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Tamazutsumi 
  
Daubechies Localization Operator in Bargmann -Fock Space and Generating Function of Eigenvalues of Localization Operator

We will express Daubechies localization operators in Bargmann -Fock space. We will prove that the Hermite functions are eigenfunctions of Daubechies localization operator. By making use of generating function of eigenvalues of Daubechies localization operator, we will show some reconstruction formulas for symbol function of Daubechies localization operator with rotational invariant symbol.

Introduction

Daubechies localization operator was introduced in I. Daubechies : A Time Frequency Localization Operator: A Geometric Phase Space Approach, IEEE. Trans. Inform. theory. vol.34, pp.605-612(1988) She obtained following results.

Theorem(Daubechies)([2])

Suppose that symbol function of Daubechies localization operator is rotational invariant. Then (i) Eigenfunctions of Daubechies localization operator are Hermite functions. (ii) Eigenvalues are given by Mellin transform of symbol function.

In this paper we realize Daubechies localization opeartor in Bargamann -Fock space. We will consider the eigenvalue problem of Daubechies localization opeartor in Bargmann -Fock space. By making use of Bargamann -Fock space we will give a new proof of above theorem. We will establish reconstruction formula of symbol function of Daubechies localization operator with rotational invariant symbol by generating function of eigenvalues of Daubechies localization operator. For the simplicity, we will confine ourselves to 1-dimensional case.

Bargmann Transform

Put A(z, x) = π -1/4 exp - 1 2 (z 2 + x 2 ) + √ 2z • x ,
where z ∈ C and x ∈ R.

Bargmann transform B(ψ) is defined as follows :

B(ψ)(z) def = R ψ(x)A(z, x)dx, (ψ ∈ L 2 (R)).
Put

BF = {g ∈ H(C) : C |g(z)| 2 e -|z| 2 dz ∧ dz < ∞}
where H(C) denotes the space of entire functions in the complex plane.

BF is called Bargmann-Fock space.

Theorem 1([1])

Bargmann transform is a unitary mapping from L 2 (R) to Bargmann-Fock space BF .

For the details of Bargmann transform and Bargmann -Fock space, we will refer the reader to [START_REF] Bargmann | On a Hilbert Space of Analytic Functions and an Associated Integral Transform Part I[END_REF] and [START_REF] Folland | Harmonic Analysis in Phase Space[END_REF].

Hermite Functions Definition 1([1],[3])

Hermite functions h m (x) is defined by :

h m (x) = (-1) m (2 m m! √ π) -1/2 exp(x 2 /2) d m dx m exp(-x 2 ), (m ∈ N).
Hermite functions has following generating function expansion :

π -1/4 exp - 1 2 (z 2 + x 2 ) + √ 2z • x = ∞ m=0 z m √ m! h m (x), (z ∈ C, x ∈ R).
We recall some well known facts about Hermite functions.

Proposition 1([1],[3]

)

(i) {h m (x)} ∞ m=0 is complete orthonormal basis in L 2 (R). (ii) (- ∂ 2 ∂x 2 + x 2 -1)h m (x) = mh m (x), (iii) B(h m )(z) = z m √ m! , (z ∈ C) (iv) F(h m )(x) = (-i) m h m (x),
where F is Fourier transform.

Proposition 2([1],[3]) (i) (B • L • B -1 )g(z) = z ∂ ∂z g(z)
,

where L = - ∂ 2 ∂x 2 + x 2 -1. (ii) (B • F • B -1 )g(z) = g(-iz),
where F is Fourier transform and g(z) ∈ BF .

Daubechies Localization Operator

Put φ p,q (x) = π -1/4 e ipx e -(x-q) 2 /2 . < φ p,q , f >= R φ p,q (x)f (x)dx.
This is so called Short time Fourier transform (or Windowed Fourier transform, or Gabor transform).

Definition 2([2])

Suppose that

F (p, q) ∈ L 1 (R 2 ) and f (x) ∈ L 2 (R).
We put

P F (f )(x) = 1 2π R 2 F (p, q)φ p,q (x) < φ p,q , f > dpdq,
We call P F (Daubechies) localization operator F (p, q) is called symbol function.

Daubechies obtained following results.

Theorem([2]

). Suppose that F (p, q) ∈ L 1 (R 2 ) and

F (p, q) is rotational invariant function, i.e. F (p, q) = F (r 2 ), (r 2 = p 2 + q 2 ).
Then (i) Hermite functions h m (x) are eigenfunctions of Daubechies operator P F .

P F (h m )(x) = λ m h m (x), (m ∈ N), (ii) λ m = 1 m! ∞ 0 e -s s m F (2s)ds, (m ∈ N).

A Realization of Daubechies Localization Operator in Bargmann Fock space

In this section we will express Daubechies Localization Operator in Bargmann -Fock space. First we need following lemmas.

Lemma 1 B(φ p,q )(z) = e zw-1/2|w| 2 +1/2ipq , (w = p + iq √ 2 ) Lemma 2([1]) g(z) = 1 2πi C e wt g(t)e -|t| 2 dt ∧ dt, (g ∈ BF )
Theorem 2 Under the same assumptions in Prop. 3, we have

(B • P F • B -1 )(g)(z) = 1 2πi C F (w, w)e zw g(w)e -|w| 2 dw ∧ dw, (∀g ∈ BF ) (Proof)
Since Bargmann transform is unitary operator, we have

P F (f )(x) = 1 2π F (p, q)φ p,q (x) < φ p,q , f > dpdq, = 1 2π F (p, q)φ p,q (x) < Bφ p,q , Bf > dpdq,
So by lemma 1,

B • P F (f )(x) = 1 2π
F (p, q)Bφ p,q (z) < Bφ p,q , Bf > dpdq, = 1 2π F (p, q)e zw-1/2|w| 2 +1/2ipq < Bφ p,q , Bf > dpdq, Hence we have

(B • P F • B -1 )(g)(z) = 1 2π F (p, q)e zw-1/2|w| 2 +1/2ipq < Bφ p,q , g > dpdq,
On the other hand

< Bφ p,q , g > = 1 2π e t w-1/2|w| 2 -1/2ipq g(t)e -|t| 2 dtd t, By Lemma 2, = e -1/2|w| 2 -1/2ipq g( w)
Thus we obtained our desired result.

Proposition 3([2]

). Suppose that F (p, q) ∈ L 1 (R 2 ) and F (p, q) is rotational invariant function, i.e. F (p, q) = F (r 2 ), (r 2 = p 2 + q 2 ). Then (i) Functions z m are eigenfunctions of operator

B • P F • B -1 . (B • P F • B -1 )(z m ) = λ m z m , (m ∈ N), (ii) λ n = 1 n! ∞ 0 e -s s n F (2s)ds, (n ∈ N). (Proof)
By Theorem 2, we have

(B • P F • B -1 )(z m ) = 1 2πi C F (2|w| 2 )e zw w m e -|w| 2 dw ∧ dw,
Employing polar coordinte transform w = re iθ and s = r 2 , we have

= z m 1 m! ∞ 0 e -s s m F (2s)ds.
As a corollary of Proposition 3, we obtained following Daubechies's results in section 4.

Proposition 4([8])

Let {λ m } be eigenvalues of P F . Then there exists a positive constant C such that

|λ m | ≤ C |m| , (m ∈ N). Put Λ(w) = ∞ m=0 λ m w m .
We call Λ(w) generating function of eigenvalues of Daubechies Localization Operator. Theorem 3 Under the same assumptions in Prop. 3, we have

(B • P F • B -1 )(g)(z) = (2πi) -n g(t)Λ( z t ) dt t , (∀g ∈ BF ) (Proof)
Suppose that g(z) ∈ BF . We consider Taylor expansion of g(z) at the origin. Put

g(z) = ∞ m=0 a m z m
By Proposition 3, we have

(B • P F • B -1 )(z m ) = λ m z m . So (B • P F • B -1 )(g)(z) = (B • P F • B -1 )( ∞ m=0 a m z m ) = ∞ m=0 a m λ m z m = (2πi) -n g(t)Λ( z t ) dt t
Hence we have

(B • P F • B -1 )(g)(z) = (2πi) -1 g(t)Λ( z t ) dt t .

An Example of Daubechies Localization Operator

In this section we will consider following special Daubechies localization operators.

Put F a (p, q) = e a-1 2a (p 2 +q 2 ) = e a-1 2a r 2 , (0 < a < 1). Then λ m = a m+1 , Λ(w) = a 1 -aw . P F a (h m )(x) = a m+1 h m (x). P Fa = ∞ m=0 a m+1 h m (x)h m (y).
valids in operator sense.

(P F a = ∞ m=0 a m+1 |m >< m|, in Dirac's Notation.)
If a = 2 -1 , this is Schatten decomposition of P Fa and P F a is called density operator in quantum statistical mechanics.

Proposition 5 (Mehler's formula [START_REF] Folland | Harmonic Analysis in Phase Space[END_REF], [START_REF] Wong | Weyl Transforms[END_REF])

∞ m=0 a m+1 h m (x)h m (y) = a π(1 -a 2 ) e -1 4 ( 1-a 1+a (x+y) 2 + 1+a 1-a (x-y) 2 ) , (|a| < 1). Corollary 3 (i) P Fa (f ) = R a π(1 -a 2 ) e -1 4 ( 1-a 1+a (x+y) 2 + 1+a 1-a (x-y) 2 ) f (y)dy, (f ∈ L 2 ). (ii) If a ∈ C, |a| < 1, then P F a : L 2 -→ L 2 is bounded linear operator. (Proof) If a ∈ {a ∈ C : |a| < 1}, then real part of 1 -a 1 + a + 1 + a 1 -a is positive. So P F a is bounded linear operator from L 2 to L 2 .
Namely, we obtained analytic continuation of P F a under the condition (a ∈ C, |a| < 1).

Realization of P F a in Bargmann -Fock space

In this section we will consider P Fa in Bargmann -Fock space.

Proposition 6

(i) B • P F a • B -1 = ∞ m=0 a m+1 z m √ m! wm √ m! .
valids in operator sense.

(ii

) (B • P F a • B -1 )(g)(z) = ia 2 C e az wg(w)e -|w| 2 dw ∧ d w, (g ∈ BF ) (Proof) Since z m √ m! . are eigenfunctions of B • P F a • B -1 ,
we have

B • P Fa • B -1 = ∞ m=0 a m+1 z m √ m! wm √ m! .
Proposition 7 Suppose that |a| < 1, (a ∈ C). Then we have

(B • P F a • B -1 )(g)(z) = ag (az) , (g ∈ BF ). (Proof) (B • P F a • B -1 )(g)(z) = (2πi) -1 g(t)Λ( z t ) dt t = (2πi) -1 g(t) a t -az dt = ag(az).
Proposition 8 For f ∈ L 2 , we have

(i) lim a→1 P F a (f ) = f, (ii) lim a→-i P Fa (f ) = (-i)Ff, (iii) lim a→i P F a (f ) = iF -1 f,
where F is Fourier transform.

(Proof) By Prop.7, we have

(B • P F a • B -1 )(g)(z) = ag (az) , (g ∈ BF ). (i) lim a→0 (B • P F a • B -1 )(g) = lim a→1 ag(az) = g(z).
This means that lim a→1 P F a = Identity operator.

(ii) lim

a→-i (B • P F a • B -1 )(g) = lim a→-i ag(az) = (-i)g(-iz).
By (ii) in Proposition 2, this means that lim a→-i

P F a = (-i)F .
Proof of (iii) is same as that of (ii).

Proposition 9

(i) G = {P F a : a ∈ C, |a| < 1} ∪ {I d } is semigroup. (ii) P Fa • P Fa = P F ab . (Proof) By Proposition 7, (B • P F a • B -1 )(g)(z) = ag(az), g(z) ∈ BF So, we have (B • P F a • P F b • B -1 )(g)(z) = bag (baz) Hence we have P F b • P Fa = P F ab .
In these cases, F a (p, q) / ∈ L 1 . But these operators still define bounded operators from L 2 to L 2 . As seen in Proposition 8, these operators are obtained as limit of P F a , (F a ∈ L 1 ).

Reconstruction formulas

We assume that F (p, q) is rotational invariant L 1 function. Namely, F (p, q) = F ( p 2 + q 2 ).

In section 5, we introduced following generating function:

Λ(w) = ∞ m=0 λ m w m
Λ(w) is called generating function for eigenvalues of P F Now we consider following formal power series :

∞ m=0 m!λ m t -m-1
In general this series is divergent series. We put where F is Fourier transform.

G(t) =

∞ 0 FF

 0 (2s)e -s t -s ds, (t ∈ C\[0, ∞]). m t -m-1is an asymptotic expansion of G(t).Remark Λ(w) is the Borel transform of formal power series∞ m=0 m!λ m t -m-1 .Since G(t) is Hilbert transform of F (2s)e -s , we have Theorem 5F (2s) = e s lim t→0 -1 2πi (G(s + it) -G(s -it)) (2s) = (2π) -n e s F(Λ(iv))(s),valids in distribution sense.