Hidemitsu Ogawa 
email: hidemitsu-ogawa@kuramae.ne.jp
  
Akira Hirabayashi 
  
Optimal Characteristic of Optical Filter for White-Light Interferometry based on Sampling Theory

White-light interferometry is a technique of profiling surface topography of objects such as semiconductors, liquid crystal displays (LCDs), and so on. The world fastest surface profiling algorithm utilizes a generalized sampling theorem that reconstructs the squared-envelope function r(z) directly from an infinite number of samples of the interferogram f (z). In practical measurements, however, only a finite number of samples of the interferogram g(z) = f (z) + C with a constant C are acquired by an interferometer. We have to estimate the constant C and to truncate the infinite series in the sampling theorem. In order to reduce both the truncation error and the estimation error for C, we devise an optimal characteristic of the optical filter installed in the interferometer in the sense that the second moment of the square of the interferogram is minimized. Simulation results confirm the effectiveness of the optimal characteristic of the optical filter.

Introduction

White-light interferometry is a technique of profiling surface topography of objects such as semiconductors, liquid crystal displays (LCDs), and so on. It is attractive because of its advantages including non-contact measurement and unlimited measurement range in principle [START_REF] Caber | Interferometric profiler for rough surfaces[END_REF][START_REF] Chim | Three-dimensional image realization in interference microscopy[END_REF][START_REF] De Groot | Surface profiling by analysis of white-light interferograms in the spatial frequency domain[END_REF][START_REF] Hirabayashi | Fast surface profiler by white-light interferometry by use of a new algorithm based on sampling theory[END_REF][START_REF] Kino | Mirau correlation microscope[END_REF][START_REF] Larkin | Efficient nonlinear algorithm for envelope detection in white light interferometry[END_REF][START_REF] Ogawa | Sampling theory in white-light interferomtery[END_REF]. From the viewpoint of sampling theory, white-light interferometry has the following two interesting features. First, a signal to be processed, a white-light interferogram, f (z), is a bandpass signal. Second, a signal to be reconstructed from sampled values of f (z) is not the interferogram itself, but its squared-envelope function r(z). This type of sampling theorem is called a generalized sampling theorem [START_REF] Grace | Sampling and interpolation of bandlimited signals by quadrature methods[END_REF][START_REF] Rice | Quadrature sampling with high dynamic range[END_REF][START_REF] Waters | Bandpass signal sampling and coherent detection[END_REF]. The present authors also derived such a sampling theorem [START_REF] Ogawa | Sampling theory in white-light interferomtery[END_REF]. Based on the theorem, the world fastest surface profiling algorithm were proposed and installed in commercial systems [START_REF] Hirabayashi | Fast surface profiler by white-light interferometry by use of a new algorithm based on sampling theory[END_REF]. The sampling theorem is expressed in a form of infinite series and uses samples of the interferogram f (z). In practical measurements, however, only a finite number of samples of the interferogram g(z) = f (z) + C with a constant C are acquired by an interferometer. Hence, in the algorithm, the constant C is estimated from the samples, and the infinite series is truncated with the number of samples. If both the truncation error and the estimation error for C were reduced, we can further improve the preciseness of the algorithm. For both error reductions, it is very effective for interferograms to have small side lobes. The waveform of interferograms can be controlled by an optical filter installed in the interferometer. Hence, in this paper, we devise an optimal characteristic of the optical filter in the sense that the second moment of the square of the interferogram is minimized with a fixed band-width. We show that the optical characteristic is given by a sine curve which has a half of the period as the fixed band-width. We also show that we have a socalled uncertainty principle between the band-width and the second moment. Simulation results confirm the effectiveness of the optimal characteristic of the optical filter.

Surface Profiling by White-Light Interferometry

Figure 1 shows a basic setup of an optical system used for surface profiling by white-light interferometry. It uses the Michelson interferometer. A beam from a white-light source passes through an optical filter. The beam is re- It is known that the envelope function m(z) shown by the solid line in Fig. 2, or its square r(z), has the same peak as the interferogram and they are much smoother than the interferogram. Hence, usually these functions are used for detection of the peak instead of the interferogram. In this paper, we use the latter r(z), which we call the squaredenvelope function.

Sampling theorem for squared-envelope functions

Since the interferogram f (z) is a bandpass signal, it can be reconstructed from its samples by using the sampling the-orem for bandpass signals [START_REF] Kohlenberg | Exact interpolation of band-limited functions[END_REF]. It is interesting that, since the squared-envelope function r(z) is the sum of squares of f (z) and its Hilbert transform, the squared-envelope function is also reconstructed from samples of f (z), not those of r(z). Indeed, the following result was established [START_REF] Ogawa | Sampling theory in white-light interferomtery[END_REF][START_REF] Hirabayashi | Fast surface profiler by white-light interferometry by use of a new algorithm based on sampling theory[END_REF]. The center wavelength and the bandwidth of the optical filter in Fig. 1 are denoted by λ c and 2λ b , respectively. Let k l and k u be angular wavenumbers defined by

k l = 2π λ c + λ b , k u = 2π λ c -λ b . ( 1 
)
Two parameters ω l = 2k l and ω u = 2k u are also used.

Proposition 1 [START_REF] Hirabayashi | Fast surface profiler by white-light interferometry by use of a new algorithm based on sampling theory[END_REF] (Sampling theorem for squaredenvelope functions) Let I be an integer such that

0 ≤ I ≤ ω l ω u -ω l , ( 2 
)
and ω b be any real number that satisfies

     ω u 2 ≤ ω b (I = 0), ω u 2(I + 1) ≤ ω b ≤ ω l 2I (I = 0). (3) 
Let ω c be a real number defined by

ω c = (2I + 1)ω b . ( 4 
)
Let ∆ be a sampling interval given by

∆ = π 2ω b , ( 5 
)
and {z n } ∞ n=-∞ be sample points defined by

z n = n∆. ( 6 
)
Then, it holds that

1. When z is a sample point z j , r(z j ) = {f (z j )} 2 + 4 π 2 { ∞ ∑ n=-∞ f (z j+2n+1 ) 2n + 1 } 2 . ( 7 
)
2. When z is not any sample point,

r(z) = 2∆ 2 π 2   ( 1 -cos πz ∆ ) { ∞ ∑ n=-∞ f (z 2n ) z -z 2n } 2 + ( 1 + cos πz ∆ ) { ∞ ∑ n=-∞ f (z 2n+1 ) z -z 2n+1 } 2   . ( 8 
)
To apply Proposition 1 for surface profiling, we have the following difficulties. In the proposition, an infinite number of sampled values {f (z n )} ∞ n=-∞ of the interferogram f (z) are used. In practical applications, however, only a finite number of sampled values {g(z n )} N -1 n=0 of the interferogram g(z) = f (z) + C are available. Hence, we have to truncate the infinite series in Proposition 1 and approximate the sampled values f (z n ) by g(z n ) -Ĉ, where Ĉ is an estimate of C. For example, the average of g(z n ) is used as Ĉ. Now, we are suffered from the truncation error as well as the estimation error for Ĉ. Both of these errors severely affect our final goal of precise estimation of z p . 

Optimal characteristics of optical filter

To reduce both of the errors, the following observation is crucial. As you can see in Fig. 2, only a few number of samples are located in the main lobe of g(z) while the rest of them are in side lobes. The latter mostly vanishes once the constant C is estimated precisely. This implies that, the smaller the side lobes are, the smaller the truncation error is. Smaller side lobes also lead us to better estimations of C as shown experimentally in Section 5. Fortunately, we can control the waveform of the interferogram by the optical filter in the interferometer. Let a(k) be its characteristic in terms of an angular wavenumber k.

The support of a(k) is the interval k l < k < k u . Averaged attenuation rates of two beams along the dashed and the dotted lines in Figure 1 are denoted by q o (k) and q r (k), respectively. Let ψ(k) be

ψ(k) = { 2{a(k)} 2 q o (k)q r (k) (k > 0), 0 (k ≤ 0). (9) 
It is also supported on the same interval as a(k):

ψ(k) = 0 (k < k l , k > k u ). (10) 
The function ψ(k) is related to the interferogram f (z) as

f (z) = ∫ ku k l ψ(k) cos 2k(z -z p ) dk. ( 11 
)
Equation ( 11) clearly shows that we can control f (z) by a(k) through ψ(k).

To have smaller side lobes, we can easily arrive at the following idea: we design ψ(k) so that it minimizes the second moment of the square of the interferogram f (z):

J[ψ] = ∫ ∞ -∞ (z -z p ) 2 {f (z)} 2 dz. ( 12 
)
Now, we are at the point to show our main result in this paper. Let k a be (k u -k l )/2.

Theorem 1 Among second continuously differentiable functions

ψ(k) ∈ C 2 [k l , k u ] satisfying ψ(k) = 0 (k ≤ k l , k ≥ k u ), (13) ψ(k) ≥ 0 (k l < k < k u ), (14) ∫ ku k l {ψ(k)} 2 dk = 1, (15) 
ψ(k) that minimizes the criterion J[ψ] is given by

ψ(k) = 1 √ k a sin π(k -k l ) 2k a . ( 16 
)
The minimum value J 0 is given by

J 0 = ( π 2 ) 3 1 (2k a ) 2 = π∆ 2 2 . ( 17 
)
The following two results are direct consequence of Theorem 1.

Corollary 1

The optimal characteristic a(k) under the criterion J[ψ] is given by

a(k) = ( sin π(k -k l )/2k a 2 √ k a q o (k)q r (k) ) 1/2 . ( 18 
)
Corollary 2 The optimal waveform of the interferogram f (z) is given by

f (z) = m(z) cos(k u + k l )(z -z p ), (19) 
where

m(z) = 4π √ k a cos 2k a (z -z p ) π 2 -16k 2 a (z -z p ) 2 .
(

The interferogram shown in Fig. 2 was the optimal one given by Eqs. ( 19) and (20) while that shown in Fig. 3 is generated from a rectangular ψ(k) given by

ψ(k) = { 1/ √ k u -k l (k l < k < k u ), 0 (otherwise). 
Though this ψ(k) is not continuously second differentiable, the conditions (13) ∼ (15) are satisfied. In both figures, λ c = 600[nm] and λ b = 30[nm] were used. We can see that the side lobes in Fig. 2 are much smaller than those in Fig. 3. The sampling interval used in both figures is ∆ = 1.425[µm], which is the maximum among those satisfying Eqs. ( 2) ∼ (5). We have six samples in the main lobe in Fig. 2 while only four samples are located there in Fig. 3 (these samples are displayed by relatively large dots compared to samples in side lobes). In a nutshell, the optimal characteristic results in fewer samples in the small side lobes. This results in small errors on the truncation and the estimation of C, which we demonstrate in the next section through computer simulations.

Before proceeding simulations, let us make a final remark in this section.

Corollary 3 Let σ 2 be the value of J [ψ]. Then, the following uncertainty principle holds: and reconstructed functions (the solid lines) from samples of g(z) for both of the optimal and the rectangular ψ(k).

σ 2 (2k a ) 2 ≥ ( π 2 ) 3 , σ 2 ∆ 2 ≥ π 2 .

Simulations

We compare the optimal and the rectangular characteristics ψ(k) by computer simulations. We first sample the interferograms g(z) generated from both ψ(k) with the sampling interval ∆ = 1.425µm. Then, the averages for each sample values are computed for the estimation of C. Finally, we reconstruct the squared-envelope functions r(z) by using a finite number of g(z n ) -Ĉ instead of f (z n ) in Proposition 1. The reconstructed functions are shown in Fig. 4 by the solid lines as well as the original squaredenvelope functions by the dashed lines for both of the optimal and the rectangular ψ(k). The small window in the top-right side shows the magnified image around the peak. We can see that the reconstructed function for the optimal ψ(k) provides a much better result than that for the rectangular ψ(k). We also notice that the latter oscillates severely.

The normalized truncation errors for the optimal and the rectangular ψ(k) are 0.45% and 4.68%, respectively. The former is less than 10% of the latter. When C = 1.10, its estimation results are 1.10 and 1.06 for the optimal and the rectangular ψ(k), respectively. Finally, errors for the estimation of z p are 0.05µm and 0.06µm for the optimal and the rectangular ψ(k), respectively. Even though the difference is not so significant, the oscillation of the reconstructed squared-envelope function for the rectangular ψ(k) may cause difficulties for fast search of the maximum position.

We repeated the same simulations for thirty two values of z p from 10µm to 20µm. Then, averages of estimation errors were 0.0496µm and 0.0541µm for the optimal and the rectangular, respectively. They are almost the same value. However, the averages of truncation errors were 0.35% and 4.67% for the optimal and the rectangular ψ(k), respectively. The former is less than 7% of the latter. These results show the effectiveness of the optimal characteristics of the optical filter.

Conclusion

In this paper, we devised an optimal characteristic of the optical filter that minimizes the second moment of the square of the interferogram so that both of the truncation error and the estimation error for the constant in the interferogram are reduced. We showed that the optimal characteristic is given by a sine curve which has a half of the period as the band-width of the optical filter. Simulation results showed that the truncation error for the optimal characteristic is less than 7% of that for the rectangular one. The estimation error of the constant for the optimal characteristic was also smaller than the rectangular one. Even though the difference on the estimation error of the maximum position was not so significant, reconstructed functions for the optimal characteristic was much smoother than those for the rectangular one. These results showed the effectiveness of the optimal characteristic. Our future tasks include to produce a prototype of the optical filter with the optimal characteristic.
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 1 Figure 1: Basic setup of an optical system used for surface profiling by white-light interferometry.
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 2 Figure 2: An example of a white-light interferogram g(z) and its sampled values.
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 3 Figure 3: A white-light interferogram g(z) when ψ(k) is rectangular.
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 4 Figure4: Squared-envelope functions (the dashed lines) and reconstructed functions (the solid lines) from samples of g(z) for both of the optimal and the rectangular ψ(k).