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Abstract:

The paper describes the sampling method of nonstation-

ary signals with time-varying spectral bandwidth. The re-

construction procedure exploiting the low-pass filter with

time-varying cut-off frequency is derived. The filter ap-

plication in signal reconstruction from its level-crossing

samples is shown. The results of computer simulations

are presented.

1. Introduction

The spectral characteristics of signals of practical inter-

est often change with time. Generally, a signal with

time-varying spectral bandwidth can be approximated

with fewer samples per interval using appropriate non-

equidistantly spaced samples than using uniform sampling

procedure, where the sampling rate is chosen taking into

account the highest signal frequency. For example, let us

inspect a signal with wide bandwidth regions and narrow

spectral bandwidth in the rest of signal observation. It is

more efficient to sample the narrow bandwidth regions at

a lower rate than the regions, where spectral bandwidth is

wide. Solving this problem correctly requires the knowl-

edge of the function of the instantaneous maximum fre-

quency of signal. The paper will show two typical situa-

tions. First, information about the time-varying bandwidth

is known a priori. In this case the deliberately non-uniform

sampling instants can be calculated in advance, and recon-

struction is based on application of filter with appropri-

ate time-varying impulse response function. Second, the

signal-dependent sampling scheme - level crossing sam-

pling (LCS) is used for analog-to-digital (A/D) conver-

sion. The idea of level-crossing sampling is based on the

principle that samples are captured when the input signal

crosses predefined levels. Such a sampling strategy has

quite long history and is exploited for various applications

[1, 2]. It has been shown that LCS has several interesting

properties and is more efficient than traditional sampling

in many respects [3]. In particular, it can be related to the

processing of non-stationary signals, because if a wave-

form is changing rapidly, the samples are spaced more

closely, and conversely – if a signal is varying slowly, the

samples are spaced sparsely [4]. This property allows to

calculate the estimate of the function of the instantaneous

maximum frequency of signal from the positions of sam-

ples. In this case to reconstruct the waveform of signal,

an additional resampling procedure is needed before the

use of time-varying reconstruction filter, which will be de-

scribed in next section.

Note that in both cases the local sampling density reflects

the local bandwidth of the signal, therefore samples are

spaced non-uniformly and advanced algorithms are re-

quired for digital signal processing.

2. Reconstruction of signal with time­
varying bandwidth

There are several methods used for reconstruction of non-

uniformly sampled band-limited signals. For correct re-

covery, they typically require that the maximal length of

the gaps between the sampling instants does not exceed

the Nyquist rate [5]. If the signal is non-stationary with

time-varying spectral bandwidth, satisfying globally this

requirement is not an appropriate decision, because this

provides redundant data. The use of level-crossing sam-

pling scheme can reduce the amount of samples, because

the intervals between samples are determined by signal lo-

cal properties and by the number of quantization levels.

The quality of processing can be improved if the recovery

procedure takes into account the local bandwidth of the

signal [6]. In the following subsections the proposed idea

and methods for reconstruction using filters with time-

varying bandwidth and for the estimation of local maxi-

mum frequency of signal from its level-crossing samples

will be discussed.

2.1 Idea of signal­dependent reconstruction
functions

The sampling theorem states that every bandlimited sig-

nal s(t) can be reconstructed from its equidistantly spaced

samples if the sampling rate equals or exceeds the Nyquist

rate 2Fmax, where Fmax is the maximum frequency in the

signal spectrum. The reconstruction in time domain can be

expressed as

ŝ(t) =

N−1∑

n=0

s(tn)h(t− tn), (1)

where ŝ(t) denotes reconstructed signal, N is the number

of the original signal samples s(tn) and h(t) is an appro-

priate impulse response of the reconstruction filter, classi-



cally, sinc-function

h1(t) = sinc(2πFmaxt) (2)

As the sampling instants tn = n
2Fmax

, then the impulse

response

h1(t− tn) = h1(t, tn) = sinc(2πFmaxt− nπ), (3)

where h1(t − tn) = h(t, tn) is written as the function of

two arguments. The reconstructed signal becomes

ŝ(t) =

N−1∑

n=0

s(tn)h1(t, tn) (4)

If the signal with time-varying frequency bandwidth

fmax(t) is considered, then the sampling rate of the sig-

nal according to Nyquist must be at least 2Fmax, where

Fmax = max(fmax(t)). In this case any information

about the local spectral bandwidth is ignored during the

sampling process. To take it into account, it is proposed

instead of h1(t, tn) to use more general function

h2(t, tn) = sinc(Φ(t) − Φ(tn)) = sinc(Φ(t) − nπ), (5)

where Φ(t) = 2π
∫ t

0
fmax(t)dt is the phase of the si-

nusoid, whose frequency changes in time as fmax(t),
t ≥ 0 and sampling instants tn are chosen such that

Φ(tn) = nπ. If the signal is stationary and band-limited

fmax(t) = const = Fmax, Eq. (3) and (5) become

equivalent. In case of non-constant fmax(t) waveform

of the reconstruction function h2(t, tn) and the desired

sampling instants tn are determined by fmax(t). Samples

are spaced non-equidistantly and the mean sampling fre-

quency can be less than it is required by Nyquist criterion,

which, in this case, should be satisfied rather in local than

in global sense.

2.2 Reconstruction algorithm

To reconstruct the non-uniformly sampled signal accord-

ing to equation (1), the reconstruction procedure involves

signal resampling to the equidistantly spaced sampling set

{tn} with sampling period ∆t = tn − tn−1 = 1
2Fmax

.

The estimation of ŝ(tn) is possible according to the sim-

ple iterative algorithm [5] the idea of which is to inter-

polate the sampled band-limited signal s(t) by the sum

šs(tm)(t) =
∑

m s(tm)ψm and filter it in order to remove

high frequencies. Piecewise linear interpolation, which is

well suited to level-crossing samples, uses ψm consisting

of the triangular functions

ψm(t) =






t−tm−1

tm−tm−1
for tm−1 ≤ t < tm,

tm+1−t

tm+1−tm
for tm ≤ t < tm+1,

0 elsewhere.

(6)

It is proved [5] that if the maximum length of the gaps

between the sampling instants τmax ≤ 1
2Fmax

, then ev-

ery s(t) can be reconstructed from the values s(tm) of an
arbitrary τmax-dense sampling set {tm} iteratively. The

recovery algorithm can be written as:

ŝ0(tn) = šs(tm)(tn);

ŝ0(t) = C [ŝ0(tn)] ;

ŝi(tn) = ŝi−1(tn) + š(s−si−1)(tm)(tn);

ŝi(t) = C [ŝi(tn)] ,

(7)

Figure 1: Piecewise polynomial p1
k(t) approximation.

where i indicates the number of iteration. The linear op-

erator C denotes filtering as the convolution of samples

s(tn) with impulse response h1(t, tn) of the filter accord-
ing to Eq. (4)

C [s(tn)] =

N−1∑

n=0

s(tn)h1(t, tn) (8)

The sampling of non-stationary signal using level-

crossing scheme does not ensure the satisfaction of the

requirement τmax ≤ 1
2Fmax

. Direct application of the

above described algorithm leads to a considerable recon-

struction error, therefore two substantial enhancements are

introduced to the algorithm - performing resampling to the

non-equidistantly spaced values and the use of filter with

impulse response h2(t, tn) instead of classical h1(t, tn).
The resampling instants tn are determined by Φ(t), which
depends on fmax(t), that in general case is not known

in advance. To solve this problem, an algorithm is de-

veloped, which estimates the time-varying instantaneous

maximum frequency using information about locations of

level-crossings.

2.3 Estimation of instantaneous maximum fre­
quency

The obvious ways to estimate the local bandwidth of

the signal is by finding its time-frequency representation

(TFR) using, for example, short-time Fourier transform,

wavelet transform or Wigner-Ville distribution. These

methods are developed for uniformly sampled signals,

however, there are some modifications in order to find

the TFR of non-uniformly sampled signals [7]. The use

of such approach is time consuming, therefore a simpler

method is considered that is based on empirical evalua-

tions.

To estimate the function f̂max(t) from samples s(tm),
starting with the initial index value m = 0 two pairs of

successive level-crossing samples s(tm′

j
) = s(tm′

j
+1) and

s(tm′′

j
) = s(tm′′

j
+1) are found such thatm

′′

j > m′

j and the

difference m′′

j −m′

j is minimal. Thereafter the next two

pairs are found considering that m′

j+1 = m′′

j . For each

j = 1, 2, . . . the value f(tj) is calculated as

f(tj) =
(
tm′′

j
+ tm′′

j
+1 − tm′

j
− tm′

j
+1

)
−1

, (9)

where

tj =
1

4

(
tm′′

j
+ tm′′

j
+1 − tm′

j
− tm′

j
+1

)
(10)
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Figure 2: (a) Test signal sampled by Φ(tn) = nπ and (b) frequency traces of its components.
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Figure 3: (a) Test signal sampled by level-crossings and (b) estimated instantaneous maximum frequency f̂max(t) as solid
line, true instantaneous maximum frequency as dashed line and f(tj) as black points.

If a single sinusoid is sampled, then f(tj) = f(tj+1) for
all j and it equals the frequency of the sinusoid. If the

signal consists of more harmonics, then f(tj) for different

j vary around the average value of f̄ = 1
J

∑J

j=1 f(tj),
where J is the total number of detected pairs within the

observation time of the signal. Experiments show that f̄ is

close to the frequency of the highest component. Thus, the

estimate of function of instantaneous maximum frequency

f̂max(t) can be obtained by {f(tj)} approximation with

piecewise polynomials pr
k(t) of order r. By choosing the

number L > 1 the observation interval of signal is divided

into subintervals

∆Tk : t ∈ [tk,1; tk,2] , (11)

where k = 0, 1, . . . is the number of subinterval and

tk,1 =
tj=kL + tj=kL+1

2
, (12)

tk,2 =
tj=(k+1)L + tj=(k+1)L+1

2

For each subinterval ∆Tk the coefficients

ak,r , ak,r−1, . . . , ak,1, ak,0 of polynomial pr
k(t) =

ak,rt
r + ak,r−1t

r−1 + · · · + ak,1t + ak,0 are found to

ensure

pr
k−1(tk,1)

(0) = pr
k(tk,1)

(0) , pr
k(tk,2)

(0) = pr
k+1(tk,2)

(0)

pr
k−1(tk,1)

(1) = pr
k(tk,1)

(1) , pr
k(tk,2)

(1) = pr
k+1(tk,2)

(1)

...

pr
k−1(tk,1)

(r) = pr
k(tk,1)

(r) , pr
k(tk,2)

(r) = pr
k+1(tk,2)

(r)

and the value of expression

K−1∑

k=0

(k+1)L∑

j=kL+1

[f(tj) − pr
k(tj)]

2
= min (13)

is minimal. The denotation (. . .)(r) means the derivative

of order r andK is the total number of subintervals. After

solving the minimization task using the method of least

squares, the coefficients of polynomials pr
k(t) are obtained

and the estimate of instantaneous maximum frequency

f̂max(t) = pr
k(t), if tk,1 ≤ t ≤ tk,2 (14)

depends on the numberL of samples f(tj) per subinterval.
To reduce the dependency the final frequency estimate is

obtained by averaging f̂max(t) calculated for different L

values. The example of piecewise polynomial of order

r = 1 approximation when L = 7 is shown in Fig. 1

3. Simulation results

The methods described in previous section are applied to

reconstruct nonstationary signal from its nonuniform sam-
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Figure 4: (a) The difference between original and recovered signal from its 349 level-crossing samples after 10 iterations

and (b) reconstruction error (solid lines - reconstruction from level-crossings using h2(t, tn), dashed lines - reconstruction
from level-crossings using h1(t, tn), dotted line - reconstruction from samples obtained by Φ(tn) = nπ).

ples s(tn) obtained in two different ways. The first one is

when fmax(t) is given and sampling instants tn satisfy

Φ(tn) = nπ (Fig. 2). The second way is by level-crossing

sampling and fmax(t) is not known in advance (Fig. 3).
In the first case 239 nonequidistantly spaced samples were

obtained during 200 seconds of the test signal, which con-

sists of three sinusoids with constant amplitudes and time-

varying frequencies as shown in Fig. 2b. As the recon-

structed signal according to Eq. (4) using h2(t, tn) differs
insignificantly from the original one, it is not illustrated

here. In order to obtain similar result in uniform sam-

pling case, at least 360 samples would be required since

the maximum frequency of the signal is Fmax = 0.9 Hz.

In the level-crossing sampling case 349 samples were cap-

tured using 6 quantization levels (Fig. 3a). To recover the

signal the first task was to find the values f(tj) according
to Eq. (9) in order to estimate the instantaneous maximum

frequency (14). In Fig. 3b f(tj) are shown as black points,

true fmax(t) as dashed line and calculated f̂max(t) as

solid line. The similarity between frequency traces is ob-

vious. The second step was to recover the original signal

according to Eq. (7) using level-crossing samples and esti-

mated f̂max(t). The difference signal ei(t) = s(t)− si(t)
after 10 iterations i = 10 is illustrated in Fig. 4a. The re-

construction error

√
1
T

∫ T

0
ei(t)2dt reduces as the number

of iterations i increases. It is shown in Fig. 4b as a grey

solid line. The grey dashed line corresponds to recon-

struction error, when instead of time-varying bandwidth

filter h2(t, tn) the filter with constant cut-off frequency of
Fmax = 0.9 Hz and impulse response h1(t, tn) is used. In
this case the achieved result is not so good as the recon-

struction quality remains only in intervals, where the sam-

pling density is sufficient. The reconstruction error can be

reduced by decreasing the distance between quantization

levels giving 437 level-crossing samples. It is shown in

Fig. 4b as black solid and dashed lines. The dotted line

corresponds to the first case when fmax(t) is given and

sampling instants tn satisfy Φ(tn) = nπ.

4. Conclusions

The proposed approach for non-stationary signal process-

ing uses signal dependent techniques: level crossing sam-

pling for data acquisition and filtering with time-varying

bandwidth for signal reconstruction. The information car-

ried by level-crossing samples is employed in two ways –

time instants of samples are used to estimate the instan-

taneous maximum frequency of the signal, while the am-

plitude values of samples are used in reconstruction al-

gorithm. The reconstruction procedure is based on the

use of iterative filtering with time-varying bandwidth fil-

ter. The enhancement of classical signal reconstruction

approach is made by introducing signal-dependent, ”non-

stationary” impulse response and resampling to the corre-

sponding, nonuniform sampling set.

Speech signal processing can be quoted as one of the po-

tential application areas of the proposed algorithm. The

level-crossing sampling technique reduces the number of

samples and leads to effective signal coding approaches.
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