, then we can estimate
f=r - , ,
IS SHoz;’ﬂ—i_ﬂi’—i_Hlig?,)iq’ai_ai"
1=

Defining

W = (V/Ho + 1)|[Ho + Hi|[}* + V2 (Ho + H)'/?,
we obtain

1774 q

1/2
dy —djl < = lI(m,0) - N2 o), =D Iml + [max |0

=1
(clearly |-[|,, is @ Banach space norm ®*7). Note that if|| (7, 8) — (7, M, <
e, then we obtain a bracket, — el?W/a? < dy < ) + e/2W/a? of size
() + ' 2W/a?) — (d} — e'2W/a?)||2 = 2¢1/2||W||2/a®. Therefore
N(Dg\Dy,a8) < No(Ag x [T, T, |||, 6> /4| W1[3),

where we have defined the simpléy = {7 € R% : }>°7 |, m; = 1}. We can now
estimate the quantity on the right hand side of this expoesas before, giving

24 + 16T)||W |2\ *
a2

N(Dg\ Dy 8) < ((
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for 6 < 8||W||2 anda < 1.
End of proof. Choosen = (5/4(|U||2)*. Collecting the various estimates above,
we find that we have fof < min(4(|U]|2, 4(|V]|2, 8||W||2)

N(Dg;0) <

3q*+2
<162HUII%HV||2(C% + 250 + 32||UH%> T
53

416(24 4+ 16T)|U |38 W |13\ *
+ 518

Using thatg > ¢*, it now follows easily that there exist constar®s and 6™,
depending only ofjU]||2, ||V |2, |W||2, T, andc*, such that

O* 36q
N(Dy,6) < (T) forall § < ¢§*.

This establishes the estimate given in the statement of lieerEm. To complete
the proof, it remains to note that the existencédbllows from Corollary[5.p. O

5.3. Proof of Corollary[2.1}. The first condition of Theorerh 3.4 follows di-
rectly from Theoren] 2.]2. To establish the second conditimte that for any

Fof e My, f=371  mifo, [/ = 37{_, 7| fg, we can estimate

[+ f =+ f=r
pou (15 —1os (557 )| < |5
< (Hy + Hy) (Z\m ZH— max \9 9;\)

It follows as above thaN({log({f + f*}/2f*) : f € My}, d) < oo forall § > 0,
which implies thaf{log({ f + f*}/2f*) : f € M} is P*-Glivenko-Cantelli.
Now define the functiong(q) andw(n) as

Pl [ e d ?

[/||D|2 /log M& du] |

Then all the assumptions of Theorgm| 2.4 are satisfied, yiglthie consistency of
the penalized likelihood mixture order estimator. O
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5.4. Proof of Propositior{ 2.35. We begin by characterizin®, .

LEMMA 5.8. Suppose that Assumption A holds. Then we have

q*

_— _ fe* D for -
R (i M S ey o ERTLE Zm‘o

PROOF. Let(f,)n>1 C Mg+ be such thak(f,, f*) — 0 andd;, — do € Dy
By Theoren{5]2, we may assume without loss of generality that >~7_; «7* fon

with 6" — 7 andw]* — =7 for everyi = 1,...,¢*. Taylor expansion gives
_ x H T
R TR S U
i=1
where

*

q

D+ fox
anz{w—mﬁ* (07— 07) }fei}.

=1
Proceeding as in Lemmés .6 gnd 5.7, we can estimate

[[£2n]l2
[ Lnll2

< 2[IS13{21ISl2 + 1} Al fus ) + {I1S]l2 + 1} 77

den -

But using Theorer@.z, we find that farsufficiently large

*

q
IZallz > [|ZLnlls = €Y w767 — 67].
1=1

Thus we have

1Bulla _ [[Hall2 3250, 77 (67 = 65) _ [ Halla
1Ll = 20 ST apr — 03] 2% imhow

ax |07 —60F] == 0.
We have therefore shown that, /|| L, |2 — do in L?(f*du). Now define

7 Zn ) 7 Zn )

q*
Zn =y Al =+ |m7 (67 —67)[}.
i=1

As ST (|| + 18} = 1 for all n, we may extract a subsequence such that
nr— i, B — B, andd_? 1{]7%\ + |5;|} = 1. We obtain immediately

L i f@* lee*
d = — L .
O L[ Z{ * }

=1
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Clearlyz I_ ni = 0. Thus we have shown that ady € D has the desired form.
~ Itremains to show that any function of the desired form isaict fan element of
D+ Tothis end, fixy, 3 € RY" with -7 | ; = 0, and definef; for ¢ > 0 as

*

q

ft= Z(Wz* +10i) for+pit/mr-

i=1

Clearly f; € My~ for all ¢ sufficiently small, andf; — f* ast — 0. But
q*

fo- ZW? for+pit/mr — Jo

* q*
: > ” d —|—Z;"7i Jorspit/mr-
1= 1=

Therefore clearly

1ft 10, a Jor Difor\
- ;{ L+ B; 7 }—L.

Using Lemm4d 5]6, we obtain

limdy, = lim (o= F)/E = L

0 =0 [(fe = f)/tf*N2 L2

Thus any function of the desired form isT,, and the proof is complete. [

REMARK 5.9.  The proof of Lemmp§.8 in fact shows thia}. =
We can now complete the proof of Proposit{on .15.

PROOF OFPROPOSITIONR.15%. We apply Theorefn 2]10 with= ¢* + 1. The
requisite envelope and bracketing assumptions followctlirérom Theoren{ 2.72.
It therefore remains to show th@§*+1\®q* is nonempty.

Consider the functiorf; defined fort > 0 as follows:

fi :?*(fe*+t+f9* t) +Z7T oz

=2

Clearly f; € My« for all ¢t sufficiently small,f;, — f* ast — 0, and

fe— 1w Jorve —2for + for—t 10 7}
= - D2 fo:
t2 2 t2
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As in the proof of Lemm§ 5] 8, we find that
(fe = f)/ 825 Ds for

limdy, = lim = =d,.
=0 TS0 [ = /RNl (Dol

By constructiondy € Dt. , ;. But by Theoren] 5]2, the function:, D1 fo:, and

Dy for (i = 1,...,¢*) are all linearly independent. Together with Lem@ 5.8 thi

shows thatly ¢ Dy-. Thusdy € D¢\ D+, and the proof is complete. O

APPENDIX A: EMPIRICAL PROCESS INEQUALITIES

A.1l. Twoinequalitiesfor theempirical process. In the proof of Theorerh 2.4
we will need two maximal inequalities for the empirical pess. These inequalities
follow rather easily from standard results in empiricalgass theory.

First, we need the following deviation inequality for thgopsemum of an empir-
ical process, similar td 23], Theorem 5.11. A short prodhisection[A.p.

PROPOSITIONA.1. LetQ be a family of measurable functiorfs: £ — R.
Assume that for some constaitsiK > 0.

sup || flloo < K, sup E*[f(X1)?] < R
feQ feq

Then we have

P*

O£2
sup v, (f)| > | <2 exp {_CQ(—}
forall n € N, a > 0, andC; > 0 such that

R C1R%*\/n
CvCi+ 1/ V0IegN(Q,u) du < a < %
0
whereC' is a universal constant (the choicé = 37.5 works).

We also need the following variant of Etemadi’s inequality.

PROPOSITIONA.2. LetQ be a family of measurable functiorfs: £ — R.
Then we have for every > 0 andm,n € N,m <n

P*

sup [Sk(f)| >

k=m,....,n feQ k=m,....,n feQ

max sup\Sk(f)IZ?)a] <3 max P~*

wheresS,,(f) = vVnun(f).

The proof is given in sectiop A.3 below.
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A.2. Proof of Proposition A.d. The following Bernstein-type deviation in-
equality can be read off fronj [[L8], Corollary 6.9, togethdtimihe standard fact
that the essential supremum of a family of random variabtéscies with the
essential supremum of a countable subfamily (cf. Rerpalk 2.1

THEOREM A.3. LetQ be a family of measurable functiorfs: £ — R. As-
sume that for some constants K > 0

sup [[flleo < K, sup E*[f(X1)?] < R”.
feQ feq

Then we have

4K
sup |vn(f)| > E(n) + TRV2z + ——= - <2e”
feQ 3vn

for everyn € Nandx > 0, where we have defined

E(n —27/ v 1og N(Q, u) du+

for everyn € N.

P*

\/_ log N(Q, R).

The proof of Propositiofi A]1 reduces easily to this resuilt.

PROOF OFPROPOSITIONA]. Leta = /C%(C; + 1)R2z and assume the
given bounds om hold. Then we can estimate

o? Cle\/_ a < ay/n
C? ((71-+>1)}%2 - K (72((71-+>1)}%2 - C?K’

=

as well as )
- K

On the other hand, &@$(Q, u) is nonincreasing im, we have

R
CR\/Cy +1/1ogN(Q,R) < C+\/C1 + 1/ V01ogN(Q,u) du < a.
0

We can therefore estimate

27 + 72 100, 4
TRV + KT
Bn) + +3 N {c\/cﬁ‘ 302(01+1)+3C2}0‘

< 37 ) <
C CQ (6 (6
provided that we choos€ such that37/C + 5/C% < 1 (e.g.,C = 37.5). The
proof is completed by applying Theordm ]A.3. O



46 E. GASSIAT AND R. VAN HANDEL

A.3. Proof of Proposition A.3. The proof of Propositioh A2 follows closely
the proof of the classical Etemadi inequality, dge [2], Apfie M19.

PrROOF oFPROPOSITION]A.Z. Define the stopping time

T = inf{k >m :sup |Sk(f)| > 3a}.
feQ

Then we have

P* | max sup|Sp(f)| > 3a| =P*[r <n
k=m,...,n feo
< P* |sup|S,(f)| > a| + ZP* T =k and sup |S,(f)| <a] :

feQ fea

k=m

But on the even{r = k and sup;cq |Sn(f)| < a}, we clearly have

2a < sup [ Sy (f)] = sup [Sp(f)| < sup [Sk(f) — Su(f)I.
feo feo feo

Therefore, we can estimate

P*| max sup|Sp(f)| > 3a| <P*

k=m,....,n feQ
n
+ ) P

k=m

feq

sup [Sn(f) > a]

7 = kandsup|Sa(f) — Sk(f)| > 2a] :
feQ

Assupseq [Sn(f) — Sk(f)| and{r = k} are independent, we obtain

P* | max sup|Sk(f)] > 3a| <P* |sup|Su(f)| > @
k=m,...,n feQ fea
+ max P* |sup|S,(f) — Sk(f) = 2@] :
k=m,...n feQ
The proof is easily completed. O
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